
Advanced Encryption Standard

Rijndael is the new Advanced Encryption Stan-

dard.

It was invented by Joan Daemen and Vincent

Rijmen.

It is a block cipher. The block length and key

length can be chosen independently to be 128,

192 or 256 bits.

It has 10, 12 or 14 rounds, depending on the

block and key lengths. The rounds do not have

a Feistel structure.

It was designed to be simple, to be resistant

against all known attacks and to have fast and

compact code on many platforms.

1



Mathematical preliminaries for Rijndael.

Byte operations are done with arithmetic in the

field GF(28).

A byte b7b6 . . . b1b0 is considered a polynomial

with coefficients in {0,1}:

b(x) = b7x
7 + b6x

6 + · · ·+ b1x+ b0.

Example: The byte 0xB7 = 1011 0111 is the

polynomial

x7 + x5 + x4 + x2 + x+1.

Bytes are added with XOR (⊕). Addition is

associative and commutative. The identity el-

ement is 0x00. Every byte is its own additive

inverse.

2



Bytes are multiplied modulo m(x) = x8+ x4+

x3+x+1 (= 0x11B). Multiplication is associa-

tive and commutative. The identity element

is 0x01. Every non-zero polynomial (byte) has

a unique inverse with respect to this multipli-

cation. The inverse may be computed by the

extended Euclidean algorithm for GCD of the

polynomial with m(x). This multiplication is

denoted •.

Multiplication of b(x) by x = 0x02 is a left shift

of one bit position followed by a conditional

XOR with m(x): XOR with m(x) iff the bit

shifted out was 1. Therefore, multiplication of

two polynomials may be performed by up to 8

repeated left shifts and conditional XORs.

The byte inverse is used in ByteSub and in the

key schedule. Byte multiplication is used in the

32-bit operations of MixColumn.

3



Code to multiply two bytes

To multiply bytes c = a • b:

c = 0

for (i=0; i<8; i++) {

if (b & 2i 6= 0) c = c⊕ a

a = a+ a // +, not ⊕

if (a ≥ 256) a = a⊕0x11B

}

4



Example. Multiply 0xB7•0xA5.

The first step is to multiply 0xB7 by xi for

0 ≤ i ≤ 7:

0xB7 • 0x01 = 0xB7

0xB7 • 0x02 = 0x75

0xB7 • 0x04 = 0xEA

0xB7 • 0x08 = 0xCF

0xB7 • 0x10 = 0x85

0xB7 • 0x20 = 0x11

0xB7 • 0x40 = 0x22

0xB7 • 0x80 = 0x44

Since 0xA5 = 10100101 = 80 ⊕ 20 ⊕ 04 ⊕ 01,
we have

0xB7 • 0xA5 = 0xB7 • (80⊕ 20⊕ 04⊕ 01)

= 0x44⊕ 0x11⊕ 0xEA⊕ 0xB7 = 0x08.

5



Thirty-two bit word operations.

Thirty-two bit words are regarded as four bytes,

which are the coefficients of a polynomial of

degree three with coefficients in GF(28).

Addition of two 32-bit words is simple: Just

add (XOR) the coefficients. This is the same

as XORing the two 32-bit words.

6



Multiplication of two 32-bit words is done by

multiplying the polynomials modulo M(x) =

x4 +1. This multiplication is denoted ⊗. If

a(x) = a3x
3 + a2x

2 + a1x+ a0

and

b(x) = b3x
3 + b2x

2 + b1x+ b0,

then

d(x) = a(x)⊗ b(x) = d3x
3 + d2x

2 + d1x+ d0

may be computed by

d0 = a0 • b0 ⊕ a3 • b1 ⊕ a2 • b2 ⊕ a1 • b3

d1 = a1 • b0 ⊕ a0 • b1 ⊕ a3 • b2 ⊕ a2 • b3

d2 = a2 • b0 ⊕ a1 • b1 ⊕ a0 • b2 ⊕ a3 • b3

d3 = a3 • b0 ⊕ a2 • b1 ⊕ a1 • b2 ⊕ a0 • b3

Multiplication of a cubic polynomial by x con-

sists of a circular left shift of the bytes in the

word representing the polynomial.

7



Example.

Multiply 0xB7A5662F ⊗ 0x03010102 modulo M(x) =

x4 +1.

We use the formulas above with a0 = 0x2F,

a1 = 0x66, a2 = 0xA5, a3 = 0xB7, b0 = 0x02,

b1 = 0x01, b2 = 0x01 and b3 = 0x03. In the

formula for d0 we have

a0 • b0 = 0x2F • 0x02 = 0x5E

a3 • b1 = 0xB7 • 0x01 = 0xB7

a2 • b2 = 0xA5 • 0x01 = 0xA5

a1 • b3 = 0x66 • 0x03 = 0xAA

and so

d0 = a0 • b0 ⊕ a3 • b1 ⊕ a2 • b2 ⊕ a1 • b3

= 0x5E⊕ 0xB7⊕ 0xA5⊕ 0xAA = 0xE6.

