Fermat and Euler’s Theorems

Definition: A reduced set of residues (RSR) modulo m is a set of integers R so that every integer relatively prime to m is congruent to exactly one integer in R.

Fact. $a \equiv b \pmod{m}$ implies $\gcd(a, m) = \gcd(b, m)$.

Fact. All RSR’s modulo m have the same size.

Definition: $\phi(m)$ is the size of a RSR modulo m. ϕ is called the *Euler Phi or totient function.*

The standard CSR modulo m is $\{0, \ldots, m - 1\}$.

The standard RSR modulo m is $\{1 \leq r \leq m; \gcd(r, m) = 1\}$.

Fact. ϕ is *multiplicative*, that is, $\phi(ab) = \phi(a)\phi(b)$ whenever a and b are relatively prime.

Some special formulas for ϕ: Let p be prime. Then $\phi(p) = p - 1$, $\phi(p^2) = p^p - p^{p-1}$, $\phi(n) = n \prod_{p|n}(1 - \frac{1}{p})$.

When $p \neq q$ are primes, we have $\phi(pq) = (p - 1)(q - 1)$.
Fermat’s “Little” Theorem

Theorem. Let \(p \) be prime and \(a \) be an integer which is not a multiple of \(p \). Then

\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Proof: Since \(\gcd(a, p) = 1 \), the set \(\{ ai \mod p; i = 1, \ldots, p-1 \} \) is the same as the set \(\{1, \ldots, p-1\} \). Therefore,

\[
a^{p-1} \prod_{i=1}^{p-1} i \equiv \prod_{i=1}^{p-1} (ai) \equiv (\prod_{i=1}^{p-1} i) \cdot 1 \pmod{p}.
\]

Since \(\gcd(\prod_{i=1}^{p-1} i, p) = 1 \), we can cancel and get

\[
a^{p-1} \equiv 1 \pmod{p}.
\]
Euler’s Theorem

Theorem. Let \(m > 1 \) and \(\gcd(a, m) = 1 \). Then
\[
a^{\phi(m)} \equiv 1 \pmod{m}.
\]

Proof: Let \(\{r_1, \ldots, r_{\phi(m)}\} \) be a RSR modulo \(m \). Then \(\{ar_1, \ldots, ar_{\phi(m)}\} \) is a RSR modulo \(m \), too (by a Lemma). Therefore, for all \(i \), there is a unique \(j \) so that \(r_i \equiv ar_j \pmod{m} \). Then
\[
a^{\phi(m)} \prod_{i=1}^{\phi(m)} r_i = \prod_{i=1}^{\phi(m)} (ar_i) \equiv \prod_{i=1}^{\phi(m)} r_i \pmod{m}.
\]
Since \(\gcd(\prod_{i=1}^{\phi(m)} r_i, m) = 1 \), we can cancel and get
\[
a^{\phi(m)} \equiv 1 \pmod{m}.
\]
A Corollary of Euler’s Theorem

Here is an alternate way to compute the multiplicative inverse a^{-1} of a modulo m: Recall that a^{-1} is the residue class mod m such that $a^{-1}a \equiv aa^{-1} \equiv 1 \pmod{m}$. It is defined only when $\gcd(a, m) = 1$. In that situation we have $a^{\phi(m)} \equiv 1 \pmod{m}$ by Euler’s Theorem.

Factoring out one a gives

$$aa^{\phi(m)-1} \equiv 1 \pmod{m},$$

whence $a^{-1} \equiv a^{\phi(m)-1} \pmod{m}$. For a prime modulus p we have $a^{-1} \equiv a^{p-2} \pmod{p}$.

For large m, computing $a^{-1} \pmod{m}$ by this formula requires roughly the same number of bit operations as computing $a^{-1} \pmod{m}$ by the Extended Euclidean Algorithm. (The latter must be used if one does not know $\phi(m)$.)
How to compute a^n mod m swiftly

Here is an algorithm for computing a^n in $O(\log_2 n)$ multiplications. To use it to compute a^n mod m while keeping the numbers small (smaller than m, that is), reduce modulo m after each multiplication.

procedure power(a, n)
 e = n;
 y = 1;
 z = a;
 repeat {
 if (e is odd) y = y*z;
 if (e <= 1) return (y);
 z = z*z;
 e = floor(e/2);
 }
end power;
Another Corollary of Euler’s Theorem

Corollary. Let $m > 1$, x, y and g be positive integers with $\gcd(g, m) = 1$. If $x \equiv y \pmod{\phi(m)}$, then $g^x \equiv g^y \pmod{m}$.

Proof: We have $x = y + k\phi(m)$ for some integer k, so

$$g^x = g^{y+k\phi(m)} = g^y (g^\phi(m))^k \equiv g^y \pmod{m}.$$
Finding large primes

Fermat’s Little Theorem says that if \(p \) is prime and \(p \nmid a \), then \(a^{p-1} \equiv 1 \pmod{p} \).

This theorem gives a test for \textit{compositeness}: If \(p \) is odd and \(p \nmid a \) and \(a^{p-1} \not\equiv 1 \pmod{p} \), then \(p \) is not prime.

If the converse of Fermat’s theorem were true, it would give a fast test for \textit{primality}. The converse would say, if \(p \) is odd and and \(p \nmid a \) and \(a^{p-1} \equiv 1 \pmod{p} \), then \(p \) is prime.

Unfortunately, this converse is not a true statement, although it is true for most \(p \) and most \(a \). Consider \(p = 341 = 11 \cdot{27}{31} \) and \(a = 2 \).

\[
2^{340} \equiv 1 \pmod{341}.
\]

It is even worse than that because there are infinitely many \textit{Carmichael numbers}. These are composite numbers like \(p = 561 = 3 \cdot 11 \cdot 17 \) for which \(a^{p-1} \equiv 1 \pmod{p} \) for \textit{every} integer \(a \) with \(\gcd(a, p) = 1 \).
Here is a true converse of Fermat’s Little Theorem.

Theorem. Let $n > 3$ be odd. If for every prime $p|n−1$ there exists an a such that $a^{n−1} \equiv 1 \pmod{n}$, but $a^{(n−1)/p} \not\equiv 1 \pmod{n}$, then n is prime.

This theorem may be used iteratively to construct large, random primes.

Begin with a prime p_1. Let $i = 1$. Repeat the following steps until p_i is large enough.

For random small integers k, let $n = 2kp_i + 1$. If $2^{n−1} \not\equiv 1 \pmod{n}$, then n is composite by Fermat’s Little Theorem, so try another k. Otherwise, n is probably prime, so try to prove n is prime using the theorem just stated. Note that $n−1 = 2kp_i$ is easy to factor completely. If you succeed in finding a’s which satisfy the conditions of the theorem, then n is proved prime, and let $p_{i+1} = n$ and let $i = i + 1$. Otherwise, try a new random k.