
Elliptic Curves

Elliptic curves are groups created by defining

a binary operation (addition) on the points of

the graph of certain polynomial equations in

two variables. These groups have several prop-

erties that make them useful in cryptography.

One can test equality and add pairs of points

efficiently.

When the coefficients of the polynomial are

integers, we can reduce the coefficients and

points modulo a prime p to produce an in-

teresting finite group whose order is near p.

Choosing random coefficients results in groups

with random orders near p.

1

One can use elliptic curves to factor integers,

although probably not RSA moduli.

There is a probabilistic algorithm for proving

primality that uses elliptic curves.

An elliptic curve group may be used directly in

cryptographic algorithms in many of the same

ways the multiplicative group of integers mod-

ulo p can be used. In these applications, the

discrete logarithm problem is harder for elliptic

curve groups than for the integers modulo p,

permitting smaller parameters and faster algo-

rithms.

2

To keep the formulas for the binary operation

simple, we will restrict the polynomial to have

the form y2 = x3 + ax+ b, which is called the

Weierstrass form of the elliptic curve.

Definition: An elliptic curve is the graph E or

Ea,b of an equation y2 = x3 + ax+ b, where x,

y, a and b are real numbers, rational numbers

or integers modulo m > 1. The set E also

contains a point at infinity, denoted ∞.

The point ∞ is not a point on the graph of

y2 = x3 + ax+ b. It will be the identity of the

elliptic curve group.

3

The discriminant b2 − 4ac vanishes when the

quadratic equation ax2 + bx + c = 0 has a re-

peated root. For the cubic equation x3+ ax+

b = 0, the discriminant is 4a3 + 27b2. It van-

ishes when the cubic has a repeated root. We

will assume that that this discriminant is 6= 0,

so that the cubic does not have a repeated

root. Thus, we are excluding elliptic curves

which have a “double point” or a “cusp.”

4

If P = (x, y) lies on the graph of y2 = x3 +

ax+ b, we define −P = (x,−y), that is, −P is

P reflected in the x-axis.

Given two points P and Q, on the graph but

not on the same vertical line, define P + Q =

−R, where R is the third point on the straight

line through P and Q.

If P and Q are distinct points on the graph

and on the same vertical line, then they must

have the form (x,±y), that is, Q = −P , and

we define P +Q = ∞, the identity element of

the group.

Also, P +∞ = ∞+ P = P for any element P

of the elliptic curve (including ∞).

5

To add a point P 6= ∞ to itself, draw the tan-

gent line to the graph at P . If the tangent

line is vertical, then P = (x,0) and we define

P + P = ∞. If the tangent line is not verti-

cal, then it intersects the graph in exactly one

more point R, and we define P + P = −R. (If

P is a point of inflection, then R = P .)

The addition rule may be expressed as

P +Q+R = ∞

if and only if P,Q,R are on the same straight

line.

6

Theorem: An elliptic curve E with the addi-

tion operation + forms an abelian group with

identity ∞. The inverse of P is −P .

This means that the operation + is well de-

fined and assigns an element P + Q of E to

every pair of points P,Q of E. Also, P +∞ =

∞+P = P , P +Q = Q+P and (P +Q)+R =

P + (Q+R) for all points P,Q,R of E.

7

Formula for the coordinates of P +Q

Let E be defined by y2 = x3 + ax + b. Let

P = (x1, y1) and Q = (x2, y2).

If x1 = x2 and y1 = −y2, then P = −Q and

P +Q = ∞.

If P 6= Q, let s be the slope s = (y2−y1)/(x2−
x1) of the line through P and Q.

If P = Q, let s be the slope s = (3x21+a)/(2y1)

of the tangent line to y2 = x3 + ax + b at P .

(Use implicit differentiation.)

Then P +Q = (x3, y3), where x3 = s2−x1−x2
and y3 = s(x1 − x3)− y1.

8

Example: On the elliptic curve y2 = x3 − 5x,

add the points P = (−1,2) and Q = (0,0).

Using the formula, we find that the slope is s =

(0 − 2)/(0 − (−1)) = −2. Then x3 = (−2)2 −
(−1)− 0 = 5 and y3 = (−2)(−1− 5)− 2 = 10,

so P + Q = (5,10). One should check the

arithmetic by verifying that the sum is a point

on the curve. Here the check is 102 = 53−5·5.

9

Example: On the elliptic curve y2 = x3 + 8,

compute P + P , where P = (1,3).

