
Introduction to probability

Suppose an experiment has a finite set X =

{x1, x2, . . . , xn} of n possible outcomes. Each

time the experiment is performed exactly one

on the n outcomes happens. Assign each out-

come a real number between 0 and 1, called

the probability of that outcome. The proba-

bility of an outcome is supposed to be propor-

tional to its likelihood of happening.

We want a probability of an outcome being

near 1 to mean that that outcome is very likely

to be the one that happens, and a probabil-

ity near 0 to mean that that outcome almost

never happens.

Write p(xi) for the probability of the outcome

xi. The sum of the probabilities of all out-

comes in X must be 1 because the outcomes

in X are the only possible outcomes, so one of

them must happen.
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So far we have 0 ≤ p(xi) ≤ 1 for each i and

n
∑

i=1

p(xi) = 1.

Where do the probabilities p(xi) come from?

Sometimes they come from doing an experi-

ment many times and tabulating the outcomes.

Example. Weather forecasters save enormous

tables of weather conditions. The prediction,

“There is a 40% chance of rain tomorrow.”

means that on 40% of the days (listed in the

weather records) when the weather conditions

were similar to what they are now, it rained

the next day.

If outcome x has a 40% chance of happening,

then its probability is written p(x) = 0.4 so

that it will be between 0 and 1.
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Where do the probabilities p(xi) come from?

Frequency probability: Perform an experiment

(or look at historical records) and count the

good and bad outcomes.

Example: toss a coin 1000 times.

Classical probability: Use a model of how the

world works.

Example: a 6-sided die.

Delphi approach: Ask experts, tell them the

average of their guesses, let them revise.
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Sometimes we expect that all possible out-

comes are equally likely because there is no

reason to think that some outcomes are more

likely than others. In this case, if there are n

possible outcomes, then each outcome x has

probability p(x) = 1/n.

Example. Suppose a deck of 52 cards has

been shuffled well and then one card is chosen.

The probability that the chosen card is the Six

of Hearts is p(Six of Hearts) = 1/52.

This is an example of equally likely outcomes.

Here is another.

Example. If a coin is properly balanced and

tossed well, then the two sides Heads and Tails

are equally likely, so each of these outcomes

has probability 0.5.
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We will often combine some outcomes and ask

for the probability that at least one of them

happens, but we don’t care which one.

A subset E of a set X of all possible outcomes

is called an event. We say that E “happens”

if the outcome of the experiment is one of the

outcomes in E.

The probability of an event E is the sum of the

probabilities of the outcomes in it. We write

p(E) =
∑

x∈E p(x).

For any event, 0 ≤ p(E) ≤ 1.

The probability that E does not happen is

1− p(E).
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Example. In a deck of cards, 13 of the 52

cards are Clubs, so the probability that a Club

is drawn from a shuffled deck is

13× 1

52
=

1

4
= 0.25.

Four of the cards are Jacks (one from each of

the four suits), so the probability that a Jack

is drawn is

4× 1

52
=

1

13
≈ 0.076923.

Later, we will compute probabilities of events

like this one: Suppose two cards are drawn

from a deck. What is the probability that they

are in the same suit?
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Events may be combined using set theory.

The union E ∪ F of events E, F , happens if

either one of them happens, that is, if the out-

come is in either E or F .

The intersection E∩F of events E, F happens

if both happen, that is, if the outcome is in

both E and F .

Two events E, F are mutually exclusive if they

are disjoint sets, that is, E ∩ F is empty. In

other words, E, F are mutually exclusive if they

cannot both happen. When E, F are mutually

exclusive,

p(E ∪ F) = p(E) + p(F).

(Recall the definition of p(E).) Ditto for more

than two events being mutually exclusive.

Example. The probability that a card drawn

from a deck is either a Jack, a Queen or a King

is 1/13 + 1/13 + 1/13 = 3/13 because a card

may be at most one of Jack, Queen, King.
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Suppose E and F are two events and F can

happen, that is, p(F) > 0. Define the condi-

tional probability of E given F to be

p(E | F) =
p(E ∩ F)

p(F)
.

