Transposition ciphers rearrange characters or bits of plaintext to produce ciphertext.

Example: The key to the cipher is the number of rows and columns of a matrix. Encipher a message by writing the plaintext into the matrix by rows and reading the ciphertext out of the matrix by columns.

There is a fixed period, d, say. If we assume all d! permutations to be equally likely, then one can prove that the the shortest length of ciphertext needed to break it is

$$N = \frac{d \log_2(d/e)}{3.2} \approx 0.3d \log_2(d/e).$$

Example: With a 3×9 matrix we have d = 27 and N = 27.9.

Use digrams to crack transposition ciphers. The process is called *anagramming*.

Substitution Ciphers

Alphabets: Plain $\{m_i\}$, Cipher $\{c_i\}$.

Replace (blocks of) characters by other characters. Four types:

- 1. Simple: Replace m_i by c_i . Permute alphabet.
- 2. Homophonic: Replace m_i by a random one of several possible c_i .
- 3. Polyalphabetic: Use multiple maps from the plaintext alphabet to the ciphertext alphabet.
- 4. Polygram: Make arbitrary substitution for blocks of characters.

Use frequency counts to distinguish Transposition ciphers from Substitution ciphers. 1. Simple: Replace m_i by c_i . Write $f(m_i) = c_i$.

Example. Caesar cipher-rotate the alphabet: $f(m) = (m + k) \mod n$, where *n* is the alphabet size. Then one can show that the shortest length of ciphertext needed to break it is $(\log_2 26)/3.2 \approx 1.5$ letters.

If all n! permutations of the alphabet are equally likely (the best case) in a simple substitution cipher, and the language is English (with n =26), then the shortest length of ciphertext needed to break it would be $log(26!)/3.2 \approx 27.6$. This is the case for the Cryptoquote in the *Exponent*.

These ciphers may be broken with frequency analysis and trial and error.

An affine cipher, $f(m) = (am+b) \mod n$, guess some two-letter pairs and solve two congruences in two unknowns a and b. 2. Homophonic: Replace m_i by a random one of several possible c_j .

To confound the frequency analysis which succeeds so well for simple substitution ciphers, one might use a ciphertext alphabet larger than the plaintext alphabet and assign each plaintext letter a to a subset (homophone) f(a) of the ciphertext alphabet. To permit deciphering, require $f(a) \cap f(b) = \emptyset$ when $a \neq b$. Encipher each m_i in the plaintext as a randomly chosen $c_j \in f(m_i)$.

Usually, the ciphertext alphabet is much larger than the plaintext alphabet and the size of f(a)is proportional to the frequency of occurrence of a in normal English. Then the letters of the ciphertext alphabet have a uniform distribution in the ciphertext. Use digrams to break.

One can define f via a standard text using the number of an instance of the letter as its cipher.

3. Polyalphabetic: Use multiple maps f_i from the plaintext alphabet to the ciphertext alphabet.

Encipher $M = m_0 m_1 \dots$ as $C = f_0(m_0) f_1(m_1) \dots$

Let *n* be the length of the alphabet. The sequence $\{f_i\}$ may be periodic, perhaps defined by a *keyword* $K = k_0 \dots k_{d-1}$.

Example: Vigenère cipher: $f_i(a) = (a+k_i) \mod n$.

M: RENA ISSA NCE

K: BAND BAND BAN

C: SEAD JSFD OCR

Example: Beaufort cipher: $f_i(a) = (k_i - a) \mod n$.

If the period of the key is d, then one can show that the the shortest length of ciphertext needed to break it is

 $\log_2(n^d)/3.2 = (d/3.2)\log_2 n.$

For English (with n = 26), this is $d \log_2(26)/3.2 \approx 1.47d$.

The way to break a periodic polyalphabetic substitution cipher is to first find the period d. Then break it by solving d interlaced simple substitution ciphers by letter frequency, guessing words or using digraphs.

There are two basic methods to find the period of a periodic polyalphabetic substitution cipher.

Kasiski Method: Look for repetitions in cipher text. The difference between the starting locations of a repeated ciphertext might be a multiple of the period d. Look at the gcd of some of these differences.

The Index of Coincidence Method of William F Friedman: Measure frequency variations of letters to guess the period d. Let $\{a_0, a_1, \ldots, a_{n-1}\}$ be the (plain or ciphertext) alphabet. Let F_i be the frequency of occurrence of a_i in a ciphertext of length N. Define the Index of Coincidence as

$$IC = \left(\sum_{i=0}^{n-1} \frac{F_i(F_i - 1)}{2}\right) / \left(\frac{N(N - 1)}{2}\right).$$

Then *IC* represents the probability that two letters chosen at random in the ciphertext are the same.

One can estimate IC theoretically in terms of the period d. For English and a polyalphabetic cipher with period d, the expected value of ICis

$$\frac{1}{d} \frac{N-d}{N-1} (0.066) + \frac{d-1}{d} \frac{N}{N-1} (0.038).$$

Note: $1/26 \approx 0.038$.

Guess d by comparing the IC with this table: (d, IC): (1, 0.066), (2, 0.052), (3, 0.047), (4, 0.045), (5, 0.044), (10, 0.041), (infinity, 0.038).

The IC tells you the approximate size of the period d. The Kasiski method complements the IC method by telling you a number (the gcd) that probably divides d.

Example. If IC = 0.043, then d is probably 6 or 7. If a Kasiski analysis finds several examples of repeated ciphertext occurring at multiples of 3 in the position of the letters, then d is probably a multiple of 3. These two pieces of information suggest that d = 6.