
Diffie-Hellman key-exchange protocol

This protocol allows two users to choose a

common secret key, for DES or AES, say, while

communicating over an insecure channel (with

eavesdroppers).

The two users agree on a common large prime

p and a constant value a, which may be publicly

known and available to everyone. It is best if

the smallest exponent e > 0 for which ae ≡

1 (mod p) is e = p − 1, but the protocol will

work if e < p−1 provided e is still large. When

e = p − 1, a is called a primitive root modulo

p. In that case the numbers

a1 mod p, a2 mod p, a3 mod p, . . . , ap−1 ≡ 1 mod p

are all different and form an RSR modulo p.

1



Alice secretly chooses a random xA in

0 < xA < p− 1 and computes yA = axA mod p.

Bob secretly chooses a random xB in

0 < xB < p− 1 and computes yB = axB mod p.

Alice sends yA to Bob. Bob sends yB to Alice.

An eavesdropper, knowing p and a, and seeing

yA and yB, cannot compute xA or xB from this

data unless he can solve the Discrete Loga-

rithm Problem quickly.

Alice computes KA = y
xA
B mod p.

Bob computes KB = y
xB
A mod p.

Then

KA ≡ axA·xB ≡ KB (mod p)

and 0 < KA,KB < p, so KA = KB.

2



Alice and Bob choose certain agreed-upon bits

from KA to use as their key for a single-key

cipher like DES or AES.

Although this protocol provides secure com-

munication between Alice and whoever is at

the other end of the communication line, it

does not prove that Bob is the other party. To

guarantee that Bob is at the other end, they

would have to use a signature system like RSA.

3



Discrete Logarithms

The Diffie-Hellman key exchange and several

other crypto algorithms could all be broken if

we could compute discrete logarithms quickly,

that is, if we could easily solve the exponential

congruence ax ≡ b mod p.

By analogy to ordinary logarithms, we may

write x = loga b when p is understood from

the context. These discrete logarithms enjoy

many properties of ordinary logarithms, such as

loga bc = loga b + loga c, except that the arith-

metic with logarithms must be done modulo

p− 1 because ap−1 ≡ 1 mod p.

Neglecting powers of log p, the congruence may

be solved in O(p) time and O(1) space by rais-

ing a to successive powers modulo p and com-

paring each with b. It may also be solved in

O(1) time and O(p) space by looking up x

in a precomputed table of pairs (x, ax mod p)

sorted by the second coordinate.

4



The RSA public-key cipher

Rivest-Shamir-Adleman. Let n = pq be the

product of two large primes.

Then φ(n) = φ(pq) = (p− 1)(q − 1), so

ed ≡ 1 (mod (p− 1)(q − 1)).

Encode plaintext as (blocks) 0 ≤ M < n.

Encipher M as C = E(M) = Me mod n.

Decipher C as M = D(C) = Cd mod n.

This works, that is, D(E(M)) = M for all M

in 0 ≤ M < n, provided that ed ≡ 1 (mod φ(n))

since Mφ(n) ≡ 1 (mod n) by Euler’s Theorem.

This is true since φ(n) = (p − 1)(q − 1) and

ed ≡ 1 (mod (p− 1)(q − 1)).

This implies that e and d must each be

relatively prime to φ(n).

5



Each user of RSA has her own set of keys:

Make n and e public, but keep d secret. The

factors p and q are not needed after e and d

are computed, but in any case should not be

revealed.

If many users wish to communicate securely in

pairs, then RSA requires fewer total keys to be

stored than Pohlig-Hellman.

Cryptanalysis: Since n is public and one can

easily compute d from e and the factors of n, a

direct approach to breaking RSA is to factor n.

Using the best currently-known methods, this

is about as hard as solving the Discrete Log-

arithm Problem with the same sized modulus.

For a modulus n of 400 decimal digits, this is

too hard for current algorithms and computers.