Example. Find the conditional probability that

a card is a Queen given that it is either a Jack,

a Queen or a King. Here, E is the event, “the

card is a Queen” and F is the event, “the card

is either a Jack, a Queen or a King.” We have

p(E) = 1/13, p(F) = 3/13 and p(E∩F) = 1/13

because E ∩ F = E. The answer is

p(E | F) =
p(E ∩ F)

p(F)
=

1/13

3/13
=

1

3
.
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Bayes’ Theorem

Write the definition of conditional probability

on the form

p(E ∩ F) = p(E | F)p(F).

If we interchange E and F , we get

p(F ∩ E) = p(F | E)p(E).

Since F ∩ E = E ∩ F , we have

p(E | F)p(F) = p(F | E)p(E),

and we have proved Bayes’ Theorem:

Theorem. If both p(E) > 0 and p(F) > 0,

then

p(F | E) =
p(F)p(E | F)

p(E)
.
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Example of Bayes’ Theorem. Draw one card

from a deck. Let F be the event, “the card

is a Jack or Queen or King of Spades.” Let

E be the event, “the card is a Queen.” Since

the Jack, Queen and King of Spades are 3 of

the 52 cards, p(F) = 3/52. Since 4 of the 52

cards are Queens, p(E) = 4/52 = 1/13.

Let us compute p(E | F). If F happens, then

the card is one of the three cards: Jack or

Queen or King of Spades. One of these is a

Queen, so p(E | F) = 1/3.

By Bayes’ Theorem,

p(F | E) =
p(F)p(E | F)

p(E)
=

(3/52)(1/3)

1/13
=

1

4
.

This result is easy to verify, because if the card

is a Queen, then it has 1 chance in 4 of being

the Queen of Spades. Thus, p(F | E) = 1/4.
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Independent Events

Two events E and F are called independent if

p(E | F) = p(E). Intuitively, this says that E

and F are independent if the probability that E

happens does not depend on whether F hap-

pens.

When both p(E) > 0 and p(F) > 0, Bayes’

Theorem implies that p(E | F) = p(E) if and

only if p(F | E) = p(F).

The formula p(E ∩ F) = p(E | F)p(F) and the

definition of independent imply that E and F

are independent iff p(E ∩ F) = p(E) · p(F).

11



The two events in the Bayes’ Theorem exam-

ple are not independent because p(E ∩ F) =

1/52 since the card must be the Queen of

Spades, while p(E) · p(F) = (1/13)(3/52) 6=
1/52.

Example. Let E be the event, “the card is a

Spade.” Let F be the event, “the card is a

Queen.” Since there are 13 Spades, p(E) =

13/52 = 1/4. Since there are 4 Queens, p(F) =

4/52 = 1/13. The event E ∩ F says that the

card is the Queen of Spades, which is 1 of 52

cards, so

p(E ∩ F) = 1/52 = (1/4)(1/13) = p(E)p(F),

so the events E and F are independent.
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Random Variables

A sample space is the set of all possible out-

comes xi, each having a probability p(xi). (In

this class, we assume the number of possible

outcomes is finite.)

Example. Draw a card. There are 52 pos-

sible outcomes, like xi = “Queen of Spades”.

Each has probability p(xi) = 1/52. The sample

space is the set of 52 cards.

A random variable is a (real-valued) function r
defined on a sample space.

Example. Draw a card xi. Let r(xi) denote

the value of the card, defined as follows: If the

card has a number, this number is its value.

So r(Six of Clubs) = 6. If the card is an Ace,

then its value is 1: r(Ace of Diamonds) = 1.

If the card is a Jack, Queen or King, then its

value is 10: r(Queen of Hearts) = 10. Then

r(xi) is a random variable define on a deck of

cards.
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Let r1, r2, . . ., be all possible values of a ran-

dom variable r defined on a sample space. (This

is a finite number of values.) The probabil-

ity distribution of r is the function f defined

by f(rj) = p(r(xi) = rj), that is, f(rj) is the

probability of the event “r(xi) = rj.”

