
Lattices

A Lattice is a discrete subgroup of the additive

group of n-dimensional space Rn.

Lattices have many uses in cryptography. They

may be used to define cryptosystems and to

break other ciphers. They can attack RSA

with poor parameter choices.
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Let L be a lattice. The definition says that it
has these properties:

• If x ∈ L, then −x ∈ L.

• 0 is the identity for L.

• If x ∈ L and y ∈ L, then x+ y ∈ L.

• There is a small n-dimensional ball around
the origin which contains no nonzero ele-
ment of L.

The elements of L are vectors.

The norm of a vector is its length.

There exists a vector v1 in L with minimum
norm, the shortest vector. Let λ1(L) be the
norm of v1. Every vector w ∈ L which is linearly
dependent on v1 must be w = nv1 for some
integer n.
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A basis for a lattice L is a set of linearly inde-

pendent vectors v1, . . ., vr such that any vec-

tor in L can be written as a linear combination

a1v1 + · · · + arvr of the basis vectors with IN-

TEGER coefficients ai.

Every lattice has a basis. Every basis of a given

lattice L has the same size r, called the rank of

L. The rank r is the same as the dimension of

the vector space (a subspace of Rn) spanned

by any basis of L.

Alternate definition of a lattice: The lattice

generated by linearly independent vectors v1,

. . ., vr is the set of all linear combinations a1v1+

· · ·+ arvr with INTEGERS ai.

3



Recall that if v1, . . ., vr and w1, . . ., wr are two

bases for the same vector space, then each wi

can be written as a linear combination of the

vj.

Likewise, if v1, . . ., vr and w1, . . ., wr are two

bases for the same lattice, then each wi can be

written as a linear combination of the vj with

INTEGER coefficients.

Write each basis as the row vectors of an r×n

matrix. The rows of B are v1, . . ., vr and those

of B′ are w1, . . ., wr.

There is an r × r matrix U that changes ba-

sis: B′ = UB. Likewise, there is a matrix U ′

with B = U ′B′. Since B′ = UU ′B′, U and U ′

are inverses: UU ′ = I. Therefore det(U) =

1/det(U ′).

But U and U ′ have integer coordinates, so each

must have determinant 1 or −1, the only two

integers whose reciprocal is an integer.
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A unimodular matrix is one with determinant

±1.

It is easy to show that

det(B′B′T ) = det(BBT ) > 0

when B and B′ are two bases for L. Define the

determinant of a lattice L as

det(L) =

√

det(BBT ),

where B is any basis of L.

If v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn)

are vectors, then their dot product or scalar

product is the sum

v · w = v1w1 + v2w2 + · · ·+ vnwn.

Note that for any vector v, v · v ≥ 0 since it is

the sum of squares.

The norm or length of a vector v is ||v|| =√
v · v. The zero vector 0 is the only vector

with length 0.
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In a lattice L there is a shortest positive length
of a nonzero vector. This length is denoted
λ1(L). At least two vector have this minimum
positive length since the norm of −v equals the
norm of v.

We generalize λ1(L) as follows. Let λk(L) be
the smallest positive real number so that there
is at least one set of k linearly independent
vectors of L, with each vector having length
≤ λk(L).

This defines a sequence

λ1(L) ≤ λ2(L) ≤ λ3(L) ≤ · · · .
Note that we do not count vectors in this def-
inition.

M’s Theorem. For every integer r > 1, there
is a positive constant γr so that for every lattice
L of rank r and for all 1 ≤ k ≤ r, we have





k
∏

i=1

λi(L)





1/k

≤ √
γr det(L)

1/r.
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A lattice is often presented by giving a basis for

it. This basis may consist of very long vectors

and they may be nearly parallel.

Sometimes it is more useful to have a basis

with shorter vectors which are closer to be-

ing orthogonal to each other. The process of

finding such a basis from a poor one is called

reducing the lattice or lattice reduction.

The ideal basis {v1, v2, . . . , vr} for L would have

the length of vi be λi(L) for each i.

It turns out to be NP-hard to find the ideal

basis.
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The Gram-Schmidt process constructs an or-

thogonal basis for a vector space V , given any

basis for it. It is fast and simple.

Input: A basis B = {v1, v2, . . . , vr} for V .

Output: Orthogonal basis B′ = {w1, w2, . . . , wr}
for V and a matrix M that takes B into B′.

for (i = 1 to r) {

wi = vi
for (j = 1 to i− 1) {

mi,j = (vi · wj)/(wj · wj)

wi = wi −mi,jwj

}

}
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Example of Gram-Schmidt process:

In R4, let V be the subspace with basis {v1, v2, v3},
where v1 = (1,2,3,0), v2 = (1,2,0,0) and

v3 = (1,0,0,1).

