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History of integer factorization

Samuel S. Wagstaff, Jr.

The integer factorization problem is well known as the mathematical founda-

tion of the public-key cryptosystem RSA. When RSA was introduced forty

years ago, the largest number one could factor was still tiny. Spurred on by the

practical deployment of RSA, more and more factoring algorithms were de-

veloped and fine-tuned, from the Elliptic Curve Method to the Number Field

Sieve. This chapter treats algorithmic developments in factoring integers and

their effect on cryptography, not just on RSA. For a long time, factoring records

followed a regular pattern. In this chapter, an overview of factoring progress

through the years is given, with a bold prediction of what might come to be.

This chapter covers some of the material of the author’s book [68], in abbre-

viated form. See that work for a fuller treatment, proofs and more examples.

1.1 The Dark Ages: Before RSA

Many years ago, people published tables of primes and of prime factors of

integers. The first such table was created by Eratosthenes more than 2500 years

ago. Cataldi published a table of factors of numbers up to 800 in 1603. In 1811,

Chernac went up to 1,020,000. D. N. Lehmer [31] published the last factor

table (to 10,017,000) more than a century ago. He also published a table of

all primes up to 10,006,721. No one will publish any more tables of factors

or primes up to some limit because one can compute them in seconds using a

sieve.

1.1.1 Trial Division

The basic Trial Division Algorithm is old and slow. For hundreds of years,

factorers who used Trial Division found ways to omit trial divisors that could
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not possibly divide the candidate number. The algorithm need not try compos-

ite numbers as divisors. A simple way to skip some composites is to alternate

adding 2 and 4 to a trial divisor to form the next one. This trick skips multi-

ples of 2 and 3. The method, called a wheel, can be extended to skip multiples

of 2, 3 and 5 by adding the differences between consecutive residue classes

relatively prime to 30.

Another approach is to compute a table of primes first and divide the can-

didate number only by these numbers. A sieve can be used to build a table of

primes between two limits quickly. See Section 1.4.1 for sieves.

Quadratic residues can be used to speed Trial Division by skipping some

primes that cannot be divisors. Euler, Gauss and others used this trick hundreds

of years ago. Let us try to factor n and assume we know a non-square quadratic

residue r modulo n. Then r must also be quadratic residue modulo any prime

factor p of n. If r is not a square, the Law of Quadratic Reciprocity restricts p to

only one-half of the possible residue classes modulo 4|r|. Where does one find

small non-square quadratic residues for use in the technique described above?

One way to construct them is to compute x2 mod n where x is slightly larger

than an integer multiple of
√

n. This idea led to the Quadratic Sieve Algorithm.

Another source of small quadratic residues is the continued fraction expansion

of
√

n, as we shall see in Section 1.3.

1.1.2 Fermat’s Difference of Squares Method

Fermat’s Difference of Squares Method may be used to factor an odd number

n by expressing n as a difference of two squares, x2 − y2, with the pair x, y

different from (n + 1)/2, (n − 1)/2 (which gives x + y = n and x − y = 1).

Any other representation of n as x2 − y2 produces a nontrivial factorization

n = (x − y)(x + y). Here we have x ≥
√

n.
Fermat’s Difference of Squares Factoring Algorithm

Input: An odd composite positive integer n.
x := ⌊

√
n⌋

t := 2x + 1
r := x2 − n
while (r is not a square) {

r := r + t
t := t + 2
}

x := (t − 1)/2
y :=

√
r

Output: x − y and x + y are the factors of n.
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When the while loop terminates we have r = x2 − n, where x = (t − 1)/2,

and also r is a square: r = y2. Then n = x2 − y2 and n is factored.

In most cases this algorithm will be much slower than Trial Division. How-

ever, the algorithm works quite well when n has a divisor within O( 4
√

n) of
√

n.

It is the reason why one must not choose the two primes for RSA too close

together.

1.1.3 Pollard’s Methods

In the 1970s, Pollard invented two factoring algorithms: the Rho Method and

the p − 1 method. Both methods are better than Trial Division at finding small

factors of a large number.

