CS 355, Fall, 2019, Homework 3

1. Does the congruence $15275 x \equiv 70(\bmod 27965)$ have a solution? Explain your answer. If it does have a solution, find all of its solutions.
2. Does the congruence $91 x \equiv 85(\bmod 107)$ have a solution? Explain your answer. If it does have a solution, find all of its solutions.
3. Let X^{\prime} denote the bit-by-bit complement of a bit string X.
a. Show that if $C=D E S_{K}(M)$, then $C^{\prime}=D E S_{K^{\prime}}\left(M^{\prime}\right)$. (Go through each step of $D E S$ and tell which intermediate values are complemented and which are not. For example, is the input to the third S-box in Round 5 complemented when M and K are replaced by their complements? Explain why your answers are correct.)
b. Explain how this property can be exploited in a chosen-plaintext attack to reduce the search effort by roughly 50%. Part of your answer should be an algorithm which tells exactly what to do. (Hint: Begin by obtaining the ciphertext for a plaintext M and for its complement M^{\prime}.)
4. Suppose that a plaintext of length 640 bits is enciphered using DES with one of the encryption modes, yielding a ciphertext of length 640 bits. The ciphertext is then sent by radio to a receiver, who will decipher it. Now suppose that during transmission, bit 249 is complemented by radio interference. How many bits deciphered MAY be incorrect if the encryption mode is:
a. ECB?
b. CBC?
c. OFB?
d. CTR?
e. CFB?

Explain how you got each answer.