We will find an orthogonal basis {w1, w2, w3}
for V .

w1 = v1 = (1,2,3,0).

w2 = v2 − ((v2 · w1)/(w1 · w1))w1

= (1/14)(9, 18,−15,0). We simplify the calcu-

lation by replacing w2 with 14w2 = (9,18,−15,0).

w3 = v3 − ((v3 · w1)/(w1 · w1))w1

− ((v3 · w2)/(w2 · w2))w2 = (1/5)(4,−2,0,5).

We could replace w3 with 5w3 = (4,−2,0,5).

The orthogonal basis is: w1 = (1,2,3,0), w2 =

(9,18,−15,0), w3 = (4,−2,0,5).

Check: 1 ·9+2 ·18+3 · (−15)+0 ·0 = 0, etc.
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The Gram-Schmidt process does not work for

lattices because the mi,j are usually not inte-

gers, so the new basis vectors are not INTE-

GER linear combinations of the original vec-

tors.

An ideal basis B = {v1, v2, . . . , vr} for a lattice L
would have ||vi|| = λi(L). To see that one can-

not achieve this goal, consider the lattice gen-

erated by the vectors (2,0,0,0,0), (0,2,0,0,0),
(0,0,2,0,0), (0,0,0,2,0), (1,1,1,1,1).

Show that if g, h, i, j, k are even integers, then

the vector (g, h, i, j, k) is in L.

We have λ1(L) = λ2(L) = λ3(L) = λ4(L) =

λ5(L) = 2.

These minima are realized for the vectors

(2,0,0,0,0), (0,2,0,0,0), (0,0,2,0,0),
(0,0,0,2,0), (0,0,0,0,2), which are all in L.
But these vectors are not a basis for L be-

cause (1,1,1,1,1) is not an INTEGER linear

combination of these vectors.
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There are several definitions of reduced basis

and they are not equivalent.

LLL [1982] gave the following definition:

Let δ be a parameter in 1/4 < δ < 1. A basis

B = {v1, v2, . . . , vr} of a lattice L is called δ-

LLL reduced if the following two conditions

are satisfied, where B′ = {w1, w2, . . . , wr} is the

result of applying Gram-Schmidt to B.

1. For all 1 ≤ i < j ≤ r, vj · wi ≤ (wi · wi)/2.

2. For all 1 < i ≤ r,

δ||wi−1||2 ≤ ||wi||2 + (vi · wi−1)/||wi−1||2.

Property 1 guarantees the length reduction of

the basis.

Larger values of δ give more reduction (but the

LLL algorithm runs slower).
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The LLL algorithm computes δ-LLL reduced

bases for lattices. The δ-LLL reduced bases

it produces approximate the shortest vectors

possible. There are absolute constants ci >

1 such that ||vi|| < ciλi(L) for each i. The

constants ci depend only on δ and not on L.

More about the constants γr in Minkowski’s

theorem above: γr ≤ (4/3)(r−1)/2 and γr ≤
1+ r/4 for r ≥ 1. For

r = 1, 2, 3, 4, 5, 6, 7, 8, we have

γr = 1, 2/
√
3, 3

√
2,

√
2, 5

√
8, 6

√

64/3 7
√
64, 2.

These numbers are approximately

1.00, 1,15, 1.26, 1.41, 1.52, 1.67, 1.81, 2.00.

Letting k = 1 in Minkowski’s theorem gives

λ1(L) ≤ √
γr det(L)

1/r.
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The definition of δ-LLL reduced is often used

with δ = 3/4. With this value, the LLL algo-

rithm produces a basis B = {v1, v2, . . . , vr} of L

having

||v1|| ≤ 2(r−1)/4 det(L)1/r.
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Application to Knapsacks

Factoring and DLP are thought to be hard be-

cause no one has found a polynomial time algo-

rithm to solve them. Factoring is in both NP

and co-NP. It is very likely not NP-complete

because this would imply co-NP = NP, which

nobody believes.

Wouldn’t it be great if a cipher could be based

on an NP-hard problem? Merkle and Hellman

made the first attempt at this goal in 1979.

They used knapsacks and the subset sum prob-

lem.

The subset sum problem is NP-complete: Given

a set of n positive integers M = {M1, . . . ,Mn}
and an integer S, find a subset of M whose

sum is S.
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Application to Knapsacks

To build a public-key cipher, let M be public.

Encipher a message x ∈ {0,1}n of bits

x1, . . ., xn as S =
∑n

i=1 xiMi = x ·M .

Problem: How to decipher?

Answer: Use the greedy algorithm and a su-

perincreasing list of integers: r = {r1, . . . , rn}
with ri+1 > 2ri for 1 ≤ i < n. It is easy to

recover x from S = x · r.

Of course, an eavesdropper can easily recover

x from S = x ·r, too. To prevent this, M and H

chose two large random integers A, B with B >
2rn and gcd(A,B) = 1. Keep A, B, r secret.

