The secrecy of a cipher is measured by:

Definition: The *key equivocation* $H_C(K)$ is the conditional entropy of K given C:

$$H_C(K) = \sum_C p(C) \sum_K p_C(K) \log_2(1/p_C(K)).$$

If $H_C(K) \to 0$ as the length of C increases, then the cipher is theoretically breakable, and the *unicity distance* is the shortest length N of C for which $H_C(K)$ is near 0, say $H_C(K) < 1$.

A cipher is *unconditionally secure* if $H_C(K) \not\to 0$ as the length N of C increases without bound.

Example. A one-time pad is unconditionally secure.
For most ciphers we can only approximate the unicity distance. We now derive a useful approximation to it.

Recall: $r = H(X)/N$, $R = \log_2 a$ and $D = R - r$.

Recall: There are $2^{rN} = 26^N$ N-letter messages, 2^rN of them are meaningful and $2^{rN} - 2^rN$ are meaningless.

Assume: All 2^rN meaningful messages have equal probability 2^{-rN} and all meaningless messages have probability 0.

Note that we are assuming the equally-likely case, which maximizes entropy and is the worst case.

Assume: There are $2^{H(K)}$ keys, and they are equally likely. That is, $p(K) = 2^{-H(K)}$ for each key K.
A random cipher is one in which for each key \(K \) and ciphertext \(C \), the decipherment \(D_K(C) \) is an independent random variable uniformly distributed over all \(2^{RN} \) messages, both meaningful and meaningless. This means that for a given \(K \) and \(C \), \(D_K(C) \) is as likely to produce one plaintext message as any other. Actually the decipherments are not completely independent because a given key must uniquely decipher a given message, so that \(D_K(C) \neq D_K(C') \) for \(C \neq C' \).

Assume we have a random cipher and suppose \(C = E_K(M) \). A spurious key decipherment or false solution of \(C \) is either \(C = E_{K'}(M) \) or \(C = E_{K''}(M') \) where \(M' \) is meaningful. (We are not concerned with meaningless false solutions as they are easily detected.) In the first case \((C = E_{K'}(M)) \), the key \(K' \) may or may not decipher other \(C \) enciphered with \(K \).
For every correct decipherment there are $2^{H(K)} - 1$ other keys, each with probability

$$q = 2^rN / 2^{RN} = 2^{-DN}$$

of giving a false solution. Let F be the number of false solutions. Then

$$F = (2^{H(K)} - 1)q \approx 2^{H(K) - DN}.$$

When N is large enough so that $F < 1$, we have enough ciphertext to break the cipher. At the borderline case where $F = 1$, we have $H(K) = DN$. Thus $N = H(K)/D$ is approximately the unicity distance.

Example. DES is a block cipher with 56-bit keys and 64-bit blocks of plain and cipher text. 64 bits is 8 characters. For English, $D = 3.7$, so $N = H(K)/D = 56/3.7 = 15.1$ characters or about two blocks.