
Fermat’s “Little” Theorem

Fermat’s little theorem almost characterizes

primes.

Theorem: Let p be prime and a be an inte-

ger that is not a multiple of p. Then ap−1 ≡
1 (mod p).

1

It is easy to evaluate ap−1 mod p because of

Fast Exponentiation

Input: A prime p and integers n ≥ 0 and a.

Output: The value an mod p.

e = n

y = 1

z = a

while (e>0) {

if (e is odd) y = (y * z) mod p

z = (z * z) mod p

e = e/2

}

return y

2

In fast exponentiation, a does not have to be

an integer. In fact, the algorithm works when a

is anything that can be multiplied associatively,

such as a matrix.

3

Fermat’s little theorem can almost be used to

find large primes. The theorem says that if p

is prime and p does not divide a, then ap−1 ≡
1 (mod p). Thus, this theorem gives a test

for compositeness: If p is odd and p does not

divide a, and ap−1 6≡ 1 (mod p), then p is not

prime.

If the converse of Fermat’s theorem were true,

it would give a fast test for primality. The

converse would say, if p is odd and p does

not divide a, and ap−1 ≡ 1 (mod p), then p is

prime. This converse is not a true statement,

although it is true for most p and most a. If p is

a large random odd integer and a is a random

integer in 2 ≤ a ≤ p − 2, then the congruence

ap−1 ≡ 1 (mod p) almost certainly implies that

p is prime. However, there are more reliable

tests for primality having the same complexity.

4

Definition: An odd positive integer p > 2 is

called a probable prime to base a if ap−1 ≡
1 (mod p). A composite probable prime to

base a is called a pseudoprime to base a.

If we knew all base a pseudoprimes < L, then

the following would form a correct primality

test for odd integers p < L:

1. Compute r = ap−1 mod p.

2. If r 6= 1, then p is composite.

3. If p appears on the list of pseudoprimes < L,

then p is composite.

4. Otherwise, p is prime.

5

Although this algorithm has occasionally been

used, there are much better tests, some having

the same complexity.

There are only three pseudoprimes to base 2

below 1000. The first one is p = 341 = 11 ·
31. By fast exponentiation or otherwise, one

finds 2340 ≡ 1 (mod 341). (Or check 2340 ≡
1 (mod 11) and 2340 ≡ 1 (mod 31) and use

the CRT.)

One difficulty with this test is that lists of pseu-

doprimes, to base 2, say, do not reach high

enough to encompass the range of primes of

cryptographic interest. A second problem is

that there are too many pseudoprimes to any

particular base; the list of all of them would be

too long.

6

A true converse of Fermat’s little theorem

Theorem: Let m > 1 and a be integers such

that am−1 ≡ 1 (mod m), but a(m−1)/p 6≡ 1 (mod m)

for every prime p dividing m − 1. Then m is

prime.

This theorem can be used to prove primeness

of almost any prime m for which we know

the factorization of m − 1. If m is an odd

prime, then usually a small prime a can be

found quickly which will satisfy all the condi-

tions. The principal difficulty in using the the-

orem to prove that a prime m is prime is not

the search for a, but rather finding the factor-

ization of m − 1. If m − 1 has been factored,

then one can use this simple algorithm to try

to prove it is prime.

7

Lucas-Lehmer m− 1 primality test

1. Choose a = 2 or choose a random a in

2 ≤ a ≤ m− 1.

2. Compute r = am−1 mod m.

3. If r 6= 1, then m is composite.

4. Check that a(m−1)/p 6≡ 1 (mod m) for each

prime p dividing m− 1.

5. If all these incongruences are true, then m

has been proved prime.

6. If they are not satisfied, then either choose

another a (either the next small prime or a new

random 2 ≤ a ≤ m − 1) and go back to Step

2, or else give up if many a have already been

tried.

