
Key Exchange Algorithms
CS355 November 8, 2016

Key Exchange Protocols – Private Key Systems

• Key exchange algorithms are protocols for two users, Alice and Bob,
to agree on a common key or to learn each other's keys using a
communication channel, like the Internet, which may have
eavesdroppers or even malicious users who masquerade as others.

• Example: Diffie-Hellman key exchange.

Key Exchange Protocols – Private Key Systems

• First we assume there is a trusted server, Tracy, who helps the other
parties choose a common key 𝐾𝐾 to a symmetric cipher 𝐸𝐸𝐾𝐾.

• In the first two protocols, Tracy shares a secret key with Alice and a
different secret key with Bob. In these protocols, A represents Alice's
name and B represents Bob's name.

Trustworthy Tracy

𝐾𝐾𝐴𝐴 𝐾𝐾𝐵𝐵

Key Exchange Protocols

• Using the format below as a start, draw the protocols as we go
through them. Compare your drawing with the graphics at the end of
the Private Key Systems section.

Trustworthy Tracy

𝐾𝐾𝐴𝐴 𝐾𝐾𝐵𝐵

Wide-Mouthed Frog Protocol

1. Alice generates a current time stamp 𝑇𝑇𝐴𝐴and a common secret key
𝐾𝐾. She sends the message 𝐴𝐴,𝐸𝐸𝐴𝐴 𝑡𝑡𝐴𝐴,𝐵𝐵,𝐾𝐾 to Tracy.

2. Tracy knows that the message came from Alice because she sees
Alice's name 𝐴𝐴 in plaintext. She deciphers it with 𝐸𝐸𝐴𝐴 and finds Bob's
name 𝐵𝐵.
• She checks that the time stamp 𝑡𝑡𝐴𝐴 is current to ensure that it is not being

replayed by a malicious user.
• She makes a new current time stamp 𝑡𝑡𝐵𝐵 and sends the message 𝐸𝐸𝐵𝐵(𝑡𝑡𝐵𝐵 ,𝐴𝐴,𝐾𝐾)

to Bob.

3. Bob receives the message, deciphers it, checks that 𝑇𝑇𝐵𝐵 is current,
sees Alice's name and begins communicating with her using the
secret key, 𝐾𝐾.

Wide-Mouthed Frog (Cont.)

• No one could pretend to be Alice in Step 1 because they would not
know𝐸𝐸𝐴𝐴.

• No one could pretend to be Tracy in Step 2 because they would not
know 𝐸𝐸𝐵𝐵.

• No one could act as Bob in Step 3 because they would not know 𝐸𝐸𝐵𝐵.

• The messages could not be replayed later because the enciphered
time stamps in them are generated and checked.

Wide-Mouthed Frog (Cont.)

• No eavesdropper could learn 𝐾𝐾 because it is enciphered in transit.

• Tracy could betray Alice and/or Bob in many ways, but they trust her.

• The most likely attack would be on Alice's random key generator. If it
were badly designed, an eavesdropper might be able to guess 𝐾𝐾.

Yahalom Protocol

1. Alice generates a random number, 𝑟𝑟𝐴𝐴, called a nonce because it is
used just for this occasion. She sends the message A; 𝑟𝑟𝐴𝐴 to Bob.

2. Bob receives the message, generates his own random number, 𝑟𝑟𝐵𝐵,
and sends Tracy the message 𝐵𝐵,𝐸𝐸𝐵𝐵(𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑟𝑟𝐵𝐵).

3. Tracy receives Bob's message, deciphers it, generates a random
secret key 𝐾𝐾 for Bob and Alice to use, and sends Alice the pair of
enciphered messages:

𝐸𝐸𝐴𝐴 𝐵𝐵,𝐾𝐾, 𝑟𝑟𝐴𝐴, 𝑟𝑟𝐵𝐵 ,𝐸𝐸𝐵𝐵(𝐴𝐴,𝐾𝐾)

Yahalom Protocol (Cont.)

