Kerberos

Kerberos, developed by Project Athena at MIT, solves this problem: Assume an open distributed environment. Users at workstations wish to access services on various servers. Servers wish to restrict access to authorized users and be able to authenticate users requests for service. A workstation cannot be trusted to identify its users correctly.

There are three threats:
1. A user may gain access to a workstation and pretend to be another user on that workstation.
2. A user may alter the network address of a workstation so that the requests from it appear to come from a different workstation.
3. A user may eavesdrop on exchanges and use a replay attack to gain entrance to a server or to disrupt operations.

Kerberos addresses these threats by providing a central authentication server to authenticate users to servers and servers to users. It requires a user to prove identity for each service invoked. It also requires that servers prove their identity to clients.
Kerberos uses only conventional cryptography (DES), no public key crypto, and is supposed to be:

Secure: No eavesdropper can impersonate a user.

Reliable: No one can use any services unless permitted by Kerberos.

Transparent: User just types a password; all else is hidden.

Scalable: Can support many clients and servers.

Version 4 was the first full version, and is still in use. Version 5 is the next full version.
Here is a simple authentication dialogue:
1. $C \rightarrow AS$: ID_C, P_C, ID_V
2. $AS \rightarrow C$: Ticket
3. $C \rightarrow V$: $ID_C, Ticket$
where $Ticket = E_{K_v}[ID_C, AD_C, ID_V]$.
AS = authentication server (Kerberos)
C = client
V = server
ID_C = identification of user on C
ID_V = identification of server V
P_C = password of user on C
AD_C = network address of C
K_v = secret key shared by AS and V.
The use of AD_C prevents ticket capture and reuse.

The ticket is valid only from workstation C.
The ticket is valid only once.

Some problems with this simple dialogue:
1. User on C must enter password for each ticket, too many times. Better to make ticket reusable.

2. The plaintext transmission of the password in Step 1. An eavesdropper could capture it.

Solve these problems by adding a TGS: Ticket granting server.
Once per user login session:
1. $C \rightarrow AS$: ID_C, ID_{TGS}
2. $AS \rightarrow C$: $E_{K_C}[Ticket_{TGS}]$
 where $Ticket_{TGS} = E_{K_{TGS}}[ID_C, AD_C, ID_{TGS}, TS_1, LT_1]$

 Once per type of service (mail, print, login, etc.):
3. $C \rightarrow TGS$: $ID_C, ID_{V}, Ticket_{TGS}$
4. $TGS \rightarrow C$: $Ticket_{V}$
 where $Ticket_{V} = E_{K_{V}}[ID_C, AD_C, ID_{V}, TS_2, LT_2]$

 Once per service session:
5. $C \rightarrow V$: $ID_C, Ticket_{V}$
In 1 and 2, no password is sent over the network. Instead, in 2, \(C \) asks its user for a password \((K_C)\) and uses it to decrypt the ticket.

The time stamps and lifetimes prevent reuse by an eavesdropper, unless he reuses it right away.

Two problems with the dialogue above:
(a) The lifetime may be too long or too short. \(TGS \) or \(V \) should be able to check that the person using the ticket is the same as the one to whom it was issued.

(b) Servers should have to prove their identity to users. Otherwise a bogus server could capture information from an unwary user and deny service.

These problems are solved by the Kerberos 4 dialogue on the next page.
Once per user login session:
1. $C \rightarrow AS$: ID_C, ID_{TGS}, TS_1
2. $AS \rightarrow C$: $E_{K_C}[K_C,TGS, ID_{TGS}, TS_2, LT_2, Ticket_{TGS}]$
 where $Ticket_{TGS} = E_{K_{TGS}}[K_C,TGS, ID_C, AD_C, ID_{TGS}, TS_2, LT_2]$

 Once per type of service:
3. $C \rightarrow TGS$: $ID_V, Ticket_{TGS}, Authenticator_{C,TGS}$
 where $Authenticator_{C,TGS} = E_{K_{C,TGS}}[ID_C, AD_C, TS_3]$
4. $TGS \rightarrow C$: $E_{K_C,TGS}[K_C,V, ID_V, TS_4, Ticket_V$
 where $Ticket_V = E_{K_V}[K_{C,V}, ID_C, AD_C, ID_V, TS_4, LT_4]$

 Once per service session:
5. $C \rightarrow V$: $Ticket_V, Authenticator_{C,V}$
 where $Authenticator_{C,V} = E_{K_{C,V}}[ID_C, AD_C, TS_6]$
6. $V \rightarrow C$: $E_{K_{C,V}}[TS_6 + 1]$
Now the lifetime is less important and can be made long enough since knowledge of $K_{C,TGS}$ and $K_{C,V}$ prove the user is the grantee of the ticket.

In 6, V proves its identity to C.

Bryn Dole and Steve Lodin, students in this class a few years ago, broke Kerberos 4.