
Threshold Schemes

An important cipher key K must be protected

from (a) accidental or malicious exposure (caus-

ing vulnerability) and (b) loss or destruction

(causing inaccessibility).

Both problems may be alleviated by the use of

shadows in a threshold scheme.

An important special case: We want two peo-

ple to share a secret key K in such a way that

both must cooperate to use K. Give one per-

son a random number r the same length as K.

Give the other one K + r. K cannot be de-

termined from K + r unless one knows r, but

then it is easy: (K + r)− r = K.

1



This generalizes easily to more than two peo-

ple: With three people, give the first two of

them random numbers r and s. Give the third

one K+ r+ s. When all three cooperate, they

can subtract the first two numbers from the

third go form K.

Another variation uses ⊕ (XOR) instead of +

and −.

2



When 1 ≤ t ≤ w are integers, a (t, w) threshold

scheme is a system of protecting a key K by

breaking it into w shadows (pieces) K1, . . . ,Kw

in such a way that (a) it is easy to compute K

using knowledge of any t of the shadows Ki,

but (b) it is impossible to compute K because

of lack of information if one knows any t − 1

or fewer of the shadows Ki.

The w shadows are given to w users. Since

(at least) t shadows are needed to find K, no

group of fewer than t users can conspire to get

the key.

At the same time, if a shadow is lost or de-

stroyed, one can still compute K so long as at

least t valid shadows remain.

The previous slide showed how to construct a

(t, t) threshold scheme.

3



Lagrange Interpolating Polynomial Threshold Scheme

A. Shamir proposed a (t, w) threshold scheme

based on Lagrange interpolating polynomials.

A polynomial of degree t− 1 is determined by

its values at t distinct values of its argument.

The shadows come from a random polynomial

of degree t− 1:

h(x) = (at−1x
t−1 + · · ·+ a1x+ a0) mod p

with constant term a0 = K.

All arithmetic is done modulo p, where p is

a prime number greater than both K and w.

Long keys can be broken into smaller blocks

to avoid computing modulo a large prime.

Given h(x), the key K is easily computed by

K = h(0).

4



The w shadows are defined as the value of h(x)

at w distinct points. For example, one might

let Ki = h(i) for 1 ≤ i ≤ w.

Given t shadows Ki1, . . . ,Kit, one may con-

struct h(x) as a Lagrange polynomial

h(x) =
t∑

s=1

Kis

t∏

j=1
j 6=s

(x− ij)

(is − ij)
mod p.

5



Example of the LIP Threshold Scheme

Let t = 3, w = 5, p = 13, K = 10 and

h(x) = (6x2 +7x+10) mod 13

with random coefficients 6 and 7.

The five shadows are the values of h(x) at x =

1,2,3,4,5:

K1 = h(1) = (6 + 7+ 10) mod 13 = 10

K2 = h(2) = (24 + 14+ 10) mod 13 = 9

K3 = h(3) = (54 + 21+ 10) mod 13 = 7

K4 = h(4) = (96 + 28+ 10) mod 13 = 4

K5 = h(5) = (150 + 35+ 10) mod 13 = 0

6



We can recover h(x) and K = h(0) from any

three of the shadows. For example, using K1,

K3 and K5 we have:

h(x) = {10
(x− 3)(x− 5)

(1− 3)(1− 5)
+

7
(x− 1)(x− 5)

(3− 1)(3− 5)
+

0
(x− 1)(x− 3)

(5− 1)(5− 3)
} mod 13

= 10(x−3)(x−5)/8+7(x−1)(x−5)/(−4) mod 13

= 10(x− 3)(x− 5)5+7(x− 1)(x− 5)3 mod 13

= 50(x2 − 8x+15) + 21(x2 − 6x+5) mod 13

= 11(x2 +5x+2)+ 8(x2 +7x+5) mod 13

= (19x2 +111x+62) mod 13 = h(x).

7



DSS and DSA

The Digital Signature Standard uses the Digi-

tal Signature Algorithm to sign hash functions.

Compare with signing a hash function with

RSA.

DSA is a variation of signature schemes of El-

Gamal and Schnorr.

