Fermat and Euler’s Theorems

Definition: A *reduced set of residues* (RSR) *modulo* m is a set of integers R so that every integer relatively prime to m is congruent to exactly one integer in R.

Fact. $a \equiv b \pmod{m}$ implies $\gcd(a, m) = \gcd(b, m)$.

Fact. All RSR’s modulo m have the same size.

Definition: $\phi(m)$ is the size of a RSR modulo m. ϕ is called the *Euler Phi or totient function*.

The standard CSR modulo m is $\{0, \ldots, m-1\}$.

The standard RSR modulo m is

$$\{1 \leq r \leq m; \gcd(r, m) = 1\}.$$

Example: $\phi(12) = 4$ because $\{1, 5, 7, 11\}$ is the standard RSR modulo 12.
Fact. \(\phi \) is multiplicative, that is, \(\phi(ab) = \phi(a)\phi(b) \) whenever \(a \) and \(b \) are relatively prime.

Some special formulas for \(\phi \): Let \(p \) be prime. Then

\[
\phi(p) = p - 1,
\]

\[
\phi(p^\alpha) = p^\alpha - p^{\alpha-1},
\]

\[
\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right).
\]

When \(p \neq q \) are primes, we have

\[
\phi(pq) = (p - 1)(q - 1).
\]

Proof: Begin with the CSR \(\{0, 1, \ldots, pq - 1\} \). Delete all \(q \) multiples of \(p \). Delete all \(p \) multiples of \(q \). 0 was deleted twice, so add 1 back. Get \(pq - p - q + 1 = (p - 1)(q - 1) \).
Fermat’s “Little” Theorem

Theorem. Let p be prime and a be an integer which is not a multiple of p. Then

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Since $\gcd(a, p) = 1$, the set

$$\{ ai \mod p ; i = 1, \ldots, p - 1 \}$$

is the same as the set $$\{ 1, \ldots, p - 1 \}$$. Therefore,

$$a^{p-1} \prod_{i=1}^{p-1} i \equiv \prod_{i=1}^{p-1} (ai) \equiv \left(\prod_{i=1}^{p-1} i \right) \cdot 1 \pmod{p}.$$

Since $\gcd\left(\prod_{i=1}^{p-1} i, p \right) = 1$, we can cancel and get

$$a^{p-1} \equiv 1 \pmod{p}.$$
Euler’s Theorem

Theorem. Let $m > 1$ and $\gcd(a, m) = 1$. Then

$$a^{\phi(m)} \equiv 1 \pmod{m}.$$

Proof: Let \(\{r_1, \ldots, r_{\phi(m)}\}\) be a RSR modulo m. Then \(\{ar_1, \ldots, ar_{\phi(m)}\}\) is a RSR modulo m, too. Therefore, for all i, there is a unique j so that $r_i \equiv ar_j \pmod{m}$. Then

$$a^{\phi(m)} \prod_{i=1}^{\phi(m)} r_i = \prod_{i=1}^{\phi(m)} (ar_i) \equiv \left(\prod_{i=1}^{\phi(m)} r_i \right) \pmod{m}.$$

Since $\gcd\left(\prod_{i=1}^{\phi(m)} r_i, m\right) = 1$, we can cancel and get $a^{\phi(m)} \equiv 1 \pmod{m}$.

A Corollary of Euler’s Theorem

Here is an alternate way to compute the multiplicative inverse a^{-1} of a modulo m: Recall that a^{-1} is the residue class mod m such that $a^{-1}a \equiv aa^{-1} \equiv 1 \pmod{m}$. It is defined only when $\gcd(a, m) = 1$. In that situation we have $a^{\phi(m)} \equiv 1 \pmod{m}$ by Euler’s Theorem.

Factoring out one a gives

$$aa^{\phi(m)-1} \equiv 1 \pmod{m},$$

whence $a^{-1} \equiv a^{\phi(m)-1} \pmod{m}$. For a prime modulus p we have $a^{-1} \equiv a^{p-2} \pmod{p}$.

For large m, computing $a^{-1} \pmod{m}$ by this formula requires roughly the same number of bit operations as computing $a^{-1} \pmod{m}$ by the Extended Euclidean Algorithm. (The latter must be used if one does not know $\phi(m)$.)
How to compute $a^n \mod m$ swiftly

Here is an algorithm for computing a^n in $O(\log_2 n)$ multiplications. To use it to compute $a^n \mod m$ while keeping the numbers small (smaller than m, that is), reduce modulo m after each multiplication.

```
procedure power(a,n)
e = n;
y = 1;
z = a;
repeat {
    if (e is odd) y = y*z;
    if (e <= 1) return (y);
    z = z*z;
e = floor(e/2);
}
end power;
```
Another Corollary of Euler’s Theorem

Corollary. Let $m > 1$, x, y and g be positive integers with $\gcd(g, m) = 1$. If $x \equiv y \pmod{\phi(m)}$, then $g^x \equiv g^y \pmod{m}$.

Proof: We have $x = y + k\phi(m)$ for some integer k, so

$$g^x = g^{y + k\phi(m)} = g^y (g^{\phi(m)})^k \equiv g^y \pmod{m}.$$
Finding large primes

Fermat’s Little Theorem says that if \(p \) is prime and \(p \nmid a \), then \(a^{p-1} \equiv 1 \pmod{p} \).

This theorem gives a test for \textit{compositeness}: If \(p \) is odd and \(p \nmid a \) and \(a^{p-1} \not\equiv 1 \pmod{p} \), then \(p \) is not prime.

If the converse of Fermat’s theorem were true, it would give a fast test for \textit{primality}. The converse would say, if \(p \) is odd and and \(p \nmid a \) and \(a^{p-1} \equiv 1 \pmod{p} \), then \(p \) is prime.

Unfortunately, this converse is not a true statement, although it is true for most \(p \) and most \(a \). Consider \(p = 341 = 11 \cdot 31 \) and \(a = 2 \). We have \(2^{340} \equiv 1 \pmod{341} \).

It is even worse than that because there are infinitely many \textit{Carmichael numbers}. These are composite numbers like \(p = 561 = 3 \cdot 11 \cdot 17 \) for which \(a^{p-1} \equiv 1 \pmod{p} \) for every integer \(a \) with \(\gcd(a, p) = 1 \).
Example of the use of Euler’s theorem.

Find the two low-order decimal digits of 33862513^{119442}.

First, $33862513 \equiv 13 \pmod{100}$, so the answer is the same as the two low-order decimal digits of 13^{119442} (because $(100k + 13)^n \equiv 13^n \pmod{100}$ and the two low-order decimal digits of m are $m \bmod 100$).

Second,

$\phi(100) = \phi(2^2)\phi(5^2) = 2(2-1) \cdot 5(5-1) = 40$.

Now $119442 \equiv 2 \pmod{40}$, so by the second corollary above, $13^{119442} \equiv 13^2 \pmod{100}$.

Finally, $33862513^{119442} \equiv 13^{119442} \equiv 13^2 = 169 \equiv 69 \pmod{100}$, and the two low-order decimal digits of 33862513^{119442} are 69.