8

If m is a large prime, then the expected number

of a this algorithm must try before finding one

that works is known to be < 2 ln lnm. If m

is a large composite, then the algorithm will

almost certainly stop in Step 3.

If m is proved prime by this algorithm, than a is

primitive root modulo m. That is, the smallest

integer e > 0 with ae ≡ 1 (mod m) is e = p−1.

This is a good way to find a primitive root a

modulo a prime.

9

Many cryptographic algorithms require prime

numbers of a certain size. If the prime need

not be secret, then one can get one from a

book or web site.

Every prime has a short, simple proof of its

primality, but it is usually difficult to discover

such a proof when the prime is large.

There are three ways to find large secret primes

for cryptographic use.

10

1. Test random large numbers and choose the

first probable prime. In other words, use

“industrial-grade primes.”

2. Test random large numbers for being prob-

ably prime. When you find one, prove rig-

orously that it is prime.

3. Use random numbers to construct a large

prime having special form which permits an

easy rigorous proof of its primality.

11

Stronger Probable Prime Tests

Definition: An odd positive integer n, with

n− 1 = 2sd, where d is odd, is a strong prob-

able prime to base a if either ad ≡ 1 (mod n)

or ad·2
r ≡ −1 (mod n) for some 0 ≤ r < s. A

strong pseudoprime to base a is a composite

strong probable prime to base a.

Every prime p is a strong probable prime to

every base a it does not divide.

It is easy to see that every strong probable

prime is a probable prime to the same base,

because the definition says that we will get ±1

at some step before the last step in computing

an−1 mod n by fast exponentiation, and this

number will be squared at least once.

12

Fibonacci Probable Prime Tests

Definition: The Fibonacci numbers are defined

by u0 = 0, u1 = 1 and un+1 = un + un−1 for

n ≥ 1.

The Fibonacci numbers are u2 = 1, u3 = 2,

u4 = 3, u5 = 5, u6 = 8, u7 = 13, u8 = 21,

u9 = 34, u10 = 55,

Theorem: If n is prime, then n divides un±1.

Specifically, if n ≡ 1 or 9 (mod 10), then n

divides un−1 and if n ≡ 3 or 7 (mod 10), then

n divides un+1.

Examples:

Since 3 ≡ 3 (mod 10), 3 divides u4 = 3.

Since 7 ≡ 7 (mod 10), 7 divides u8 = 21.

Since 11 ≡ 1 (mod 10), 11 divides u10 = 55.

13

There is a simple way to compute Fibonacci

numbers using 2×2 matrices. Define the Lucas

numbers by v0 = 2, v1 = 1 and vn+1 = vn +

vn−1 for n ≥ 1. The first Lucas numbers are

v2 = 3, v3 = 4, v4 = 7, v5 = 11,

Define L =

[

1 1
1 0

]

and, for n ≥ 0, An =
[

un+1 vn+1
un vn

]

. Then A0 =

[

1 1
0 2

]

. A sim-

ple induction shows that An = LnA0 for n ≥ 0,

where L0 means the 2× 2 identity matrix I =
[

1 0
0 1

]

.

14

The formula An = LnA0 for n ≥ 0, that is,
[

un+1 vn+1
un vn

]

=

[

1 1
1 0

]n [

1 1
0 2

]

,

is not just a pretty formula. It provides a quick

way to compute un and vn when n is huge.

The fast exponentiation algorithm given above

applies to matrices. Thus we can compute

Ln in our formula with only O(logn) matrix

multiplications. If we wish to compute un mod

m or vn mod m, we should reduce each matrix

entry modulo m as it is computed. This will

keep the numbers small (< m2) even if n has

hundreds of digits.

15

To evaluate un+1 mod m.

Input: Integers n ≥ 0 and m > 1.

