CS 655 Fall, 2017, Homework 1

Due: Tuesday, September 19, 2017

In this homework, the subscript x indicates hexadecimal notation.

1. The first S-box for DES is defined in the Federal Register by the 4×16 table shown in http://www.cs.purdue.edu/homes/ssw/cs655/S1.txt. Use this table to construct the difference distribution table for the first S-box. Print the last ten rows of it. Use the (full) table for the next two questions.
(Hint: The answer is a 64×16 table. The fourth row, the one for input XOR 3_{x}, begins $14,4,2,2,10,6,4,2$. The fifteenth row, the one for input XOR E_{x}, begins $0,4,8,8,6,6$, 4, 0.)
2. Parts a, b, c, are independent. Part d combines them. Notation: $S 1_{E}$ and $S 1_{E}^{\star}$ refer to the six bits in the output of the E-expansion that affect the first S-box. $S 1_{O}^{\prime}$ is the four-bit output XOR of the first S-box. $S 1_{K}$ means the six bits of the round subkey that affect the first S-box.
a. Suppose $S 1_{E}=20_{x}, S 1_{E}^{\star}=24_{x}$, and $S 1_{O}^{\prime}=D_{x}$. What can you say about $S 1_{K}$?
b. Suppose $S 1_{E}=13_{x}, S 1_{E}^{\star}=18_{x}$, and $S 1_{O}^{\prime}=D_{x}$. What can you say about $S 1_{K}$?
c. Suppose $S 1_{E}=3 F_{x}, S 1_{E}^{\star}=3 E_{x}$, and $S 1_{O}^{\prime}=6_{x}$. What can you say about $S 1_{K}$?
d. Could a single key $S 1_{K}$ have been used in all three of a, b, c? If so, what can you say about it?
3. What is the probability that $2 B_{x}$ may cause 0_{x} by the first S-box? What is the probability that $3 B_{x}$ may cause A_{x} by the first S-box? What is the probability of the 1 -round DES characteristic with $\Omega_{P}=0000020240000000_{x}$ and $\Omega_{T}=0000000040000000_{x}$?
