
Computing Discrete Logarithms

Many cryptosystems could be broken if we could

compute discrete logarithms quickly.

The first discrete logarithm algorithms below

apply in any group. They are about the best

one can do in elliptic curve groups.

The last algorithm depends on the idea of smooth-

ness and solve the discrete logarithm problem

only in the group Rp, the integers modulo a

prime p, where one can define smooth num-

bers. The index calculus is much faster than

the methods of Shanks and Pollard. Hence,

the group Rp must be much larger than an el-

liptic curve group to achieve the same security.

A rough rule of thumb is that Rp with a 1024-

bit prime p is about as safe as an elliptic curve

modulo a 128-bit prime.

1



Consider first the congruence ax ≡ b mod p.

By analogy to ordinary logarithms, we may

write x = Logab when p is understood from

the context. These discrete logarithms enjoy

many properties of ordinary logarithms, such as

Logabc = Logab+Logac, except that the arith-

metic with logarithms must be done modulo

p− 1 because ap−1 ≡ 1 mod p.

Neglecting powers of log p, the congruence may

be solved in O(p) time and O(1) space by rais-

ing a to successive powers modulo p and com-

paring each with b. It may also be solved in

O(1) time and O(p) space by looking up x

in a precomputed table of pairs (x, ax mod p),

sorted by the second coordinate. We next ex-

plain an intermediate method which takes es-

sentially O(
√
p) time and O(

√
p) space.

2



Shanks’ Baby-Step-Giant-Step Method

Shanks’ baby-step-giant-step algorithm solves

the congruence ax ≡ b mod p in O(
√
p log p)

time and O(
√
p) space as follows.

Let m = d√p− 1 e.

Compute and sort the m ordered pairs

(j, amj mod p), for j from 0 to m − 1, by the

second coordinate.

Compute and sort the m ordered pairs

(i, ba−i mod p), for i from 0 to m − 1, by the

second coordinate.

Find a pair (j, y) in the first list and a pair (i, y)
in the second list.

This search will succeed because every integer

between 0 and p− 1 can be written as a two-

digit number ji in base m.

Finally, x = mj + i mod p− 1.

3



Example Let p = 23, a = 2 and h = 13. Find

x = Logah.

We have m = d√p− 1e = d
√
22e = 5. Also,

2m ≡ 25 ≡ 32 ≡ 9 (mod 23) and a−1 ≡ 12 (mod 23).

j 25j i 13 · 12i
0 1 0 13
1 9 1 18
2 12 2 9
3 16 3 16
4 6 4 8

The value 9 appears for j = 1 and for i = 2, so

x = Log213 = mj+ i = 5 ·1+2 = 7 (mod 22).

Indeed, 27 ≡ 13 (mod 23).

Also, the value 16 appears for j = 3 and for

i = 3, so x = Log213 = mj + i = 5 · 3 + 3 =

18 (mod 22). Indeed, 218 ≡ 13 (mod 23).

Both 7 and 18 are correct.

4



Pollard’s Methods

In 1978, Pollard invented two methods for find-

ing discrete logarithms analogous to his rho

method for factoring integers. Like Shanks’

baby-step-giant-step algorithm, these algorithms

work in any group and have complexity O(
√
p),

where p is the group order. However, their

space requirements are tiny.

We will describe the rho method for solving

the congruence ax ≡ b mod p, where p is prime,

although it works in any group.

We are given a prime p > 3, a primitive root g

modulo p and an element h of Rp, the group

of nonzero integers modulo p. We seek the x

modulo p − 1 for which gx ≡ h (mod p). The

answer x may be written x = Loggh.

5



Define three sequences {xi}, {ai}, {bi} by x0 =

1, a0 = b0 = 0 and

if 0 < xi < p/3, then xi+1 = hxi mod p,

ai+1 = 1+ai mod p−1 and bi+1 = bi mod p−1,

if p/3 < xi < 2p/3, then xi+1 = x2i mod p,

ai+1 = 2ai mod p−1 and bi+1 = 2bi mod p−1,

and

if 2p/3 < xi < p, then xi+1 = gxi mod p,

ai+1 = ai mod p−1 and bi+1 = 1+bi mod p−1.

A simple induction argument shows that xi ≡
haigbi (mod p).

6



The mapping xi → xi+1 is a random mapping

from Rp to itself. By the birthday problem,

after about
√
p iterations of the mapping there

will be a repeated value xi = xj.

We can use the Floyd cycle-finding algorithm

to find two repeated values by computing two

iterates of the mapping in the same loop, with

one instance running twice as fast as the other.

This gives us a subscript e with x2e = xe.

7



Now we have a congruence

ha2egb2e ≡ haegbe (mod p).

As we can easily find inverses modulo p, this

leads at once to a congruence hm ≡ gn (mod p),

where m ≡ ae − a2e (mod p− 1) and

n ≡ b2e − be (mod p− 1).

We can rewrite this as

mx ≡ mLoggh ≡ n (mod p− 1). (1)

Let d = gcd(m, p− 1). We know that Congru-

ence (1) must have a solution because g is a

primitive root modulo p and p does not divide

h. One of them is the answer x we seek. One

can show that d is usually small, say, d = 1 or

2, so we can try all d solutions to Congruence

(1) and find x.

8



Example Let p = 999959, g = 7 and h = 3.

Find x = Loggh.

At e = 1174 we have xe = x2e = 11400,

m = 310686 and n = 764000. Congruence (1)

becomes 310686x ≡ 764000 (mod 999958).

The extended Euclidean algorithm gives

2 = gcd(310686, 999958) =

= 148845 · 310686− 46246 · 999958,

and we find that 32 ≡ 7356324 (mod p) and

3 ≡ ±7178162. Since 3 is a quadratic residue

modulo p and −1 is not, the plus sign is correct

and x = Loggh = 178162.

