
Course Business

• Homework 3 Due Now

• Homework 4 Released

• Professor Blocki is travelling, but will be back next week

1

Cryptography
CS 555

Week 11:
• Discrete Log/DDH
• Applications of DDH
• Factoring Algorithms, Discrete Log Attacks + NIST

Recommendations for Concrete Security Parameters
Readings: Katz and Lindell Chapter 8.4 & Chapter 9

2 Fall 2017

Recap: Cyclic Group

• 𝔾𝔾 = 𝑔𝑔 = 𝑔𝑔0,𝑔𝑔1,𝑔𝑔2, … (g is generator)
• If 𝑚𝑚 = 𝔾𝔾 then for each h ∈ 𝔾𝔾 and each integer 𝑥𝑥 ≥ 0 we have

ℎ𝑥𝑥 = ℎ𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚

Fact 1: Let p be a prime then ℤ𝑝𝑝∗ is a cyclic group of order p-1.

Fact 2: Number of generators g s.t. of 𝑔𝑔 = ℤ𝑝𝑝∗ is 𝜙𝜙 𝑝𝑝−1
𝑝𝑝−1

Example (generator): p=7, g=5
 <2>={1,5,4,6,2,3}

3

Recap: Cyclic Group

• 𝔾𝔾 = 𝑔𝑔 = 𝑔𝑔0,𝑔𝑔1,𝑔𝑔2, … (g is generator)
• If 𝑚𝑚 = 𝔾𝔾 then for each h ∈ 𝔾𝔾 and each integer 𝑥𝑥 ≥ 0 we have

ℎ𝑥𝑥 = ℎ𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚

Fact 1: Let p be a prime then ℤ𝑝𝑝∗ is a cyclic group of order p-1.

Fact 2: Number of generators g s.t. of 𝑔𝑔 = ℤ𝑝𝑝∗ is 𝜙𝜙 𝑝𝑝−1
𝑝𝑝−1

Proof: Suppose that 𝑔𝑔 = ℤ𝑝𝑝∗ and let h = 𝑔𝑔𝑖𝑖 then
ℎ = 𝑔𝑔0,𝑔𝑔𝑖𝑖 ,𝑔𝑔2𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑝𝑝−1),𝑔𝑔3𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑝𝑝−1), …

Recall: 𝑖𝑖𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 − 1 : 𝑗𝑗 ≥ 0 = {0, … , 𝑝𝑝 − 1} if and only if gcd(i,p-1)=1.

4

Recap Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑔𝑔𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑔𝑔𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑔𝑔𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl such that
A succeeds with probability at most negl(n).

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑔𝑔𝑥𝑥1, 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that

A succeeds with probability at most ½ + negl(n).

5

Can we find a cyclic group where DDH holds?

• Example 1: ℤ𝑝𝑝∗ where p is a random n-bit prime.
• CDH is believed to be hard
• DDH is *not* hard (You will prove this in homework 4)

• Theorem: 𝐿𝐿𝐿𝐿𝐿𝐿 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-

bit prime then the set of rth residues modulo p is a cyclic subgroup of
order q. Then 𝔾𝔾𝑟𝑟 = [ℎ𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of
order q.

• Remark 1: DDH is believed to hold for such a group
• Remark 2: It is easy to generate uniformly random elements of 𝔾𝔾𝑟𝑟
• Remark 3: Any element (besides 1) is a generator of 𝔾𝔾𝑟𝑟

6

Can we find a cyclic group where DDH holds?

• Theorem: 𝐿𝐿𝐿𝐿𝐿𝐿 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-bit
prime then the set of rth residues modulo p is a cyclic subgroup of order q.
Then 𝔾𝔾𝑟𝑟 = [ℎ𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of order q.

• Closure: ℎ𝑟𝑟𝑔𝑔𝑟𝑟 = ℎ𝑔𝑔 𝑟𝑟
• Inverse of ℎ𝑟𝑟 is ℎ−1 𝑟𝑟 ∈ 𝔾𝔾𝑟𝑟
• Size ℎ𝑟𝑟 𝑥𝑥 = ℎ[𝑟𝑟𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟] = ℎ𝑟𝑟 𝑥𝑥 = ℎ𝑟𝑟[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟] = ℎ𝑟𝑟 [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟]𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Remark: Two known attacks on Discrete Log Problem for 𝔾𝔾𝑟𝑟(Section 9.2).
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂 𝑛𝑛3 log 𝑛𝑛 2/3

7

Can we find a cyclic group where DDH holds?