Let n be composite and let p be an unknown prime factor of n, which we

hope to find. Pollard [47] suggested choosing a random function f from the set

{0, 1, . . . , n − 1} into itself, picking a random starting number s in the set and

then iterating f :

s, f (s), f ( f (s)), f ( f ( f (s))), . . . .

If we reduce these numbers modulo the unknown prime p, we get a sequence

of integers in the smaller set {0, 1, . . . , p − 1}. Because of the birthday paradox

in probability, a number in the smaller set will be repeated after about
√

p

iterations of f . If u, v are iterates of f with u ≡ v (mod p), then it is likely that

gcd(u − v, n) = p because p divides u − v and n, and probably no other prime

factor of n divides u − v. Here is a simple version of the algorithm. The main

loop iterates the function in two ways, with one iteration per step for A and two

iterations per step for B. Then it computes gcd(A − B, n) and stops when this

gcd first exceeds 1. The Pollard Rho Method is a Monte Carlo probabilistic

algorithm.
Pollard Rho Factorization Method

Input: A composite number n to factor.
Choose a random b in 1 ≤ b ≤ n − 3
Choose a random s in 0 ≤ s ≤ n − 1
A := s ; B := s

Define a function f (x) := (x2 + b) mod n
g := 1
while (g = 1) {

A := f (A)
B := f ( f (B))
g := gcd(A − B, n)
}

if (g < n) { write g “is a proper factor of” n }
else { either give up or try again with new s and/or b }
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Output: A proper factor g of n, or else “give up.”

The Pollard Rho Method takes about O(
√

p) steps to discover the prime

factor p of n. It is the reason why the primes for an RSA public modulus must

have at least 30 decimal digits.

In 1974, Pollard [46] proposed the p − 1 Method. Fermat’s Theorem says

that ap−1 ≡ 1 (mod p) when p is a prime not dividing a. Pollard’s p−1 method

chooses a large integer L with many divisors of the form p− 1 to try many po-

tential prime factors p of n at once. Since we can’t compute aL mod p because

p is an unknown factor of n, we compute aL mod n.

If the largest prime factor of p− 1 is ≤ B, then p− 1 will divide L when L is

the product of all primes ≤ B, each repeated an appropriate number of times.

One simple choice for L is B!. Usually, B is large and L is enormous. We need

not compute L. At step i, we compute a := ai mod n. Here is a basic form of

the algorithm.
Simple Pollard p − 1 Factorization Method

Input: A composite positive integer n to factor and a bound B.
a := 2
for (i := 1 to B) {

a := ai mod n
}

g := gcd(a − 1, n)
if (1 < g < n) { write “g divides n” }
else { give up }
Output: A proper factor g of n, or else give up.

It is best to compute the GCD operation once every few thousand iterations

of the for loop rather than just once at the end. When this is done, the for loop

continues in case g = 1. If g = 1 at the end, one can either give up or try a

second stage.

Baillie found the 16-digit prime divisor p = 1256132134125569 of the Fer-

mat number F12 = 24096 + 1 using Pollard p − 1 with B = 30, 000, 000. He

succeeded since the largest prime factor of p − 1 is less than B:

p − 1 = 214 · 72 · 53 · 29521841.

The algorithm has a second stage which chooses a second bound B2 > B

and looks for a factor p of n for which the largest prime factor of p− 1 is ≤ B2

and the second largest prime factor of p − 1 is ≤ B.

The Pollard p − 1 algorithm shows that if p and q are the factors of an RSA

public key, then each of p − 1 and q − 1 must have a prime factor of at least 20

decimal digits.
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1.1.4 Primality Testing

Suppose we desire the prime factorization of a positive integer n. The first step

is to learn whether n is prime. If it is prime, no factoring is needed. If n is

composite and factorization finds that n = ab with 1 < a ≤ b < n, then we

must determine whether a and b are prime to decide whether we are done.

Some methods of proving that an integer is prime, like Theorem 1.1 below,

require factoring a different integer.

Primality testing was as hard as factoring one hundred years ago. Mathe-

maticians would try for a while to factor a large number; if they could not

factor it, they might conjecture it is prime. Later, some other mathematician

might factor it or prove it is prime.