9



In the setting of an elliptic curve group E, we

are given two points P and Q, are told that

Q = xP for some integer x, and must find x.

The group is partitioned into three pieces of

roughly equal size. The random mapping of

E → E takes a point X into X + P , X +X or

X +Q, according to which piece of the group

contains X. The initial value of the variable

point X is the identity ∞. The ai and bi are

defined just as above. A repeated point yields

an equation mQ = nP , which means that mx ≡
n (mod N), where N is the order of P in E.

Since we know that Q = xP , this congruence

must have a solution.

10



Pollard’s Lambda Method

We describe Pollard’s lambda method in the

general setting of groups. This method is also

called the kangaroo method, since it employs

two kangaroos to hop around in the group.

Let G be a finite cyclic group with generator g

and let h be an element of G. We seek the least

positive integer x so that h = gx. Suppose we

know that x lies in the interval a ≤ x < b.

Pollard defined two kangaroos, a tame one T
starting at t0 = gb (the upper end point of the

interval) and a wild one W starting at w0 = h

(an unknown point in the interval).

Define d0(T ) = b, the initial distance of T from

the origin.

Let d0(W) = 0, the initial distance of W from

h.

11



Let S = {gs1, . . . , gsk} be a set of jumps.

Let G be partitioned into k pieces and for each

r ∈ G, let f(r), with 1 ≤ f(r) ≤ k, be the

number of the piece to which r belongs.

The exponents si should be positive and small

compared to b−a. Pollard suggested that si =

2i might be good choices.

Think of the si as the lengths of the hops of

the kangaroos.

12



Now let the two kangaroos hop around in the

group G.

The tame one T hops from ti to ti+1 = tig
sf(ti)

for i ≥ 0. Keep track of T ’s distance from the

origin by computing di+1(T ) = di(T ) + sf(ti)

for i ≥ 0. It follows that ti = gdi(T ) for i ≥ 0.

After a while T stops and sets a trap at its

final location, say tm.

13



Then the wild kangaroo hops along the path

from wi to wi+1 = wig
sf(wi) for i ≥ 0.

Keep track of W’s distance from the unknown

starting position (the discrete logarithm of h)

by computing di+1(W) = di(W) + sf(wi)
for

i ≥ 0. Then wi = gx+di(W) for i ≥ 0.

After each hop, we check to see whether W has

fallen into the trap by testing whether wi = tm.

With a good choice of the parameters si, it is

highly likely that eventually wn = tm for some

n.

Then we have x = dm(T )− dn(W).

14



If we find that dn(W) > dm(T ), then W has

passed the trap. In this case, we start a new

wild kangaroo at w0 = hgz for some small in-

teger z > 0 and hope it falls into the trap.

If the two kangaroos ever land on the same

spot (wi = tj), then their paths will coincide

from that point on and W will be trapped. If

you draw their paths going upwards, the paths

will form the Greek letter lambda: λ. This is

the reason for the name.

The most important property of the jumps

sizes si is their average. Van Oorschot and

Wiener have shown that if the mean value of

the si is about 1
2

√
b− a and if T makes about

0.7
√
b− a hops before setting the trap, the run-

ning time will be minimal.

With these choices, W will hop about 2.7
√
b− a

times before getting trapped, which happens

three-fourths of the time, or passing the trap.

The space requirement is about O(log(b− a)).

15



Example Let p = 31, g = 3 and h = 13. Find

x = Loggh.

Let k = 3, s1 = 2, s2 = 3, s3 = 4, so S =

{9,27,19}. Start the tame kangaroo at t0 = 1

and let it set a trap after six hops:

i f(i) di(T ) ti
0 1 0 1
1 1 2 9
2 2 4 19
3 2 7 17
4 3 10 25
5 1 14 10
6 3 16 28

The wild kangaroo starts at w0 = 13 and hops:

i f(i) di(W) wi
0 2 0 13
1 1 3 10
2 2 5 28

The wild kangaroo W is trapped and x = Loggh =

d6(T )− d2(W) = 16− 5 = 11.

16



Discrete Logarithms via Index Calculus

There is a faster way to solve ax ≡ b (mod p)

using a method similar to the integer factoring

algorithm QS. It is called the index calculus

method.

If ax ≡ b (mod p), then we write x = Loga(b).

Note that Loga(b) is an integer determined

modulo p − 1 because of Fermat’s theorem:

ap−1 ≡ 1 (mod p).

Loga(b) is called the discrete logarithm of b to

base a. (The modulus p is usually supressed.)

17



Choose a finite set of primes p1, . . . , pk, usually

all primes ≤ B. Perform the following precom-

putation which depends on a and p but not on

b. For many random values of x, try to factor

ax mod p using the primes in the factor base.

Save at least k +20 of the factored residues:

axj ≡
k
∏

i=1

p
eij
i (mod p) for 1 ≤ j ≤ k +20,

or equivalently

xj ≡
k
∑

i=1

eijLogapi (mod p−1) for 1 ≤ j ≤ k+20.

18



Use linear algebra to solve for the Logapi.

When b is given, perform the following main

computation to find Logab. Try many random

values for s until one is found for which bas mod

p can be factored using only the primes in the

factor base.

Write it as

bas ≡
k
∏

i=1

p
ci
i (mod p)

or

(Logab) + s ≡
k
∑

i=1

ciLogapi (mod p− 1).

Substitute the values of Logapi found in the

precomputation to get Logab.

19



Using arguments like those for the running time

of the quadratic sieve factoring algorithms, one

can prove that the precomputation takes time

exp

(

√

2 log p log log p

)

,

while the main computation takes time

exp

(

√

log p log log p

)

.

20


