
Attacks on RSA, some using LLL

Recall RSA: N = pq hard to factor. Choose

e with gcd(e, φ(N)) = 1, where φ(N) = (p −
1)(q − 1). Via extended Euclid, find d with

ed ≡ 1 (mod φ(N)). Discard p and q. Public

key is N , e. Private key is d. Encipher m as

c = me mod N . Decipher c as m = cd mod N .

1. RSA problem: Given N , e, c, find m.

2. Compute d: Given N , e, find d.

3. Factor N : Given N , find p and q.

Clearly, 3 → 2 → 1.

In fact, 3 ≡ 2. It is not known whether 3 ≡ 1.

All three problems seem hard, although Shor

showed that one can solve 3 quickly on a quan-

tum computer.

1

Relax the problems. Assume we know some

hint about p or q or d, either because they are

limited or we have an oracle for them..

Coppersmith proved that if f(x) is a monic

polynomial and p is an unknown factor of a

given integer N , then one can find all “small”

solutions x to f(x) ≡ 0 (mod p) quickly via

LLL.

2

Let N = pq, where p > q. Suppose we know N

and a bit more than half of the high-order bits

of p. (Oracle or limit on p.)

Specifically, suppose we are give p̃

with |p− p̃| < N1/4.

Let f(x) = x + p̃. Then x0 = p − p̃ is a small

zero of f(x) ≡ 0 (mod p) so we can find it with

Coppersmith’s method.

Define polynomials for i = 0 to h-1 by

fi(x) = Nh−if i(x) = Nh−i(x+ p̃)i

fh+i(x) = xifh(x) = xi(x+ p̃)h.

Then ph divides all fi(x0), i = 0, 1, . . ., 2h−1.

Let X = N1/4−ǫ.

3

The coefficient vector of a polynomial h(x) =

a0 + a1x + a2x
2 + · · · anxn is the vector v =

(a0, a1, . . . , an).

Define a lattice L of dimension 2h by the basis

of coefficient vectors of fi(xX).

Apply LLL to get a reduced basis, including a

shortest vector v = the coefficient vector of a

polynomial g(xX).

We have |g(x0)| < ph and ph divides g(x0).

Therefore, g(x0) = 0. Solve g(x) = 0 in in-

teger x. Then p = x0 + p̃.

4

Another result of Coppersmith is that one can

find all of a message m, provided one knows

2/3 of its bits and e = 3. This might hap-

pen when m is a standard message, like, “The

password for today is wxyz.”

We are given N , c = m3 mod N and m̃ with

|m− m̃| < N1/3. We must find m.

Write m = m̃ + x0, where |x0| < N1/3. Then

we must find a small root (x = x0) of

f(x) = ((m̃+ x)3 −m3) mod N.

This is done with the same technique just dis-

cussed.

5

In a similar way, one can find d, given N and e

provided d is small, say, 0 < d < N1/4.

Write ed = 1+ kφ(N). Since φ(N) = N − (p+

q) + 1, we can write φ(N) = N − z with z < a

small multiple of
√
N . This leads to

ed− kN − kz − 1 = 0.

Since kz is much smaller than ed or kN , we

have e/N ≈ k/d. Continued fractions allow us

to recover k and d from e and N when d <

N1/4.

Rewrite ed − kN − kz − 1 = 0 as kN + kz +

1 ≡ 0 (mod e). A variation of Coppersmith’s

method using lattices and LLL lets one find

solutions to this congruence with z near
√
N

and k near Nα for α up to about 0.29.

6

Now suppose that the same message is en-

crypted with RSA and sent to k receivers, each

with different RSA moduli, but with the same

(small) enciphering exponent e.

An eavesdropper would know the k public

moduli N1, . . ., Nk and the k ciphertexts

ci = me mod Ni for 1 ≤ i ≤ k.

If two Ni were not relatively prime, then the

eavesdropper could factor both of them (since

they could have only one of their two prime

factors in common), compute both d and de-

cipher c to get m.

And if every pair of Ni were relatively prime,

then the eavesdropper could use the CRT to

compute me modulo the product of all k mod-

uli. If the value of me is less than this product,

then it can be computed. Finally, m can be

computed by taking the e-th root of the inte-

ger me.

A special case is e = 3.

7

We now show that computing d in RSA is

equivalent to factoring N . Clearly, one can

compute d quickly given the factors of N .

It is easy to see that we can factor N given N

and φ(N) by solving a quadratic equation. We

show that one can find φ(N) quickly from N ,

e and d.