Remark: Two known attacks (Section 9.2).
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2
• Second runs in time 2𝑂𝑂 𝑛𝑛3 log 𝑛𝑛 2/3 , where n is bit length of p

Goal: Set 𝜆𝜆 and n to balance attacks

𝜆𝜆 = 𝑂𝑂 𝑛𝑛3 log𝑛𝑛 2/3

How to sample p=rq+1?
• First sample a random 𝜆𝜆-bit prime q and
• Repeatedly check if rq+1 is prime for a random n- 𝜆𝜆 bit value r

8

More groups where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be
constants. Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Note: 𝒪𝒪 is defined to be an additive identity 𝑥𝑥,𝑦𝑦 + 𝒪𝒪 = 𝑥𝑥,𝑦𝑦

What is 𝑥𝑥1,𝑦𝑦1 + 𝑥𝑥2,𝑦𝑦2 ?

9

Elliptic Curve Example

The line passing through
𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the

equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

Where the slope
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

10

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 (x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

Elliptic Curve Example

Formally, let
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Be the slope. Then the line
passing through 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and
𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1

2

= 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 11

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

𝑥𝑥3 = [𝑚𝑚2 − 𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]

𝑦𝑦3 = [𝑚𝑚 𝑥𝑥3 − 𝑥𝑥1 + 𝑦𝑦1
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]

(x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

12

Elliptic Curve Example

13

• No third point R on the
line intersects our
elliptic curve.

• Thus,
𝑃𝑃 + 𝑄𝑄 = 𝒪𝒪

Summary: Elliptic Curves

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants.
Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Fact: 𝐸𝐸 ℤ𝑝𝑝 defines an abelian group
• For appropriate curves the DDH assumption is believed to hold
• If you make up your own curve there is a good chance it is broken…
• NIST has a list of recommendations

14

Week 11: Topic 1: Discrete
Logarithm Applications

Diffie-Hellman Key Exchange
Collision Resistant Hash Functions

Password Authenticated Key Exchange

15

Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

16

Key-Exchange Experiment 𝐾𝐾𝐸𝐸𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 :

• Two parties run Π to exchange secret messages (with security parameter 1n).
• Let trans be a transcript which contains all messages sent and let k be the secret

key output by each party.
• Let b be a random bit and let kb = k if b=0; otherwise kb is sampled uniformly at

random.
• Attacker A is given trans and kb (passive attacker).
• Attacker outputs b’ (𝐾𝐾𝐸𝐸𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 =1 if and only if b=b’)

Security of Π against an eavesdropping attacker: For all PPT A there is a negligible
function negl such that

Pr 𝐾𝐾𝐸𝐸𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 =½ + 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 n .

17

Diffie-Hellman Key-Exchange is Secure

Theorem: If the decisional Diffie-Hellman problem is hard relative to group
generator 𝒢𝒢 then the Diffie-Hellman key-exchange protocol Π is secure in the
presence of a (passive) eavesdropper (*).
(*) Assuming keys are chosen uniformly at random from the cyclic group 𝔾𝔾

Protocol Π
1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴
 18

Diffie-Hellman Assumptions

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑔𝑔𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑔𝑔𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑔𝑔𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl upper
bounding the probability that A succeeds

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑔𝑔𝑥𝑥1, 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that

A succeeds with probability at most ½ + negl(n).

19

Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

Intuition: Decisional Diffie-Hellman assumption implies that a passive
attacker who observes 𝑔𝑔𝑥𝑥𝐴𝐴 and 𝑔𝑔𝑥𝑥𝐵𝐵 still cannot distinguish between
𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 and a random group element.

Remark: Modified protocol sets 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝐻𝐻 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 . You will prove that this
protocol is secure under the weaker CDH assumption in homework 4.

20

Diffie-Hellman Key-Exchange is Secure

Theorem: If the decisional Diffie-Hellman problem is hard relative to group
generator 𝒢𝒢 then the Diffie-Hellman key-exchange protocol Π is secure in the
presence of an eavesdropper (*).
Proof:

Pr 𝐾𝐾𝐸𝐸𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1

=½Pr 𝐾𝐾𝐸𝐸𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1|𝑏𝑏 = 1 + ½Pr 𝐾𝐾𝐸𝐸𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1|𝑏𝑏 = 0
=½Pr 𝐴𝐴 𝔾𝔾 ,𝑔𝑔, 𝑞𝑞,𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑥𝑥𝑦𝑦 = 1 + ½Pr 𝐴𝐴 𝔾𝔾 ,𝑔𝑔, 𝑞𝑞,𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑧𝑧 = 1

=½+½ Pr 𝐴𝐴 𝔾𝔾 ,𝑔𝑔, 𝑞𝑞,𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑥𝑥𝑦𝑦 = 1 − Pr 𝐴𝐴 𝔾𝔾 ,𝑔𝑔, 𝑞𝑞,𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑧𝑧 = 1 .
≤ ½ + ½negl(n) (by DDH)

(*) Assuming keys are chosen uniformly at random from the cyclic group 𝔾𝔾

21

Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

Intuition: Decisional Diffie-Hellman assumption implies that a passive
attacker who observes 𝑔𝑔𝑥𝑥𝐴𝐴 and 𝑔𝑔𝑥𝑥𝐵𝐵 still cannot distinguish between
𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 and a random group element.
Remark: The protocol is vulnerable against active attackers who can
tamper with messages.