We use the second formula for the slope be-

cause P = Q. We have s = (3 ·12+0)/(2 ·3) =

1/2, x3 = (1/2)2 − 1 − 1 = −7/4 and y3 =

(1/2)(1 − (−7/4)) − 3 = −13/8, so P + P =

(−7/4,−13/8).

10

Note that if a and b and the coordinates of

points P and Q on the elliptic curve Ea,b are

rational numbers, then the coordinates of P +

Q will be rational numbers (unless P+Q = ∞).

Therefore, if a and b and the coordinates of

points P and Q on the elliptic curve Ea,b are

integers modulo m, then the coordinates of

P+Q will be integers modulo m, unless P+Q =

∞, provided that any division needed to add

points is by a number relatively prime to m.

The modulus m cannot be even because we

have to divide by 2 in the formula for the slope

s when P = Q. The condition on the discrimi-

nant becomes 4a3 +27b2 6≡ 0 (mod m).

Of course, the graph is not a curve in the

plane; it is just a set of pairs of numbers mod-

ulo m.

11

Let us look at the points of the elliptic curve

y2 ≡ x3 +3x+4 (mod 7).

x (x3 +3x+4) mod 7 y

0 4 2,5
1 1 1,6
2 4 2,5
3 5 none
4 3 none
5 4 2,5
6 0 0

There are ten points on this elliptic curve,

counting ∞.

12

Example: Add the points (1,1)+(2,5) on the

curve whose points were just listed.

We have s = (5−1)/(2−1) = 4, x3 = 42−1−
2 = 13 ≡ 6 (mod 7) and y3 ≡ 4(1−6)−1 ≡ 0

(mod 7), so the sum is (6,0).

Example: Double the point (2,2) on the same

curve.

We must add (2,2) + (2,2). We have s = (3 ·
22+3)/(2 ·2) ≡ 2 (mod 7), x3 = 22−2 ·2 ≡ 0

(mod 7) and y3 ≡ 2(2 − 0) − 2 ≡ 2 (mod 7),

so the sum is (0,2).

13

Formula for the number of points on an elliptic

curve modulo a prime.

Theorem: The number N of points on the

elliptic curve y2 ≡ x3+ ax+ b (mod p) is N =

p + 1+
∑p−1

x=0((x
3 + ax+ b)/p), where (r/p) is

the Legendre symbol.

Proof: Each x between 0 and p − 1 gives one

value x3+ ax+ b. The number of y between 0

and p− 1 with y2 ≡ x3 + ax+ b (mod p) is 0,

1, or 2 according as x3 + ax+ b is a quadratic

nonresidue, is ≡ 0, or is a quadratic residue, all

modulo p. Counting ∞, we have

N = 1+
p−1
∑

x=0

(

1 +

(

x3 + ax+ b

p

))

=

= p+1+
p−1
∑

x=0

(

x3 + ax+ b

p

)

.

14

Since there are as many quadratic residues as

quadratic nonresidues in the interval 1 ≤ r ≤
p−1, the Legendre symbol in the sum probably

will be +1 about as often as it will be −1.

Hence, we expect the number of points on a

random elliptic curve modulo p to be close to

p+1. H. Hasse proved that this is so.

Theorem: Let the elliptic curve E modulo a

prime p have N points. Then

p+1− 2
√
p ≤ N ≤ p+1+ 2

√
p.

When P is a point on an elliptic curve and k

is a positive integer we write kP for the sum

P+P+· · ·+P of k P ’s. We also define 0P = ∞
and kP = (−k)(−P) when k is a negative inte-

ger. The fast exponentiation algorithm, with

multiplication replaced by addition of points of

an elliptic curve, provides a speedy way to com-

pute kP . It takes O(log |k|) point additions to

find kP when k 6= 0.

15

Let p be prime and let Rp denote an RSR mod-

ulo p. This set is a group with multiplication

modulo p as the operation. Its size is p − 1

elements.

Lenstra invented a factoring algorithm using

elliptic curves. It is similar to Pollard’s p − 1

factoring algorithm, which computes aL mod n

for some large L. It finds a factor p of n when

the order p − 1 of the multiplicative group of

integers modulo p divides L.

16

Lenstra’s idea is to replace this group with an

elliptic curve group Ea,b modulo n. The al-

gorithm begins at a random point P on this

elliptic curve and computes LP for some large

integer L, usually the product of all primes up

to some limit. If the order of P in the elliptic

curve modulo p divides L, then a gcd operation

during one of the elliptic curve point additions

will discover the p of n. The order of P is a

random number in the Hasse interval

p+1− 2
√
p ≤ N ≤ p+1+ 2

√
p.

