
Complexity of Factoring Integers

and Recognizing Primes

Sam Wagstaff

Purdue University

Colby College

May 7, 2018

1



These topics are important for public key cryp-

tography.

Recall RSA: Choose n = pq hard to factor.

Choose e with gcd(e, (p− 1)(q − 1)) = 1.

Via extended Euclid, find d with

ed ≡ 1 (mod (p− 1)(q − 1)).

Discard p and q.

Public key is n, e.

Private key is d.

Encipher m as c = me mod n.

Decipher c as m = cd mod n.

Can break RSA if can factor n.

Need to test large numbers for primality to set

up RSA.

2



The factoring problem:

Input: n, a composite positive integer.

Output: m, an integer in 1 < m < n with m | n.

Example: Input n = 45, Output m = 15.

OR

Input: n, a composite positive integer.

Output: A list of all the prime factors of n.

Example: Input n = 45, Output n = 3 · 3 · 5.

The primality problem:

Input: n, a positive integer.

Output: Either “n is prime” OR “n is not

prime (composite)”.

3



Theorem. If n is composite, then it has a

prime factor p ≤ √
n.

Proof. If n is composite, then it at least two

prime factors. Let p and q be two of them.

Assume p ≤ q. Then p2 ≤ pq ≤ n, so p ≤ √
n.

This theorem suggests the Trial Division algo-

rithm to factor n or test n for primality.

Let p0 = 2, p1 = 3, p2 = 5, p3 = 7, . . ., be the

primes.

For i = 0, 1, 2, . . ., if pi divides n, declare n is

composite with factor pi; else if pi >
√
n, then

declare n is prime.

Example: Factor n = 903. p1 = 3 divides n,
so n is composite. If you want all factors of

903, continue Trial Division with the new n =

903/3 = 301. One finds that p3 = 7 divides

301. Continue Trial Division with n = 301/7 =

43. Since 7 >
√
43, 43 is prime. Finally, 903 =

3 · 7 · 43.
4



Trial Division factors n (and also tests whether

n is prime) in O(n1/2) steps.

This algorithm is deterministic (no random choices)

and rigorous (no unproved hypotheses).

But it runs in exponential time in logn, to wit,

exp(0.5 lnn) = n1/2.

A century ago, this is all one could do. A few

shortcuts were known, but the time was still

O(n1/2) (exponential).

5



All known deterministic (no random choices),

rigorous (no unproved hypotheses) factoring

algorithms have exponential time. The fastest

known ones are due to

Shanks (1971)

Pollard (1974)

Strassen (1976)

All three take O(n1/4) steps to factor n.

All three algorithms use complicated higher

math, such as the class group of a quadratic

field.

6



Known deterministic (no random choices),

NONrigorous (has an unproved hypothesis) fac-

toring algorithms may be faster.

There is a variation of Shanks (1971) that

assumes the (widely-believed) Extended Rie-

mann Hypothesis that factors n in O(n1/5) steps,

still exponential time.

The fastest practical factoring algorithms,

CFRAC (1970), QS (1980) and NFS (1990),

are deterministic and NONrigorous. They take

O(e
√

(lnn)(ln lnn))

steps to factor n, which is subexponential but

not polynomial time. The unproved hypothesis

they assume is that the probability that certain

auxiliary numbers used in the algorithm are as

likely to have no large prime factors as random

numbers of the same size.

7



Quadratic Sieve Method

Theorem. If n = pq is the product of two

distinct odd primes, and if x2 ≡ y2 (mod n),

but x 6≡ ±y (mod n), then gcd(x + y, n) = p

or q.

Proof: We are given that n divides

(x+y)(x−y) but not (x+y) or (x−y). Hence,

one of p, q must divide (x + y) and the other

must divide (x− y).

In fact, if n has more than two prime factors

and the congruence conditions of the theorem

hold, then gcd(x+y, n) and gcd(x−y, n) will be

proper factors of n even if they are not prime.

The conditions fail to lead to a proper factor

of n only in case n is a power of a prime.

