
Fermat’s “Little” Theorem

Fermat’s little theorem almost characterizes

primes.

Theorem: Let p be prime and a be an inte-

ger that is not a multiple of p. Then ap−1 ≡
1 (mod p).
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It is easy to evaluate ap−1 mod p because of

Fast Exponentiation

Input: A prime p and integers n ≥ 0 and a.

Output: The value an mod p.

e = n

y = 1

z = a

while (e>0) {

if (e is odd) y = (y * z) mod p

z = (z * z) mod p

e = e/2

}

return y

2



In fast exponentiation, a does not have to be

an integer. In fact, the algorithm works when a

is anything that can be multiplied associatively,

such as a matrix.
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Fermat’s little theorem can almost be used to

find large primes. The theorem says that if p

is prime and p does not divide a, then ap−1 ≡
1 (mod p). Thus, this theorem gives a test

for compositeness: If p is odd and p does not

divide a, and ap−1 6≡ 1 (mod p), then p is not

prime.

If the converse of Fermat’s theorem were true,

it would give a fast test for primality. The

converse would say, if p is odd and p does

not divide a, and ap−1 ≡ 1 (mod p), then p is

prime. This converse is not a true statement,

although it is true for most p and most a. If p is

a large random odd integer and a is a random

integer in 2 ≤ a ≤ p − 2, then the congruence

ap−1 ≡ 1 (mod p) almost certainly implies that

p is prime. However, there are more reliable

tests for primality having the same complexity.
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Definition: An odd positive integer p > 2 is

called a probable prime to base a if ap−1 ≡
1 (mod p). A composite probable prime to

base a is called a pseudoprime to base a.

If we knew all base a pseudoprimes < L, then

the following would form a correct primality

test for odd integers p < L:

1. Compute r = ap−1 mod p.

2. If r 6= 1, then p is composite.

3. If p appears on the list of pseudoprimes < L,

then p is composite.

4. Otherwise, p is prime.
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Although this algorithm has occasionally been

used, there are much better tests, some having

the same complexity.

There are only three pseudoprimes to base 2

below 1000. The first one is p = 341 = 11 ·
31. By fast exponentiation or otherwise, one

finds 2340 ≡ 1 (mod 341). (Or check 2340 ≡
1 (mod 11) and 2340 ≡ 1 (mod 31) and use

the CRT.)

One difficulty with this test is that lists of pseu-

doprimes, to base 2, say, do not reach high

enough to encompass the range of primes of

cryptographic interest. A second problem is

that there are too many pseudoprimes to any

particular base; the list of all of them would be

too long.
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A true converse of Fermat’s little theorem

Theorem: Let m > 1 and a be integers such

that am−1 ≡ 1 (mod m), but a(m−1)/p 6≡ 1 (mod m)

for every prime p dividing m − 1. Then m is

prime.

This theorem can be used to prove primeness

of almost any prime m for which we know

the factorization of m − 1. If m is an odd

prime, then usually a small prime a can be

found quickly which will satisfy all the condi-

tions. The principal difficulty in using the the-

orem to prove that a prime m is prime is not

the search for a, but rather finding the factor-

ization of m − 1. If m − 1 has been factored,

then one can use this simple algorithm to try

to prove it is prime.
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Lucas-Lehmer m− 1 primality test

1. Choose a = 2 or choose a random a in

2 ≤ a ≤ m− 1.

2. Compute r = am−1 mod m.

3. If r 6= 1, then m is composite.

4. Check that a(m−1)/p 6≡ 1 (mod m) for each

prime p dividing m− 1.

5. If all these incongruences are true, then m

has been proved prime.

6. If they are not satisfied, then either choose

another a (either the next small prime or a new

random 2 ≤ a ≤ m − 1) and go back to Step

2, or else give up if many a have already been

tried.
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If m is a large prime, then the expected number

of a this algorithm must try before finding one

that works is known to be < 2 ln lnm. If m

is a large composite, then the algorithm will

almost certainly stop in Step 3.

