Encryption Algorithms

Transposition ciphers rearrange characters or bits of plaintext to produce ciphertext.

Example: The key to the cipher is the number of rows and columns of a matrix. Encipher a message by writing the plaintext into the matrix by rows and reading the ciphertext out of the matrix by columns.

There is a fixed period, d, say. If we assume all d ! permutations to be equally likely, then one can prove that the the shortest length of ciphertext needed to break it is

$$
N=\frac{d \log _{2}(d / e)}{3.2} \approx 0.3 d \log _{2}(d / e)
$$

Example: With a 3×9 matrix we have $d=27$ and $N=27.9$.

Use digrams to crack transposition ciphers. The process is called anagramming.

Substitution Ciphers

Alphabets: Plain $\left\{m_{i}\right\}$, Cipher $\left\{c_{i}\right\}$.
Replace (blocks of) characters by other characters. Four types:

1. Simple: Replace m_{i} by c_{i}. Permute alphabet.
2. Homophonic: Replace m_{i} by a random one of several possible c_{j}.
3. Polyalphabetic: Use multiple maps from the plaintext alphabet to the ciphertext alphabet.
4. Polygram: Make arbitrary substitution for blocks of characters.

Use frequency counts to distinguish Transposition ciphers from Substitution ciphers.

1. Simple: Replace m_{i} by c_{i}. Write $f\left(m_{i}\right)=c_{i}$.

Example. Caesar cipher-rotate the alphabet: $f(m)=(m+k) \bmod n$, where n is the alphabet size. Then one can show that the shortest length of ciphertext needed to break it is $\left(\log _{2} 26\right) / 3.2 \approx 1.5$ letters.

If all n ! permutations of the alphabet are equally likely (the best case) in a simple substitution cipher, and the language is English (with $n=$ 26), then the shortest length of ciphertext needed to break it would be $\log (26!) / 3.2 \approx 27.6$. This is the case for the Cryptoquote in the Exponent.

These ciphers may be broken with frequency analysis and trial and error.

An affine cipher, $f(m)=(a m+b)$ mod n, guess some two-letter pairs and solve two congruences in two unknowns a and b.
2. Homophonic: Replace m_{i} by a random one of several possible c_{j}.

To confound the frequency analysis which succeeds so well for simple substitution ciphers, one might use a ciphertext alphabet larger than the plaintext alphabet and assign each plaintext letter a to a subset (homophone) $f(a)$ of the ciphertext alphabet. To permit deciphering, require $f(a) \cap f(b)=\emptyset$ when $a \neq b$. Encipher each m_{i} in the plaintext as a randomly chosen $c_{j} \in f\left(m_{i}\right)$.

Usually, the ciphertext alphabet is much larger than the plaintext alphabet and the size of $f(a)$ is proportional to the frequency of occurrence of a in normal English. Then the letters of the ciphertext alphabet have a uniform distribution in the ciphertext. Use digrams to break.

One can define f via a standard text using the number of an instance of the letter as its cipher.
3. Polyalphabetic: Use multiple maps f_{i} from the plaintext alphabet to the ciphertext alphabet.

Encipher $M=m_{0} m_{1} \ldots$ as $C=f_{0}\left(m_{0}\right) f_{1}\left(m_{1}\right) \ldots$

Let n be the length of the alphabet. The sequence $\left\{f_{i}\right\}$ may be periodic, perhaps defined by a keyword $K=k_{0} \ldots k_{d-1}$.

Example: Vigenère cipher: $f_{i}(a)=\left(a+k_{i}\right) \bmod$ n.

M: RENA ISSA NCE

K: BAND band ban

C: SEAD JSFD OCR

Example: Beaufort cipher: $f_{i}(a)=\left(k_{i}-a\right)$ mod n.

If the period of the key is d, then one can show that the the shortest length of ciphertext needed to break it is

$$
\log _{2}\left(n^{d}\right) / 3.2=(d / 3.2) \log _{2} n
$$

For English (with $n=26$), this is $d \log _{2}(26) / 3.2 \approx$ $1.47 d$.

The way to break a periodic polyalphabetic substitution cipher is to first find the period d. Then break it by solving d interlaced simple substitution ciphers by letter frequency, guessing words or using digraphs.

There are two basic methods to find the period of a periodic polyalphabetic substitution cipher.

Kasiski Method: Look for repetitions in cipher text. The difference between the starting locations of a repeated ciphertext might be a multiple of the period d. Look at the gcd of some of these differences.

The Index of Coincidence Method of William F Friedman: Measure frequency variations of letters to guess the period d. Let $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ be the (plain or ciphertext) alphabet. Let F_{i} be the frequency of occurrence of a_{i} in a ciphertext of length N. Define the Index of Coincidence as

$$
I C=\left(\sum_{i=0}^{n-1} \frac{F_{i}\left(F_{i}-1\right)}{2}\right) /\left(\frac{N(N-1)}{2}\right) .
$$

Then $I C$ represents the probability that two letters chosen at random in the ciphertext are the same.

One can estimate $I C$ theoretically in terms of the period d. For English and a polyalphabetic cipher with period d, the expected value of $I C$ is

$$
\frac{1}{d} \frac{N-d}{N-1}(0.066)+\frac{d-1}{d} \frac{N}{N-1}(0.038) .
$$

Note: $1 / 26 \approx 0.038$.
Guess d by comparing the $I C$ with this table: (d,IC): (1, 0.066), (2, 0.052), (3, 0.047), (4, 0.045), (5, 0.044), (10, 0.041), (infinity, $0.038)$.

The $I C$ tells you the approximate size of the period d. The Kasiski method complements the $I C$ method by telling you a number (the gcd) that probably divides d.

Example. If $I C=0.043$, then d is probably 6 or 7. If a Kasiski analysis finds several examples of repeated ciphertext occurring at multiples of 3 in the position of the letters, then d is probably a multiple of 3 . These two pieces of information suggest that $d=6$.