8



Similarly,

d1 = 0xCC⊕ 0x2F⊕ 0xB7⊕ 0xF4 = 0xA0

d2 = 0x51⊕ 0x66⊕ 0x2F⊕ 0xC2 = 0xDA

d3 = 0x75⊕ 0xA5⊕ 0x66⊕ 0x71 = 0xC7.

Finally, 0xB7A5662F ⊗ 0x03010102 = 0xC7DAA0E6.

9



Rijndael has 10, 12 or 14 rounds, depending on

the block and key lengths. The block length

and key length can be chosen independently to

be 128, 192 or 256 bits. Let Nb be the length

of the block in 32-bit words (Nb = 4, 6 or 8).

Let Nk be the length of the key in 32-bit words

(Nk = 4, 6 or 8). Let Nr be the number of

rounds. Then Nr = 14 if either Nb or Nk =

8. Otherwise, Nr = 12 if either Nb or Nk = 6.

Finally, Nr = 10 if both Nb and Nk = 4.

10



Different parts of the Rijndael algorithm op-

erate on the intermediate result, called the

State. The State is a rectangular array of bytes

with four rows and Nb columns.

The Key is expanded and placed in an array

W[Nb*(Nr+1)]. The first Nk words of W are the

Key. Each subsequent word is the XOR of the

previous word and the word Nk words back in

the array, except that words whose subscript is

a multiple of Nk have the previous word trans-

formed before the XOR.

11



ByteSub(State) transforms each byte in the State

by replacing it with its multiplicative inverse in

GF(28) (except that 0x00 is unchanged) and

then applying an affine transformation to the

inverse.

ShiftRow(State) is a circular left shift of the

rows in the State by various byte offsets which

depend on Nb.

In MixColumn(State) the columns of the State

are considered to be cubic polynomials with

coefficients in GF(28) and each is multiplied

(⊗) modulo x4 +1 with the fixed polynomial

c(x) = 0x03x3 + 0x01x2 + 0x01x+ 0x02.

This polynomial c(x) is relatively prime to x4+

1 and so is invertible. The inverse of

MixColumn(State) is multiplication by

d(x) = 0x0Bx3 + 0x0Dx2 + 0x09x+ 0x0E.

AddRoundKey(State, RoundKey) is simply an XOR

of State with RoundKey.

12



The Square attack is a chosen-plaintext attack

that exploits the byte structure of Rijndael. It

is faster than exhaustive search for Rijndael

versions with up to six rounds, but does not

work for seven or more rounds.

Consider a set of 256 AES states (4×4 arrays

of bytes). There are 16 byte positions in a

state. A byte position is called active if all 256

possible bytes occur in that position in the 256

states. A byte position is called passive if that

byte is the same (constant) in all 256 states.

A Λ-set is a set of 256 AES states in which

every byte position is either active or passive.

13



A Λ-set is a set of 256 AES states in which

every byte position is either active or passive.

Applying ByteSub or AddRoundKey to a Λ-set yields

a Λ-set with active bytes in the same positions.

Applying ShiftRow to a Λ-set yields a Λ-set with

active bytes shifted.

Applying MixColumn to a column with one ac-

tive and three passive bytes gives a column

with four active bytes because every output

byte of MixColumn is a linear combination with

invertible coefficients of the four input bytes in

that column.

14



A set of 256 Rijndael states is balanced if their

xor is the 0 state.

Every Λ-set is balanced.

The Square attack uses a Λ-set of plaintexts

with one active and 15 passive byte positions.

Trace the Λ-set through the encryption. It re-

mains a Λ-set until the input to the MixColumn

of the third round.

One can show that even the input to the fourth

round is balanced because of the constant co-

efficients of the polynomial used for multipli-

cation in MixColumn, but the balance is usually

destroyed by the ByteSub of the fourth round.

15



Assume we have a four-round version of AES

and that the fourth round has no MixColumn.

The output of the fourth round is known be-

cause it is the ciphertext.

We determine the fourth-round key one byte

at a time. Xor each putative key byte value

with the corresponding ciphertext byte and pull

it back through ByteSub. If the resulting byte

is not balanced, the key byte guess is wrong.

Usually, there will be just one key byte value

that gives a balanced input byte to ByteSub.

Once the fourth round key is known, one can

determine the AES key by working backwards

through the key expansion algorithm.

One can extend this attack by adding a fifth

round at the end and a round at the beginning.

Thus one can break Rijndael reduced to five or

six rounds.

16