About a century ago, mathematicians discovered fast tests that reported

whether an integer is definitely composite or “probably prime.” At about the

same time, theorems were proved that gave a rigorous proof that a probable

prime number is prime, but some factoring might be needed to complete the

proof. These tests were refined until thirty years ago people found a very fast

test for primeness that has never been proved correct, but that has never failed

either. The theorems also were improved until twenty years ago one could

prove with modest effort that virtually every 1000-digit probable prime really

is prime. Some of these primality tests are probabilistic, meaning that: the al-

gorithm chooses random numbers as it runs, most choices for these numbers

will lead to a short running time, some random choices could make the pro-

gram run for a long time, and the program always gives a correct answer when

it finishes. In 2002, a deterministic general polynomial-time algorithm for pri-

mality testing was found. Although it runs in deterministic polynomial time

and always gives the correct answer, this test is still slower for large numbers

than some probabilistic primality tests. The remainder of this section gives

highlights of the development of primality testing during the past century. See

Pomerance [51] for a common theme of some of the prime proving methods

below.

Theorem 1.1 (Lehmer) Let m be an odd positive integer. Then m is prime if

and only if there exists an integer a such that am−1 ≡ 1 (mod m), but for every

prime q that divides m − 1, a(m−1)/q
. 1 (mod m).

In order to use Theorem 1.1 to prove that m is prime, we must factor m − 1

completely. If we can’t factor m − 1 but are willing to allow a tiny chance of

error, there are fast algorithms to decide whether m is prime or composite.

Call an integer m > 1 a probable prime to base a if am−1 ≡ 1 (mod m). By

Fermat’s Theorem, every odd prime m is a probable prime. A composite prob-
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able prime to base a is called a pseudoprime to base a. For integers a > 1, most

probable primes to base a are prime and very few of them are pseudoprimes.

A better test on large numbers is to use a strong probable prime test. A strong

probable prime to base a is an odd positive integer m with this property: If we

write m−1 = 2e f with f odd, then either a f ≡ 1 (mod m) or a f ·2c ≡ −1 (mod m)

for some c in 0 ≤ c < e. A strong pseudoprime is a composite strong probable

prime. Every prime is a strong probable prime to every base it does not divide.

Also, every strong probable prime m is a probable prime to the same base.

There are infinitely many strong pseudoprimes to every base.

It is known that if m is prime and ≡ 3 or 7 mod 10, then m divides the

Fibonacci number um+1. Baillie, Pomerance, Selfridge and the author [4], [52]

conjectured that no composite integer m, whose last decimal digit is 3 or 7, is

a strong probable prime to base 2 and also divides the Fibonacci number um+1.

(They made a similar, but slightly more complicated, conjecture for numbers

with last digit 1 or 9. See [4] and [52] for details.) No one has ever proved or

disproved this conjecture. It has been used millions of times to construct large

primes with not a single failure. The authors of [52] offer US$620 to the first

person who either proves that this test is always correct or exhibits a composite

number that the test says is probably prime. Heuristic arguments suggest that

there are composite numbers that the test says are probably prime but that the

least such examples have hundreds or even thousands of decimal digits. This

probable prime test takes O((log m)3) steps to test m, that is, polynomial time.

This primality test has become the (ANSI) standard method of selecting primes

for an RSA public key. It is used in the Secure Sockets Layer in computer

networks.

In 2002, Agrawal, Kayal and Saxena [1] found the first general determin-

istic polynomial-time primality algorithm. Their original version had running

time O((log m)12), but others [44], [22] soon reduced this to about O((log m)6),

better, but still much slower than the probabilistic test described above. See

Agrawal, Kayal and Saxena [1] and articles that refer to it for details.

1.2 The Enlightenment: RSA

People have concealed messages through cryptography for more than 2000

years. Until recently, the sender and receiver had to meet before the secret com-

munication and decide how to hide their future secret messages. They would

choose an algorithm, fixed for a long time, and a secret key, changed often.

Some businesses need secret codes to communicate securely with their of-

fices. Some people want cryptography for their personal secrets. In 1975, the
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National Bureau of Standards announced a cipher, the Digital Encryption Stan-

dard, DES, which they approved for use by individuals and businesses.

