
CS 355, Fall, 2019, Project 1

The Sieve of Eratosthenes finds the primes less than some limit J . It
begins by writing the numbers 1, 2, . . ., J . Cross out the number 1, which
is not prime. After that, let p be the first number not crossed out. Then p
is prime, so leave it intact, but cross out every p-th number (including any
previously crossed out) starting with 2p. That is, cross out all multiples of p
strictly larger than p. Repeat this process, replacing p by the next number
not yet crossed out, so long as p ≤

√
J . Then stop. All numbers crossed

out are composite (or 1) and all numbers not crossed out are prime. This
algorithm works because every composite number ≤ J has a prime factor
p ≤

√
J and so it would be crossed out as a multiple of p.

Example: Let J = 19. Then
√
J ≈ 4.4. Write the numbers 1 to 19.

Cross out 1 and all multiples of 2 starting with 4. We cross out (/) 4, 6, 8,
10, 12, 14, 16, 18. After that, 3 is the next number not crossed out, so cross
out all multiples of 3 starting with 6. We cross out (\) 6, 9, 12, 15, 18. The
next number not crossed out is 5, which is greater than

√
19, so we stop.

The numbers not crossed out are 2, 3, 5, 7, 11, 13, 17, 19, exactly the primes
between 1 and 19.

6 1 2 3 64 5 6 \6 7 68 \9 610 11 6 \12 13 614 \15 616 17 6 \18 19

A computer program would use an array (of bits or bytes, say) to represent
the numbers 1 to J . (Or remember the prime 2 and let the bytes represent
ODD numbers 1, 3, 5, . . . to save J/2 bytes.) Let the value “1” mean that
the number is not crossed out and the value “0” mean that the number is
crossed out. The algorithm begins by marking the byte that represents 1 as
“crossed out” and the bytes that represent the other numbers as “not crossed
out.” The first inner while loop crosses out all multiples of the prime p. The
second inner while loop finds the next prime p. The outer while loop runs
through all primes ≤

√
J . Here is the algorithm.

1



Sieve of Eratosthenes

Input: An integer J > 1.
P [1] = 0
for (i = 2 to J) { P [i] = 1 }
p = 2

while (p ≤
√
J) {

i = p+ p
while (i ≤ J) { P [i] = 0; i = i+ p }
i = p+ 1

while (i ≤
√
J and P [i] = 0) { i = i+ 1 }

p = i
}

Output: The array P [·] lists the primes ≤ J .

When the algorithm finishes, the value of P [i] is 1 if i is prime and 0 if i
is 1 or composite.

The Sieve of Eratosthenes finds all primes ≤ J in O(J log log J) steps.

(A) Write a program in Java for the Sieve of Eratosthenes. Use it to make
a table of all the primes < 105. (Don’t turn in anything for part (A); just do
it. You need it for part (B).)

NOTE: Do not copy your program from the Web. I looked at many
programs for the Sieve of Eratosthenes on the Web and nine out of ten are
wrong.

A variation of the Sieve of Eratosthenes finds all primes in an interval
[I, J ]. First write the integers in the interval. Let P be the set of all primes
less than the square root of the upper endpoint J of the interval, calculated
by the first Sieve of Eratosthenes above. Then, for each prime p in the set P,
cross out every multiple of p in the interval. The set of numbers not crossed
out is the answer. This algorithm assumes that I >

√
J .

2



Modified Sieve of Eratosthenes

Input: Integers J > I > 1 and a finite set P of primes.
for (i = I to J) { A[i] = 1 }
for each p ∈ P {

i = the smallest multiple of p that is ≥ I
while (i ≤ J) { A[i] = 0; i = i+ p }
}

Output: The array A[·] lists the numbers between I and J free of factors in P .

Do NOT use a loop to find the smallest multiple of p that is ≥ I. Recall
what I said about integer arithmetic in class to find this number with a simple
assignment statement. (Hint: Divide some int by p and then multiply it by
p.)

When the algorithm finishes, A[i] = 0 if some prime p ∈ P divides i and
A[i] = 1 if no prime in P divides i. In case I >

√
J and P is the set of all

primes <
√
J , when the algorithm finishes, the value of A[i] is 1 if i is prime

and 0 if i is composite.

(B) Write a program in Java for the Modified Sieve of Eratosthenes. Read
two even integers I and J from stdin. These integers will satisfy 105 < I <
J < 2 ∗ 109 and J − I ≤ 107. There will be more than four primes between
I and J . Use your program to make a table of all the primes between I and
J . Count the primes in your table. Print this count. Print the first 2 primes
and the last 2 primes in this table. Your program must run for less than 1
second. If you use some method other than the one described above to find
the primes between I and J , your program will probably run for longer than
1 second (and be ingloriously cut off by Vocareum). Your program must have
no array larger than 107 bytes.

Example: If your program reads these I and J :
1000000 2000000
then it should print
70435
1000003 1000033
1999979 1999993
exactly as shown (because Vocareum just compares character strings).

3



Example: If your program reads these I and J :
1000000000 1001000000
then it should print
48155
1000000007 1000000009
1000999943 1000999949
exactly as shown (because Vocareum just compares character strings).

Name your prgram for part (B) sieve.java. Submit your program for
part (B) to Vocareum by 11:59 PM on the due date. It will be compiled and
run ten times with ten different secret input pairs I, J . It must run each
time in less than 1 second.

4


