
Groups

Let G be a set. A binary operation on G is

a function ? from G × G into G. If g, h are

elements of G, then we will write g ? h for the

result of the binary operation applied to g and

g. g ? h is an element of G.

Definition. A group is a set G with a binary

operation ? satisfying these properties:

Closure: ∀g, h ∈ G, g ? h ∈ G.

Identity: ∃e ∈ G so that e ? g = g ? e = g for all

g ∈ G.

Inverse: ∀g ∈ G ∃h ∈ G so that g ?h = e = h?g.

Associative: ∀f, g, h ∈ G (f ? g) ? h = f ? (g ? h).

When G is a finite set, we say G is a finite

group and let |G| denote the order of G, the

number of elements in G.

1

A group is abelian or commutative if it also

satisfies this property:

Commutative: ∀g, h ∈ G, g ? h = h ? g.

All of our groups will be abelian.

A group is called additive if the operation is

+ rather than ?. In this case, the identity is

written 0 and the inverse of g is written −g.

A group is called multiplicative if the operation

is · rather than ?. In this case, the identity is

written 1 and the inverse of g is written g−1.

Examples:

The integers with addition (+). The identity

is 0. The inverse of n is −n.

The set of positive real numbers with multipli-

cation (·). The identity is 1. The inverse of x

is 1/x = x−1.
2

More examples of groups:

When N ≥ 2 is an integer, the set ZN =

{0,1, . . . , N − 1} with addition modulo N , that

is, a + b := [(a + b) mod N]. The identity is

0. The inverse of a is 0 if a = 0 and N − a if

1 ≤ a ≤ N − 1. Note: |ZN | = N .

When N ≥ 2 is an integer, the set Z?
N = {a|1 ≤

a < N,gcd(a,N) = 1} with multiplication mod-

ulo N , that is, a ·b := [(a ·b) mod N]. The iden-

tity is 1. The inverse of a is a−1 mod N com-

puted by the extended Euclidean algorithm, for

example. Note: |Z?
N | = φ(N).

3

Group Exponentiation

Let g be an element of a group G. Let m be

a positive integer.

If G is an additive group with operation +,

define

mg = m · g =

m times
︷ ︸︸ ︷

g + · · ·+ g .

If G is a multiplicative group with operation ·,
define

gm =
m times
︷ ︸︸ ︷
g · · · g .

Theorem. If G is a finite group with order
m = |G|, then for any element g ∈ G we have

(a) mg = 0 if G is additive and

(b) gm = 1 if G is multiplicative.

Example: For G = Z?
N , this theorem is Euler’s

theorem.

4

Corollary. If G is a finite group with order

m = |G| > 1, then for any element g ∈ G and

any integer i we have

(a) ig = [i mod m]g if G is additive and

(b) gi = g[i mod m] if G is multiplicative.

Example:

21234567893 mod 11 =

= 21234567893 mod 10 mod 11 = 23 mod 11 = 8,

since |Z?
11| = φ(11) = 10.

Corollary. If G is a (multiplicative) finite group

with order m = |G| > 1, and e is a positive in-

teger, define fe : G → G by fe(g) := ge. If

gcd(e,m) = 1 then fe is a permutation (one-

to-one and onto). If d = [e−1 mod m] then fd
is the inverse function to fe.

Example: This corollary with G = Z?
pq explains

why RSA works.

5

Definition If m is an integer > 1, then a primi-

tive root modulo m is an integer g with gcd(g,m) =

1 and so that the smallest positive integer e for

which ge ≡ 1 (mod m) is e = p− 1.

A primitive root modulo m is a generator of

Z?
m

Fact: A primitive root exists modulo m if and

only if m = 2, m = 4, m = pk (a power of an

odd prime) or m = 2pk (twice a power of an

odd prime).

In the true converse of Fermat’s Little Theo-

rem:

Theorem. Let p > 3 be odd. If for every

prime q|p−1 there exists an a such that ap−1 ≡
1 (mod p), but a(p−1)/q 6≡ 1 (mod p), then p

is prime.

if a single integer a works for all primes q|p−1,

then a is a primitive root modulo p.

6

Discrete logarithms

Let g be a primitive root modulo a prime p. If

y ≡ gx (mod p), then we say that x is the dis-

crete logarithm of y with respect to g modulo

p.

(Sometime we say this even when g is not a

primitive root modulo p, and also sometimes

when p is just a positive integer, not necessarily

prime.)

When the modulus p is understood, we some-

times we just say x is the discrete logarithm of

y with respect to g to mean y ≡ gx (mod p).

Write x = logg y to mean x is the discrete log-

arithm of y with respect to g, that is, y ≡
gx (mod p).

7

Write x = logg y to mean x is the discrete log-

arithm of y with respect to g, that is, y ≡
gx (mod p).