One can estimate the probability that a ran-

dom number near p divides L using Dickman’s

function. The reciprocal of this probability

is the approximate average number of elliptic

curves needed to factor n.

17

Example of factoring by ECM

Let n = 2773 and P = (1,3) be on the curve

y2 ≡ x3 +4x+ b (mod 2773).

Then b must be 32 − 13 − 4(1) = 4.

Compute 2P = P + P . The slope of the tan-

gent line is

s =
3 · 12 +4

2 · 3
=

7

6
.

The Euclidean algorithm finds gcd(6,2773) =

1 and gives 2311 · 6 ≡ 1 (mod 2773), so the

slope is s = 7 · 2311 ≡ 2312 (mod 2773).

Then

x3 ≡ 23122 − 1− 1 ≡ 1771 (mod 2773),

y3 ≡ 2312(1− 1771)− 3 ≡ 705 (mod 2773).

Thus 2P = P + P = (1771, 705).

18

Example of factoring by ECM, continued

Now let us compute 3P = 2P+P = (1771,705)+

(1,3). The slope is

705− 3

1771− 1
=

702

1770
.

We try to invert 1770 modulo 2773, but the

Euclidean algorithm gives gcd(1770, 2773) =

59. Therefore, we can’t invert 1770 modulo

2773. But we don’t care since we have fac-

tored 2773 = 59 · 47, which was our goal.

Here is what happened: Think of the curve

modulo 2773 as a curve modulo 59 and a curve

modulo 47. We have 3P = ∞ (mod 59) but

3P 6= ∞ (mod 47). (In fact, 4P = ∞ (mod 47),

so if we had tried to compute 4P = 2(2P), we

would have found the factor 47.)

Finding multiples of P on this elliptic curve

makes the two factors of 2773 behave differ-

ently, and lets us separate them.

19

Elliptic curve prime proving

It is a variation of the Pocklington-Lehmer the-

orem, which says:

Pocklington-Lehmer Theorem: Let n > 1 be

an integer. Let n− 1 = rs, with r ≥ √
n. Sup-

pose that for each prime q dividing r, there is

an integer aq with an−1
q ≡ 1 (mod n) and

gcd(a
(n−1)/q
q − 1, n) = 1.

Then n is prime.

Goldwasser-Kilian Theorem: Let n > 1 be an

integer. Let E be an elliptic curve modulo n.

Suppose there are distinct primes q1, . . ., qk
and points Pi 6= ∞ on E such that qiPi = ∞
for 1 ≤ i ≤ k and

k
∏

i=1

qi > (n1/4 +1)2.

Then n is prime.

20

Elliptic Curve Discrete Logarithms

The discrete logarithm problem for elliptic

curves is to find an integer x for which Q = xP ,

where P and Q are two given points on an

elliptic curve E modulo p.

Shanks’ baby-step-giant-step algorithm can be

easily modified to solve the discrete logarithm

problem for elliptic curves. The index calculus

algorithm for discrete logarithms works only

in the group Rp integers of modulo p and is

much faster than Shanks’ method. Shanks’

algorithm and some other algorithms due to

Pollard are about the best one can do in ellip-

tic curve groups.

Hence, the group Rp must be much larger than

an elliptic curve group to achieve the same se-

curity. A rough rule of thumb is that Rp with a

1024-bit prime p is about as safe as an elliptic

curve modulo a 128-bit prime.

21

Here is Shanks’ baby-step-giant-step algorithm

for solving the discrete logarithm problem xP =

Q in an elliptic curve E modulo a prime p in

O(
√
p log p) time and O(

√
p) space.

Let m = 1 + d√p e. Compute and sort the m

ordered pairs (j,mjP), for j from 0 to m−1, by

the second coordinate (the point). Compute

and sort the m ordered pairs (i, Q − iP), for

i from 0 to m − 1, by the second coordinate

(the point). Find a pair (j, R) in the first list

and a pair (i, R) in the second list. This search

will succeed because every integer between 0

and p+1+2
√
p can be written as a two-digit

number ji in base m. Finally, x = mj + i.

22

There is an elliptic curve variation of the Diffie-

Hellman key exchange algorithm in which the

group Rp is replaced by an elliptic curve. In it,

Alice and Bob agree on an elliptic curve E =

Ea,b modulo a prime p and a point P of high

order on E, perhaps a generator of the group.