If m is proved prime by this algorithm, than a is

primitive root modulo m. That is, the smallest

integer e > 0 with ae ≡ 1 (mod m) is e = p−1.

This is a good way to find a primitive root a

modulo a prime.
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Many cryptographic algorithms require prime

numbers of a certain size. If the prime need

not be secret, then one can get one from a

book or web site.

Every prime has a short, simple proof of its

primality, but it is usually difficult to discover

such a proof when the prime is large.

There are three ways to find large secret primes

for cryptographic use.
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1. Test random large numbers and choose the

first probable prime. In other words, use

“industrial-grade primes.”

2. Test random large numbers for being prob-

ably prime. When you find one, prove rig-

orously that it is prime.

3. Use random numbers to construct a large

prime having special form which permits an

easy rigorous proof of its primality.
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Stronger Probable Prime Tests

Definition: An odd positive integer n, with

n− 1 = 2sd, where d is odd, is a strong prob-

able prime to base a if either ad ≡ 1 (mod n)

or ad·2
r ≡ −1 (mod n) for some 0 ≤ r < s. A

strong pseudoprime to base a is a composite

strong probable prime to base a.

Every prime p is a strong probable prime to

every base a it does not divide.

It is easy to see that every strong probable

prime is a probable prime to the same base,

because the definition says that we will get ±1

at some step before the last step in computing

an−1 mod n by fast exponentiation, and this

number will be squared at least once.
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Fibonacci Probable Prime Tests

Definition: The Fibonacci numbers are defined

by u0 = 0, u1 = 1 and un+1 = un + un−1 for

n ≥ 1.

The Fibonacci numbers are u2 = 1, u3 = 2,

u4 = 3, u5 = 5, u6 = 8, u7 = 13, u8 = 21,

u9 = 34, u10 = 55, . . ..

Theorem: If n is prime, then n divides un±1.

Specifically, if n ≡ 1 or 9 (mod 10), then n

divides un−1 and if n ≡ 3 or 7 (mod 10), then

n divides un+1.

Examples:

Since 3 ≡ 3 (mod 10), 3 divides u4 = 3.

Since 7 ≡ 7 (mod 10), 7 divides u8 = 21.

Since 11 ≡ 1 (mod 10), 11 divides u10 = 55.
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There is a simple way to compute Fibonacci

numbers using 2×2 matrices. Define the Lucas

numbers by v0 = 2, v1 = 1 and vn+1 = vn +

vn−1 for n ≥ 1. The first Lucas numbers are

v2 = 3, v3 = 4, v4 = 7, v5 = 11, . . ..

Define L =

[

1 1
1 0

]

and, for n ≥ 0, An =
[

un+1 vn+1
un vn

]

. Then A0 =

[

1 1
0 2

]

. A sim-

ple induction shows that An = LnA0 for n ≥ 0,

where L0 means the 2× 2 identity matrix I =
[

1 0
0 1

]

.
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The formula An = LnA0 for n ≥ 0, that is,
[

un+1 vn+1
un vn

]

=

[

1 1
1 0

]n [

1 1
0 2

]

,

is not just a pretty formula. It provides a quick

way to compute un and vn when n is huge.

The fast exponentiation algorithm given above

applies to matrices. Thus we can compute

Ln in our formula with only O(logn) matrix

multiplications. If we wish to compute un mod

m or vn mod m, we should reduce each matrix

entry modulo m as it is computed. This will

keep the numbers small (< m2) even if n has

hundreds of digits.
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To evaluate un+1 mod m.

Input: Integers n ≥ 0 and m > 1.