4. Alice deciphers the first message and checks that 𝑟𝑟𝐴𝐴is the same
nonce she created in Step 1. If it is, she sends Bob the message
𝐸𝐸𝐵𝐵(𝐴𝐴,𝐾𝐾) and the message 𝐸𝐸𝐾𝐾(𝑟𝑟𝐵𝐵), which is encrypted with the
session key 𝐾𝐾.

5. Bob decrypts 𝐸𝐸𝐵𝐵(𝐴𝐴,𝐾𝐾), obtains 𝐾𝐾, decrypts 𝐸𝐸𝐾𝐾(𝑟𝑟𝐵𝐵) and checks that
𝑟𝑟𝐵𝐵 is the same number he created in Step 2. Then he begins
communicating with Alice using the secret key 𝐾𝐾.

Yahalom Protocol (Cont.)

• Although Alice sends her nonce in plaintext in Step 1, it is enciphered
in Steps 2 and 3.

• An eavesdropper could discover 𝑟𝑟𝐴𝐴, but would gain nothing from this
knowledge because the eavesdropper could not forge the messages
in Steps 2 and 3.

• Carol could pretend to be Alice in Step 1. If Carol managed to
intercept the messages Tracy sent to Alice in Step 3, she would not be
able to decrypt them, and so she could not perform Step 4.

• If Carol or someone else recorded and replayed messages from the
protocol, they would not be accepted as genuine because the nonces
would be wrong.

Yahalom Protocol (Cont.)

• Note how the nonces here play the role of the time stamps in the
Wide-mouthed Frog protocol.

• No eavesdropper could learn 𝐾𝐾 because it is enciphered in transit.
• An interesting feature of this protocol is that, although Alice initiates

it, only Bob contacts Tracy.

Comparing: WMF | Yahalom

Trustworthy Tracy

𝐾𝐾𝐴𝐴 𝐾𝐾𝐵𝐵

𝐴𝐴,𝐸𝐸𝐴𝐴 𝑡𝑡𝐴𝐴,𝐵𝐵,𝐾𝐾

𝐸𝐸𝐵𝐵(𝑡𝑡𝐵𝐵,𝐴𝐴,𝐾𝐾)

𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐 𝑡𝑡𝐴𝐴,𝑔𝑔𝑐𝑐𝑔𝑔𝑐𝑐𝑟𝑟𝑇𝑇𝑡𝑡𝑐𝑐𝑐𝑐 𝑡𝑡𝐵𝐵

𝐸𝐸𝐾𝐾(𝑀𝑀)

Trustworthy Tracy

𝐾𝐾𝐴𝐴 𝐾𝐾𝐵𝐵

𝐸𝐸𝐾𝐾(𝑀𝑀)

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐 𝑔𝑔𝑐𝑐𝑔𝑔𝑐𝑐𝑟𝑟𝑇𝑇𝑡𝑡𝑐𝑐𝑐𝑐 𝑔𝑔𝑛𝑛𝑔𝑔𝑇𝑇𝑐𝑐 𝑟𝑟𝐴𝐴
(𝐴𝐴, 𝑟𝑟𝐴𝐴)

𝐵𝐵𝑛𝑛𝐵𝐵 𝑔𝑔𝑐𝑐𝑔𝑔𝑐𝑐𝑟𝑟𝑇𝑇𝑡𝑡𝑐𝑐𝑐𝑐 𝑔𝑔𝑛𝑛𝑔𝑔𝑇𝑇𝑐𝑐 𝑟𝑟𝐵𝐵

𝐵𝐵,𝐸𝐸𝐵𝐵(𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑟𝑟𝐵𝐵)

𝐵𝐵,𝐸𝐸𝐵𝐵(𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑟𝑟𝐵𝐵)

𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐 𝐵𝐵𝑛𝑛𝐵𝐵′𝑐𝑐 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑔𝑔𝑐𝑐,
𝑔𝑔𝑐𝑐𝑔𝑔𝑐𝑐𝑟𝑟𝑇𝑇𝑡𝑡𝑐𝑐𝑐𝑐 𝐾𝐾, 𝑐𝑐𝑐𝑐𝑔𝑔𝑠𝑠𝑐𝑐 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐:

Activity:

• In groups of 2 or 3 and using your drawings (checked against those on
the last slide), describe how you might make a “minor”* change to
each protocol that would allow you to break…

1. Wide Mouth Frog
2. Yahalom

* Having one party expose the symmetric key is NOT a minor change.

