
Introduction to probability

Suppose an experiment has a finite set X =

{x1, x2, . . . , xn} of n possible outcomes. Each

time the experiment is performed exactly one

on the n outcomes happens. Assign each out-

come a real number between 0 and 1, called

the probability of that outcome. The proba-

bility of an outcome is supposed to be propor-

tional to its likelihood of happening.

We want a probability of an outcome being

near 1 to mean that that outcome is very likely

to be the one that happens, and a probabil-

ity near 0 to mean that that outcome almost

never happens.

Write p(xi) for the probability of the outcome

xi. The sum of the probabilities of all out-

comes in X must be 1 because the outcomes

in X are the only possible outcomes, so one of

them must happen.
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So far we have 0 ≤ p(xi) ≤ 1 for each i and

n
∑

i=1

p(xi) = 1.

Where do the probabilities p(xi) come from?

Sometimes they come from doing an experi-

ment many times and tabulating the outcomes.

Example. Weather forecasters save enormous

tables of weather conditions. The prediction,

“There is a 40% chance of rain tomorrow.”

means that on 40% of the days (listed in the

weather records) when the weather conditions

were similar to what they are now, it rained

the next day.

If outcome x has a 40% chance of happening,

then its probability is written p(x) = 0.4 so

that it will be between 0 and 1.
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Sometimes we expect that all possible out-

comes are equally likely because there is no

reason to think that some outcomes are more

likely than others. In this case, if there are n

possible outcomes, then each outcome x has

probability p(x) = 1/n.

Example. Suppose a deck of 52 cards has

been shuffled well and then one card is chosen.

The probability that the chosen card is the Six

of Hearts is p(Six of Hearts) = 1/52.

This is an example of equally likely outcomes.

Here is another.

Example. If a coin is properly balanced and

tossed well, then the two sides Heads and Tails

are equally likely, so each of these outcomes

has probability 0.5.
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We will often combine some outcomes and ask

for the probability that at least one of them

happens, but we don’t care which one.

A subset E of a set X of all possible outcomes

is called an event. We say that E “happens”

if the outcome of the experiment is one of the

outcomes in E.

The probability of an event E is the sum of the

probabilities of the outcomes in it. We write

p(E) =
∑

x∈E p(x).

For any event, 0 ≤ p(E) ≤ 1.

The probability that E does not happen is

1− p(E).
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Example. In a deck of cards, 13 of the 52

cards are Clubs, so the probability that a Club

is drawn from a shuffled deck is

13×
1

52
=

1

4
= 0.25.

Four of the cards are Jacks (one from each of

the four suits), so the probability that a Jack

is drawn is

4×
1

52
=

1

13
≈ 0.076923.

Later, we will compute probabilities of events

like this one: Suppose two cards are drawn

from a deck. What is the probability that they

are in the same suit?

5



Events may be combined using set theory.

The union E ∪ F of events E, F , happens if

either one of them happens, that is, if the out-

come is in either E or F .

The intersection E∩F of events E, F happens

if both happen, that is, if the outcome is in

both E and F .

Two events E, F are mutually exclusive if they

are disjoint sets, that is, E ∩ F is empty. In

other words, E, F are mutually exclusive if they

cannot both happen. When E, F are mutually

exclusive,

p(E ∪ F) = p(E) + p(F).

(Recall the definition of p(E).) Ditto for more

than two events being mutually exclusive.

Example. The probability that a card drawn

from a deck is either a Jack, a Queen or a King

is 1/13 + 1/13 + 1/13 = 3/13 because a card

may be at most one of Jack, Queen, King.
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Suppose E and F are two events and F can

happen, that is, p(F) > 0. Define the condi-

tional probability of E given F to be

p(E | F) =
p(E ∩ F)

p(F)
.

Example. Find the conditional probability that

a card is a Queen given that it is either a Jack,

a Queen or a King. Here, E is the event, “the

card is a Queen” and F is the event, “the card

is either a Jack, a Queen or a King.” We have

p(E) = 1/13, p(F) = 3/13 and p(E∩F) = 1/13

because E ∩ F = E. The answer is

p(E | F) =
p(E ∩ F)

p(F)
=

1/13

3/13
=

1

3
.
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Bayes’ Theorem

Write the definition of conditional probability

on the form

p(E ∩ F) = p(E | F)p(F).

If we interchange E and F , we get

p(F ∩ E) = p(F | E)p(E).

Since F ∩ E = E ∩ F , we have

p(E | F)p(F) = p(F | E)p(E),

and we have proved Bayes’ Theorem:

Theorem. If both p(E) > 0 and p(F) > 0,

then

p(F | E) =
p(F)p(E | F)

p(E)
.
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Example of Bayes’ Theorem. Draw one card

from a deck. Let F be the event, “the card

is a Jack or Queen or King of Spades.” Let

E be the event, “the card is a Queen.” Since

the Jack, Queen and King of Spades are 3 of

the 52 cards, p(F) = 3/52. Since 4 of the 52

cards are Queens, p(E) = 4/52 = 1/13.