As computer networks were being built in the early 1970s, people began to

think about electronic communication like email. Computer scientists began to

ponder how one could “sign” a digital document so that the recipient could be

certain who wrote it.

Others thought about how to create a system in which people who had never

met could communicate securely. Symmetric-key ciphers like DES require

users to exchange keys securely by meeting before their secret communica-

tion happens. All ciphers known then were of this type.

Whit Diffie and Marty Hellman pondered these matters and found some

brilliant solutions in a 1976 paper [17].

First, they defined one-way functions, easy to compute forwards, but nearly

impossible to invert. They invented a method of choosing a secret key based

on the one-way function f (x) = bx mod p. Given large numbers b, p and y,

with prime p, it is almost impossible to find an x with f (x) = y. Their method

allows two users who have never met to choose a common secret key, for DES,

say, while eavesdroppers listen to their communication.

This key-exchange method provides secure communication between two

users connected on the internet. However, it is subject to the man-in-the-middle

attack in which a wiretapper hijacks a computer between the two parties trying

to communicate and executes the protocol with each of them separately. After

that action, the hijacker can read or change encrypted messages between the

two parties as she decrypts a message from one and re-enciphers it to pass on

to the other. Diffie and Hellman [17] suggested a second innovation to solve

this problem. They split the key into two parts, one public and one private. Bob

would reveal his public enciphering key and the enciphering algorithm. But he

would tell no one his private deciphering key. It would be impossible to find

the deciphering key from the enciphering key. This cipher is called a public

key cipher. To send Bob a secret message, Alice would fetch his public key

and use it to encipher her message. Once it was enciphered, only Bob could

decipher it because only Bob knows his private key. If Alice wanted to commu-

nicate with Bob by DES, say, she could choose a random DES key, encipher

the key with Bob’s public key and send it to Bob. When Bob got this message,

he would decipher it and then use the DES key to communicate with Alice. No

eavesdropper could learn the DES key.

However, a public-key cipher lacks authenticity. Anyone could write a mes-

sage to Bob, sign it with Alice’s name, encipher it using Bob’s public key, and

send it to Bob. Bob would not know whether it actually came from Alice. This

way Eve could send a random DES key to Bob, saying that it came from Alice.
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Then she could communicate with Bob privately, pretending to be Alice. The

third innovation of Diffie and Hellman in [17]. was the notion of a digital signa-

ture. Alice could create her own public and private keys, just as Bob did above.

She would “sign” a message by applying the deciphering algorithm with her

secret key to the plaintext message. Then she could encipher this signed mes-

sage with Bob’s public key and send it to him. Bob would be certain that the

message came from Alice when he deciphered it using his private key, enci-

phered the result with Alice’s public key and obtained a meaningful text. This

signature verification shows that the message came from Alice because only

someone who knows her private key could have constructed a message with

these properties.

Diffie and Hellman did not suggest any enciphering and deciphering algo-

rithms for public-key cryptography in their article. Later, Rivest, Shamir and

Adleman (RSA) read their paper and found an algorithm [55] for doing this

based on the presumed difficulty of factoring large integers. The RSA cipher

gives a simple formula for enciphering a message. The public key is the prod-

uct of two primes large enough so that their product could not be factored.

Their formula for deciphering the ciphertext uses the two large primes. They

created a trap-door one-way function, that is, a function f that cannot be in-

verted unless one knows a secret, in which case it is easy to find x given f (x).

The secret that unlocks the RSA cipher is the prime factors of the public key.

Since an obvious attack on this cipher is to factor the public key, the publica-

tion of their paper created tremendous interest in the problem of factoring large

integers.

Here is the simplest form of the RSA cipher. In order to use RSA to receive

secret messages, Alice chooses two large secret primes p and q and computes

n = pq. Alice also chooses an exponent e relatively prime to φ(n) = (p−1)(q−
1) and computes a number d so that ed ≡ 1 (mod φ(n)). Alice publishes n

and e as her public key and keeps p, q and d secret. Plaintext and ciphertext

are positive integers less than n. When Bob wishes to send a secret message

M to Alice he finds her public key. He enciphers M as C = Me mod n and

sends C to Alice. Alice deciphers the message by computing M = Cd mod n.