Break Class Periods Here?

Key Exchange Protocols – Public Key System

• The next two key exchange protocols use public key cryptography.
Here 𝐸𝐸𝐴𝐴,𝐸𝐸𝐵𝐵 ,𝑇𝑇𝑔𝑔𝑠𝑠 𝐸𝐸𝑇𝑇 are the public encryption functions of Alice, Bob
and Tracy, respectively

• Let 𝐾𝐾𝐴𝐴,𝐾𝐾𝐵𝐵 ,𝑇𝑇𝑔𝑔𝑠𝑠 𝐾𝐾𝑇𝑇 be the respective public keys.

• Likewise, 𝐷𝐷𝐴𝐴,𝐷𝐷𝐵𝐵 ,𝑇𝑇𝑔𝑔𝑠𝑠 𝐷𝐷𝑇𝑇 are the private decryption functions of Alice,
Bob and Tracy, respectively.

• They are used also for signatures.

Key Exchange Protocols – Public Key System

• Tracy maintains a database containing everyone's public keys,
obtained securely before the protocol begins.

• Everyone knows Tracy's public key 𝐾𝐾𝑇𝑇, so everyone can verify Tracy's
signature.

• Alice and Bob may learn each other's public keys during the protocol,
but they communicate later using a symmetric cipher with a random
key 𝐾𝐾 created during the protocol.

• Symmetric ciphers are much faster than public key ciphers.

Key Exchange Protocols

• Using the format below as a start, draw the protocols as we go
through them. Compare your drawing with the graphics at the end of
the Private Key Systems section.

The Denning/Sacco Protocol

1. Alice tells Tracy her identity and Bob's in the message 𝐴𝐴,𝐵𝐵.
2. Tracy sends Alice Bob's public key and Alice's own public key, both

signed. That is, she sends Alice the message.

𝐷𝐷𝑇𝑇 𝐵𝐵,𝐾𝐾𝐵𝐵 ,𝐷𝐷𝑇𝑇 𝐴𝐴,𝐾𝐾𝐴𝐴

3. Alice verifies the signatures. She chooses a random session key 𝐾𝐾
and a current time stamp 𝑡𝑡𝐴𝐴. She signs these two numbers and
enciphers them with Bob's public key. She sends this message,
𝐸𝐸𝐵𝐵(𝐷𝐷𝐴𝐴 𝐾𝐾, 𝑡𝑡𝐴𝐴), to Bob together with the two messages she
received from Tracy.

The Denning/Sacco Protocol (Cont.)

4. Bob verifies the signatures on the messages that came from Tracy
via Alice. He uses his private key to decipher the message that
originated with Alice and checks her signature using her public key,
which he extracts from𝐷𝐷𝑇𝑇 𝐴𝐴,𝐾𝐾𝐴𝐴 . If the time stamp 𝑡𝑡𝐴𝐴 is still valid,
he begins communicating with Alice using the symmetric cipher
with key 𝐾𝐾.

The Denning/Sacco Protocol (Cont.)

• An eavesdropper could learn from Step 1 that Alice wanted to
communicate secretly with Bob.

• The eavesdropper could learn Alice and Bob's public keys from Step 2.
But the eavesdropper could not decipher 𝐸𝐸𝐵𝐵 𝐷𝐷𝐴𝐴 𝐾𝐾, 𝑡𝑡𝐴𝐴 because he
would not know 𝐷𝐷𝐵𝐵.

• Hence the eavesdropper could not discover 𝐾𝐾 or decipher the rest of
the communication between Alice and Bob.

• There would be no point to replaying 𝐸𝐸𝐵𝐵(𝐷𝐷𝐴𝐴 𝐾𝐾, 𝑡𝑡𝐴𝐴) later because its
time stamp would be valid only for a short time.

The Denning/Sacco Protocol (Cont.)