22

Man in the Middle Attack (MITM)

23

Man in the Middle Attack (MITM)

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
• Mallory intercepts 𝑔𝑔𝑥𝑥𝐴𝐴 , picks 𝑥𝑥𝐸𝐸 and sends 𝑔𝑔𝑥𝑥𝐸𝐸 to Bob instead

2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝑥𝑥𝐵𝐵 to Alice
1. Mallory intercepts 𝑔𝑔𝑥𝑥𝐵𝐵, picks 𝑥𝑥𝐸𝐸′ and sends 𝑔𝑔𝑥𝑥𝐸𝐸𝐸 to Alice instead

3. Eve computes 𝑔𝑔𝑥𝑥𝐸𝐸𝐸𝑥𝑥𝐴𝐴 and 𝑔𝑔𝑥𝑥𝐸𝐸𝑥𝑥𝐵𝐵
1. Alice computes secret key 𝑔𝑔𝑥𝑥𝐸𝐸𝐸𝑥𝑥𝐴𝐴 (shared with Eve not Bob)
2. Bob computes 𝑔𝑔𝑥𝑥𝐸𝐸𝑥𝑥𝐵𝐵(shared with Eve not Alice)

4. Mallory forwards messages between Alice and Bob (tampering with
the messages if desired)

5. Neither Alice nor Bob can detect the attack

24

Discrete Log Experiment DLogA,G(n)

1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and
a generator g such that < g >= 𝔾𝔾.

2. Select h ∈ 𝔾𝔾 uniformly at random.
3. Attacker A is given 𝔾𝔾, q, g, h and outputs integer x.
4. Attacker wins (DLogA,G(n)=1) if and only if gx=h.

We say that the discrete log problem is hard relative to generator 𝒢𝒢 if

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

25

Collision Resistant Hash Functions (CRHFs)

• Recall: not known how to build CRHFs from OWFs
• Can build collision resistant hash functions from Discrete Logarithm

Assumption
• Let 𝒢𝒢 1𝑛𝑛 output 𝔾𝔾, 𝑞𝑞,𝑔𝑔 where 𝔾𝔾 is a cyclic group of order 𝑞𝑞 and g

is a generator of the group.
• Suppose that discrete log problem is hard relative to generator 𝒢𝒢.

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

26

Collision Resistant Hash Functions

• Let 𝒢𝒢 1𝑛𝑛 output 𝔾𝔾, 𝑞𝑞,𝑔𝑔 where 𝔾𝔾 is a cyclic group of order 𝑞𝑞 and g is a
generator of the group.

Collision Resistant Hash Function (Gen,H):
• 𝐺𝐺𝐿𝐿𝑛𝑛 1𝑛𝑛

1. 𝔾𝔾, 𝑞𝑞,𝑔𝑔 ← 𝒢𝒢 1𝑛𝑛
2. Select random h ← 𝔾𝔾
3. Output s = 𝔾𝔾,𝑞𝑞,𝑔𝑔,ℎ

• 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 (where, 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ𝑟𝑟)
Claim: (Gen,H) is collision resistant if the discrete log assumption holds for 𝒢𝒢

27

Collision Resistant Hash Functions

• 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 (where, 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ𝑟𝑟)
Claim: (Gen,H) is collision resistant

Proof: Suppose we find a collision 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝐻𝐻𝑠𝑠 𝑦𝑦1,𝑦𝑦2 then we
have 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 = 𝑔𝑔𝑦𝑦1ℎ𝑦𝑦2 which implies

ℎ𝑥𝑥2−𝑦𝑦2 = 𝑔𝑔𝑦𝑦1−𝑥𝑥1
Use extended GCD to find 𝑥𝑥2 − 𝑦𝑦2 −1 mod q then

ℎ = ℎ 𝑥𝑥2−𝑦𝑦2 𝑥𝑥2−𝑦𝑦2 −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟 = 𝑔𝑔 𝑦𝑦1−𝑥𝑥1 𝑥𝑥2−𝑦𝑦2 −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟
Which means that 𝑦𝑦1 − 𝑥𝑥1 𝑥𝑥2 − 𝑦𝑦2 −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 is the discrete log of h.

28

Password Authenticated Key-Exchange

• Suppose Alice and Bob share a low-entropy password pwd and wish
to communicate securely

• (without using any trusted party)
• Assuming an active attacker may try to mount a man-in-the-middle attack

• Can they do it?

