Factoring Algorithms
 Pollard's p-1 Method

This method discovers a prime factor p of an integer n whenever $p-1$ has only small prime factors.

Input: n (to factor) and a limit B Output: a proper factor of n or "fail"
$\mathrm{a}=2$
for (i = 2 to B) \{
$\mathrm{a}=\mathrm{a}{ }^{\mathrm{i}} \bmod \mathrm{n}$
if $(\mathrm{g}=\operatorname{gcd}(\mathrm{a}-1, \mathrm{n}))>1)\{$ print "g divides n" stop
\}
\}
print "fail"

Note that at the end of the i-th iteration of the loop we have $a \equiv 2^{i!}(\bmod n)$, so $a \equiv$ $2^{i!}(\bmod p)$ if p divides n.

When i is large enough so that $p-1$ divides i !, say, $i!=(p-1) m$ for some m, we will have

$$
a \equiv 2^{i!} \equiv\left(2^{p-1}\right)^{m} \equiv 1^{m} \equiv 1(\bmod p),
$$

by Fermat's little theorem, so p divides $a-1$. If p also divides n, then p divides $g=\operatorname{gcd}(a-1, n)$.

Occasionally, Pollard's $p-1$ method has a spectacular success, but it is unlikely to factor an RSA public modulus n.

However, when generating a large prime p for RSA one should factor $p-1$ and be sure it contains a large prime factor. (A prime factor q of $p-1$ is "large" if no adversary can do q operations.)

Quadratic Sieve Method

Recall this theorem:

Theorem. If $n=p q$ is the product of two distinct primes, and if $x^{2} \equiv y^{2}(\bmod n)$, but $x \not \equiv \pm y \quad(\bmod n)$, then $\operatorname{gcd}(x+y, n)=p$ or q.

Proof: We are given that n divides $(x+y)(x-y)$ but not $(x+y)$ or $(x-y)$. Hence, one of p, q must divide $(x+y)$ and the other must divide $(x-y)$.

In fact, if n has more than two prime factors and the congruence conditions of the theorem hold, then $\operatorname{gcd}(x+y, n)$ and $\operatorname{gcd}(x-y, n)$ will be proper factors of n even if they are not prime. The conditions fail to lead to a proper factor of n only in case n is a power of a prime.

The quadratic sieve algorithm tries to factor n simply by finding x and y with $x^{2} \equiv y^{2} \quad(\bmod n)$, ignoring the conditions $x \not \equiv \pm y(\bmod n)$. (It just hopes for the best. Usually, it finds several such pairs x, y. Each pair succeeds in factoring n with probability at least $1 / 2$.)

Definition. An integer k is a square if there exists an integer x so that $k=x^{2}$.

The quadratic sieve method tries to factor n by finding two congruent squares modulo n.

How can one recognize a square?

Multiple choice question:

Which of these numbers is a square?
a. 21
b. 23
c. 25
d. 27
e. 29

Which of these numbers is a square?

a. 431641
b. 431643
c. 431645
d. 431647
e. 431649

This is harder.

Suppose I give you the prime factorizations of the numbers.

Which of these numbers is a square?
a. $431641=7^{2} \cdot 23 \cdot 383$
b. $431643=3 \cdot 143881$
c. $431645=5 \cdot 131 \cdot 659$
d. $431647=17 \cdot 25391$
e. $431649=3^{4} \cdot 73^{2}$

Theorem. If $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$ is the prime factorization of n into the product of powers of distinct primes, then n is square if and only if all exponents e_{i} are even numbers.

The quadratic sieve factoring algorithm finds congruences $x^{2} \equiv y^{2}(\bmod n)$ as follows.

Generate many "relations" $j^{2} \equiv m(\bmod n)$, where m is small and therefore easy to factor. Factor the numbers m and match their prime factors to form a product of some $m s$ in which each prime occurs as a factor an even number of times, so it is a square. Let y^{2} be the product of these $m \mathrm{~s}$. Let x be the product of the $j \mathrm{~s}$ in the relations used to make y^{2}. Then x^{2} is the product of the $j^{2} \mathrm{~s}$, which is congruent to the the product of the $m \mathrm{~s}$. This product is y^{2} by the choice of relations.

Example. Let us factor $n=1649$. Note that $\sqrt{n} \approx 40.6$, so the numbers $41^{2} \bmod n$, $42^{2} \bmod n, \ldots$, will be fairly small compared to n. We have

$$
\begin{gathered}
41^{2} \equiv 1681 \equiv 32=2^{5} \quad(\bmod 1649) \\
42^{2} \equiv 1764 \equiv 115=5 \cdot 23 \quad(\bmod 1649) \\
43^{2} \equiv 1849 \equiv 200=2^{3} \cdot 5^{2} \quad(\bmod 1649)
\end{gathered}
$$

Now $32 \cdot 200=2^{8} \cdot 5^{2}=80^{2}$ is a square. Therefore,

$$
(41 \cdot 43)^{2} \equiv 80^{2} \quad(\bmod 1649)
$$

Note that $41.43=1763 \equiv 114(\bmod 1649)$ and that $114 \not \equiv \pm 80(\bmod 1649)$. We get the factors of 1649 from $\operatorname{gcd}(114-80,1649)=17$ and $\operatorname{gcd}(114+80,1649)=97$, so $1649=17 \cdot 97$.