Trustworthy Tracy

(𝐴𝐴,𝐵𝐵)

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐 𝑣𝑣𝑐𝑐𝑟𝑟𝐴𝐴𝑣𝑣𝐴𝐴𝑐𝑐𝑐𝑐 𝑐𝑐𝐴𝐴𝑔𝑔𝑔𝑔𝑇𝑇𝑡𝑡𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐,𝑔𝑔𝑐𝑐𝑔𝑔𝑐𝑐𝑟𝑟𝑇𝑇𝑡𝑡𝑐𝑐𝑐𝑐 𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑛𝑛𝑔𝑔 𝑐𝑐𝑐𝑐𝑇𝑇,
 𝐾𝐾, 𝑇𝑇𝑔𝑔𝑠𝑠 𝑇𝑇 𝑇𝑇𝑠𝑠𝑟𝑟𝑟𝑟𝑐𝑐𝑔𝑔𝑡𝑡 𝑡𝑡𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑡𝑡𝑇𝑇𝑚𝑚𝑡𝑡 𝑡𝑡𝐴𝐴, 𝑐𝑐𝐴𝐴𝑔𝑔𝑔𝑔𝑐𝑐 𝑇𝑇𝑔𝑔𝑠𝑠 𝑐𝑐𝑐𝑐𝑔𝑔𝑠𝑠𝑐𝑐 𝑡𝑡𝑛𝑛 𝐵𝐵𝑛𝑛𝐵𝐵

𝐷𝐷𝑇𝑇 𝐵𝐵,𝐾𝐾𝐵𝐵 ,𝐷𝐷𝑇𝑇 𝐴𝐴,𝐾𝐾𝐴𝐴

𝐸𝐸𝐵𝐵(𝐷𝐷𝐴𝐴 𝐾𝐾, 𝑡𝑡𝐴𝐴)

The Woo Lam Protocol

• Written by T. Y. C. Woo and S. Lam. It uses nonces instead of time
stamps.

The Woo Lam Protocol

1. Alice sends the message 𝐴𝐴,𝐵𝐵 to Tracy.
2. Tracy signs Bob's public key and sends it to Alice as the message

𝐷𝐷𝑇𝑇(𝐾𝐾𝐵𝐵).
3. Alice verifies Tracy's signature on the message. She chooses a nonce

𝑟𝑟𝐴𝐴 and sends it with her name to Bob, enciphered with his public
key 𝐸𝐸𝐵𝐵(𝐴𝐴, 𝑟𝑟𝐴𝐴).

4. Bob sends to Tracy Alice's name, his name and Alice's nonce
enciphered with Tracy's public key 𝐴𝐴,𝐵𝐵,𝐸𝐸𝑇𝑇(𝑟𝑟𝐴𝐴).

The Woo Lam Protocol (Cont.)

5. Tracy chooses a random secret key 𝐾𝐾 for Alice and Bob to use in the
symmetric cipher. Tracy sends Bob two messages.
• The first is 𝐷𝐷𝑇𝑇(𝐾𝐾𝐴𝐴), Alice's public key, signed by Tracy.
• The second is 𝐸𝐸𝐵𝐵(𝐷𝐷𝑇𝑇(𝑟𝑟𝐴𝐴,𝐾𝐾,𝐴𝐴,𝐵𝐵), which contains Alice's nonce 𝑟𝑟𝐴𝐴, Alice's

name, and Bob's name, all signed by Tracy and enciphered with Bob's public
key.

6. Bob deciphers the second message using 𝐷𝐷𝐵𝐵and verifies the
signatures on both messages. Then he chooses a nonce 𝑟𝑟𝐵𝐵 and
sends Alice the signed second message from Step 5 and the new
nonce, all enciphered with Alice's public key; that is, he sends Alice
the message 𝐸𝐸𝐴𝐴(𝐷𝐷𝑇𝑇(𝑟𝑟𝐴𝐴,𝐾𝐾,𝐴𝐴,𝐵𝐵), 𝑟𝑟𝐵𝐵).

The Woo Lam Protocol (Cont.)

