
The Chinese Remainder Theorem

Theorem. Let n1, . . . , nr be r positive in-

tegers relatively prime in pairs. (That is,

gcd(ni, nj) = 1 whenever 1 ≤ i < j ≤ r.)

Let a1, . . . , ar be any r integers. Then the r

congruences

x ≡ ai (mod ni)

for i = 1, . . . , r have common solutions. Any

two common solutions are congruent modulo

n = n1 · · ·nr

.

The proof gives an algorithm for computing

the common solution.

1

Proof: For j = 1, . . . , r, the number n/nj is an

integer and

gcd(n/nj, nj) = 1,

so there is an integer bj such that

(n/nj)bj ≡ 1 (mod nj).

Clearly, (n/nj)bj ≡ 0 (mod ni) if i 6= j. Let

x0 =
r∑

j=1

(n/nj)bjaj.

Then

x0 =
r∑

j=1

(n/nj)bjaj =
r∑

j=1

δijaj ≡ ai (mod ni).

Thus there is a common solution x0.

If x1 is another common solution, then

ni | (x0−x1) for each i, so n | (x0−x1) because

the moduli are relatively prime in pairs.

2

Example: Solve the system of congruences

x ≡ 1 (mod 7)

x ≡ 3 (mod 10)

x ≡ 8 (mod 13).

Note that the hypotheses of the Chinese re-

mainder theorem are satisfied in this example

because any two of the moduli 7, 10, 13 are

relatively prime.

We have n1 = 7, n2 = 10, n3 = 13, a1 = 1,

a2 = 3, a3 = 8 and n = 910. Then n/n1 =

10 · 13 ≡ 4 (mod 7). The extended Euclidean

algorithm gives b1 ≡ 4−1 ≡ 2 (mod 7). Like-

wise, b2 ≡ 1−1 ≡ 1 (mod 10) and b3 ≡ 5−1 ≡
8 (mod 13). Then

x ≡ 130·2·1+91·1·3+70·8·8 ≡ 463 (mod 910).

3

Solving x2 ≡ a (mod n)

We have said nothing (so far) about whether

one can solve x2 ≡ a (mod n) when n is a

composite number.

We have also said nothing about how to solve

it if it has a solution.

There are probabilistic polynomial time algo-

rithms (Tonelli and Cipolla) to compute square

roots of QR’s mod p, where p is prime. They

work well for numbers of hundreds of digits,

but are too complicated to present here.

4

Here is a simple algorithm that finds square

roots of QR’s modulo any prime p ≡ 3 (mod 4),

that is, it works for half of the primes.

If p ≡ 3 (mod 4), then the solutions to

x2 ≡ a (mod p) are x1 ≡ a(p+1)/4 (mod p)

and x2 = p − x1.

To see that this works, note that

x2
1 ≡ a(p+1)/2 ≡ a · a(p−1)/2 ≡ a (mod p)

since a(p−1)/2 ≡ +1 (mod p) by Euler’s

Criterion and the fact that a is a QR mod p.

(When a is a quadratic nonresidue modulo p,

with p ≡ 3 (mod 4), −a is a quadratic residue

modulo p, and the formulas for x1 and x2 give

the two square roots of −a modulo p because

x2
1 ≡ a(p+1)/2 ≡ a · a(p−1)/2 ≡ −a (mod p)

since a(p−1)/2 ≡ −1 (mod p) by Euler’s

Criterion and the fact that a is a QNR mod p.)

5

Now I will tell you how to solve x2 ≡ a (mod n)

when n = pq is the product of two primes

p ≡ q ≡ 3 (mod 4), an important special case.

Separately solve y2 ≡ a (mod p), with solu-

tions y1 and y2, and z2 ≡ a (mod q), with

solutions z1 and z2. Then use the CRT four

times to solve the four systems

x ≡ yi (mod p) x ≡ zj (mod q)

for i = 1,2; j = 1,2. This will produce four

different roots to x2 ≡ a (mod n).

6

Example. Find all four square roots of 11

modulo 133.

Factor 133 = 7 · 19. We must first solve x2 ≡
11 (mod p) for p = 7 and for p = 19.

11 mod 7 = 4, which happens to be 22. So the

solution to x2 ≡ 11 (mod 7) is x ≡ ±2 (mod 7),

or x ≡ 2 or 5 (mod 7).

11 mod 19 = 11, so we use exponentiation:

x ≡ 11(19+1)/4 = 115 ≡ 7 (mod 19).

So the solution to x2 ≡ 11 (mod 19) is x ≡
±7 (mod 19), or x ≡ 7 or 12 (mod 19).

7

We have to solve the four CRT problems:

x1 ≡ 2 (mod 7)

x1 ≡ 7 (mod 19).

x2 ≡ 2 (mod 7)

x2 ≡ 12 (mod 19).

x3 ≡ 5 (mod 7)

x3 ≡ 7 (mod 19).

x4 ≡ 5 (mod 7)

x4 ≡ 12 (mod 19).

8

We begin the CRT by solving 19x+7y = 1 by

the extended Euclidean algorithm.

It gives 19(3) + 7(−8) = 1. We have found

both b1 and b2 in the CRT by one extended

Euclidean algorithm.