8



The quadratic sieve algorithm tries to factor n

simply by finding x and y with x2 ≡ y2 (mod n),

ignoring the conditions x 6≡ ±y (mod n). (It

just hopes for the best. Usually, it finds several

such pairs x, y. Each pair succeeds in factoring

n with probability at least 1/2.)

Another unproved hypothesis for QS: If you

find many pairs x, y with x2 ≡ y2 (mod n),

each of which factors n with probability at least

1/2, then at least one pair with factor n.

9



Definition. An integer k is a square if there

exists an integer x so that k = x2.

The quadratic sieve method tries to factor n

by finding two congruent squares modulo n.

How can one recognize a square?

Multiple choice question:

Which of these numbers is a square?

a. 21

b. 23

c. 25

d. 27

e. 29

10



Which of these numbers is a square?

a. 431641

b. 431643

c. 431645

d. 431647

e. 431649

This is harder.

11



Suppose I give you the prime factorizations of

the numbers.

Which of these numbers is a square?

a. 431641 = 72 · 23 · 383
b. 431643 = 3 · 143881
c. 431645 = 5 · 131 · 659
d. 431647 = 17 · 25391
e. 431649 = 34 · 732

Theorem. If n =
∏k
i=1 p

ei
i is the prime

factorization of n into the product of powers

of distinct primes, then n is square if and only

if all exponents ei are even numbers.

12



The quadratic sieve factoring algorithm finds

congruences x2 ≡ y2 (mod n) as follows.

Generate many “relations” j2 ≡ m (mod n),

where m is small and therefore easy to factor.

Factor the numbers m and match their prime

factors to form a product of some ms in which

each prime occurs as a factor an even number

of times, so it is a square. Let y2 be the prod-

uct of these ms. Let x be the product of the

js in the relations used to make y2. Then x2

is the product of the j2s, which is congruent

to the the product of the ms. This product is

y2 by the choice of relations.

13



Example. Let us factor n = 1649. Note

that
√
n ≈ 40.6, so the numbers 412 mod n,

422 mod n, . . ., will be fairly small compared

to n. We have

412 = 1681 ≡ 32 = 25 (mod 1649),

422 = 1764 ≡ 115 = 5 · 23 (mod 1649),

432 = 1849 ≡ 200 = 23 · 52 (mod 1649).

Now 32·200 = 28·52 = 802 is a square. There-

fore,

(41 · 43)2 ≡ 802 (mod 1649).

Note that 41 · 43 = 1763 ≡ 114 (mod 1649)

and that 114 6≡ ±80 (mod 1649). We get the

factors of 1649 from gcd(114−80,1649) = 17

and gcd(114 + 80,1649) = 97, so

1649 = 17 · 97.

14



In a real application of the quadratic sieve there

may be millions of relations j2 ≡ m (mod n)

with m factored. How can we efficiently match

the prime factors of the ms to make each prime

occur an even number of times?

Answer: Use linear algebra over the field F2

with 2 elements.

Let p1, p2, . . ., pb be all of the prime numbers

that occur as factors of any of the ms.

If m =
∏b
i=1 p

ei
i , where each exponent ei ≥ 0,

associate m to the vector

v(m) = (e1, e2, . . . , eb).

Multiplying ms corresponds to adding their as-

sociated vectors. If S ⊆ {1,2, . . . , r}, where r is

the total number of relations, then
∏

i∈S mi is

a square if and only if
∑

i∈S v(mi) has all even

coordinates.

15



Reduce the exponent vectors v(m) modulo 2

and think of them as vectors in the b-dimensional

vector space Fb
2 over F2 = {0,1}. A vector

v(m) has all even coordinates iff it reduces to

the 0 vector in Fb
2.

Linear combinations of distinct vectors v(m)

correspond to subset sums. Finding a nonempty

subset of integers whose product is a square is

reduced to finding a linear dependency among

the vectors v(m).

We know from linear algebra that if we have

more vectors than the dimension b of the vec-

tor space (r > b, i.e. more relations than

primes), then there will be linear dependencies

among the vectors.