Discrete logarithms enjoy many properties sim-

ilar to those of logarithms:

Theorem: For integers x, y, g and p, we have

1. x ≡ glogg x (mod p),

2. x ≡ y (mod p) if and only if logg x = logg y,

3. logg(xy) ≡ logg x+ logg y (mod φ(p)),

4. logg(g
x) ≡ x (mod φ(p)), and

5. logg(y
x) ≡ x(logg y) (mod φ(p)).

8

The Discrete Logarithm Problem

Given a prime p with primitive root g, and an

integer y relatively prime to p, there is an in-

teger x with y ≡ gx (mod p). The Discrete

Logarithm Problem DLP is to find x. For some

large primes p and some g, the DLP is believed

to be hard for most y.

One can define discrete logarithms for groups:

Definition: Let G be a finite group generated

by g, that is,

G = {g0, g1, . . . , gm−1},
where m = |G|. The discrete logarithm of an

element h ∈ G is the number x = logg h for

which h = gx. x is defined only modulo m.

The Discrete Logarithm Problem DLP in G is

to compute x = logg h for any given h ∈ G.

9

The El-Gamal public-key cipher

The ElGamal public key cryptosystem is de-

fined as follows: Fix a large prime p which is

public. Also public is a primitive root g mod-

ulo p in 1 < g < p. Each user A who wishes

to participate in this public-key cryptosystem

chooses a secret aA in 0 < aA < p−1 and pub-

lishes bA = gaA mod p. When a user B wants

to send a secret message M in 0 < M < p to

A, she chooses a random k in 0 < k < p − 1

and sends to A the pair

C = (gk mod p, (MbkA) mod p).

10

The plaintext M is enciphered by multiplying

it by bkA in the second component of C. Note

that bkA ≡ (gaA)k ≡ gaAk (mod p). The first

component of C provides a hint for decipher-

ing M from the second component of C, but

one which is useful only to A. Only A knows

the secret key aA, so only A can compute

(gk)aA ≡ gaAk (mod p). If the multiplicative

inverse of this number is multiplied times the

second component, one recovers M :
(

gaAk
)−1 (

MbkA

)

≡
(

gaAk
)−1 (

MgaAk
)

≡M (mod p).

11

An eavesdropper who could solve the discrete

logarithm problem modulo p could compute M

from C and public data without knowing aA
as follows. The first component of C is h =

gk mod p. This number and T = (MbkA) mod p

are observed by the eavesdropper. The eaves-

dropper knows p and g because these num-

bers are public. He can also obtain A’s pub-

lic key bA from A’s directory, just as B did.

He would solve the discrete logarithm problem

gk ≡ h (mod p) for k and then compute

T
(

bkA

)−1 ≡
(

MbkA

) (

bkA

)−1 ≡M (mod p).

12

Pohlig-Hellman cipher

This is NOT a public-key cipher.

Let n = p = prime. Then φ(p) = p − 1 and

ed ≡ 1 (mod p− 1).

Method 1: Keep all of p, e, d secret. All three

are the “key”. There is just one user or one

pair of users.

Encipher: C = Me mod p.

Decipher: M = Cd mod p.

13

Method 2: Let p be public and keep e and d

secret. The key is the pair (e, d). Each user has

a secret pair to safeguard her personal secrets.

Each pair of users who wish to communicate

choose a key pair.

Since it may take a while to generate a large

prime, Method 2 is more common than Method

1. Furthermore, Method 2 has interesting math-

ematical properties which foster its use in spe-

cial ways discussed later (Massey-Omura, men-

tal poker).

Cryptanalysis: For a known-plaintext attack on

Method 2, one is given a prime p, C and M ,

and must find an exponent e so that C ≡ M e

(mod p) or (equivalently) d so that M ≡ Cd

(mod p).

14

The Massey-Omura public-key cipher

One can change the Pohlig-Hellman private-

key cipher slightly to make a public-key cipher.

This was done by Massey and Omura. Their

system is not used much because it is ineffi-

cient. (But the elliptic curve version is used.)

Consider a Pohlig-Hellman cipher with com-

mon prime p. This was called Method 2 earlier.

Suppose users A and B have encryption algo-

rithms EA and EB and decryption algorithms

DA and DB. (So EA(M) = MeA mod p,

DA(C) = CdA mod p, where eAdA ≡ 1 (mod p−
1), etc.) Since the encryption and decryp-

tion algorithms are all exponentiation modulo a

fixed modulus, they all commute, that is, they

may be done in any order and give the same

result. For example, EA(DB(x)) = DB(EA(x))

for every x because both are just

xeAdB ≡ xdBeA mod p.

15

How do A and B use this property as a public-

key cipher? The “public key” is the common

prime modulus p. The private keys are ALL of

the exponents (unlike RSA). If Alice wants to

send a message 0 < M < p to Bob, she first

sends EA(M) to Bob. Bob replies by sending

EB(EA(M)) to Alice. Then Alice sends

DA(EB(EA(M))) = EB(DA(EA(M))) = EB(M)

to Bob. Bob deciphers the message by ap-

plying DB to it. The security depends on the

difficulty of the Discrete Logarithm Problem.

