
Random Number Generation

“Random” numbers are used in:

1. Simulation,

2. Stream ciphers, and

3. Choosing a secret key.

Some desirable properties of a sequence of “ran-

dom” numbers:

1. The sequence looks random—it passes sta-

tistical tests of randomness.

2. The sequence is unpredictable: knowing the

algorithm and previous bits, one cannot guess

the next bit(s), but perhaps the sequence can

be reproduced.

1



3. The sequence cannot be reliably repro-

duced: If you run the RNG twice with the same

input (as closely as possible), you get two dif-

ferent random sequences. The sequence can-

not be compressed.



Examples of RNG’s:

1. Linear congruential generators: Fix a (mul-

tiplier), b (increment), m (modulus), and x0

(seed). Define xi for i ≥ 1 by

xn = (axn−1 + b) mod m.

The period is always ≤ m. One example with

maximum period uses a = 9301, b = 49297,

and m = 233280. LCG’s pass some statisti-

cal tests, are okay for simulation, and are effi-

cient. However, they are worthless for cryptog-

raphy because their linearity makes them easy

to break.

2



2. An LFSR with an n-bit register always has

period ≤ 2n − 1. It needs a primitive tap poly-

nomial to get maximum period. Note that if

0 < b < a, then xa + xb + 1 is primitive if and

only if xa + xa−b + 1 is primitive. Example:

a = 31, b = 3.

Some variations use several LFSR’s connected

by some non-linear muddle: Geffe, Beth-Piper.

These are not good sources of cryptographi-

cally secure random numbers.

Additive generators such as Xi = (Xi−55 +

Xi−24) mod 2n, which uses n-bit words and has

period 255 − 1, are insecure.

FISH uses a pair of additive generators and is

no good either.

3



Secure random number generators.

Assume your adversary has a copy of your key-

generating program, any master key in it, and

knows the time-of-day, process number, ma-

chine name, network address, etc., of your pro-

gram and its machine.

Use as many of the following sources of ran-

domness as possible:

Use the computer’s clocks: UNIX seconds since

January 1, 1970 (whole number + fractional

part to the microsecond). Also set an alarm

and increment a counter rapidly until inter-

rupted. Then use the low-order bits of the

counter.

4



Use any available special hardware to produce

random bits: Geiger counter with a speck of

plutonium, a capacitor to charge, an unstable

oscillator, thermal noise, radio static, /dev/audio

with no mike attached, disk position or time to

read one block.

Use random system values such as CPU load

and arrival time of network packets.

If there is a user present, have the user provide

randomness by typing on the keyboard, moving

the mouse or speaking into the mike.

Hash together (SHA) anything with at least

some randomness. (Don’t XOR it as was done

in Kerberos 4.)

5



How to use biased “random” bits:

1. XOR several such bits together. Say the

bit is 0 with probability 0.5 + e and 1 with

probability 0.5− e, for some 0 ≤ e < 0.5. Then

the XOR of two such bits is 0 with probability

(0.5 + e)2 + (0.5− e)2 = 0.5 + 2e2. Then the

XOR of four such bits is 0 with probability

0.5 + 8e4. In the limit when many such bits

are XOR’ed, the probability that the XOR will

be 0 will converge to 0.5.

6



2. Use the biased “random” bits in pairs: If

the two bits in a pair are the same, skip; else

output the first bit.

Neither 1. nor 2. works if adjacent bits are cor-

related.

Use at least two independent sources of ran-

dom bits.

7


