
PGP

Pretty Good Privacy or PGP was written mostly

by Phil Zimmermann.

He used the best available crypto algorithms

as building blocks to create a system for enci-

phering both files and email.

It provides confidentiality and/or authentica-

tion.

It is independent of OS and machine.

It has a small number of easy-to-use com-

mands.

It is freely available on the Internet.

1



Authentication is provided by SHA signed by

either RSA or DSS.

Confidentiality is provided by encryption us-

ing either IDEA, 3DES, BLOWFISH, AES or

TWOFISH, with a one-time key generated by

the sender. They all use CFB mode.

PGP also provides compression, radix-64 con-

version (for e-mail) and segmentation and re-

assembly of long messages.

2



The signature is generated before compression

because:

(a) It is better to sign an uncompressed mes-

sage so that you can store only the uncom-

pressed message and signature for later verifi-

cation. If you signed a compressed document,

you would either have to store the compressed

document or else recompress it at verification

time.

(b) The compression algorithm is not deter-

ministic. Different versions of produce differ-

ent compressed files. Signing after compres-

sion would require the use of just one version

of compression.

The message is enciphered after compression

because the compressed message has less re-

dundancy, so its cryptanalysis is harder.

3



The random numbers for generating session

keys come from the timing of the users keystrokes.

Users may have more than one set of RSA

keys (to change keys or to communicate with

different sets of correspondents, say). Each

public key is identified by its low-order 64 bits

in messages sent to the recipient.

4



Each user of PGP has two data structures to

hold keys: one for his own public/private key

pairs and one to store the public keys of other

users. These data structures are called the

user’s private-key ring and public-key ring.

The private keys are encrypted via a passphrase.

SHA produces a 160-bit hash of the passphrase

and 128 of these 160 bits are used as the key

for CAST-128. Private keys are indexed either

by their id (= low-order 64 bits) or by a user

id.

5



The public keys are stored in a similar data

structure, but which has additional fields for a

timestamp and trust information.

Suppose Alice gets a public key for Bob from a

source which has been compromised by Chuck,

so that the key Alice thinks is Bob’s really

comes from Chuck. Then Chuck could send a

message to Alice signed “Bob” and Alice would

accept it as coming from Bob. Furthermore,

Chuck could read any encrypted message from

Alice to Bob.

6



One way to solve this problem would use X.509.

PGP uses this as well as the notion of “trust.”

PGP provides a way for a public key to be

“signed” by another public key. It also has a

level of “trust” associated to each public key.

The higher the level of trust, the stronger the

binding of userid and key. A key which is signed

by trusted keys is also trusted to a degree de-

termined by number and degree of trust of the

trusted keys.

The degrees of trust are: undefined, unknown

user, usually not trusted to sign other keys,

usually trusted to sign other keys, always trusted

to sign other keys, and present in the secret key

ring (ultimate trust).

If a user wishes to change one of his public keys

or if he believes it has been compromised, then

he widely disseminates a Key Revocation Cer-

tificate, signed by the associated private key.

7



Kerberos, developed by Project Athena at MIT,

solves this problem: Assume an open distributed

environment. Users at workstations wish to ac-

cess services on various servers. Servers wish

to restrict access to authorized users and be

able to authenticate users requests for service.

A workstation cannot be trusted to identify its

users correctly.

There are three threats:

1. A user may gain access to a workstation

and pretend to be another user on that work-

station.

2. A user may alter the network address of a

workstation so that the requests from it appear

to come from a different workstation.

3. A user may eavesdrop on exchanges and use

a replay attack to gain entrance to a server or

to disrupt operations.

8



Kerberos addresses these threats by providing

a central authentication server to authenticate

users to servers and servers to users. It requires

a user to prove identity for each service in-

voked. It also requires that servers prove their

identity to clients.

Kerberos uses only conventional cryptography

(DES), no public key crypto, and is supposed

to be:

Secure: No eavesdropper can impersonate a

user.

Reliable: No one can use any services unless

permitted by Kerberos.

Transparent: User just types a password; all

else is hidden.

Scalable: Can support many clients and servers.

9



Here is a simple authentication dialogue:

1. C → AS: IDC , PC, IDV

2. AS → C: Ticket

3. C → V : IDC, T icket

where Ticket = EKV
[IDC , ADC, IDV ].

AS = authentication server (Kerberos)

C = client

V = server

IDC = identification of user on C

IDV = identification of server V

PC = password of user on C

ADC = network address of C

KV = secret key shared by AS and V .

10



The use of ADC prevents ticket capture and

reuse.

The ticket is valid only from workstation C.

The ticket is valid only once.

Some problems with this simple dialogue:

1. User on C must enter password for each

ticket, too many times. Better to make ticket

reusable.

2. The plaintext transmission of the password

in Step 1. An eavesdropper could capture it.

Solve these problems by adding a TGS: Ticket

granting server.

11



Once per user login session:

1. C → AS: IDC , IDTGS

2. AS → C: EKC
[TicketTGS],

where TicketTGS =

= EKTGS
[IDC , ADC, IDTGS, TS1, LT1]

Once per type of service (mail, print, login,

etc.):

3. C → TGS: IDC , IDV , T icketTGS

4. TGS → C: TicketV

where TicketV = EKV
[IDC , ADC, IDV , TS2, LT2]

Once per service session:

5. C → V : IDC, T icketV

12



In 1 and 2, no password is sent over the net-

work. Instead, in 2, C asks its user for a pass-

word (KC) and uses it to decrypt the ticket.

The time stamps and lifetimes prevent reuse

by an eavesdropper, unless he reuses it right

away.

Two problems with the dialogue above:

(a) The lifetime may be too long or too short.

TGS or V should be able to check that the

person using the ticket is the same as the one

to whom it was issued.

(b) Servers should have to prove their identity

to users. Otherwise a bogus server could cap-

ture information from an unwary user and deny

service.

These problems are solved by the Kerberos 4

dialogue on the next page.

13



Once per user login session:

1. C → AS: IDC , IDTGS, TS1

2. AS → C:

EKC
[KC,TGS, IDTGS, TS2, LT2, T icketTGS],

where TicketTGS =

EKTGS
[KC,TGS, IDC , ADC, IDTGS, TS2, LT2]

Once per type of service:

3. C → TGS: IDV , T icketTGS , AuthenticatorC,TGS

where

AuthenticatorC,TGS = EKC,TGS
[IDC , ADC, TS3].

14



4. TGS → C: EKC,TGS
[KC,V , IDV , TS4, T icketV ]

where

TicketV = EKV
[KC,V , IDC, ADC, IDV , TS4, LT4].

Once per service session:

5. C → V : TicketV , AuthenticatorC,V

where AuthenticatorC,V = EKC,V
[IDC, ADC, TS5]

6. V → C: EKC,V
[TS5 +1]

15



Now the lifetime is less important and can be

made long enough since knowledge of KC,TGS

and KC,V prove the user is the grantee of the

ticket.

In 6, V proves its identity to C.

Bryn Dole and Steve Lodin, students in this

class a few years ago, broke Kerberos 4.

16


