
We now present the Rabin-Blum Oblivious Trans-

fer or Coin Flipping Protocol. In it, Alice re-

veals a secret to Bob with probability 0.5.

In the Oblivious Transfer version, Alice doesn’t

know whether Bob got the secret or not (and

this outcome must be acceptable to both par-

ticipants).

In the Coin Tossing version, Bob tells Alice

whether he got the secret. He wins the coin

toss if he did get it; loses otherwise.
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Activity – 10 minutes.

Alice and Bob are miles apart and communi-

cate by text messages. They want to decide

whether to go to a movie or a concert. Bob

prefers the movie; Alice the concert. They

agree to toss a coin to decide.

Design a protocol of text messages they can

use to “toss a coin.”

Your protocol must be fair to both parties and

have a probability of exactly 0.5 for each out-

come.

You may use any material mentioned in this

class and anything else. Alice and Bob may

communicate only by text messages.
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Alice’s secret is the factorization of a number

n = pq which is the product of two large primes

p ≡ q ≡ 3 (mod 4).

1. Alice sends n to Bob.

2. Bob picks a random x in
√
n < x < n with

gcd(x, n) = 1. Bob computes a = x2 mod n

and sends a to Alice.

3. Knowing p and q, Alice computes the four

solutions to x2 ≡ a (mod n). They are x,

n − x, y and n − y, for some y. These are

just four numbers to Alice. She doesn’t know

which ones are x and n − x. She chooses one

of the four numbers at random and sends it to

Bob.

4. If Bob receives x or n−x, he learns nothing.

But, if Bob receives y or n − y, he can factor

n by computing gcd(x+ y, n) = p or q.
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Why can Bob factor n if he gets y or n− y?

Theorem. If n = pq is the product of two

distinct primes, and if x2 ≡ y2 (mod n), but

x 6≡ ±y (mod n), then gcd(x+ y, n) = p or q.

Proof: We are given that n divides

(x+y)(x−y) but not (x+y) or (x−y). Hence,

one of p, q must divide (x + y) and the other

must divide (x− y).
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It is easy to modify the Oblivious Transfer pro-

tocol to let Alice give Bob the content of an

arbitrary file with probability 0.5. Alice’s secret

is the content of the file.

Alice enciphers the file using AES with secret

key K. She gives the ciphertext of the file to

Bob.

Alice chooses two large primes p ≡ q ≡ 3 (mod 4),

sets n = pq and chooses 0 < e < n with

gcd(e, (p−1)(q−1)) = 1. This sets up an RSA

public key cipher with public key n and e. Alice

enciphers K as C = Ke mod n. Alice gives Bob

C and e.

Then Alice and Bob do the Oblivious Transfer

protocol, Alice sending n to Bob in Step 1.

If Bob learns the factorization of n = pq in Step

4, then Bob finds d with

ed ≡ 1 (mod (p−1)(q−1)) by extended Euclid.

He finds K = Cd mod n, and deciphers the file

using K as the AES key.
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Activity – 10 minutes.

Alice knows a secret. Bob does not know it.

Bob is skeptical that Alice knows the secret.

Alice wants to prove to Bob that she knows

the secret.

They engage in a protocol of text messages

to each other. At the end of this protocol,

either Bob discovers that Alice did not know

the secret or Bob becomes convinced that Al-

ice does know the secret. During the protocol,

Bob learns neither the secret nor anything that

would help him deduce the secret.

Design a protocol that does this. You may

choose the kind of secret Alice claims to know.
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Zero-Knowledge Proofs

This protocol is closely related to the oblivious
transfer protocol. The difference is that Al-
ice wants to convince Bob that she knows the
factors of n = pq, but does not want to reveal
the factors to Bob.

Alice (the prover) convinces Bob (the verifier)
that she knows the prime factorization of a
large composite number n, but does not give
Bob any hint which would help him find the
factors of n. Bob learns nothing about the
factorization of n during the protocol that he
could not have deduced on his own without
Alice’s help.

Roughly speaking, Bob gives Alice some quad-
ratic residues modulo n and Alice replies with
their square roots. The difficulty with this sim-
ple approach is that when Alice replies to Bob
with a square root, there is a 50% chance that
she will reveal the factorization of n to Bob,
as in the oblivious transfer protocol.
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Here is a good way to do the zero-knowledge

proof protocol:

Alice knows n, p and q. Bob knows n but not

p or q.

1. Alice chooses a in
√
n < a < n and computes

b = a2 mod n.

2. At the same time, Bob chooses c in
√
n <

c < n and computes d = c2 mod n.

3. Alice sends b to Bob and Bob sends d to

Alice.

4. Alice receives d and solves x2 ≡ bd (mod n).

(Note that this is possible because bd is a QR

and she can compute its square root because

she knows the factors of n.) Let x1 be one

solution of this congruence.

5. At the same time, Bob tosses a fair coin

and gets Heads or Tails each with probability

0.5. Bob sends H or T to Alice.
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6. If Alice receives H, she sends a to Bob. If

Alice receives T, she sends x1 to Bob.

7. If Bob sent H to Alice, then he receives a

from Alice and checks that a2 ≡ b (mod n). If

Bob sent T to Alice, then he receives x1 from

Alice and checks that x21 ≡ bd (mod n).

Alice and Bob repeat steps 1 through 7 many

(20 or 30) times.

If the check in step 7 is always okay, then Bob

accepts that Alice knows the factorization of

n.

But if Alice ever fails even one test, then Bob

concludes that Alice is lying.

Why does this protocol work?

Why does Bob not learn the factors of n?

Can either Alice or Bob cheat?
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