Output: The value un+1 mod m.

e = n

y = the matrix A_0 = [1 1 ; 0 2]

z = L, the matrix [1 1 ; 1 0]

while (e>0) {

if (e is odd) y = (y * z) mod m

z = (z * z) mod m

e = e/2

}

return y(1,1)

16

In 1980, Baillie and Wagstaff found that when

m is a composite number congruent to 3 or

7 (mod 10), then it seldom happens that m di-

vides um+1. A composite m that divides um+1

is called a Fibonacci pseudoprime.

Pinch has computed the pseudoprimes to base

2 up to 1013. Not a single known strong pseu-

doprime to base 2 is also a Fibonacci pseudo-

prime. This may be because pseudoprimes to

base 2 often have the form

(na+1)(nb+1)(nc+1) · · ·

while Fibonacci pseudoprimes ≡ 3 or 7 (mod 10)

often have the form

(na− 1)(nb− 1)(nc− 1) · · · .

Pomerance, Selfridge and Wagstaff made this

conjecture.

17

CONJECTURE An odd positive integer ≡ 3

or 7 (mod 10) is prime if and only if it is both

a strong probable prime to base 2 and a Fi-

bonacci probable prime.

In 1980, they offered $30 for a proof or dis-

proof of the conjecture, and have since raised

this reward to $620.

Cryptographers satisfied with “industrial-grade

primes” should select strong probable primes

to base 2 which are also Fibonacci probable

primes, as in the Conjecture. The tests are

simple, elegant and provide the added benefit

that if you are the first to detect a failure of

the conjecture, then you will collect $620.

In 2002, the American National Standards In-

stitute selected this algorithm for choosing in-

dustrial-grade primes for cryptography as ANSI

Standard X9-80. Many implementations of

the Secure Sockets Layer (SSL) choose large

primes by the Baillie-Wagstaff method.

18

In 2003, M. Agrawal, N. Kayal and N. Sax-

ena found a deterministic polynomial-time pri-

mality test for arbitrary positive integers. Al-

though it runs in polynomial time, it is slower

than a probable prime test like that of Baillie

and Wagstaff.

19

Here is an example of the third way to con-

struct a large prime for cryptographic use, namely,

construct a prime with special form to permit

an easy proof of its primeness.

Theorem. (Pocklington) Let n be odd and

n − 1 = FR, where the complete factorization

of F is known. Suppose that for every prime

p dividing F there is an integer a such that

an−1 ≡ 1 (mod n) and gcd(a(n−1)/p−1, n) = 1.

Then every prime factor of n is ≡ 1 (mod F).

If also F ≥ √
n, then n is prime.

This theorem allows us to construct a new

prime with about twice as many digits as the

previous one.

20

[Doubling the size of a random prime]

Input: A prime p.

Output: A prime n near p2.

repeat {

Let k be a random integer between p/2 and p.

n = 2kp+1

If 2n−1 6≡ 1 (mod n) restart this loop.

Try to prove n is prime via Pocklington’s Thm.

If you succeed, end the loop.

} until n is prime

By the prime number theorem, the expected

number of iterations of the loop needed to find

a prime n is about ln p.

21

In applying Pocklington’s Theorem in the al-

gorithm above, let F = p and R = 2k. It may

seem strange to put the known factor 2 into

R, but it would take longer to check the hy-

potheses of Pocklington’s Theorem if we put

the 2 in F . For the integer a of the theorem,

try the ten primes < 30.

22

To construct a large prime near X, begin with a

known prime near the 2i-th root of X, for some

convenient i, and apply the algorithm i times

with the known prime as the first input, and

each subsequent input equal to the previous

output. Adjust k in the final iteration of the

loop to make the last n just the right size.

The prime p constructed by this algorithm will

have a special form that permits an easy proof

that it is prime. Specifically, p − 1 will have a

large prime factor q ≈ √
p which will serve as

the F in Pocklington’s Theorem and permit a

quick application of the theorem. Also, q − 1

will have a prime factor near its square root

that lets us prove quickly that q is prime, and

so on down to a prime small enough to have

an easy prime proof.

23