Let N be the order of the group. The group E

and the point P need not be secret and Alice

and Bob do not need to know N exactly. By

Hasse’s theorem, N is approximately p, and

that approximation is good enough.

Alice secretly chooses a random xA in 0 < xA <

N and computes PA = xAP on E. Bob secretly

chooses a random xB in 0 < xB < N and com-

putes PB = xBP on E.

23

Alice sends PA to Bob. Bob sends PB to Alice.

An eavesdropper, knowing E and P , and seeing

PA and PB, cannot compute xA or xB from this

data unless he can solve the discrete logarithm

problem for elliptic curves quickly.

Alice computes KA = xAPB on E. Bob com-

putes KB = xBPA on E. Then

KA = (xA · xB)P = KB.

Alice and Bob choose certain agreed-upon bits

from KA to use as their key for a private key

cipher like DES or AES.

Since the discrete logarithm problem is harder

to solve for an elliptic curve than for the multi-

plicative group of integers modulo p, the mod-

ulus of the elliptic curve may be chosen smaller

than the prime p for Rp.

24

The elliptic curve Pohlig-Hellman cipher works

just like the Pohlig-Hellman cipher except that

the multiplicative group Rp of integers modulo

p is replaced by an elliptic curve.

Let p be a large prime and let E be an elliptic

curve modulo p that has order N , that is, E

has N points including the identity ∞.

We will explain shortly how a plaintext block

M might be embedded into the x-coordinate

of a point P on E. Assume this has been done.

A point P on E is enciphered by adding it to

itself e times, using fast multiplication; the ci-

phertext point is Q = eP . The latter is deci-

phered by multiplying by d: P = dQ.

25

In order for the deciphering to return to P ,

the multipliers e and d must satisfy ed ≡ 1

(mod N), because NP = ∞, and so cP = P
for any c ≡ 1 (mod N). This implies that e
(and d) must be chosen relatively prime to N .

By Hasse’s theorem, N is approximately p. But

this approximation is not good enough. We

must know N exactly in order to choose e and

d. In typical cryptographic applications, N and

p must be large enough so that only Schoof’s

algorithm is fast enough to compute N . If

you have a program for Schoof’s algorithm,

then you are free to choose any elliptic curve E
for the analogue of the Pohlig-Hellman cipher.

Otherwise, you must choose an elliptic curve

whose order has been published.

In a known-plaintext attack on this system, one

is given E, p, N (which are public anyway), P
and Q, and one must find e with Q = eP or,

equivalently, d with P = dQ. Either problem is

the discrete logarithm problem on the elliptic

curve E, whose solution was just discussed.

26

We now explain how to embed plaintext into

points. There are two methods in common

use. Both embed a plaintext M in 0 < M < p

into the x-coordinate of a point P = (x, y) on

a given elliptic curve E.

The first method is probabilistic and may fail

to embed M with a small positive probability.

The overall encryption function must handle

this failure gracefully. It may

1. skip M ,

2. change M in some way, or

3. ask for human assistance in changing M .

In any case, it is easy to make the probability

of failure tiny.

27

Reserve k bits of the x-coordinate for a small

integer. Then the blocks M must be k bits

shorter, that is, 0 < M < p/2k rather than 0 <

M < p. The probability of failure will be only

1 chance in 22
k
. This is less than one chance

in a billion if k = 5. The x-coordinate will be

x = 2kM + i, where i is a k-bit integer 0 ≤ i <

2k. When P is recovered during deciphering,

M is extracted from x by M = bx/2kc, which

may be done quickly with a right shift of x

by k bits. Let the elliptic curve have equation

y2 ≡ x3 + ax + b (mod p). Choose i by this

algorithm:

for (i=0 to 2^k-1) {

x=2^kM+i

if (((x^3+ax+b)/p)=+1) { return i }

}

return "Failure: could not choose i"

28

The algorithm returns the first i < 2k, if any,

for which the Legendre symbol ((x3 + ax +

b)/p) = +1. Since the Legendre symbol (r/p)

is +1 for (p − 1)/2 values of r modulo p, and

since, for each i, the value x3 + ax+ b is more

or less random modulo p, the probability that

all 2k choices for i yield ((x3+ax+b)/p) 6= +1

is about 2−2k, as claimed.

Once we have i with ((x3 + ax + b)/p) = +1,

where x = 2kM + i, we find a square root y of

x modulo p by the methods of Chapter 7 and

let P = (x, y). Then P lies on E.