Tempting Approach:
• Alice and Bob both compute K= KDF(pwd)=𝐻𝐻𝑛𝑛(pwd) and communicate with

using an authenticated encryption scheme.
• Practice Midterm Exam: Secure in random oracle model if attacker cannot

query random oracle H(.) too many times.

29

Password Authenticated Key-Exchange

Tempting Approach:
• Alice and Bob both compute K= KDF(pwd)=Hn(pwd) and communicate with

using an authenticated encryption scheme.
• Midterm Exam: Secure in random oracle model if attacker cannot query

random oracle too many time.
• Problems:

• In practice the attacker can (and will) query the random oracle many times.
• In practice people tend to pick very weak passwords
• Brute-force attack: Attacker enumerates over a dictionary of passwords and attempts to

decrypt messages with Kpwd’=KDF(pwd’) (only succeeds if Kpwd’=K).
• An offline attack (brute-force) will almost always succeed

30

Attempt 2

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝐻𝐻 𝑝𝑝𝑝𝑝𝑚𝑚 +𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝐻𝐻 𝑝𝑝𝑝𝑝𝑚𝑚 +𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝐻𝐻 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴
4. Alice picks random nonce 𝑟𝑟𝐴𝐴 and sends 𝐸𝐸𝑛𝑛𝐸𝐸𝐾𝐾𝐴𝐴,𝐵𝐵 𝑟𝑟𝐴𝐴 to Bob

1. Enc is an authentication encryption scheme
5. Bob decrypts and sends 𝑟𝑟𝐴𝐴 to Alice

Advantage: MITM Attacker cannot establish connection without password
Disadvantage: Mallory could mount a brute-force attack after attempted
MITM attack

31

Attempt 2: MITM Attack
1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝐻𝐻 𝑝𝑝𝑝𝑝𝑚𝑚 +𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝐻𝐻 𝑝𝑝𝑝𝑝𝑚𝑚 +𝑥𝑥𝐵𝐵 to Alice

1. Mallory intercepts 𝑔𝑔𝐻𝐻 𝑝𝑝𝑝𝑝𝑚𝑚 +𝑥𝑥𝐵𝐵, picks 𝑥𝑥𝐸𝐸 and sends 𝑔𝑔𝑥𝑥𝐸𝐸 to Alice instead

3. Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝐻𝐻 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴
1. Allice computes 𝐾𝐾𝐴𝐴,𝐵𝐵′ = 𝐻𝐻 𝑔𝑔 𝑥𝑥𝐸𝐸−𝐻𝐻 𝑝𝑝𝑝𝑝𝑚𝑚 𝑥𝑥𝐴𝐴 instead

4. Alice picks random nonce 𝑟𝑟𝐴𝐴 and sends c = 𝐸𝐸𝑛𝑛𝐸𝐸 𝐾𝐾𝐴𝐴,𝐵𝐵𝐸 𝑟𝑟𝐴𝐴 to Bob
1. Mallory intercepts 𝐸𝐸𝑛𝑛𝐸𝐸 𝐾𝐾𝐴𝐴,𝐵𝐵𝐸 𝑟𝑟𝐴𝐴 and proceeds to mount brute-force attack on password

5. For each password guess y
1. let 𝐾𝐾𝑦𝑦= 𝐻𝐻 𝑔𝑔 𝑥𝑥𝐸𝐸−𝐻𝐻 𝑦𝑦 𝑥𝑥𝐴𝐴 and
2. if 𝐷𝐷𝐿𝐿𝐸𝐸 𝐾𝐾𝐴𝐴,𝐵𝐵𝐸 𝐸𝐸 ≠⊥ then output y

Advantage: MITM Attacker cannot establish connection without password
Disadvantage: Mallory could mount a brute-force attack on password after attempted MITM attack

32

Password Authenticated Key-Exchange (PAKE)
Better Approach (PAKE):
1. Alice and Bob both compute W = 𝑔𝑔𝑝𝑝𝑝𝑝𝑚𝑚
2. Alice picks 𝑥𝑥𝐴𝐴 and sends “Alice", 𝑋𝑋 = 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
3. Bob picks 𝑥𝑥𝐵𝐵 computes r = H 1,𝐴𝐴𝐴𝐴𝑖𝑖𝐸𝐸𝐿𝐿,𝐵𝐵𝑚𝑚𝑏𝑏,𝑋𝑋 and 𝑌𝑌 = 𝑋𝑋 × 𝑊𝑊 𝑟𝑟 𝑥𝑥𝐵𝐵

and sends Alice the following

message: "𝐵𝐵𝑚𝑚𝑏𝑏, " 𝑌𝑌
4. Alice computes K = 𝑌𝑌𝑍𝑍 = 𝑔𝑔𝑥𝑥𝐵𝐵 where 𝑧𝑧 = 1 𝑝𝑝𝑝𝑝𝑚𝑚 × 𝑟𝑟 + 𝑥𝑥𝐴𝐴⁄ 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝. Alice sends the message VA=