Define the public key M by Mi = Ari mod B.

Encrypt x as the ciphertext S = x ·M .

The recipient who knows A, B and r can deci-

pher S by computing S′ = A−1S mod B. Then

S′ = x · r. Recover x from S′ and r by the

greedy algorithm, as above.
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How to choose parameters for the knapsack

cipher?

There is an easy attack if r1 is very small, so

typically r1 ≈ 2n and rn ≈ 22n. The public key

is a list of n integers of length about 2n, so

takes 2n2 bits.

There is a meet-in-the-middle attack on the

subset sum problem, so the security of a knap-

sack with size n is about O(2n/2).

Choosing n = 160 takes effort 280 to crack

and a public key of length 2n2 = 51200 bits.

Compare with RSA or ElGamal with public key

of about 1000 bits (and effort 280 to crack).
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Enter LLL. Form a lattice L of dimension n+

1 spanned by vectors v1 = (1,0,0, . . . ,0,M1),

v2 = (0,1,0, . . . ,0,M2), . . .,
vn = (0,0,0, . . . ,1,Mn), vn+1 = (0,0,0, . . . ,0, S).

We have det(L) = S.

The fact that a subset of the Mi sums to S
implies that L contains a very short vector

t =
n
∑

i=1

xivi − vn+1 = (x1, x2, x3, . . . , xn,0).

We have ||t|| ≤ √
n and probably ||t|| ≈

√

n/2.
On the other hand, for each i, ||vi|| is between

2n and 22n.

LLL finds w1 in L with ||w1|| ≤ 2(n−1)/4 det(L)1/n

≈ 2n/4S1/n ≈ 2n/422n/n = 4 · 2n/4.
w1 is almost certainly the shortest vector in L.

Thus, LLL can easily find the shortest vector

in L when n ≤ 300. For n = 300, the public

key size is 2n2 ≈ 180000 bits, too big.
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Cryptosystems using Lattices

GGH = Goldreich, Goldwasser, Halevi.

The secret key is a special small, reduced ba-

sis R for a lattice L. The owner constructs a

public key B, a random basis for L, by multiply-

ing R by a few random unimodular matrices.

Let B and R also represent the n × n matri-

ces whose rows are the basis vectors. Let U

be the product of the unimodular matrices so

that B = UR.

A plaintext is a vector x of n integers. It is

enciphered using the public key B as e = xB+r,

where r is a random vector of n small integers.

Thus, xB is in L while r and e are not in L.

If r is short enough, then xB is the closest

vector in L to e.
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Someone who knows the secret reduced basis

R for L can compute xB from e as follows.

First compute eR−1 (in the vector space, not in

L). Then round each component to the near-

est integer. If r is sufficiently small and if R

is sufficiently short and close to being orthog-

onal, then the result of the rounding process

will be xU . Finally, get x from xU by solving a

linear system of n equations in n unknowns.

Without knowledge of R, it would appear that

breaking GGH was equivalent to solving a gen-

eral Closest Vector Problem (CVP) in a lattice

L. G, G and H conjectured in 1997 that this

CVP was intractable when n > 300.

Later improvements in LLL allowed Nguyen in

1999 to break the GGH challenge problems

with n = 300 and 350. Larger keys with n >

350 are impractical.
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NTRUEncrypt, 1996 by Hoffstein, Pipher, Sil-

verman + Lieman.

The original reason LLL developed their lattice

reduction algorithm was to factor polynomials

with integer or rational number coefficients.

Their surprising result was that polynomials

can be factored in polynomial time. Lattice

reduction was just a tool to reach this goal.

Since their work, many applications of lattice

reduction have been discovered throughout

mathematics and cryptography.
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NTRUEncrypt could be broken if one could

factor certain kinds of polynomials. Cryptanal-

ysis of NTRUEncrypt usually assumes that the

LLL lattice reduction gives the fastest way to

factor polynomials. It is much faster than ear-

lier known methods, and no one knows a faster

way to factor polynomials.

NTRUEncrypt is faster than other public-key

ciphers and has this advantage: Quantum com-

puter algorithms are known for factoring inte-

gers and the DLP, including the ECDLP. No

quantum computer algorithm is known for lat-

tice reduction. (Suggested thesis topic.)
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We describe here a very simple version of

NTRUEncrypt.

NTRUEncrypt uses three integer parameters,

a prime N , an odd number p and a power of

2, q. (Other choices for p and q are possible,

but we must have gcd(N, q) = 1, gcd(p, q) = 1

and q much larger than p.)

We will use polynomials in Z[X]/(XN −1) with

convolution as multiplication:

f ∗ g(x) =
N−1
∑

k=0







∑

i+j≡k (mod N)

figj






xk.

where

f(x) =
N−1
∑

i=0

fix
i and g(x) =

N−1
∑

j=0

gjx
j.

