
Authentication functions

They enable a recipient to determine that a

message came from the alleged sender (al-

though he might not be able to prove this to

others) and that the message has not been

tampered with (inserted, deleted, changed).

Single key encryption provides some authenti-

cation, if only the sender and receiver share a

key K.

Public key encryption provides no authentica-

tion unless signatures are used; if they are,

there is both authentication and non-repudiation.

1



Encryption also provides confidentiality, often

not needed. For example:

1. A significant broadcast message: should

you believe it?

2. A program someone sends you. Before you

run it, how can you tell that it was not modified

en route?

2



Another type of authentication function uses

a secret key K to generate a small, fixed-sized

data block, called a cryptographic checksum

or message authentication code (MAC), that

is appended to the message.

If only the sender and recipient know K, and

the recipient verifies the checksum, then he

knows the message comes from the alleged

sender (because no one else could compute the

checksum) and the message has not been al-

tered.

A typical implementation of a cryptographic

checksum uses K in DES in CBC mode with

initial register value 0 to encipher the message.

Only the final block of ciphertext is saved; it

is the checksum.

3



In the case of the significant broadcast mes-

sage mentioned above, it would be better to

have a “key-less” algorithm generate one “check-

sum” and then encipher it once for each recip-

ient to produce authenticity.

In this situation the “key-less checksum” is

called a Message Digest or Hash Function. They

are a common way to provide authentication

without confidentiality.

4



Hash Functions

A weak hash function is a function h = H(M)

of fixed length (m bits) of a message M of any

length such that:

1. Given M , it is easy to compute H(M),

2. Given h, it is hard to compute any M for

which H(M) = h, and

3. Given M , it is hard to find M ′ 6= M for

which H(M ′) = H(M).

5



A strong hash function is a weak hash function

which also satisfies:

4. It is hard to find any two messages M ′ 6= M

for which H(M ′) = H(M).

Usually H(M) is either enciphered or transmit-

ted separately from M .

Property 3 provides the authentication.

Property 4 protects M against “birthday at-

tacks”.

6



Most hash functions are built from a one-way

function f which takes two values of length

m bits and produces a value of length m bits.

The whole message M is broken into blocks

Mi of length m bits each. One computes hi =

f(Mi, hi−1) with some standard initial value h0.

The hash value (or digest) is the final hi.

Some examples of hash functions are SNEF-

RU, N-Hash, MD4, MD5, and SHA.

We discuss MD5 and SHA. MD5 produces a

128-bit digest, while SHA’s digest has 160 bits.

7



MD5

MD5 has four “rounds” and produces a 128-bit

key.

First pad the message M with a 1 and as many

0’s as needed to make the total length ≡ 448 =

512−64 (mod 512). The last 64 bits hold the

length of the message (in bits) before padding

(modulo 264) This makes the message length

a multiple of 512 bits. Call the 512-bit blocks

Y0, . . . , YL−1.

MD5 uses a buffer of four 32-bit registers: a, b,

c, d. These are initialized to the hexadecimal

values a = 01 23 45 67, b = 89 AB CD EF, c =

FE DC BA 98, d = 76 54 32 10.

The message is hashed by computing abcd =

f(Yi,abcd), with the last value of abcd being

the hash value.

Each round of MD5 has 16 steps.

8



SHA

The Secure Hash Algorithm, created by NIST

and NSA, uses four rounds to produce a 160-

bit message digest.

The message is first padded to a multiple of

512 bits just as in MD5.

SHA uses a buffer of five 32-bit registers: a,

b, c, d, e. These are initialized to the hex-

adecimal values a = 67 45 23 01, b = EF CD

AB 89, c = 98 BA DC FE, d = 10 32 54 76. e =

C3 D2 E1 F0. (The first four constants are the

same as for MD5, but stored in big-endian for-

mat rather than the little-endian format used

in MD5.)

Each round of SHA has 20 steps.

9



Comparison of MD5 and SHA

Both add a fourth round to MD4, which had

only three rounds.

The four non-linear functions of MD5 are all

different. SHA has the same non-linear func-

tions in Rounds 2 and 4.

MD5 uses 64 different constants ti. SHA uses

four different constants Kt, one per round, like

MD4.