The original message M is recovered because of Euler’s Theorem, which says

that Mφ(n)+1 ≡ M (mod n) when gcd(M, n) = 1. Only Alice can decipher C

because only she knows d. Someone who could factor n to discover p and q

could compute d the same way Alice computed it.

Martin Gardner [21] wrote an article describing the papers of Diffie, Hell-

man, Rivest, Shamir and Adleman. In it, RSA offered a challenge message

encoded with a 129-digit product of two secret primes. This article was shock-

ing because it revealed to the general public a powerful cipher that even the
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government couldn’t break. The challenge message in this article was deci-

phered in 1993–1994 by Derek Atkins, Michael Graff, Arjen Lenstra and Paul

Leyland [3] who factored the 129-digit number.

It is clear that if you can factor the RSA modulus n, then you can decipher

any ciphertext. But it is less clear, and no one has ever proved, that if you can

decipher arbitrary ciphertext in RSA, then you can factor n. Two ciphers were

invented that do enjoy this equivalence. Rabin and Williams each devised pub-

lic key ciphers with the property that one can prove that breaking the cipher is

equivalent to factoring a large integer n. In Rabin’s [54] system, Alice chooses

two large primes p and q with p ≡ q ≡ 3 (mod 4). She publishes the product

n = pq and keeps p and q secret. When Bob wants to send a message M in

0 < M < n to Alice, he enciphers it as C = M2 mod n. When Alice receives

C, which is a quadratic residue modulo n, she uses her knowledge of p and

q to find all four square roots of C modulo n. If M is ordinary plaintext, then

only one square root will make sense and M is that one. If M is a binary string

or otherwise indistinguishable from the other three square roots of M2 mod n,

then Bob must indicate which square root is M.

Rabin [54] proved that if one has an algorithm to decipher any message M

enciphered with his cipher in a reasonable time, then there is an algorithm to

factor the modulus n in a reasonable time.

Williams [71] constructed a similar cipher using primes p ≡ 3 (mod 8) and

q ≡ 7 (mod 8), and n = pq. His cipher eliminates the ambiguity in deciphering

and also has the property that breaking the cipher is equivalent to factoring n.

1.3 The Renaissance: Continued Fractions

Although the factoring method in this section is slow compared to the fastest

known ones, its ideas led to them. The Continued Fraction Algorithm, CFRAC,

was the first factoring algorithm with subexponential time complexity.

1.3.1 Basic facts about continued fractions

A simple continued fraction is an expression of the form

x = q0 +
1

q1 +
1

q2 +
1

q3 + · · ·

. (1.1)
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The qi are required to be integers for all i, and also positive when i > 0. A

simple continued fraction may be finite,

xk = q0 +
1

q1 +
1

q2 +
1

q3 + · · · +
1

qk

, (1.2)

which we write as [q0; q1, q2, q3, . . . , qk].

If an infinite continued fraction (1.1) is truncated at qk, then it has the value

(1.2), clearly a rational number.

Given a finite continued fraction (1.2) we can find its value xk = Ak/Bk as a

rational number in lowest terms working backwards clearing the denominators

starting from qk−1+1/qk. Here is a way of finding this rational number working

forwards.

Theorem 1.2 The rational number Ak/Bk = [q0; q1, q2, . . .qk] is determined

from q0, . . ., qk by A−1 = 1, B−1 = 0, A0 = q0, B0 = 1 and

Ai = qiAi−1 + Ai−2 (1.3)

Bi = qiBi−1 + Bi−2 for i = 1, 2, . . . , k.

A continued fraction is finite if and only if it represents a rational number.

If n is a positive integer and not a square, then x =
√

n is irrational and its

continued fraction is infinite but periodic.

Theorem 1.3 (Galois) Let n be a positive integer and not a square. Then the

continued fraction for
√

n has the form

√
n = [q0; q1, q2 . . . , qp−1, 2q0 ],

where the overbar marks the period.

Example 1.4

√
44 = [6; 1, 1, 1, 2, 1, 1, 1, 12]
√

77 = [8; 1, 3, 2, 3, 1, 16]
√

85 = [9; 4, 1, 1, 4, 18].