7. Alice deciphers the message using 𝐷𝐷𝐴𝐴. She verifies Tracy's signature
and checks that 𝑟𝑟𝐴𝐴 is the same nonce she chose in Step 3. Then she
sends Bob his nonce enciphered with the session key (𝐾𝐾,𝐸𝐸𝐾𝐾(𝑟𝑟𝐵𝐵)).

8. Bob deciphers the message and checks that 𝑟𝑟𝐵𝐵 is the same nonce
he chose in Step 6.

The Woo Lam Protocol (Cont.)

• An eavesdropper could learn from Step 1 that Alice wanted to
communicate secretly with Bob.

• The eavesdropper could learn Alice's public key in Step 2 and Bob's
public key in Step 5.

• But the eavesdropper could not decipher any of the enciphered
messages, and so could not see the session key 𝐾𝐾 or either nonce.
Hence the eavesdropper could not decipher the rest of the
communication between Alice and Bob.

• There would be no point to replaying any enciphered message
because of the nonces in them.

The Woo Lam Protocol (Cont.)

Trustworthy Tracy

(𝐴𝐴,𝐵𝐵)

𝐷𝐷𝑇𝑇 𝐾𝐾𝐵𝐵

𝐸𝐸𝐵𝐵 𝐴𝐴, 𝑟𝑟𝐴𝐴)

𝐴𝐴,𝐵𝐵,𝐸𝐸𝑇𝑇(𝑟𝑟𝐴𝐴)

𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇 𝑔𝑔𝑐𝑐𝑔𝑔𝑐𝑐𝑟𝑟𝑇𝑇𝑡𝑡𝑐𝑐𝑐𝑐
𝑐𝑐𝑇𝑇𝑚𝑚𝑚𝑚𝑐𝑐𝑡𝑡𝑟𝑟𝐴𝐴𝑇𝑇 𝑐𝑐𝑐𝑐𝑇𝑇 𝐾𝐾

𝐷𝐷𝑇𝑇(𝐾𝐾𝐴𝐴)

𝐸𝐸𝐵𝐵(𝐷𝐷𝑇𝑇(𝑟𝑟𝐴𝐴,𝐾𝐾,𝐴𝐴,𝐵𝐵)

𝐸𝐸𝐴𝐴(𝐷𝐷𝑇𝑇(𝑟𝑟𝐴𝐴,𝐾𝐾,𝐴𝐴,𝐵𝐵), 𝑟𝑟𝐵𝐵)

(𝐾𝐾,𝐸𝐸𝐾𝐾(𝑟𝑟𝐵𝐵))

Type equation here.

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐 𝑠𝑠𝑐𝑐𝑇𝑇𝐴𝐴𝑡𝑡𝑐𝑐𝑐𝑟𝑟𝑐𝑐 𝑤𝑤𝐴𝐴𝑡𝑡𝑐 𝐷𝐷𝐴𝐴, 𝑣𝑣𝑐𝑐𝑟𝑟𝐴𝐴𝑣𝑣𝐴𝐴𝑐𝑐𝑐𝑐 𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇′𝑐𝑐
𝑐𝑐𝐴𝐴𝑔𝑔𝑔𝑔𝑇𝑇𝑡𝑡𝑠𝑠𝑟𝑟𝑐𝑐, 𝑐𝑐𝑐𝑐𝑔𝑔𝑠𝑠𝑐𝑐 𝑡𝑡𝑛𝑛 𝐵𝐵𝑛𝑛𝐵𝐵 𝑡𝑡𝑐𝑐𝑐 𝑇𝑇𝐵𝐵𝑛𝑛𝑣𝑣𝑐𝑐:

𝐵𝐵𝑛𝑛𝐵𝐵 𝑠𝑠𝑐𝑐𝑇𝑇𝐴𝐴𝑡𝑡𝑐𝑐𝑐𝑟𝑟𝑐𝑐, 𝑣𝑣𝑐𝑐𝑟𝑟𝐴𝐴𝑣𝑣𝐴𝐴𝑐𝑐𝑐𝑐 𝑔𝑔𝑛𝑛𝑔𝑔𝑇𝑇𝑐𝑐

Public Key Protocols (Cont.)