6



Exponentiation ciphers

RSA is an example of an exponentiation cipher,

that is, a cipher in which encryption and de-

cryption are done by raising the plain or cipher
text to a secret power modulo a large integer.

Suppose the modulus is a large integer n. En-

code plaintext as (blocks) 0 ≤ M < n. Enci-
pher M as C = E(M) = Me mod n. Decipher

C as M = D(C) = Cd mod n.

This works, that is, D(E(M)) = M for all M
in 0 ≤ M < n, provided that ed ≡ 1 (mod φ(n))
since Mφ(n) ≡ 1 (mod n) by Euler’s Theorem.

Proof: Write ed = tφ(n) + 1 for some integer
t.

This implies that e is relatively prime to φ(n).

In the case of RSA, n is the product of two

primes so large that n cannot be factored in a

reasonable time.

7



Pohlig-Hellman cipher

This is another exponentiation cipher.

This is NOT a public-key cipher.

Let n = p = prime. Then φ(p) = p − 1 and

ed ≡ 1 (mod p− 1).

Method 1: Keep all of p, e, d secret. All three

are the “key”. There is just one user or one

pair of users.

8



Method 2: Let p be public and keep e and d

secret. The key is the pair (e, d). Each user has

a secret pair to safeguard her personal secrets.

Each pair of users who wish to communicate

choose a key pair.

Since it may take a while to generate a large

prime, Method 2 is more common than Method

1. Furthermore, Method 2 has interesting math-

ematical properties which foster its use in spe-

cial ways discussed later (Massey-Omura, men-

tal poker).

Cryptanalysis: For a known-plaintext attack

on Method 2, one is given a prime p, C and

M , and must find an exponent e so that C ≡

Me (mod p) or (equivalently) d so that M ≡

Cd (mod p), that is, the attacker must solve a

Discrete Logarithm Problem. Although there

are some easy cases, such as m = p = prime

where p − 1 has only small prime factors, the

general case is about as difficult to solve as it

is to factor a general number as large as m.

9



An important property of the Pohlig-Hellman cipher

Let p be a large prime. Suppose users A and B

have encryption algorithms EA and EB and de-

cryption algorithms DA and DB. (So EA(M) =

MeA mod p, DA(C) = CdA mod p, where eAdA ≡

1 (mod p − 1), etc.) Since the encryption

and decryption algorithms are all exponenti-

ation modulo a fixed modulus, they all com-

mute, that is, they may be done in any or-

der and give the same result. For example,

EA(DB(x)) = DB(EA(x)) for every x because

both are just xeAdB ≡ xdBeA mod p.

10



RSA Signatures

RSA has no direct authentication: Anyone can

send any message to you and claim it came

from anyone. However, one can sign RSA mes-

sages as follows:

Use the same notation for enciphering and de-

ciphering algorithms as we did for Pohlig-Hellman:

EA, DB, etc. Alice can sign (and encipher) a

message M to Bob by sending C = EB(DA(M))

to Bob. Bob can decipher C by applying DB

to it (to get DA(M)) and then check the sig-

nature by applying EA to the latter.

Note that Bob’s cipher algorithms do not com-

mute with Alice’s because the modulus is dif-

ferent. Thus the order in which Bob applies

the operations to C matters: Bob must do DB

first and then EA second.

11



There is another problem caused by the differ-

ent moduli. DA and EA do arithmetic mod-

ulo Alice’s modulus nA while EB and DB do

arithmetic modulo Bob’s modulus nB. This

works fine if nA < nB but part of the mes-

sage will be lost if nA > nB. There are three

ways to solve this problem: 1. Re-block the

message after DA is applied. 2. Enforce an

arbitrary threshold T and let every RSA user A

have two complete sets of RSA keys, one with

nA1
< T and one with nA2

> T . The keys with

the smaller modulus nA1
are used for signing

messages from A and the keys with the larger

modulus nA2
are used to encipher messages

going to A.