Output: The value un+1 mod m.

e = n

y = the matrix A_0 = [ 1 1 ; 0 2 ]

z = L, the matrix [ 1 1 ; 1 0 ]

while (e>0) {

if (e is odd) y = (y * z) mod m

z = (z * z) mod m

e = e/2

}

return y(1,1)
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In 1980, Baillie and Wagstaff found that when

m is a composite number congruent to 3 or

7 (mod 10), then it seldom happens that m di-

vides um+1. A composite m that divides um+1

is called a Fibonacci pseudoprime.

Pinch has computed the pseudoprimes to base

2 up to 1013. Not a single known strong pseu-

doprime to base 2 is also a Fibonacci pseudo-

prime. This may be because pseudoprimes to

base 2 often have the form

(na+1)(nb+1)(nc+1) · · ·

while Fibonacci pseudoprimes ≡ 3 or 7 (mod 10)

often have the form

(na− 1)(nb− 1)(nc− 1) · · · .

Pomerance, Selfridge and Wagstaff made this

conjecture.
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CONJECTURE An odd positive integer ≡ 3

or 7 (mod 10) is prime if and only if it is both

a strong probable prime to base 2 and a Fi-

bonacci probable prime.

In 1980, they offered $30 for a proof or dis-

proof of the conjecture, and have since raised

this reward to $620.

Cryptographers satisfied with “industrial-grade

primes” should select strong probable primes

to base 2 which are also Fibonacci probable

primes, as in the Conjecture. The tests are

simple, elegant and provide the added benefit

that if you are the first to detect a failure of

the conjecture, then you will collect $620.

In 2002, the American National Standards In-

stitute selected this algorithm for choosing in-

dustrial-grade primes for cryptography as ANSI

Standard X9-80. Many implementations of

the Secure Sockets Layer (SSL) choose large

primes by the Baillie-Wagstaff method.
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In 2003, M. Agrawal, N. Kayal and N. Sax-

ena found a deterministic polynomial-time pri-

mality test for arbitrary positive integers. Al-

though it runs in polynomial time, it is slower

than a probable prime test like that of Baillie

and Wagstaff.
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Here is an example of the third way to con-

struct a large prime for cryptographic use, namely,

construct a prime with special form to permit

an easy proof of its primeness.

Theorem. (Pocklington) Let n be odd and

n − 1 = FR, where the complete factorization

of F is known. Suppose that for every prime

p dividing F there is an integer a such that

an−1 ≡ 1 (mod n) and gcd(a(n−1)/p−1, n) = 1.

Then every prime factor of n is ≡ 1 (mod F).

If also F ≥ √
n, then n is prime.

This theorem allows us to construct a new

prime with about twice as many digits as the

previous one.
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[Doubling the size of a random prime]

Input: A prime p.

Output: A prime n near p2.

repeat {

Let k be a random integer between p/2 and p.

n = 2kp+1

If 2n−1 6≡ 1 (mod n) restart this loop.

Try to prove n is prime via Pocklington’s Thm.

If you succeed, end the loop.

} until n is prime

By the prime number theorem, the expected

number of iterations of the loop needed to find

a prime n is about ln p.
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In applying Pocklington’s Theorem in the al-

gorithm above, let F = p and R = 2k. It may

seem strange to put the known factor 2 into

R, but it would take longer to check the hy-

potheses of Pocklington’s Theorem if we put

the 2 in F . For the integer a of the theorem,

try the ten primes < 30.
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To construct a large prime near X, begin with a

known prime near the 2i-th root of X, for some

convenient i, and apply the algorithm i times

with the known prime as the first input, and

each subsequent input equal to the previous

output. Adjust k in the final iteration of the

loop to make the last n just the right size.

The prime p constructed by this algorithm will

have a special form that permits an easy proof

that it is prime. Specifically, p − 1 will have a

large prime factor q ≈ √
p which will serve as

the F in Pocklington’s Theorem and permit a

quick application of the theorem. Also, q − 1

will have a prime factor near its square root

that lets us prove quickly that q is prime, and

so on down to a prime small enough to have

an easy prime proof.
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