• Consider the public key protocols we’ve examined so far. How could
we scale them to large number of users such as the number of users
on the Internet?

The X.509 Protocol

• X.509 is a directory authentication service that solves the following
problems without the aid of a trusted third party who communicates
with you during the protocol.

1. How do you get the public key of someone to whom you wish to

send mail?
2. How do you know it is valid and not a forgery?
3. How can you and another user agree on a private key to use to

communicate over an insecure network?

The X.509 Protocol (Cont.)

• The certificates form a tree-structured hierarchy.
• Each certificate contains fields for Version, Serial number, Algorithm

for signature, Name of issuer (CA), Period of validity, Subject name,
Subject public key information, and the Signature of the CA, and
perhaps other fields depending on the version.

• Use finger or ftp or a web browser to obtain the certificate of a
user to whom you wish to send mail via public key cryptography.

• Use the “Issuer" field in the certificate to find the certificate for the
CA, etc., to the root (whom everyone trusts) or up to some CA in the
chain from you to the root.

The X.509 Protocol

ITU-T recommendation X.509 defines a framework for provision of
authentication services. Each user has a public key certificate issued by
a trusted certification authority CA. The signature of the certificate
consists of the hash codes of its other fields, signed by the CA's private
key.

The X.509 Protocol – Certificate Framework

Graphic attribution: Netflix Lemur Development Environment Project

The X.509 Protocol – Certificate Framework

Ch.10, “ Cryptography and Network Security ”, Stalling, 2003

The X.509 Protocol – Certificate Framework

Ch.10, “ Cryptography and Network Security ”, Stalling, 2003

The X.509 Protocol (Cont.)- Please Note:
• Certificates need not be specially protected since they are

unforgeable.
• Any user with access to the public key of the CA can recover the user

public key that was certified.
• No one other than the CA can modify the certificate without the

change being detected.
• CA's may certify each other, to make it easier for users to reach a CA

they trust when obtaining the certificate of a new user.
• To revoke a certificate (for example, if the user's key was

compromised), the CA of that key puts it on a public list, with its serial
number and revocation date.

The X.509 Protocol (Cont.) – Authentication
Procedures
• Let us use the notation 𝑋𝑋{𝑀𝑀} to mean "𝑋𝑋 𝑐𝑐𝐴𝐴𝑔𝑔𝑔𝑔𝑐𝑐 𝑀𝑀𝑀, that is, 𝑀𝑀

followed by the signed hash code of 𝑀𝑀.
• The notation 𝐴𝐴 → 𝐵𝐵 means “𝐴𝐴 𝑐𝑐𝑐𝑐𝑔𝑔𝑠𝑠𝑐𝑐 𝑡𝑡𝑐𝑐𝑐 𝑣𝑣𝑛𝑛𝐴𝐴𝐴𝐴𝑛𝑛𝑤𝑤𝐴𝐴𝑔𝑔𝑔𝑔 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑔𝑔𝑐𝑐 𝑡𝑡𝑛𝑛 𝐵𝐵"
• 𝑡𝑡𝐴𝐴 is a time stamp, giving the date and time the message was sent
• 𝑟𝑟𝐴𝐴 is a nonce, that is, a random number generated and used just this

one time
• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑛𝑛𝑔𝑔𝑐𝑐𝑐𝑐𝑇𝑇𝐴𝐴𝐵𝐵 is the key to a single-key cipher A and B will use to

communicate for awhile.
• 𝑐𝑐𝑔𝑔𝑔𝑔𝐷𝐷𝑇𝑇𝑡𝑡𝑇𝑇 is the signature of the message digest of the other fields.