The system is a protocol which requires a two-

way exchange of three messages–not impossi-

ble, but still less convenient than RSA or El-

Gamal in which just one message is sent.

16

The Diffie-Hellman key-exchange protocol

This protocol allows two users to choose a

common secret key, for DES or AES, say, while

communicating over an insecure channel (with

eavesdroppers).

The two users agree on a common large prime

p and a constant value a, which may be publicly

known and available to everyone. It is best if

the smallest exponent e > 0 for which ae ≡ 1

(mod p) is e = p−1, but the protocol will work

if e < p− 1 provided e is still large.

Alice secretly chooses a random xA in 0 < xA <
p − 1 and computes yA = axA mod p. Bob se-

cretly chooses a random xB in 0 < xB < p− 1

and computes yB = axB mod p.

Alice sends yA to Bob. Bob sends yB to Alice.

An eavesdropper, knowing p and a, and seeing

yA and yB, cannot compute xA or xB from this

data unless he can solve the Discrete Loga-

rithm Problem quickly.

17

Alice computes KA = y
xA
B mod p. Bob com-

putes KB = y
xB
A mod p.

Then

KA ≡ axA·xB ≡ KB (mod p)

and 0 < KA,KB < p, so KA = KB.

Alice and Bob choose certain agreed-upon bits

from KA to use as their key for a single-key

cipher like DES or AES.

Although this protocol provides secure com-

munication between Alice and whomever is at

the other end of the communication line, it

does not prove that Bob is the other party. To

guarantee that Bob is at the other end, they

would have to use a signature system like RSA.

18

Discrete Logarithms

The Diffie-Hellman key exchange, the ElGamal

public key cryptosystem, the Pohlig-Hellman

private key cryptosystem and the Digital Sig-

nature Algorithm could all be broken if we could

compute discrete logarithms quickly, that is, if

we could solve the congruence ax ≡ b mod p

easily.

Neglecting powers of log p, the congruence may

be solved in O(p) time and O(1) space by rais-

ing a to successive powers modulo p and com-

paring each with b. It may also be solved in

O(1) time and O(p) space by looking up x

in a precomputed table of pairs (x, ax mod p)

sorted by the second coordinate.

19

Shanks’ “giant step–baby step” algorithm is

a meet-in-the-middle method which solves the

congruence in O(
√
p) time and O(

√
p) space as

follows. Let m = d√p− 1e. Compute and sort

the m ordered pairs (j, amj mod p), for j from 0

to m− 1, by the second coordinate. Compute

and sort the m ordered pairs (i, ba−i mod p), for

i from 0 to m − 1, by the second coordinate.

Find a pair (j, y) in the first list and a pair (i, y)

in the second list. This search will succeed

because every integer between 0 and p−1 can

be written as a two-digit number ji in radix m.

Finally, x = mj + i mod p− 1.

20

Discrete Log Assumption

Let Group be a polynomial-time algorithm that,

on input 1n, outputs (G, g, q), where G is a

cyclic group generated by g ∈ G and with or-

der |G|= q, where q is a number of n bits.

Discrete Logarithm experiment DLogA,Group(n):

1. Run Group(1n) to get (G, g, q).

2. Choose h← G (Say, x′← Zq; h := gx
′
.)

3. A is given G, g, q, h, and outputs x ∈ Zq.

4. The output of the experiment is 1 if gx = h,

and 0 otherwise.

21

Definition: We say that the discrete logarithm

problem is hard with respect to Group if for all

PPT A there exists a negligible function negl

such that

Pr[DLogA,Group(n) = 1] ≤ negl(n).

The discrete logarithm assumption is that there

is a Group with respect to which the discrete

logarithm problem is hard.

22

The Computational Diffie-Hellman Problem

Fix a cyclic group G and a generator g ∈ G.

Given two group elements h1 and h2, define

DHg(h1, h2) := glogg h1·logg h2. This means that

if h1 = gx and h2 = gy, then

DHg(h1, h2) = gxy = h
y
1 = hx2.

The CDH problem is to compute DHg(h1, h2)

given randomly chosen h1 and h2.

If the discrete log problem relative to some

Group is easy, then the CDH problem is easy

for Group, too.

It is not clear whether the CDH problem must

be hard when the discrete log problem is hard.

23

The Decisional Diffie-Hellman Problem

The DDH problem is to distinguish DHg(h1, h2)
from a random group element for randomly

chosen h1 and h2.

If CDH is easy, then so is DDH.

The converse is probably false, however, be-

cause there are groups for which DDH is easy

and CDH appears to be hard.

Generally speaking, CDH is harder in groups

of prime order than in other groups with com-

posite order of nearly equal size. This is so

because in many groups G of size q = m · n,
the CDH in G can be reduced to solving two

CDHs, one in a group of size m and one in a

group of size n.

This fact explains why one uses a subgroup

of Z?
q with prime order rather than the whole

group, whose order is the composite number

φ(q).

24