Example. In the example of the random vari-

able on the deck of cards above, f(i) = 1/13

for 1 ≤ i ≤ 9 because 4 of the 52 cards have

value i in this range. However, f(10) = 4/13

since 4 cards in each suit have value 10.

Two random variables r, s are independent

if for any possible values r1, s1, they could

assume, the probability that “r(x) = r1 and

s(x) = s1” equals p(r(x) = r1) · p(s(x) = s1).

Example. Draw a card. Record its value as r.

Replace the card in the deck. Shuffle the deck

again and draw a second card. Record its value

as s. Then r and s are independent random

variables with the same probability distribution.
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There are several concise ways to describe the

probability distribution of a random variable by

giving a “typical” value of it.

The median of the probability distribution f of

a random variable r is a value rm so that the

probability of r(x) > rm is as close to 0.5 as

possible. (f is used to compute this proba-

bility.) The median is the “middle value” of

r(x).

Example. Suppose r has this probability dis-

tribution:

r 3 6 8 9
f(r) 0.2 0.2 0.4 0.2

The median of r is 6 because p(r > 6) is 0.6

while p(r > 8) is 0.2 and 0.6 is closer to 0.5.
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Another (more useful) typical value is the mean

or average or expected value.

The mean or expected value of a random vari-

able r with values r1, r2, . . . and probability

distribution f is

µ = E(r) =
∑

i

rif(ri).

Example. The mean of the value of cards in

the example above is

1 · 1

13
+ 2 · 1

13
+ · · ·9 · 1

13
+ 10 · 4

13
=

(

9 · 10
2

)(

1

13

)

+10 · 4

13
=

85

13
.

This number, 85/13 ≈ 6.5, is the average value

of a card.
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If F is a real function of a real variable, and r

is a random variable, then F(r) is another ran-

dom variable. It has value F(r(x)) on outcome

x. Its expected value is

µ = E(F(r)) =
∑

i

F(ri)f(ri).

The k-th moment of a random variable r is the

expected value of F(r) = rk.

The variance of a random variable r with ex-

pected value µ is

Var(r) = E((r − µ)2) = E(r2)− µ2.

The last equation is a simple theorem.

The square root of the variance of r is the

standard deviation of r. It measures how much

r(x) varies from the mean µ.
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Example. Suppose r has this probability dis-

tribution:

r 3 6 8 9
f(r) 0.2 0.2 0.4 0.2

The mean of F(r) = r is

µ = 3 · 0.2+ 6 · 0.2+ 8 · 0.4 + 9 · 0.2 = 6.8.

The second moment of r is E(r2) =

32 · 0.2+ 62 · 0.2 + 82 · 0.4+ 92 · 0.2 = 50.8.

The variance of r is

Var(r) = E(r2)− µ2 = 50.8− (6.8)2 = 4.56

and the standard deviation is σ =
√
4.56 =

2.14.

An important and common probability distribu-

tion is the uniform distribution in which each

possible value for the random variable has the

same probability. If there are n possible values,

then each has probability 1/n of occurring. We

say the values are equally likely.
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Recall the question we asked earlier: What is

the probability that two cards drawn at random

from a deck are in the same suit?

First suppose that the first card drawn is not

replaced. Then there are 51 cards remaining

and 12 of them are in the same suit as the first

card. The probability is 12/51. (This is called

sampling without replacement.)

Now suppose that the suit of the first card is

noted and then it is replaced in the deck and

the deck reshuffled before the second card is

drawn. Then the second card is one of 52 cards

of which 13 are in the same suit as the first

card. The probability is 13/52 = 1/4 = 0.25.

(This is called sampling with replacement.)
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The Birthday Paradox

What is the smallest positive integer k so that

the probability is > 0.5 that at least two people

in a group of k people have the same birthday?

The surprising answer is k = 23.

The explanation is complicated and will come

later.

If there were n birthdays, rather than 365 or

366, the answer would be that we need k ≈
1.18

√
n people to get a 50% chance that two

have the same birthday.