Since φ(N) = N − (p + q) + 1 and p ≈ q, the

polynomial

f(x) = N − x mod φ(N)

has a root x0 = p + q − 1 of size 2N1/2. We

don’t know φ(N), but we do know that it di-

vides M = ed− 1 and that M < N2.

The LLL algorithm quickly computes all roots

x0 with x0 < 2N1/2.

8

Here is a simpler way to see that one can factor

N given e and d.

Recall that ed ≡ 1 (mod φ(N)). Therefore,

ed − 1 = kφ(N) for some integer k. If we let

r = ed − 1, then whenever gcd(a,N) = 1 we

have

ar = aed−1 =
(

aφ(N)
)k ≡ 1 (mod N)

by Euler’s theorem. Note that r is even be-

cause φ(n) is even for n > 2.

Now write r = 2sd with d odd. Choose a ran-

dom a in 1 < a < N − 1. If gcd(a,N) > 1, then

N has been factored and we are done. Other-

wise, compute bi = a2
id mod N for 0 ≤ i ≤ s.

We know that bs = ar mod N = 1 by the con-

gruence above.

9

If for some 0 < i ≤ s we have bi = 1 but bi−1 6≡
±1 (mod N), then gcd(bi−1−1, N) is a proper

factor of N . If there is no such i, try a differ-

ent random a. The reason this works is that

b2i−1 ≡ 1 (mod N), but bi−1 6≡ ±1 (mod N), so

gcd(bi−1 − 1, N) is a proper factor of N by an

earlier theorem. In fact, each random a leads

to a factorization of N with probability at least

1/2.

10

Timing Attack on RSA

This insidious attack was discovered by Kocher

and apply to nearly all cryptographic algorithms

whose execution time depends on the input

value.

In order to perform the attack, you must be

able to observe a cipher program running on

your computer and make precise measurements

of the time it takes to run on various inputs.

You must also know the input value and the pa-

rameters of the cryptographic algorithm other

than the secret key. Someone with an account

on the victim’s machine and who could ob-

serve incoming packets could easily obtain the

required information.

11

Let us use RSA as a simple example of a timing

attack. The victim has modulus n, enciphering

exponent e and deciphering exponent d. The

latter is secret, while n and e are public. The

victim receives ciphertext messages C and de-

ciphers them by computing M = Cd mod n.

Let d =
∑k

i=0 bi2
i be the binary representation

of d. The attacker records many ciphertexts

Cj and the time tj needed to decipher each.

He deduces d one bit at a time, from b0 to

bk. This is the order in which the bits are used

in the fast exponentiation algorithm. Assume

that the first r bits have been computed.

12

[Fast Exponentiation for RSA Deciphering]

Input: A modulus n, an exponent d ≥ 0 and a

ciphertext C.

Output: The value M = Cd.

t = d

M = 1

z = C

while (t > 0) {

if (t is odd) M = Mz mod n

z = z2 mod n

t = ⌊t/2⌋
}

return M

13

Let us suppose that the operation M = Mz mod

n takes longer for some pairs M, z than for

other pairs and that the attacker can measure

the execution time of the algorithm accurately

enough to notice the difference. Because the

first r bits of d have been computed, the at-

tacker can perform the first r iterations of the

while loop for input Cj and measure its time

cj precisely.

The attacker can also measure the precise time

dj the operation M = Mz mod n would take, if

it were done. He knows whether this particular

modular multiplication is fast or slow compared

to the time for average pairs M, z.

14

Using a formula from statistics, he can predict

whether br is 0 or 1. He compares the two

variances v1 = Var(tj − cj) and v2 = Var(tj −
cj −dj). If v1 > v2, the bit br is probably 1; but

if v1 < v2, then br is probably 0.

For if the multiplication occurs, it is reason-

able to assume that the time dj it takes and

the time tj − cj − dj for the part of the fast ex-

ponentiation after it are mutually independent,

so

v1 = Var(tj − cj) = Var(tj − cj − dj) +Var(dj)

v1 > Var(tj − cj − dj) = v2.

But if the multiplication does not occur, then

the time dj it takes and the time tj − cj for

the part of the fast exponentiation after it are

mutually independent, so

v2 = Var(tj − cj − dj) = Var(tj − cj)+Var(−dj)

v2 > Var(tj − cj) = v1.

15

If a mistake is made, then no further significant

differences between v1 and v2 will appear for

larger r. In that case, the attacker will notice

the error, back up and correct it.

16