H(2,Alice,Bob,X,Y,K) to Bob.
5. Bob verifies that VA== H(2,Alice,Bob,X,Y,K) where K = 𝑔𝑔𝑥𝑥𝐵𝐵. Bob generates VB= H(3,Alice,Bob,X,Y,K) and sends VB to

Alice.
6. Alice verifies that VB==H(3,Alice,Bob,X,Y, 𝑌𝑌𝑍𝑍) where 𝑧𝑧 = 1 𝑝𝑝𝑝𝑝𝑚𝑚 × 𝑟𝑟 + 𝑥𝑥𝐴𝐴⁄ .
7. If Alice and Bob don’t terminate the session key is H(4,Alice,Bob,X,Y, 𝐾𝐾)
Security:
• No offline attack (brute-force) is possible. Attacker get’s one password guess per instantiation of the protocol.
• If attacker is incorrect and he tampers with messages then he will cause the Alice & Bob to quit.
• If Alice and Bob accept the secret key K and the attacker did not know/guess the password then K is “just as good” as a

truly random secret key.

33
See RFC 6628

https://tools.ietf.org/html/rfc6628

Week 11: Topic 2: Factoring
Algorithms, Discrete Log Attacks

+ NIST Recommendations for
Concrete Security Parameters

34

Pollard’s p-1 Algorithm (Factoring)

• Let 𝑁𝑁 = 𝑝𝑝𝑞𝑞 where (p-1) has only “small” prime factors.
• Pollard’s p-1 algorithm can factor N.

• Remark 1: This happens with very small probability if p is a random n bit
prime.

• Remark 2: One convenient/fast way to generate big primes it to multiply
many small primes, add 1 and test for primality.

• Example: 2 × 3 × 5 × 7 + 1 = 211 is prime

Claim: Suppose we are given an integer B such that (p-1) divides B but
(q-1) does not divide B then we can factor N.

35

Pollard’s p-1 Algorithm (Factoring)

Claim: Suppose we are given an integer B such that (p-1) divides B but (q-1)
does not divide B then we can factor N.
Proof: Suppose B=c(p-1) for some integer c and let

𝑦𝑦 = 𝑥𝑥𝐵𝐵 − 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Applying the Chinese Remainder Theorem we have

𝑦𝑦 ↔ 𝑥𝑥𝐵𝐵 − 1 mod p, 𝑥𝑥𝐵𝐵 − 1 mod q
= 0, 𝑥𝑥𝐵𝐵 − 1 mod q

This means that p divides y, but q does not divide y (unless 𝑥𝑥𝐵𝐵 = 1 mod q,
which is very unlikely).

Thus, GCD(y,N) = p

36

Pollard’s p-1 Algorithm (Factoring)

• Let 𝑁𝑁 = 𝑝𝑝𝑞𝑞 where (p-1) has only “small” prime factors.
• Pollard’s p-1 algorithm can factor N.
Claim: Suppose we are given an integer B such that (p-1) divides B but
(q-1) does not divide B then we can factor N.

• Goal: Find B such that (p-1) divides B but (q-1) does not divide B.
• Remark: This is difficult if (p-1) has a large prime factor.

𝐵𝐵 = �𝑝𝑝𝑖𝑖
𝑛𝑛/ log 𝑝𝑝𝑖𝑖

𝑘𝑘

𝑖𝑖=1

37

Pollard’s p-1 Algorithm (Factoring)

• Goal: Find B such that (p-1) divides B but (q-1) does not divide B.
• Remark: This is difficult if (p-1) has a large prime factor.

𝐵𝐵 = �𝑝𝑝𝑖𝑖
𝑛𝑛/ log 𝑝𝑝𝑖𝑖

𝑘𝑘

𝑖𝑖=1

Here p1=2,p2=3,…

Fact: If (q-1) has prime factor larger than pk then (q-1) does not divide B.
Fact: If (p-1) does not have prime factor larger than pk then (p-1) does divide
B.

38

Pollard’s p-1 Algorithm (Factoring)

• Option 1: To defeat this attack we can choose strong primes p and q
• A prime p is strong if (p-1) has a large prime factor

• Drawback: It takes more time to generate (provably) strong primes

• Option 2: A random prime is strong with high probability

• Current Consensus: Just pick a random prime

39

Pollard’s Rho Algorithm

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor
• Goal: factor N=pq (product of two n-bit primes)

• Running time: 𝑂𝑂 𝑁𝑁4 pol𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑁𝑁)
• Naïve Algorithm takes time 𝑂𝑂 𝑁𝑁 pol𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑁𝑁) to factor

• Core idea: find distinct x, x′ ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥 = 𝑥𝑥𝐸mod 𝑝𝑝

• Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p (whp)

40

Pollard’s Rho Algorithm

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor

• Running time: 𝑂𝑂 𝑁𝑁4 pol𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑁𝑁)

• Core idea: find distinct x, x′ ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥 = 𝑥𝑥𝐸mod 𝑝𝑝

• Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p (whp)

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑁𝑁∗ then what is
the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗)mod p?