12



3. A more elegant solution is for Alice to sign

(and encipher) a message M to Bob by send-

ing C = EB(DA(M)) to Bob when nA < nB,

and by sending C = DA(EB(M)) to Bob when

nA > nB. In either case, Bob undoes these op-

erations in reverse order. What if Alice later

denies sending M and Bob goes to an indepen-

dent judge to prove that M bears Alice’s signa-

ture? In the first case (nA < nB), Bob gives the

judge M and X = DB(C), the judge computes

M ′ = EA(X) and tests whether M ′ = M . If

so, the judge rules that Alice signed M . In the

second case (nA > nB), Bob gives the judge M

and C, the judge computes X = EB(M) and

X ′ = EA(C) and tests whether X ′ = X. If so,

the judge rules that Alice signed M .

13



The El-Gamal public-key cipher

The ElGamal public key cryptosystem is

strictly not an exponentiation cipher, although

exponentiation is done during enciphering and

deciphering.

Fix a large prime p and a primitive root g mod-

ulo p in 1 < g < p, both of which are public.

Each user A who wishes to participate in this

public-key cryptosystem chooses a secret aA in

0 < aA < p − 1 and publishes bA = gaA mod p.

When a user B wants to send a secret message

M in 0 < M < p to A, she chooses a random k

in 0 < k < p− 1 and sends to A the pair

C = (gk mod p, (MbkA) mod p).

14



The plaintext M is enciphered by multiplying

it by bkA in the second component of C. Note

that bkA ≡ (gaA)k ≡ gaAk (mod p). The first

component of C provides a hint for decipher-

ing M from the second component of C, but

one which is useful only to A. Only A knows

the secret key aA, so only A can compute

(gk)aA ≡ gaAk (mod p). If the multiplicative

inverse of this number is multiplied times the

second component, one recovers M :
(

gaAk
)−1 (

MbkA

)

≡
(

gaAk
)−1 (

MgaAk
)

≡ M (mod p).

15



Cryptanalysis of the El-Gamal public-key cipher

An eavesdropper who could solve the discrete

logarithm problem modulo p could compute M

from C and public data without knowing aA
as follows. The first component of C is h =

gk mod p. This number and T = (MbkA) mod p

are observed by the eavesdropper. The eaves-

dropper knows p and g because these num-

bers are public. He can also obtain A’s pub-

lic key bA from A’s directory, just as B did.

He would solve the discrete logarithm problem

gk ≡ h (mod p) for k and then compute

T
(

bkA

)−1
≡

(

MbkA

) (

bkA

)−1
≡ M (mod p).

16



The Massey-Omura public-key cipher

One can change the Pohlig-Hellman private-

key cipher slightly to make a public-key cipher.

This was done by Massey and Omura. Their

system is not used much because it is ineffi-

cient. (But the elliptic curve version is used.)

Consider a Pohlig-Hellman cipher with com-

mon prime p. This was called Method 2 ear-

lier. Suppose users A and B have encryption

algorithms EA and EB and decryption algo-

rithms DA and DB. (So EA(M) = MeA mod p,

DA(C) = CdA mod p, where eAdA ≡ 1 (mod p−

1), etc.) Since the encryption and decryp-

tion algorithms are all exponentiation modulo a

fixed modulus, they all commute, that is, they

may be done in any order and give the same

result. For example, EA(DB(x)) = DB(EA(x))

for every x because both are just

xeAdB ≡ xdBeA mod p.

17



How do A and B use this property as a public-

key cipher? The “public key” is the common

prime modulus p. The private keys are ALL of

the exponents (unlike RSA). If Alice wants to

send a message 0 < M < p to Bob, she first

sends EA(M) to Bob. Bob replies by sending

EB(EA(M)) to Alice. Then Alice sends

DA(EB(EA(M))) = EB(DA(EA(M))) = EB(M)

to Bob. Bob deciphers the message by apply-

ing DB to it.

