
Factoring Algorithms

Pollard’s p− 1 Method

This method discovers a prime factor p of an

integer n whenever p− 1 has only small prime

factors.

Input: n (to factor) and a limit B

Output: a proper factor of n or "fail"

a = 2

for (i = 2 to B) {

a = a^i mod n

if ((g = gcd(a - 1, n)) > 1) {

print "g divides n"

stop

}

}

print "fail"

1

Note that at the end of the i-th iteration of

the loop we have a ≡ 2i! (mod n), so a ≡
2i! (mod p) if p divides n.

When i is large enough so that p−1 divides i!,

say, i! = (p− 1)m for some m, we will have

a ≡ 2i! ≡ (2p−1)m ≡ 1m ≡ 1 (mod p),

by Fermat’s little theorem, so p divides a−1. If

p also divides n, then p divides g = gcd(a−1, n).

Occasionally, Pollard’s p−1 method has a spec-

tacular success, but it is unlikely to factor an

RSA public modulus n.

However, when generating a large prime p for

RSA one should factor p − 1 and be sure it

contains a large prime factor. (A prime factor

q of p − 1 is “large” if no adversary can do q

operations.)

2

Quadratic Sieve Method

Recall this theorem:

Theorem. If n = pq is the product of two

distinct primes, and if x2 ≡ y2 (mod n), but

x 6≡ ±y (mod n), then gcd(x+ y, n) = p or q.

Proof: We are given that n divides

(x+y)(x−y) but not (x+y) or (x−y). Hence,

one of p, q must divide (x + y) and the other

must divide (x− y).

In fact, if n has more than two prime factors

and the congruence conditions of the theorem

hold, then gcd(x+y, n) and gcd(x−y, n) will be

proper factors of n even if they are not prime.

The conditions fail to lead to a proper factor

of n only in case n is a power of a prime.

3

The quadratic sieve algorithm tries to factor n

simply by finding x and y with x2 ≡ y2 (mod n),

ignoring the conditions x 6≡ ±y (mod n). (It

just hopes for the best. Usually, it finds several

such pairs x, y. Each pair succeeds in factoring

n with probability at least 1/2.)

4

Definition. An integer k is a square if there

exists an integer x so that k = x2.

The quadratic sieve method tries to factor n

by finding two congruent squares modulo n.

How can one recognize a square?

Multiple choice question:

Which of these numbers is a square?

a. 21

b. 23

c. 25

d. 27

e. 29

5

Which of these numbers is a square?

a. 431641

b. 431643

c. 431645

d. 431647

e. 431649

This is harder.

6

Suppose I give you the prime factorizations of

the numbers.

Which of these numbers is a square?

a. 431641 = 72 · 23 · 383
b. 431643 = 3 · 143881
c. 431645 = 5 · 131 · 659
d. 431647 = 17 · 25391
e. 431649 = 34 · 732

Theorem. If n =
∏k
i=1 p

ei
i is the prime

factorization of n into the product of powers

of distinct primes, then n is square if and only

if all exponents ei are even numbers.

7

The quadratic sieve factoring algorithm finds

congruences x2 ≡ y2 (mod n) as follows.

Generate many “relations” j2 ≡ m (mod n),

where m is small and therefore easy to factor.

Factor the numbers m and match their prime

factors to form a product of some ms in which

each prime occurs as a factor an even number

of times, so it is a square. Let y2 be the prod-

uct of these ms. Let x be the product of the

js in the relations used to make y2. Then x2

is the product of the j2s, which is congruent

to the the product of the ms. This product is

y2 by the choice of relations.

8

Example. Let us factor n = 1649. Note

that
√
n ≈ 40.6, so the numbers 412 mod n,

422 mod n, . . ., will be fairly small compared

to n. We have

412 ≡ 1681 ≡ 32 = 25 (mod 1649),

422 ≡ 1764 ≡ 115 = 5 · 23 (mod 1649),

432 ≡ 1849 ≡ 200 = 23 · 52 (mod 1649).

Now 32·200 = 28·52 = 802 is a square. There-

fore,

(41 · 43)2 ≡ 802 (mod 1649).