41

Pollard’s Rho Algorithm

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑁𝑁∗ then what
is the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

• Answer: ≥ 1
2⁄

• Proof (sketch): Use the Chinese Remainder Theorem + Birthday
Bound

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Note: We will also have 𝑥𝑥(𝑖𝑖) ≠ 𝑥𝑥 𝑗𝑗 mod q (whp)

42

Pollard’s Rho Algorithm

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑁𝑁∗ then what
is the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

• Answer: ≥ 1
2⁄

• Challenge: We do not know p or q so we cannot sort the 𝑥𝑥(𝑖𝑖)’s using
the Chinese Remainder Theorem Representation

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
How can we identify the pair 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗)mod p?

43

Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑁𝑁∗ , x = x𝐸 = 𝑥𝑥(0)
For i=1 to 2𝑛𝑛/2
 𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
 𝑥𝑥𝐸 ← 𝐹𝐹 𝐹𝐹 𝑥𝑥′
 p = GCD(x-x’,N)
 if 1< p < N return p

44

Remark 1: F should have the property that
if x=x’ mod p then F(x) = F(x’) mod p.

Remark 2: 𝐹𝐹 𝑥𝑥 = 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 will
work since
𝐹𝐹 𝑥𝑥 = 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

↔ 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
↔ 𝐹𝐹 𝑥𝑥 mod 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝,𝐹𝐹 𝑥𝑥 mod 𝑞𝑞 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑁𝑁∗ , x = x𝐸 = 𝑥𝑥(0)
For i=1 to 2𝑛𝑛/2
 𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
 𝑥𝑥𝐸 ← 𝐹𝐹 𝐹𝐹 𝑥𝑥′
 p = GCD(x-x’,N)
 if 1< p < N return p

45

Claim: Let 𝑥𝑥(𝑖𝑖+1) = 𝐹𝐹 𝑥𝑥(𝑖𝑖) and suppose that for
some distinct i, j < 2𝑛𝑛/2 we have 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗) mod p
but 𝑥𝑥(𝑖𝑖) ≠ 𝑥𝑥(𝑗𝑗). Then the algorithm will find p.

Cycle length: i-j

𝑥𝑥(3) mod p

Pollard’s Rho Algorithm (Summary)

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor

• Expected Running Time: 𝑂𝑂 𝑁𝑁4 pol𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑁𝑁)

• (Birthday Bound)
• (still exponential in number of bits ~2𝑛𝑛/4)

• Required Space: 𝑂𝑂 log(𝑁𝑁)

46

Quadratic Sieve Algorithm

• Runs in sub-exponential time 2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛
• Still not polynomial time but 2 𝑛𝑛 log 𝑛𝑛 grows much slower than 2𝑛𝑛/4.

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that

𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁
and

𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁

47

Quadratic Sieve Algorithm

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 (1)

and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁 2

Claim: gcd(x-y,N)∈ 𝑝𝑝, 𝑞𝑞
N=pq divides 𝑥𝑥2 − 𝑦𝑦2 = 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 + 𝑦𝑦 . (by (1)).
 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 + 𝑦𝑦 ≠ 0 (by (2)).
N does not divide 𝑥𝑥 − 𝑦𝑦 (by (2)).
N does not divide 𝑥𝑥 + 𝑦𝑦 . (by (2)).
p is a factor of exactly one of the terms 𝑥𝑥 − 𝑦𝑦 and 𝑥𝑥 + 𝑦𝑦 .
(q is a factor of the other term)

48

Quadratic Sieve Algorithm
• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that

𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁
and

𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁
• Key Question: How to find such an x, y ∈ ℤ𝑁𝑁∗ ?
• Step 1:
j=0;
For x = 𝑁𝑁 + 1, 𝑁𝑁 + 2, … , 𝑁𝑁 + 𝑖𝑖,…

q ← 𝑁𝑁 + 𝑖𝑖
2

 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 2𝑖𝑖 𝑁𝑁 + 𝑖𝑖2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

 Check if q is B-smooth (all prime factors of q are in {p1,…,pk} where pk < B).
 If q is B smooth then factor q, increment j and define

qj ← 𝑞𝑞 = �𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖

𝑘𝑘

𝑖𝑖=1

,

49

Quadratic Sieve Algorithm

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁

and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁

• Key Question: How to find such an x, y ∈ ℤ𝑁𝑁∗ ?
• Step 2: Once we have ℓ > 𝑘𝑘 equations of the form

qj ← 𝑞𝑞 = �𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖

𝑘𝑘

𝑖𝑖=1

,

We can use linear algebra to find S such that for each 𝑖𝑖 ≤ 𝑘𝑘 we have
�𝐿𝐿𝑗𝑗,𝑖𝑖
𝑗𝑗∈𝑆𝑆

= 0 𝑚𝑚𝑚𝑚𝑚𝑚 2.