The X.509 Protocol (Cont.) – Authentication
Procedures

Consider the following three messages.
1. 𝐴𝐴 → 𝐵𝐵: 𝐴𝐴{𝑡𝑡𝐴𝐴, 𝑟𝑟𝐴𝐴,𝐵𝐵, 𝑐𝑐𝑔𝑔𝑔𝑔𝐷𝐷𝑇𝑇𝑡𝑡𝑇𝑇, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑛𝑛𝑔𝑔𝑐𝑐𝑐𝑐𝑇𝑇𝐴𝐴𝐵𝐵}
2. 𝐵𝐵 → 𝐴𝐴: 𝐵𝐵{𝑡𝑡𝐵𝐵 , 𝑟𝑟𝐵𝐵 ,𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑐𝑐𝑔𝑔𝑔𝑔𝐷𝐷𝑇𝑇𝑡𝑡𝑇𝑇, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑛𝑛𝑔𝑔𝑐𝑐𝑐𝑐𝑇𝑇𝐴𝐴𝐵𝐵}
3. 𝐴𝐴 → 𝐵𝐵: 𝐴𝐴{𝑟𝑟𝐵𝐵}

• Either Message 1, or Messages 1 and 2, or all three messages may be

used.
• The session key is enciphered using the recipient's public key, which

must be known to the sender.

The X.509 Protocol (Cont.) – Authentication Procedures
Consider the following three messages.

1. 𝐴𝐴 → 𝐵𝐵: 𝐴𝐴{𝑡𝑡𝐴𝐴, 𝑟𝑟𝐴𝐴,𝐵𝐵, 𝑐𝑐𝑔𝑔𝑔𝑔𝐷𝐷𝑇𝑇𝑡𝑡𝑇𝑇, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑛𝑛𝑔𝑔𝑐𝑐𝑐𝑐𝑇𝑇𝐴𝐴𝐵𝐵}
Message 1 establishes the identity of A, that the message was generated by A,
that the message was intended for B, and that the message has not been
changed or sent more than once.

2. 𝐵𝐵 → 𝐴𝐴: 𝐵𝐵{𝑡𝑡𝐵𝐵 , 𝑟𝑟𝐵𝐵 ,𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑐𝑐𝑔𝑔𝑔𝑔𝐷𝐷𝑇𝑇𝑡𝑡𝑇𝑇, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑛𝑛𝑔𝑔𝑐𝑐𝑐𝑐𝑇𝑇𝐴𝐴𝐵𝐵}
Message 2 establishes the identity of B, that the reply was generated by B, that
the reply was intended for A, and that the reply has not been changed or sent
more than once.

3. 𝐴𝐴 → 𝐵𝐵: 𝐴𝐴{𝑟𝑟𝐵𝐵}
The purpose of the third message, if it is used, is to obviate the need to check
time stamps. It is used when synchronized clocks are not available. It works
because both nonces are echoed, so they can be checked to detect replay
attacks.

	Key Exchange Algorithms
	Key Exchange Protocols – Private Key Systems
	Key Exchange Protocols – Private Key Systems
	Key Exchange Protocols
	Wide-Mouthed Frog Protocol
	Wide-Mouthed Frog (Cont.)
	Wide-Mouthed Frog (Cont.)
	Yahalom Protocol
	Yahalom Protocol (Cont.)
	Yahalom Protocol (Cont.)
	Yahalom Protocol (Cont.)
	Comparing:	 WMF | Yahalom
	Activity:
	Break Class Periods Here?
	Key Exchange Protocols – Public Key System
	Key Exchange Protocols – Public Key System
	Key Exchange Protocols
	The Denning/Sacco Protocol
	The Denning/Sacco Protocol (Cont.)
	The Denning/Sacco Protocol (Cont.)
	The Denning/Sacco Protocol (Cont.)
	The Woo Lam Protocol
	The Woo Lam Protocol
	The Woo Lam Protocol (Cont.)
	The Woo Lam Protocol (Cont.)
	The Woo Lam Protocol (Cont.)
	The Woo Lam Protocol (Cont.)
	Public Key Protocols (Cont.)
	The X.509 Protocol
	The X.509 Protocol (Cont.)
	The X.509 Protocol
	The X.509 Protocol – Certificate Framework
	The X.509 Protocol – Certificate Framework
	The X.509 Protocol – Certificate Framework
	The X.509 Protocol (Cont.)- Please Note:
	The X.509 Protocol (Cont.) – Authentication Procedures
	The X.509 Protocol (Cont.) – Authentication Procedures
	The X.509 Protocol (Cont.) – Authentication Procedures