In a real application of the quadratic sieve there may be millions of relations $j^{2} \equiv m(\bmod n)$ with m factored. How can we efficiently match the prime factors of the $m s$ to make each prime occur an even number of times?

Answer: Use linear algebra over the field \mathbf{F}_{2} with 2 elements.

Let $p_{1}, p_{2}, \ldots, p_{b}$ be all of the prime numbers that occur as factors of any of the $m s$.

If $m=\prod_{i=1}^{b} p_{i}^{e_{i}}$, where each exponent $e_{i} \geq 0$, associate m to the vector

$$
v(m)=\left(e_{1}, e_{2}, \ldots, e_{b}\right)
$$

Multiplying $m s$ corresponds to adding their associated vectors. If $S \subseteq\{1,2, \ldots, r\}$, where r is the total number of relations, then $\prod_{i \in S} m_{i}$ is a square if and only if $\sum_{i \in S} v\left(m_{i}\right)$ has all even coordinates.

Reduce the exponent vectors $v(m)$ modulo 2 and think of them as vectors in the b-dimensional vector space \mathbf{F}_{2}^{b} over $\mathbf{F}_{2}=\{0,1\}$.

Linear combinations of distinct vectors $v(m)$ correspond to subset sums. Finding a nonempty subset of integers whose product is a square is reduced to finding a linear dependency among the vectors $v(m)$.

We know from linear algebra that if we have more vectors than the dimension b of the vector space $(r>b)$, then there will be linear dependencies among the vectors.

Also from linear algebra we have efficient algorithms, such as matrix reduction, for finding linear dependencies. Row reduction over \mathbf{F}_{2} is especially efficient because adding (or subtracting) two rows is the same as finding their exclusive-or.

The analysis of the quadratic sieve algorithm shows that its time complexity to factor n is about

$$
e^{\sqrt{(\ln n)(\ln \ln n)}}
$$

bit operations.

To understand what this means, consider

$$
e^{\sqrt{(\ln n)(\ln \ln n)}} \leq e^{\sqrt{(\ln n)(\ln n)}}=e^{\ln n}=n
$$

and
$e^{\sqrt{(\ln n)(\ln \ln n)}} \geq e^{\sqrt{(\ln \ln n)(\ln \ln n)}}=e^{\ln \ln n}=\ln n$.

Thus, $e^{\sqrt{(\ln n)(\ln \ln n)}} \leq n^{\varepsilon}$ for any $\varepsilon>0$ and $e^{\sqrt{(\ln n)(\ln \ln n)}} \geq(\ln n)^{c}$ for any constant $c>0$. That is, the time complexity is subexponential but not polynomial time.

Discrete Logarithms via Index Calculus

There is a faster way to solve $a^{x} \equiv b(\bmod p)$ using a method similar to the integer factoring algorithm QS. It is called the index calculus method.

If $a^{x} \equiv b(\bmod p)$, then we write $x=\log _{a}(b)$. Note that $\log _{a}(b)$ is an integer determined modulo $p-1$ because of Fermat's theorem: $a^{p-1} \equiv 1(\bmod p)$.
$\log _{a}(b)$ is called the discrete logarithm of b to base a. (The modulus p is usually supressed.)

Choose a factor base of primes p_{1}, \ldots, p_{k}, usually all primes $\leq B$. Perform the following precomputation which depends on a and p but not on b. For many random values of x, try to factor $a^{x} \bmod p$ using the primes in the factor base.

Save at least $k+20$ of the factored residues:

$$
a^{x_{j}} \equiv \prod_{i=1}^{k} p_{i}^{e_{i j}}(\bmod p) \text { for } 1 \leq j \leq k+20
$$

or equivalently
$x_{j} \equiv \sum_{i=1}^{k} e_{i j} \log _{a} p_{i} \quad(\bmod p-1)$ for $1 \leq j \leq k+20$.

Use linear algebra to solve for the $\log _{a} p_{i}$.

When b is given, perform the following main computation to find $\mathrm{Log}_{a} b$. Try many random values for s until one is found for which $b a^{s}$ mod p can be factored using only the primes in the factor base.

Write it as

$$
b a^{s} \equiv \prod_{i=1}^{k} p_{i}^{c_{i}} \quad(\bmod p)
$$

or

$$
\left(\log _{a} b\right)+s \equiv \sum_{i=1}^{k} c_{i} \log _{a} p_{i} \quad(\bmod p-1)
$$

Substitute the values of $\log _{a} p_{i}$ found in the precomputation to get $\log _{a} b$.

Using arguments like those for the running time of the quadratic sieve factoring algorithms, one can prove that the precomputation takes time

$$
\exp (\sqrt{2 \log p \log \log p})
$$

while the main computation takes time

$$
\exp (\sqrt{\log p \log \log p})
$$