Let us compute p(E | F). If F happens, then

the card is one of the three cards: Jack or

Queen or King of Spades. One of these is a

Queen, so p(E | F) = 1/3.

By Bayes’ Theorem,

p(F | E) =
p(F)p(E | F)

p(E)
=

(3/52)(1/3)

1/13
=

1

4
.

This result is easy to verify, because if the card

is a Queen, then it has 1 chance in 4 of being

the Queen of Spades. Thus, p(F | E) = 1/4.
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Independent Events

Two events E and F are called independent if

p(E | F) = p(E). Intuitively, this says that E

and F are independent if the probability that E

happens does not depend on whether F hap-

pens.

When both p(E) > 0 and p(F) > 0, Bayes’

Theorem implies that p(E | F) = p(E) if and

only if p(F | E) = p(F).

The formula p(E ∩ F) = p(E | F)p(F) and the

definition of independent imply that E and F

are independent iff p(E ∩ F) = p(E) · p(F).
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The two events in the Bayes’ Theorem exam-

ple are not independent because p(E ∩ F) =

1/52 since the card must be the Queen of

Spades, while p(E) · p(F) = (1/13)(3/52) 6=

1/52.

Example. Let E be the event, “the card is a

Spade.” Let F be the event, “the card is a

Queen.” Since there are 13 Spades, p(E) =

13/52 = 1/4. Since there are 4 Queens, p(F) =

4/52 = 1/13. The event E ∩ F says that the

card is the Queen of Spades, which is 1 of 52

cards, so

p(E ∩ F) = 1/52 = (1/4)(1/13) = p(E)p(F),

so the events E and F are independent.
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Random Variables

A sample space is the set of all possible out-

comes xi, each having a probability p(xi). (In

this class, we assume the number of possible

outcomes is finite.)

Example. Draw a card. There are 52 pos-

sible outcomes, like xi = “Queen of Spades”.

Each has probability p(xi) = 1/52. The sample

space is the set of 52 cards.

A random variable is a (real-valued) function r
defined on a sample space.

Example. Draw a card xi. Let r(xi) denote

the value of the card, defined as follows: If the

card has a number, this number is its value.

So r(Six of Clubs) = 6. If the card is an Ace,

then its value is 1: r(Ace of Diamonds) = 1.

If the card is a Jack, Queen or King, then its

value is 10: r(Queen of Hearts) = 10. Then

r(xi) is a random variable define on a deck of

cards.
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Let r1, r2, . . ., be all possible values of a ran-

dom variable r defined on a sample space. (This

is a finite number of values.) The probabil-

ity distribution of r is the function f defined

by f(rj) = p(r(xi) = rj), that is, f(rj) is the

probability of the event “r(xi) = rj.”

Example. In the example of the random vari-

able on the deck of cards above, f(i) = 1/13

for 1 ≤ i ≤ 9 because 4 of the 52 cards have

value i in this range. However, f(10) = 4/13

since 4 cards in each suit have value 10.

Two random variables r, s are independent

if for any possible values r1, s1, they could

assume, the probability that “r(x) = r1 and

s(x) = s1” equals p(r(x) = r1) · p(s(x) = s1).

Example. Draw a card. Record its value as r.

Replace the card in the deck. Shuffle the deck

again and draw a second card. Record its value

as s. Then r and s are independent random

variables with the same probability distribution.
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There are several concise ways to describe the

probability distribution of a random variable by

giving a “typical” value of it.

The median of the probability distribution f of

a random variable r is a value rm so that the

probability of r(x) > rm is as close to 0.5 as

possible. (f is used to compute this proba-

bility.) The median is the “middle value” of

r(x).

Example. Suppose r has this probability dis-

tribution:

r 3 6 8 9
f(r) 0.2 0.2 0.4 0.2

The median of r is 6 because p(r > 6) is 0.6

while p(r > 8) is 0.2 and 0.6 is closer to 0.5.
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Another (more useful) typical value is the mean

or average or expected value.

The mean or expected value of a random vari-

able r with values r1, r2, . . . and probability

distribution f is

µ = E(r) =
∑

i

rif(ri).

Example. The mean of the value of cards in

the example above is

1 ·
1

13
+ 2 ·

1

13
+ · · ·9 ·

1

13
+ 10 ·

4

13
=

(

9 · 10

2

)(

1

13

)

+10 ·
4

13
=

85

13
.

This number, 85/13 ≈ 6.5, is the average value

of a card.

15



If F is a real function of a real variable, and r

is a random variable, then F(r) is another ran-

dom variable. It has value F(r(x)) on outcome

x. Its expected value is

µ = E(F(r)) =
∑

i

F(ri)f(ri).

The k-th moment of a random variable r is the

expected value of F(r) = rk.

The variance of a random variable r with ex-

pected value µ is

Var(r) = E((r − µ)2) = E(r2)− µ2.

The last equation is a simple theorem.

The square root of the variance of r is the

standard deviation of r. It measures how much

r(x) varies from the mean µ.
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