This fact is needed for the study of hash func-

tions.
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The overlap between two sets

A related fact we need for hash functions is

this:

What is the smallest positive integer k so that

the probability is > 0.5 that in two groups of k

people, at least one person in the first group

has the same birthday as at least one person

in the second group?

Here the answer is k ≈ 16.

If there were n birthdays, rather than 365 or

366, the answer would be that we need k ≈
0.83

√
n people to get a 50% chance that one

person from the first group has the same birth-

day as one person from the second group.
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Now we derive the results just mentioned, be-

ginning with the Birthday Paradox.

Ignore February 29.

Assume each birthday is equally likely.

The probability that k people all have different

birthdays is

365

365
× 364

365
× 363

365
× · · · × 365− k +1

365

which is

365!

(365− k)!× (365)k
.

Thus the probability that at least two of k peo-

ple have the same birthday is

P(k) = 1− 365!

(365− k)!× (365)k
.

22



More generally, suppose we are given an inte-

ger-valued random variable with uniform distri-

bution between 1 and n. Choose k instances of

this random variable. What is the probability

P(n, k) that at least two of the k instances are

the same value?

As for birthdays, we find

P(n, k) = 1− n!

(n− k)!nk
.

Write this as

P(n, k) = 1− (1− 1

n
)(1− 2

n
)× · · · × (1− k − 1

n
).

To estimate this, note that 1 − x ≈ e−x when

x is small.
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This gives

P(n, k) ≈ 1− e−1/ne−2/ne−3/n × · · · × e−(k−1)/n

P(n, k) ≈ 1− e−(1/n+2/n+3/n+···+(k−1)/n

P(n, k) ≈ 1− e−k(k−1)/(2n).

We will have P(n, k) ≈ 0.5 when

0.5 ≈ 1− e−k(k−1)/(2n)

or 2 ≈ ek(k−1)/(2n), that is, when

ln 2 ≈ k(k − 1)/(2n).
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When k is large, the percentage difference be-

tween k and k − 1 is small, and we may ap-

proximate k − 1 ≈ k. This gives k2 ≈ 2n ln 2

or

k ≈
√

2(ln 2)n ≈ 1.18
√
n.

For n = 365, we find

k ≈ 1.18
√
365 ≈ 22.54,

or k ≈ 23.

Suppose H(M) is a hash function with m-bit

output. There are n = 2m possible hash val-

ues.

If H is applied to k random inputs, the proba-

bility of finding a duplicate (H(M) = H(M ′))
is P(2m, k). The minimum number of k needed

for a duplicate to occur with probability > 0.5

is about

k = 1.18
√
2m = 1.18× 2m/2.
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The overlap between two sets

Given an integer random variable with uniform

distribution between 1 and n, and two sets of

k (k ≤ n) instances of the random variable,

what is the probability R(n, k) that the two sets

overlap, that is, at least one of the n values

appears in both sets?

We assume k is small enough (k <
√
n) so that

the k instances of the random variable in each

set are all different. (A few duplicates won’t

hurt this analysis.)

The probability that one given element of the

first set does not match any element of the

second set is (1− 1
n)

k.

The probability that the two sets are disjoint

is

((1− 1

n
)k)k = (1− 1

n
)k

2

so R(n, k) = 1− (1− 1
n)

k2.
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Using 1− x ≈ e−x, we get

R(n, k) ≈ 1− (e−1/n)k
2
= 1− e−k2/n.

We will have R(n, k) ≈ 0.5 when 1
2 ≈ 1− e−k2/n

or 2 ≈ ek
2/n or ln 2 ≈ k2/n or

k ≈
√

(ln 2)n ≈ 0.83
√
n

Suppose a hash function H with n = 2m pos-

sible values is applied to k random inputs to

produce a set X of hash values and again to

k additional random inputs to produce another

set Y of hash values. What is the minimum

value of k so that the probability is at least 0.5

of finding at least one match between the two

sets, that is, H(x) = H(y), where x ∈ X and

y ∈ Y ? Using the approximation above, the

minimum k is about

k ≈ 0.83
√
2m = 0.83× 2m/2.
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