(We have already seen convolution (with N =

4) in AES multiplication of 32-bit words.)
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Alice generates her public and private keys as

follows.

She chooses two polynomials f(x) and g(x) of

degree ≤ N − 1 with coefficients in {−1,0,1}
(trinary polynomials). f(x) must have an in-

verse fp(x) modulo p and an inverse fq(x) mod-

ulo q, which may be computed by the Eu-

clidean algorithm for polynomials. This means

that f(x)∗fp(x) = 1 (mod p) and f(x)∗fq(x) =

1 (mod q) as polynomials in x.

Alice’s private key is the pair of polynomials

f(x), fp(x).

Alice’s public key is the polynomial

h(x) = pfq(x) ∗ g(x) (mod q).
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Encryption

Bob wants to send a secret message to Alice

using NTRUEncrypt. He encodes the message

as a trinary polynomial m. He chooses a ran-

dom polynomial r with small coefficients, but

not necessarily trinary. He computes the ci-

phertext as

e = r ∗ h+m (mod q),

where h is Alice’s public key.

The random polynomial r is discarded after en-

cryption. Anyone who knows r can easily find

m.
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Decryption

Alice receives the ciphertext e. Using her pri-

vate key f , she computes

a = f ∗ e (mod q).

This polynomial is

a = f ∗(r∗h+m) = f ∗(r∗pfq ∗g+m) (mod q)

which reduces to

a = pr ∗ g + f ∗m (mod q)

since f ∗fq = 1 (mod q). Next, Alice computes

b = a mod p = f ∗m (mod p),

since pr ∗ g = 0 (mod p). Finally, Alice com-

putes

fp ∗ b = fp ∗ f ∗m = m (mod p),

since f ∗ fp = 1 (mod p).
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Attacks on RSA using LLL

Recall RSA: N = pq hard to factor. Choose

e with gcd(e, φ(N)) = 1, where φ(N) = (p −
1)(q − 1). Via extended Euclid, find d with

ed ≡ 1 (mod φ(N)). Discard p and q. Public

key is N , e. Private key is d. Encipher m as

c = me mod N . Decipher c as m = cd mod N .

1. RSA problem: Given N , e, c, find m.

2. Compute d: Given N , e, find d.

3. Factor N : Given N , find p and q.

Clearly, 3 → 2 → 1.

In fact, 3 ≡ 2. It is not known whether 3 ≡ 1.

All three problems seem hard, although Shor

showed that one can solve 3 quickly on a quan-

tum computer.
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Relax the problems. Assume we know some

hint about p or q or d, either because they are

limited or we have an oracle for them.

Coppersmith proved that if f(x) is a monic

polynomial and b is an unknown factor of a

given integer N , then one can find all “small”

solutions x to f(x) ≡ 0 (mod b) quickly via

LLL.
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Let N = bc, where b > c. Suppose we know N

and a bit more than half of the high-order bits

of b. (Oracle or limit on b.)

Specifically, suppose we are given N and b̃ with

|b− b̃| < N5/28/2.

Let f(x) = x + b̃. Then x0 = b − b̃ is a small

zero of f(x) ≡ 0 (mod b) so we can find it with

Coppersmith’s method.

Define (eight) polynomials for i = 0 to 3 by

fi(x) = N if4−i(x) = N i(x+ b̃)4−i

f4+i(x) = xif4(x) = xi(x+ b̃)4.

Then b4 divides all fi(x0), i = 0, 1, . . ., 7.

Let X = N5/28/2.
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The coefficient vector of a polynomial h(x) =

a0 + a1x + a2x
2 + · · · anxn is the vector v =

(a0, a1, . . . , an).

Define a lattice L of dimension 8 by the basis

of coefficient vectors of fi(xX).

Apply LLL to get a reduced basis, including a

shortest vector v = the coefficient vector of a

polynomial g(xX).

We have |g(x0)| < b4 and b4 divides g(x0).

Therefore, g(x0) = 0. Solve g(x) = 0 in in-

teger x. Then b = x0 + b̃.

29



In a similar way, one can find d, given N and e

provided d is small, say, 0 < d < N1/4.

Write ed = 1+ kφ(N). Since φ(N) = N − (p+

q) + 1, we can write φ(N) = N − z with z < a

small multiple of
√
N . This leads to

ed− kN − kz − 1 = 0.

Since kz is much smaller than ed or kN , we

have e/N ≈ k/d. Continued fractions allow us

to recover k and d from e and N when d < 4
√
N .

Rewrite ed − kN − kz − 1 = 0 as kN + kz +

1 ≡ 0 (mod e). A variation of Coppersmith’s

method using lattices and LLL lets one find

solutions to this congruence with z near
√
N

and k near Nα for α up to about 0.29.
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