 50

Quadratic Sieve Algorithm

• Key Question: How to find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and 𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?
• Step 2: Once we have ℓ > 𝑘𝑘 equations of the form

qj ← 𝑞𝑞 = �𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖

𝑘𝑘

𝑖𝑖=1

,

We can use linear algebra to find a subset S such that for each i ≤ k we have
�𝐿𝐿𝑗𝑗,𝑖𝑖
𝑗𝑗∈𝑆𝑆

= 0 𝑚𝑚𝑚𝑚𝑚𝑚 2.

Thus,

� qj
𝑗𝑗∈𝑆𝑆

= �𝑝𝑝𝑖𝑖
∑ 𝑒𝑒𝑗𝑗,𝑖𝑖𝑗𝑗∈𝑆𝑆

𝑘𝑘

𝑖𝑖=1

= �𝑝𝑝𝑖𝑖
1
2 ∑ 𝑒𝑒𝑗𝑗,𝑖𝑖𝑗𝑗∈𝑆𝑆

𝑘𝑘

𝑖𝑖=1

2

= 𝑦𝑦2

51

Quadratic Sieve Algorithm

• Key Question: How to find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?

Thus,

� qj
𝑗𝑗∈𝑆𝑆

= �𝑝𝑝𝑖𝑖
∑ 𝑒𝑒𝑗𝑗,𝑖𝑖𝑗𝑗∈𝑆𝑆

𝑘𝑘

𝑖𝑖=1

= �𝑝𝑝𝑖𝑖
1
2 ∑ 𝑒𝑒𝑗𝑗,𝑖𝑖𝑗𝑗∈𝑆𝑆

𝑘𝑘

𝑖𝑖=1

2

= 𝑦𝑦2

But we also have

� qj
𝑗𝑗∈𝑆𝑆

= � 𝑥𝑥𝑗𝑗2

𝑗𝑗∈𝑆𝑆

= �𝑥𝑥𝑗𝑗
𝑗𝑗∈𝑆𝑆

2

= 𝑥𝑥2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

52

Quadratic Sieve Algorithm (Summary)

• Appropriate parameter tuning yields sub-exponential time algorithm
2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛

• Still not polynomial time but 2 𝑛𝑛 log 𝑛𝑛 grows much slower than 2𝑛𝑛/4.

53

Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝐴𝐴𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝐴𝐴𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑞𝑞)
• Bonus: Constant memory!

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑟𝑟 log log 𝑟𝑟
• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)

54

Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Let 𝔾𝔾 = 𝑔𝑔 and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾 be given. For simplicity assume that r is prime and r < p.
• Observe that 𝑔𝑔𝑟𝑟 generates a subgroup of size p and that hr ∈ 𝑔𝑔𝑟𝑟 .

• Solve discrete log problem in subgroup 𝑔𝑔𝑟𝑟 with input hr.
• Find z such that hrz = 𝑔𝑔𝑟𝑟𝑧𝑧.

• Observe that 𝑔𝑔𝑝𝑝 generates a subgroup of size p and that hp ∈ 𝑔𝑔𝑝𝑝 .
• Solve discrete log problem in subgroup 𝑔𝑔𝑝𝑝 with input hp.
• Find y such that hyp = 𝑔𝑔𝑦𝑦𝑝𝑝.

• Chinese Remainder Theorem h = 𝑔𝑔𝑥𝑥 where x ↔ 𝑧𝑧 mod 𝑝𝑝 , [𝑦𝑦 mod 𝑟𝑟]

 55

Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝐿𝐿 = 𝑞𝑞

For i =0 to 𝑟𝑟
𝑡𝑡

𝑔𝑔𝑖𝑖 ← 𝑔𝑔𝑖𝑖𝑡𝑡

Sort the pairs (i,gi) by their second component
For i =0 to 𝐿𝐿
 ℎ𝑖𝑖 ← ℎ𝑔𝑔𝑖𝑖
 if ℎ𝑖𝑖 = 𝑔𝑔𝑘𝑘 ∈ 𝑔𝑔0, … ,𝑔𝑔𝑡𝑡 then
 return [kt-i mod q]

56

ℎ𝑖𝑖 = ℎ𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑘𝑘𝑡𝑡

→ ℎ = 𝑔𝑔𝑘𝑘𝑡𝑡−𝑖𝑖

Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝐴𝐴𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝐴𝐴𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝐴𝐴𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash
function

𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2
𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 → ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1

→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1
(*) A few small technical details to address

57

Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝐴𝐴𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝐴𝐴𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝐴𝐴𝑦𝑦𝐴𝐴𝑚𝑚𝑔𝑔(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*)
𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2

𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2

→ ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1
→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address

58

Remark: We used discrete-log problem to
construct collision resistant hash functions.