29

The second method of embedding plaintext

into points is deterministic but only works for

special primes p and elliptic curves E. Plenty

of primes and elliptic curves satisfy the require-

ments.

Assume that p ≡ 3 (mod 4). For such primes

p, −1 is a quadratic nonresidue, so (−1/p) =

−1. Let b = 0 in the congruence defining E,

so that E is y2 ≡ x3 + ax (mod p).

Plaintext M is restricted to 0 < M < p/2. One

bit of possible plaintext storage space is lost.

Given M , form t = M3 + aM mod p. Since

(−1/p) = −1, exactly one of t and −t is a

quadratic residue modulo p. If (t/p) = +1, let

x = M . If (t/p) = −1, let x = p − M . Then

((x3 + ax)/p) = +1 and we can find y with

y2 ≡ x3 + ax (mod p). Let P = (x, y). When

P is recovered during deciphering, look at x.

If x < p/2, then M = x. If x > p/2, then

M = p− x.

30

Elliptic Curve Massey-Omura cipher

Consider an elliptic curve Pohlig-Hellman ci-

pher with elliptic curve E having N points mod-

ulo a prime p. Suppose users A and B have

encryption functions EA and EB and decryp-

tion functions DA and DB. (So EA(P) = eAP

on E. DA(Q) = dAQ on E, where eAdA ≡ 1

(mod N), etc.) Since the encryption and de-

cryption functions are all multiplication of in-

tegers times points on E, they may be done

in any order and give the same result. For ex-

ample, EA(DB(P)) = DB(EA(P)) for every P

because both are just eAdBP = dBeAP .

31

How do A and B use this property as a public-

key cipher? The “public key” consists of E,

N , and p. The private keys are all of the mul-

tipliers eA, dA, etc. If Alice wants to send a

message 0 < M < p to Bob, she first embeds it

in a point P of E, as explained above. She

sends EA(P) to Bob. Bob replies by send-

ing EB(EA(P)) to Alice. Then Alice sends

DA(EB(EA(P))) = EB(DA(EA(P))) = EB(P)

to Bob. Bob deciphers the message by apply-

ing DB to EB(P).

32

An eavesdropper would see the messages

R = EA(P),

S = EB(EA(P))

T = DA(EB(EA(P))) = EB(P)

pass between Alice and Bob. If the eavesdrop-

per could solve the discrete logarithm problem

for points of E, then he could read P in either

of two ways. First, S = eBR. He knows S,

R, E, N , and p. If he can solve for eB, then

he can compute dB by the extended Euclidean

algorithm. Then he can compute P = dBT .

The other way to read P is to use the equa-

tion S = eAT to find eA, by solving a different

discrete logarithm problem on E. Then com-

pute dA from eA by the extended Euclidean

algorithm and find P = dAR. It is likely that

the two discrete logarithm problems are equally

hard.

33

Recall the ElGamal cipher

Say B wants to send a secret message M to

A. The organizer of the system chooses a large

prime p and an integer a0 modulo p. These two

numbers are public.

To use the system, A chooses a secret integer

aA modulo p and computes the integer BA =

a
aA
0 mod p. A makes public BA and keeps aA

secret.

To sent M to A, B chooses a secret integer k

and computes y1 and y2 by

y1 ≡ ak0 y2 ≡ MBk
A (mod p).

B sends (y1, y2) to A.

A deciphers (y1, y2) by computing

M = y2y
−aA
1 (mod p).

34

Elliptic Curve ElGamal cipher

There is an elliptic curve analogue to the ElGa-

mal public key cryptosystem defined as follows:

Fix an elliptic curve E modulo p and a point P0

of large order on E. All of this data is public.

Each user A who wishes to participate in this

public-key cryptosystem chooses a secret aA in

0 < aA < p and publishes PA = aAP0 on E.

When a user B wants to send a secret message

M to A, she first embeds M into a point P of

E. B chooses a random k in 0 < k < p and

sends to A the pair C = (kP0, kPA + P).

A deciphers this pair by

P = (kPA + P)− aA(kP0).

35

The plaintext P is enciphered by adding the

point kPA in the second component of C. Note

that kPA = k(aAP0) = (kaA)P0. The first

component of C provides a hint for decipher-

ing P from the second component of C, but

one which is useful only to A. Only A knows

the secret key aA, so only A can compute

aA(kP0) = (kaA)P0. If this point is subtracted

from the second component, one recovers P :

kPA+P−(kaA)P0 = (kaA)P0+P−(kaA)P0 = P .