Also from linear algebra we have efficient al-

gorithms, such as matrix reduction, for finding

linear dependencies. Row reduction over F2

is especially efficient because adding (or sub-

tracting) two rows is the same as finding their

exclusive-or.

16



The analysis of the quadratic sieve algorithm

shows that its time complexity to factor n is

about

e
√

(lnn)(ln lnn)

bit operations.

To understand what this means, consider

e
√

(lnn)(ln lnn) ≤ e
√

(lnn)(lnn) = elnn = n

and

e
√

(lnn)(ln lnn) ≥ e
√

(ln lnn)(ln lnn) = eln lnn = lnn.

Thus, e
√

(lnn)(ln lnn) ≤ nε for any ε > 0 and

e
√

(lnn)(ln lnn) ≥ (lnn)c for any constant c > 0.

That is, the time complexity is subexponential

but not polynomial time.

17



The ln lnn in the time complexity comes from

the probability of an auxiliary integer m near√
n having only small prime factors.

The integer factoring problem is interesting be-

cause its complexity does not appear to follow

the naive intuition that all problems are either

in P or are NP-hard.

There is a striking difference between what can

be achieved in factoring with and without ran-

domness.

The fastest known deterministic rigorous fac-

toring algorithms have exponential time O(n1/4).

If one abandons rigor, then deterministic NON-

rigorous factoring algorithms are known with

subexponential, but not polynomial, run times.

The same run times can be achieved if one

keeps rigor but drops determinism and allows

random choices, as we will see on the next

slide.

18



Next we consider NONdeterministic (probabilis-

tic) factoring algorithms, that is, those that

choose random numbers.

Lenstra’s (1985) Elliptic Curve Method is prob-

abilistic because it begins by choosing a ran-

dom elliptic curve and a random point on it.

It is also nonrigorous because it assumes that

there is a number with only small prime factors

in a short interval. It takes O(e
√

(lnn)(ln lnn))

steps to factor n.

The next slide shows roughly how the ECM

finds a factor p of an integer n.

19



Choose a random elliptic curve modulo n and

a point P on it.

Let L be the product of all prime powers < B

for some bound B.

Try to add the point P to itself L times.

If this computation of LP succeeds, no factor

is found, so try a different elliptic curve.

If the order of P in the (hidden) elliptic curve

modulo p divides L, then LP is the identity

of the elliptic curve and an inversion modulo

n (in a slope calculation) will fail because the

number to invert is not relatively prime to n.

Instead, one finds p as the gcd (in extended

Euclid).

One can estimate the probability of this failure

to invert and (its reciprocal) the number of

curves needed to find p.

20



Dixon (1981) invented a rigorous probabilistic

algorithm for factoring n with subexponential

time O(e
√

(lnn)(ln lnn)). It begins by choosing

some random numbers. Then it does a calcu-

lation that requires the time just mentioned.

With a probability near 1, it will factor n.

The algorithm has two parameters, k and v. It

chooses k random integers j between 1 and n

and tries to factor their squares by trial division

only by the primes < v. Then it combines the

relations j2 ≡ m as in QS.

Dixon’s theorem says that if you choose the

parameters correctly, then you will factor n

with probability 1− ǫ.

21



The model of computation matters in the anal-

ysis of the factoring problem.

Suppose that a single arithmetic operation (+,

−, ×, ÷) is one “step” and each memory lo-

cation may hold any integer.

Shamir (1979) proved that in this model one

can factor n in polynomial time. It performs

arithmetic on integers as big as n! (in one step

per operation), so is not practical.

The algorithm uses binary search to find the

smallest positive integer m for which n divides

m!.

If m = n. then n is prime.

Otherwise, m is a proper factor of n.

One computes m! quickly using a recursive for-

mula involving the central binomial coefficient
(

2k
k

)

.

22



Can you prove a lower bound on the complexity

of factoring?