MD5 has only one symmetric non-linear func-

tion. SHA has two symmetric non-linear func-

tions.

Both MD5 and SHA add aa to a, etc., in each

step to promote rapid mixing.

MD5 has variable shifts in each round. SHA

has constant shifts in each round.

10



SHA has an expansion of each 512-bit block.

MD5 does not do this.

MD5 produces a message digest of 128 bits.

SHA produces a message digest of 160 bits.

Thus SHA is more resistant to a birthday at-

tack.

The design criteria of MD5 are public. The

design criteria of SHA are secret.

11



The Birthday Problem

What is the smallest positive integer k so that

the probability is > 0.5 that at least two people

in a group of kpeople have the same birthday?

Ignore February 29.

Assume each birthday is equally likely.

The probability that k people all have different

birthdays is

365

365
× 364

365
× 363

365
× · · · × 365− k +1

365

which is
365!

(365− k)!× (365)k
.

Thus the probability that at least two of k peo-

ple have the same birthday is

P(k) = 1− 365!

(365− k)!× (365)k
.

12



More generally, suppose we are given an integer-

valued random variable with uniform distribu-

tion between 1 and n. Choose k instances of

this random variable. What is the probability

P(n, k) that at least two of the k instances are

the same value?

As for birthdays, we find

P(n, k) = 1− n!

(n− k)!nk
.

Write this as

P(n, k) = 1− (1− 1

n
)(1− 2

n
)× · · · × (1− k − 1

n
).

To estimate this, note that 1− x ≤ e−x for all

x ≥ 0 and 1− x ≈ e−x when x is small.

13



This gives

P(n, k) > 1− e−1/ne−2/ne−3/n × · · · × e−(k−1)/n

P(n, k) > 1− e−(1/n+2/n+3/n+···+(k−1)/n

P(n, k) > 1− e−k(k−1)/(2n).

We will have P(n, k) = 0.5 when

0.5 = 1− e−k(k−1)/(2n)

or 2 = ek(k−1)/(2n), that is, when

ln 2 = k(k − 1)/(2n).

14



When k is large, the percentage difference be-

tween k and k − 1 is small, and we may ap-

proximate k − 1 ≈ k. This gives k2 ≈ 2n ln 2

or

k ≈
√

2(ln 2)n ≈ 1.18
√
n.

For n = 365, we find

k ≈ 1.18
√
365 ≈ 22.54,

or k ≈ 23.

Suppose H(M) is a hash function with m-bit

output. There are n = 2m possible hash val-

ues.

If H is applied to k random inputs, the proba-

bility of finding a duplicate (H(M) = H(M ′))
is P(2m, k). The minimum number of k needed

for a duplicate to occur with probability > 0.5

is about

k = 1.18
√
2m = 1.18× 2m/2.

15



The overlap between two sets

Given an integer random variable with uniform

distribution between 1 and n, and two sets of

k (k ≤ n) instances of the random variable,

what is the probability R(n, k) that the two sets

overlap, that is, at least one of the n values

appears in both sets?

We assume k is small enough (k <
√
n) so that

the k instances of the random variable in each

set are all different. (A few duplicates won’t

hurt this analysis.)

The probability that one given element of the

first set does not match any element of the

second set is (1− 1
n)

k.

The probability that the two sets are disjoint

is

((1− 1

n
)k)k = (1− 1

n
)k

2

so R(n, k) = 1− (1− 1
n)

k2.

16



Using 1− x ≤ e−x, we get

R(n, k) > 1− (e−1/n)k
2
= 1− e−k2/n.

We will have R(n, k) = 0.5 when 1
2 = 1−e−k2/n

or 2 = ek
2/n or ln 2 = k2/n or

k =
√

(ln 2)n ≈ 0.83
√
n

Suppose a hash function H with n = 2m pos-

sible values is applied to k random inputs to

produce a set X and again to k additional ran-

dom inputs to produce a set Y . What is the

minimum value of k so that the probability is at

least 0.5 of finding at least one match between

the two sets, that is, H(x) = H(y), where

x ∈ X and y ∈ Y ? Using the approximation

above, the minimum k is about

k = 0.83
√
2m = 0.83× 2m/2.

17