In all four CRT problems we have n1 = 7,

n2 = 19, b1 = 3 and b2 ≡ −8 ≡ 11 (mod 19).

In the first CRT, we have a1 = 2 and a2 = 7.

The solution is

x1 = 19·3·2+7·11·7 = 653 ≡ 121 (mod 133).

We also get x4 = 133 − x1 = 133 − 121 = 12.

In the second CRT, we have a1 = 2 and a2 =

12. The solution is

x2 = 19·3·2+7·11·12 = 1038 ≡ 107 (mod 133).

We also get x3 = 133 − x2 = 133 − 107 = 26.

The four square roots of 11 modulo 133 are

121, 107, 26, 12.

9

An application of finding square roots modulo

n is the Rabin-Blum Oblivious Transfer or Coin

Flipping Protocol. In it, Alice reveals a secret

to Bob with probability 0.5.

In the Oblivious Transfer version, Alice doesn’t

know whether Bob got the secret or not (and

this outcome must be acceptable to both par-

ticipants).

In the Coin Tossing version, Bob tells Alice

whether he got the secret. He wins the coin

toss if he did get it; loses otherwise.

10

Alice’s secret is the factorization of a number

n = pq which is the product of two large primes

p ≡ q ≡ 3 (mod 4).

1. Alice sends n to Bob.

2. Bob picks a random x in
√

n < x < n with

gcd(x, n) = 1. Bob computes a = x2 mod n

and sends a to Alice.

3. Knowing p and q, Alice computes the four

solutions to x2 ≡ a (mod n). They are x,

n − x, y and n − y, for some y. These are

just four numbers to Alice. She doesn’t know

which ones are x and n − x. She chooses one

of the four numbers at random and sends it to

Bob.

4. If Bob receives x or n−x, he learns nothing.

But, if Bob receives y or n − y, he can factor

n by computing gcd(x + y, n) = p or q.

11

Why can Bob factor n if he gets y or n − y?

Theorem. If n = pq is the product of two

distinct primes, and if x2 ≡ y2 (mod n), but

x 6≡ ±y (mod n), then gcd(x + y, n) = p or q.

Proof: We are given that n divides

(x+y)(x−y) but not (x+y) or (x−y). Hence,

one of p, q must divide (x + y) and the other

must divide (x − y).

12

It is easy to modify the Oblivious Transfer pro-

tocol to let Alice give Bob the content of an

arbitrary file with probability 0.5. Alice’s secret

is the content of the file.

Alice enciphers the file using AES with secret

key K. She gives the ciphertext of the file to

Bob.

Alice chooses two large primes p ≡ q ≡ 3 (mod 4),

sets n = pq and chooses 0 < e < n with

gcd(e, (p−1)(q−1)) = 1. This sets up an RSA

public key cipher with public key n and e. Alice

enciphers K as C = Ke mod n. Alice gives Bob

C and e.

Then Alice and Bob do the Oblivious Transfer

protocol, Alice sending n to Bob in Step 1.

If Bob learns the factorization of n = pq in Step

4, then Bob finds d with

ed ≡ 1 (mod (p−1)(q−1)) by extended Euclid.

He finds K = Cd mod n, and deciphers the file

using K as the AES key.

13

Zero-Knowledge Proofs

This protocol is closely related to the oblivious
transfer protocol. The difference is that Al-
ice wants to convince Bob that she knows the
factors of n = pq, but does not want to reveal
the factors to Bob.

Alice (the prover) convinces Bob (the verifier)
that she knows the prime factorization of a
large composite number n, but does not give
Bob any hint which would help him find the
factors of n. Bob learns nothing about the
factorization of n during the protocol that he
could not have deduced on his own without
Alice’s help.

Roughly speaking, Bob gives Alice some quad-
ratic residues modulo n and Alice replies with
their square roots. The difficulty with this sim-
ple approach is that when Alice replies to Bob
with a square root, there is a 50% chance that
she will reveal the factorization of n to Bob,
as in the oblivious transfer protocol.

14

Here is a good way to do the zero-knowledge

proof protocol:

Alice knows n, p and q. Bob knows n but not

p or q.

1. Alice chooses a in
√

n < a < n and computes

b = a2 mod n.

2. At the same time, Bob chooses c in
√

n <
c < n and computes d = c2 mod n.

3. Alice sends b to Bob and Bob sends d to

Alice.

4. Alice receives d and solves x2 ≡ bd (mod n).

(Note that this is possible because bd is a QR

and she can compute its square root because

she knows the factors of n.) Let x1 be one

solution of this congruence.

5. At the same time, Bob tosses a fair coin

and gets Heads or Tails each with probability

0.5. Bob sends H or T to Alice.

15

6. If Alice receives H, she sends a to Bob. If

Alice receives T, she sends x1 to Bob.

7. If Bob sent H to Alice, then he receives a

from Alice and checks that a2 ≡ b (mod n). If

Bob sent T to Alice, then he receives x1 from

Alice and checks that x2
1 ≡ bd (mod n).

Alice and Bob repeat steps 1 through 7 many

(20 or 30) times.

If the check in step 7 is always okay, then Bob

accepts that Alice knows the factorization of

n.

But if Alice ever fails even one test, then Bob

concludes that Alice is lying.

Why does this protocol work?

Why does Bob not learn the factors of n?

16