Can you even prove that there are infinitely

many composite n so that every (determinis-

tic) (rigorous) factoring algorithm runs for at

least log2 n steps on a computer with fixed-

length words and (one-step) operations on num-

bers with this fixed length?

I don’t know how to prove that it takes longer

to factor n than the time needed to write one

of its prime factors. Consider factoring a large

even number by writing “2.”

23



Complexity of Primality Testing

The primality problem:

Input: An integer n > 1.

Output: Either “n is prime” OR “n is not

prime (composite)”.

In 2002, Agrawal, Kayal and Saxena proved

that primality testing can be done rigorously

in deterministic polynomial time P, but that is

not the whole story.

Their algorithm for testing whether m is prime

computes

(x+ b)m ≡ xm + b (mod m, xs − 1)

for certain s and b. It should hold if m is prime.

But it will fail for some b if m is not prime.

The fastest known rigorous deterministic pri-

mality test for n takes O(log6 n) steps, too slow

for practical use.

24



For numbers n of special form (like n = 2p − 1

or n = 22
k
+1), rigorous deterministic primality

tests with time O(log2 n) have been known for

a century. The largest known primes have the

form 2p − 1.

Theorem. (Lucas-Lehmer) Let p be an odd

prime. Define S1 = 4 and Sk+1 = S2
k − 2 for

k ≥ 1. Then Mp = 2p−1 is prime iff Mp divides

Sp−1.

Theorem. (Pepin) If k ≥ 2, then Fk = 22
k
+1

is prime iff 3(Fk−1)/2 ≡ −1 (mod Fk).

25



Pratt (1975) proved that every prime has a

succinct certificate of its primeness. The cer-

tificate for n has length O(logn) and can be

verified in O(log2 n) time. However, it is as

hard to find the certificate for n as it is to

factor a number of the size of n.

Pratt’s certificate uses this theorem of Lehmer

recursively.

Theorem. An integer n > 1 is prime iff there

exists an integer g such that gn−1 ≡ 1 (mod n)

and g(n−1)/q 6≡ 1 (mod n) for every prime q

dividing n− 1.

Pratt’s result proved that Primality ∈ NP.

Of course, Factoring ∈ NP.

26



Probabilistic Prime Tests

There are several Monte Carlo primality tests

(1980) (which always run in polynomial time

but might give the wrong answer) that take

O(log2 n) steps, practical to thousands of dec-

imal digits. Most of these always say that a

prime input number is prime, but might incor-

rectly say that a composite is prime (with tiny

probability). (This proved Primality ∈ BPP.)

27



Example of a Monte Carlo primality test.

Let n be a large odd integer. Write n−1 = 2ef

with f odd. We say n is a strong probable

prime to base b if either bf ≡ 1 (mod n) or

bf ·2c ≡ −1 (mod n) for some 0 ≤ c < e.

Every odd prime is a strong probable prime to

every base it does not divide.

Monier and Rabin proved that if n > 9 is odd

and composite, then the number of bases b in

1 ≤ b ≤ n to which n is a strong probable prime

is < n/4.

Thus, if a large odd integer n is a strong prob-

able prime to k random bases, then the prob-

ability that n is composite is < 4−k.

28



A fast practical primality test.

The Baillie-Wagstaff probable prime test.

An integer n > 10 with last digit 3 or 7 is

almost certainly prime iff n is a strong probable

prime to base 2 and n divides the Fibonacci

number Fn+1.

The Transport Layer (SSL) of network security

uses this test for find primes for RSA. It is ANSI

Standard X9.80.

29



There are also several Las Vegas primality tests

(which usually run in polynomial time, always

give the right answer, but might run longer

than polynomial time for some random choices)

that usually take O(log2 n) steps, practical to

thousands of decimal digits. (This proved Pri-

mality ∈ ZPP.)

Goldwasser and Killian (1986) have used the

elliptic curve version of Lehmer’s theorem (above)

recursively to formulate a Las Vegas primal-

ity test. The Atkin-Morain version routinely

proves the primality of 1000-digit primes in a

few minutes, and produces a certificate that

can be checked quickly.

30