The security depends on the difficulty of the

Discrete Logarithm Problem. The system is a

protocol which requires a two-way exchange of

three messages—not impossible, but still less

convenient than RSA or El-Gamal in which just

one message is sent.

18



Mental poker

Each player is dealt five of the 52 cards. Each

player can see his hand and not any other

player’s hand. Players bet based on their hands.

The “best” hand wins. In some variations,

some cards are revealed and some cards may

be replaced by cards not yet dealt.

The “e-mail” or “mental” protocol for poker

requires a fair deal: Players see their own hands,

but not other hands. The hands are disjoint.

All hands are equally likely. A player can “draw”

(replace) selected cards. A player can reveal

individual cards one at a time without reveal-

ing other cards. All players can check at the

end of the game that there was no cheating.

19



We use a variation of Pohlig-Hellman to imple-

ment mental poker.

Assume there are two players, Alice and Bob.

(There are similar protocols for three or more

players.)

The players jointly choose a large prime p as

modulus. Each secretly chooses eA, dA, eB,

dB, as in Pohlig-Hellman. Define EA(M) =

MeA mod p, etc. Recall that these functions

commute: EA◦EB = EB◦EA, etc. Let M1, . . . ,M52

be the encoded) deck (more if there is a joker).

20



1. Bob enciphers the cards as Ci = EB(Mi) for

i = 1, . . . ,52. Bob sorts the Ci and sends them

to Alice.

2. Alice selects five cards Ci at random and

sends then to Bob, who decrypts them as his

hand.

3. Alice selects five more random cards, say

C1, . . . , C5 (her hand) and enciphers them as

C′
i = EA(Ci). She sends them to Bob.

4. Bob deciphers the C′
i (they are still enci-

phered with EA after he applies DB to undo

EB) and sends them back to Alice.

5. Alice deciphers the five cards and uses them

as her hand. They bet and play poker.

6. At the end of the hand, Alice and Bob

exchange their keys eA, etc., and check every-

thing that happened.

21



Quadratic residues

Unfortunately, one can cheat in mental poker

because EA, EB, etc., preserve quadratic residues.

Definition. a is a quadratic residue modulo n

if gcd(a, n) = 1 and there is an integer x such

that x2 ≡ a (mod n). Such an x called a square

root of a modulo n. a is a quadratic non-

residue modulo n if gcd(a, n) = 1 and there is

no integer x such that x2 ≡ a (mod n).

Theorem. Let 0 < a < n, gcd(a, n) = 1, and

gcd(e, φ(n)) = 1. Then a is a QR mod n if and

only if ae is a QR mod n.

22



Alice can use this theorem to cheat: Perhaps

most high cards are QR and most low cards are

QNR. It is like playing with a deck in which

most high cards are “marked”. This attack

can be foiled by (a) appending extra bits to

each Mi or (b) multiplying some Mi by a fixed

QNR in order to make all cards be QR or all

cards be QNR.

Note: When the modulus is prime, we have:

QR · QR = QR; QR · QNR = QNR; QNR ·

QNR = QR.

In order for Alice to cheat and in order to foil

the attack, one must be able to distinguish be-

tween QR and QNR mod p (at least for prime

p) quickly. This has been known for 200 years.

23



Quadratic residues

Theorem. For prime p > 2 and 0 < a < p,

the congruence x2 ≡ a (mod p) has exactly 2

solutions (in a CSR) if a is a QR mod p and

no solution if a is a QNR mod p.

Theorem. For prime p > 2, there are (p−1)/2

QR and (p−1)/2 QNR in a CSR (or RSR) mod

p

Theorem. For prime p > 2 and 0 < a < p,

a(p−1)/2 ≡ ±1 (mod p).

Theorem. (The Euler Criterion.) For prime

p > 2 and 0 < a < p,

a(p−1)/2 ≡ 1 if a is a QR mod p and

a(p−1)/2 ≡ −1 if a is a QNR mod p.

24