Notation:

p is a prime of L bits (2L−1 < p < 2L), 512 ≤
L ≤ 1024, 64|L.

q is a prime of 160 bits, q|p− 1.

h is an integer, 1 < h < p−1, h(p−1)/q mod p >
1, that is, h(p−1)/q 6≡ 1 (mod p).

g = h(p−1)/q mod p. (g has order q modulo p.)

p, q, g are a global public key used by several

people.

8



Each user of the DSS chooses a secret private

key x in 1 < x < q and publishes a public key

y = gx mod p.

This assumes that discrete logarithms are hard

to compute.

Each time a user wants to sign a message M ,

he chooses a secret random number k in 1 <

k < q and computes SHA of M , called H(M)

below.

Alice signs message M with the pair r, s, where

r = (gk mod p) mod q, and

s = [k−1(H(M) + xr)] mod q.

9



If Bob receives the message M ′ with signature

r′, s′ from Alice, he verifies her signature by

computing:

w = (s′)−1 mod q,

u1 = [H(M ′)w] mod q,

u2 = (r′)w mod q,

v = [(gu1yu2) mod p] mod q,

and making the test “v = r′?”

If this equality holds, then Bob accepts that

M ′ = M is a message actually sent to him by

Alice.

Note that y is Alice’s public key.

10



Why does the DSA work? That is, assuming

that the message and signature are received

correctly (so M ′ = M , r′ = r and s′ = s), why

should v = r?

Theorem: If M is unchanged and really came

from Alice, then v = r.

11



Subliminal Channels

Subliminal channels are covert ways that an

attacker can send a second message hidden

within a normal message. A simple example of

this is the bit string formed by the parity of the

number of letters in each word of a message. A

carefully constructed, innocent sounding mes-

sage may contain another message hidden in

this bit string.

As another example, a message may be hidden

in certain bits of a digitized image. Some cryp-

tographic algorithms having subliminal chan-

nels are schemes that choose random numbers

used just once, such as the Digital Signature

Algorithm.

12



Here is a subliminal channel for the DSA. Al-

ice is a spy who sends many plaintext messages

to her contact Bob. Alice’s employer reviews

these messages to ensure she is not divulging

any secrets. All of the messages are signed by

the DSA. Alice and Bob secretly agree on a

prime p1, different from any parameter of the

DSA. When Alice signs an innocuous message

M , she hides a subliminal bit in it. If she wants

to send a 1 bit, she tries different random num-

bers k until the r parameter of the signature

is a quadratic residue modulo p1. For a 0 bit,

she makes r a quadratic nonresidue modulo

p1. Since half of the r are quadratic residues

and half are quadratic nonresidues, she doesn’t

have to try many random k to do this.

Bob checks each DSA signature to be sure the

message came from Alice. Alice’s employer

could make the same check and find noth-

ing amiss. Bob would read the subliminal bit

in each message by evaluating r(p1−1)/2 mod

p1 and using Euler’s Criterion to determine

whether r is a QR or QNR modulo p1.

13



In fact, Alice could send several subliminal bits

per message.

Suppose Bob and Alice agree on j secret primes

p1, . . . , pj. Then j subliminal bits could be sent

per message, with the i-th bit being 0 or 1

according as r is a quadratic residue or non-

residue modulo pi.

On average, Alice would have to try 2j values

of k to get an r with the required properties,

so she can’t make j too big or her employer

might wonder why her DSA was so slow. She

could choose j = 16 and send two bytes per

message.

14



An evil implementer of DSA could use the sub-

liminal channel to leak Alice’s private key.

Mike sells cheap DSA chips with a 14-bit sub-

liminal channel using fourteen secret primes.

When the chip signs a message, the user gives

it her private 160-bit key x.

Alice buys a DSA chip from Mike and signs

messages with it. The chip breaks the 160-bit

key x into 16 ten-bit pieces. It chooses a ran-

dom 4-bit number e and sends the subliminal

message (e, the e-th piece of x).

Mike deduces ten bits of Alice’s private key

from each signature. After many signatures,

he learns many ten-bit pieces of x. When he

knows most pieces he can compute the remain-

ing bits by trying all possibilities. Then he can

forge Alice’s signature on messages.

Even if Alice knew that Mike was stealing DSA

private keys this way, she could not prove it

unless she knew Mike’s 14 secret primes.

15


