Proof that the Euclidean Algorithm Works

Recall this definition: When a and b are integers and $a \neq 0$ we say a divides b, and write $a \mid b$, if b / a is an integer.

1. Use the definition to prove that if a, b, c, x and y are integers and $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$.

Answer: We are given that the two quotients b / a and c / a are integers. Therefore the integer linear combination $(b / a) \times x+(c / a) \times y=(b x+c y) / a$ is an integer, which means that $a \mid(b x+c y)$.
2. Use Question 1 to prove that if a is a positive integer and b, q and r are integers with $b=a q+r$, then $\operatorname{gcd}(b, a)=\operatorname{gcd}(a, r)$.

Answer: Write $m=\operatorname{gcd}(b, a)$ and $n=\operatorname{gcd}(a, r)$. Since m divides both b and a, it must also divide $r=b-a q$ by Question 1. This shows that m is a common divisor of a and r, so it must be $\leq n$, their greatest common divisor. Likewise, since n divides both a and r, it must divide $b=a q+r$ by Question 1 , so $n \leq m$. Since $m \leq n$ and $n \leq m$, we have $m=n$.

Alternative answer: Let c be a common divisor of b and a. Then by Question $1, c$ must divide $r=b-a q$. Thus, the set D of common divisors of b and a is a subset of the set E of common divisors of a and r. Now let d be a common divisor of a and r. Then by Question $1, d$ must divide $b=a q+r$. Thus, the set E of common divisors of a and r is a subset of the set D of common divisors of b and a. Hence $D=E$ and the largest integer in this set is both $\operatorname{gcd}(b, a)$ and $\operatorname{gcd}(a, r)$. Therefore $\operatorname{gcd}(b, a)=\operatorname{gcd}(a, r)$.

Recall the Euclidean algorithm:
Let $r_{0}=a$ and $r_{1}=b$ be integers with $a>b>0$. Apply the division algorithm $x=y q+r, 0 \leq r<y$ iteratively to obtain

$$
r_{i}=r_{i+1} q_{i+1}+r_{i+2} \text { with } 0<r_{i+2}<r_{i+1}
$$

for $0 \leq i<n-1$ and $r_{n+1}=0$.
3. Prove that $\operatorname{gcd}(a, b)=r_{n}$, the last nonzero remainder. Hint: First show that the algorithm terminates. Then use mathematical induction and Question 2.

Answer: First we show that the algorithm terminates. Since $r_{i+2}<r_{i+1}$, we have $r_{0}>r_{1}>r_{2}>\cdots>r_{n}>r_{n+1}=0$. This shows that the remainders are monotonically strictly decreasing positive integers until the last one, which is $r_{n+1}=0$. Therefore the algorithm stops after no more than b divisions.

We prove by induction the claim that for each i in $0 \leq i \leq n$ we have $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{i}, r_{i+1}\right)$.

For the base step $i=0$, we have $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{0}, r_{1}\right)$ by definition of $r_{0}=a$ and $r_{1}=b$.

For each i in $0 \leq i<n$ we have $\operatorname{gcd}\left(r_{i}, r_{i+1}\right)=\operatorname{gcd}\left(r_{i+1}, r_{i+2}\right)$ by Question 2. This shows that if $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{i}, r_{i+1}\right)$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{i+1}, r_{i+2}\right)$, which is the induction step. This ends the proof of the claim.

Now use the claim with $i=n: \operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{n}, r_{n+1}\right)$. But $r_{n+1}=0$ and r_{n} is a positive integer by the way the Euclidean algorithm terminates. Every positive integer divides 0 . If r_{n} is a positive integer, then the greatest common divisor of r_{n} and 0 is r_{n}. Thus, the Euclidean algorithm correctly computes the greatest common divisor of its input a and b as $\operatorname{gcd}(a, b)=r_{n}$.