An eavesdropper who could solve the discrete

logarithm problem on E could compute P from

C and public data without knowing aA as fol-

lows. The first component of C is P1 = kP0.

This and T = kPA + P are observed by the

eavesdropper. The eavesdropper knows p, E

and P0 because this information is public. He

can also obtain A’s public key PA from A’s di-

rectory, just as B did. He would solve the ellip-

tic curve discrete logarithm problem kP0 = P1

for k and then compute T −kPA = (kPA+P)−
kPA = P .

36

The Weil Pairing

It is very complicated. We give a simplified

version and two applications of it to cryptog-

raphy.

Let p = 6q − 1 be a prime for which q is also

prime. (For example, q = 5, p = 29.)

Let E be the elliptic curve

y2 ≡ x3 +1 (mod p).

One can show that in this situation every inte-

ger modulo p has exactly one cube root mod-

ulo p and that E has exactly p+1 = 6q points.

(Such a curve is called supersingular.)

One can show that there is a point P0 6= ∞
on E with qP0 = ∞. If P is on E, then 6P is

almost certainly a multiple of P0 and 6= ∞.

37

The Weil Pairing continued

One can show that there is a function ẽ that

maps pairs of points (aP0, bP0) to q-th roots of

unity (in the complex numbers).

It is bilinear, that is,

ẽ(P,Q+R) = ẽ(P,Q)ẽ(P,R)

ẽ(P +Q,R) = ẽ(P,R)ẽ(Q,R)

ẽ(aP0, bP0) = ẽ(P0, P0)
ab.

Given two points P , Q that are multiples of

P0, one can compute ẽ(P,Q) quickly from the

coordinates of P and Q (without knowing a

and b).

Finally, ẽ(P0, P0) 6= 1.

ẽ a (modified) Weil pairing.

38

The Weil Pairing continued

Identity-based encryption uses a users’ login id

as public key.

It uses two public hash functions.

H1 maps arbitrary bit strings to multiples of

P0, shown as their coordinates (x, y), not as

kP0. Given a bit string b, one should not be

able to find k with H1(b) = kP0.

H2 maps q-th roots of unity to bit strings of

length n = the length of messages to be sent.

(So p > 2n.) (Make n > 256, the size of an

AES key.)

39

The Weil Pairing continued

Trent, the Trusted Authority, sets up the sys-

tem by choosing a random secret integer s as

key. He never reveals s.

Trent computes and publishes P1 = sP0.

Bob (bob@purdue.edu) learns a secret from Trent

to help decipher messages sent to him. The

secret is DBob = sH1(bob@purdue.edu). Trent

does not save this point of E. Bob saves it.

If Bob loses DBob, he could ask Trent for it

again. Trent won’t give DBob to anyone other

than Bob.

40

The Weil Pairing continued

Say Alice wants to send the message M of

length n bits to Bob.

She knows Bob’s email bob@purdue.edu and com-

putes

g = ẽ(H1(bob@purdue.edu), P1).

g is a q-th root of unity.

Alice chooses a random integer r 6≡ 0 (mod q)

and computes t = M ⊕ H2(g
r), a bit string of

length n.

Alice sends Bob the ciphertext C = (rP0, t).

41

The Weil Pairing continued

Bob receives ciphertext C = (U, v), where U is

a point on E and v is a bit string of length n.

He computes h = ẽ(DBob, U), a q-th root of

unity. He finds the plaintext by M = v⊕H2(h).

In case U = rP0 and v = m ⊕ H2(g
r), Bob

computes

h = ẽ(sH1(bob@purdue.edu), rP0) =

= ẽ(H1(bob@purdue.edu), sP0)
r = gr,

so

t⊕H2(h) = t⊕H2(g
r) = M⊕H2(g

r)⊕H2(g
r) = M.

42

The Weil Pairing continued

The tripartite Diffie-Hellman key exchange takes

only one round for Alice, Bob and Chuck to

agree on a common AES key. (The normal

Diffie-Hellman key exchange would take two

rounds to do this.)

Same setup as before.

Alice, Bob and Chuck choose secret integers

a, b, c, respectively.

Alice broadcasts (sends to both Bob and Chuck)

aP0. Bob broadcasts bP0. Chuck broadcasts

cP0.

Alice computes ẽ(bP0, cP0)
a. Bob computes

ẽ(aP0, cP0)
b. Chuck computes ẽ(aP0, bP0)

c.

All three have computed ẽ(P0, P0)
abc. They

choose the low-order 128 bits as their common

key.

43