Note that 41 · 43 = 1763 ≡ 114 (mod 1649)

and that 114 6≡ ±80 (mod 1649). We get the

factors of 1649 from gcd(114−80,1649) = 17

and gcd(114 + 80,1649) = 97, so

1649 = 17 · 97.

9

In a real application of the quadratic sieve there

may be millions of relations j2 ≡ m (mod n)

with m factored. How can we efficiently match

the prime factors of the ms to make each prime

occur an even number of times?

Answer: Use linear algebra over the field F2

with 2 elements.

Let p1, p2, . . ., pb be all of the prime numbers

that occur as factors of any of the ms.

If m =
∏b
i=1 p

ei
i , where each exponent ei ≥ 0,

associate m to the vector

v(m) = (e1, e2, . . . , eb).

Multiplying ms corresponds to adding their as-

sociated vectors. If S ⊆ {1,2, . . . , r}, where r is

the total number of relations, then
∏

i∈S mi is

a square if and only if
∑

i∈S v(mi) has all even

coordinates.

10

Reduce the exponent vectors v(m) modulo 2

and think of them as vectors in the b-dimensional

vector space Fb
2 over F2 = {0,1}.

Linear combinations of distinct vectors v(m)

correspond to subset sums. Finding a nonempty

subset of integers whose product is a square is

reduced to finding a linear dependency among

the vectors v(m).

We know from linear algebra that if we have

more vectors than the dimension b of the vec-

tor space (r > b), then there will be linear de-

pendencies among the vectors.

Also from linear algebra we have efficient al-

gorithms, such as matrix reduction, for finding

linear dependencies. Row reduction over F2

is especially efficient because adding (or sub-

tracting) two rows is the same as finding their

exclusive-or.

11

The analysis of the quadratic sieve algorithm

shows that its time complexity to factor n is

about

e
√

(lnn)(ln lnn)

bit operations.

To understand what this means, consider

e
√

(lnn)(ln lnn) ≤ e
√

(lnn)(lnn) = elnn = n

and

e
√

(lnn)(ln lnn) ≥ e
√

(ln lnn)(ln lnn) = eln lnn = lnn.

Thus, e
√

(lnn)(ln lnn) ≤ nε for any ε > 0 and

e
√

(lnn)(ln lnn) ≥ (lnn)c for any constant c > 0.

That is, the time complexity is subexponential

but not polynomial time.

12

Discrete Logarithms via Index Calculus

There is a faster way to solve ax ≡ b (mod p)

using a method similar to the integer factoring

algorithm QS. It is called the index calculus

method.

If ax ≡ b (mod p), then we write x = Loga(b).

Note that Loga(b) is an integer determined

modulo p − 1 because of Fermat’s theorem:

ap−1 ≡ 1 (mod p).

Loga(b) is called the discrete logarithm of b to

base a. (The modulus p is usually supressed.)

13

Choose a factor base of primes p1, . . . , pk, usu-

ally all primes ≤ B. Perform the following pre-

computation which depends on a and p but

not on b. For many random values of x, try to

factor ax mod p using the primes in the factor

base.

Save at least k +20 of the factored residues:

axj ≡
k
∏

i=1

p
eij
i (mod p) for 1 ≤ j ≤ k +20,

or equivalently

xj ≡
k
∑

i=1

eijLogapi (mod p−1) for 1 ≤ j ≤ k+20.

14

Use linear algebra to solve for the Logapi.

When b is given, perform the following main

computation to find Logab. Try many random

values for s until one is found for which bas mod

p can be factored using only the primes in the

factor base.

Write it as

bas ≡
k
∏

i=1

p
ci
i (mod p)

or

(Logab) + s ≡
k
∑

i=1

ciLogapi (mod p− 1).

Substitute the values of Logapi found in the

precomputation to get Logab.

15

Using arguments like those for the running time

of the quadratic sieve factoring algorithms, one

can prove that the precomputation takes time

exp

(

√

2 log p log log p

)

,

while the main computation takes time

exp

(

√

log p log log p

)

.

16