Security Reduction showed that attack on

collision resistant hash function yields attack
on discrete log.

Generic attack on collision resistant hash
functions (e.g., low space birthday attack)

yields generic attack on discrete log.

Discrete Log Attacks

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑟𝑟 log log 𝑟𝑟
• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is

B-smooth for each j. That is

𝑔𝑔𝑗𝑗 = �𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗

𝑘𝑘

𝑖𝑖=1

.

59

Discrete Log Attacks

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is

B-smooth for each j. That is

𝑔𝑔𝑗𝑗 = �𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗

𝑘𝑘

𝑖𝑖=1

.

• Step 1.B: Use linear algebra to solve the equations

𝑥𝑥𝑗𝑗 = � 𝐧𝐧𝐥𝐥𝐧𝐧𝐧𝐧 𝐩𝐩𝐢𝐢 × 𝐿𝐿𝑖𝑖,𝑗𝑗

𝑘𝑘

𝑖𝑖=1

 mod (𝑝𝑝 − 1).

(Note: the 𝐧𝐧𝐥𝐥𝐧𝐧𝐧𝐧𝐩𝐩𝐢𝐢’s are the unknowns)
 60

Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find y such that 𝑔𝑔𝑦𝑦h mod p is B-smooth

𝑔𝑔𝑦𝑦h mod p = �𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖

𝑘𝑘

𝑖𝑖=1

= � 𝑔𝑔𝑦𝑦𝑖𝑖 𝑒𝑒𝑖𝑖

𝑘𝑘

𝑖𝑖=1

= 𝑔𝑔∑ 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖

61

Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑔𝑔𝑧𝑧h mod p is B-smooth
𝑔𝑔𝑧𝑧h mod p = 𝑔𝑔∑ 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 → ℎ = 𝑔𝑔∑ 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 −𝑧𝑧

→ 𝑥𝑥 = �𝐿𝐿𝑖𝑖𝑦𝑦𝑖𝑖
𝑖𝑖

− 𝑧𝑧

• Remark: Precomputation costs can be amortized over many discrete
log instances

• In practice, the same group 𝔾𝔾 = 𝑔𝑔 and generator g are used repeatedly.

62 Reference: https://www.weakdh.org/

https://www.weakdh.org/

NIST Guidelines (Concrete Security)
Best known attack against 1024 bit RSA takes time (approximately) 280

63

NIST Guidelines (Concrete Security)
Diffie-Hellman uses subgroup of ℤ𝑝𝑝∗ size q

64

q=224 bits

q=256 bits

q=384 bits

q=512 bits

65

	Course Business
	Cryptography�CS 555
	Recap: Cyclic Group
	Recap: Cyclic Group
	Recap Diffie-Hellman Problems
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	More groups where DDH holds?
	Elliptic Curve Example
	Elliptic Curve Example
	Slide Number 12
	Elliptic Curve Example
	Summary: Elliptic Curves
	Week 11: Topic 1: Discrete Logarithm Applications
	Diffie-Hellman Key Exchange
	Key-Exchange Experiment 𝐾𝐸 𝐴,Π 𝑒𝑎𝑣 𝑛 :
	Diffie-Hellman Key-Exchange is Secure
	Diffie-Hellman Assumptions
	Diffie-Hellman Key Exchange
	Diffie-Hellman Key-Exchange is Secure
	Diffie-Hellman Key Exchange
	Man in the Middle Attack (MITM)
	Man in the Middle Attack (MITM)
	Discrete Log Experiment DLogA,G(n)
	Collision Resistant Hash Functions (CRHFs)
	Collision Resistant Hash Functions
	Collision Resistant Hash Functions
	Password Authenticated Key-Exchange
	Password Authenticated Key-Exchange
	Attempt 2
	Attempt 2: MITM Attack
	Password Authenticated Key-Exchange (PAKE)
	Week 11: Topic 2: Factoring Algorithms, Discrete Log Attacks + NIST Recommendations for Concrete Security Parameters�
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm (Summary)
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm (Summary)
	Discrete Log Attacks
	Discrete Log Attacks
	Baby-step/Giant-Step Algorithm
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log
	Discrete Log
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	Slide Number 65

