
Proof that the Euclidean Algorithm Works

Recall this definition: When a and b are integers and a 6= 0 we say a divides
b, and write a|b, if b/a is an integer.

1. Use the definition to prove that if a, b, c, x and y are integers and a|b
and a|c, then a|(bx+ cy).

Answer: We are given that the two quotients b/a and c/a are integers.
Therefore the integer linear combination (b/a)× x+ (c/a)× y = (bx+ cy)/a is
an integer, which means that a|(bx+ cy).

2. Use Question 1 to prove that if a is a positive integer and b, q and r are
integers with b = aq + r, then gcd(b, a) = gcd(a, r).

Answer: Write m = gcd(b, a) and n = gcd(a, r). Since m divides both b and
a, it must also divide r = b−aq by Question 1. This shows that m is a common
divisor of a and r, so it must be ≤ n, their greatest common divisor. Likewise,
since n divides both a and r, it must divide b = aq+ r by Question 1, so n ≤ m.
Since m ≤ n and n ≤ m, we have m = n.

Alternative answer: Let c be a common divisor of b and a. Then by Question
1, c must divide r = b − aq. Thus, the set D of common divisors of b and a is
a subset of the set E of common divisors of a and r. Now let d be a common
divisor of a and r. Then by Question 1, d must divide b = aq+ r. Thus, the set
E of common divisors of a and r is a subset of the set D of common divisors of
b and a. Hence D = E and the largest integer in this set is both gcd(b, a) and
gcd(a, r). Therefore gcd(b, a) = gcd(a, r).
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Recall the Euclidean algorithm:
Let r0 = a and r1 = b be integers with a > b > 0. Apply the division

algorithm x = yq + r, 0 ≤ r < y iteratively to obtain

ri = ri+1qi+1 + ri+2 with 0 < ri+2 < ri+1

for 0 ≤ i < n− 1 and rn+1 = 0.

3. Prove that gcd(a, b) = rn, the last nonzero remainder. Hint: First show
that the algorithm terminates. Then use mathematical induction and Question
2.

Answer: First we show that the algorithm terminates. Since ri+2 < ri+1,
we have r0 > r1 > r2 > · · · > rn > rn+1 = 0. This shows that the remainders
are monotonically strictly decreasing positive integers until the last one, which
is rn+1 = 0. Therefore the algorithm stops after no more than b divisions.

We prove by induction the claim that for each i in 0 ≤ i ≤ n we have
gcd(a, b) = gcd(ri, ri+1).

For the base step i = 0, we have gcd(a, b) = gcd(r0, r1) by definition of
r0 = a and r1 = b.

For each i in 0 ≤ i < n we have gcd(ri, ri+1) = gcd(ri+1, ri+2) by Question
2. This shows that if gcd(a, b) = gcd(ri, ri+1), then gcd(a, b) = gcd(ri+1, ri+2),
which is the induction step. This ends the proof of the claim.

Now use the claim with i = n: gcd(a, b) = gcd(rn, rn+1). But rn+1 = 0 and
rn is a positive integer by the way the Euclidean algorithm terminates. Every
positive integer divides 0. If rn is a positive integer, then the greatest common
divisor of rn and 0 is rn. Thus, the Euclidean algorithm correctly computes the
greatest common divisor of its input a and b as gcd(a, b) = rn.
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