When factoring a large integer n by CFRAC the algorithm will compute only

a small portion of the continued fraction for
√

n. There is a simple iteration that

computes the qi in the continued fraction for
√

n using only integer arithmetic.
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Several other integers are computed during the iteration. One of them is an in-

teger Qi which satisfies A2
i−1 − nB2

i−1 = (−1)iQi and 0 < Qi < 2
√

n. If we con-

sider the equation as a congruence modulo n, we have A2
i−1 ≡ (−1)iQi (mod n).

In other words, the continued fraction iteration produces a sequence {(−1)iQi}
of quadratic residues modulo n whose absolute values are < 2

√
n, very small

indeed. We want small quadratic residues because they are easier to compute,

easier to factor, and more likely to be smooth. (An integer is B-smooth if all of

its prime factors are smaller than the real number B.)

One can prove that xi = (Pi +
√

n)/Qi for i ≥ 0, where

Pi =



























0 if i = 0 ,

q0 if i = 1 ,

qi−1Qi−1 − Pi−1 if i ≥ 2 ,

(1.4)

and

Qi =



























1 if i = 0 ,

n − q2
0

if i = 1 ,

Qi−2 + (Pi−1 − Pi)qi−1 if i ≥ 2 .

(1.5)

The qi can be computed using

qi = ⌊xi⌋ =



































⌊√
n
⌋

if i = 0 ,

⌊

q0 + Pi

Qi

⌋

=

⌊ √
n + Pi

Qi

⌋

if i > 0 .

(1.6)

Define Ai and Bi as in Theorem 1.2 so that [q0; q1, q2, . . .qi] = Ai/Bi for i ≥ 0.

Example 1.5 Table 1.1 gives the sequences for the continued fraction of√
77 = 8.774964387392123.

1.3.2 A General Plan for Factoring

The following theorem is ancient.

Theorem 1.6 If n is a composite positive integer, x and y are integers, and

x2 ≡ y2 (mod n), but x . ±y (mod n), then gcd(x − y, n) and gcd(x + y, n) are

proper factors of n.

Later we will tell how to find x and y with x2 ≡ y2 (mod n). However, it is

difficult to ensure that x . ±y (mod n), so we ignore this condition. The next

theorem tells how several modern factoring algorithms finish.
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Table 1.1 Continued Fraction Expansion For
√

77

i qi Pi Qi Ai Bi

−1 − − − 1 0
0 8 0 1 8 1
1 1 8 13 9 1
2 3 5 4 35 4
3 2 7 7 79 9
4 3 7 4 272 31
5 1 5 13 351 40
6 16 8 1 5888 671
7 1 8 13 6239 711
8 3 5 4 24605 2804
9 2 7 7 55449 6319

10 3 7 4 190952 21761
11 1 5 13 246401 28080
12 16 8 1 4133368 471041

Theorem 1.7 If n is an odd positive integer having at least two different prime

factors, and if integers x and y are chosen randomly subject to x2 ≡ y2 (mod n),

then, with probability ≥ 0.5, gcd(x − y, n) is a proper factor of n.

One can compute in probabilistic polynomial time a square root of any

quadratic residue r modulo n, provided the factors of n are known. In fact,

computing square roots modulo n is polynomial-time equivalent to factoring

n.

Corollary Let n have at least two different odd prime factors. If there is

a (probabilistic) polynomial time algorithm A to find a solution x to x2 ≡
r (mod n) for any quadratic residue r modulo n, then there is a probabilistic

polynomial time algorithm B to find a factor of n.

The general plan of several factoring algorithms is to generate (some) pairs

of integers x, y with x2 ≡ y2 (mod n), and hope that gcd(x − y, n) is a proper

factor of n. Theorem 1.7 says that we will not be disappointed often. It says

that each such pair gives at least a 50% chance to factor n. If n has more than

two (different) prime factors, then at least one of the greatest common divisors

will be composite and we will have more factoring to do. In the fastest modern

factoring algorithms it may take a long time to produce the first pair x, y, but

after it is found many more random pairs are produced quickly, and these will

likely yield all prime factors of n.
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1.3.3 The Continued Fraction Factoring Algorithm

The Continued Fraction Factoring Algorithm, CFRAC, of Morrison and Brill-

hart [45], uses the fact that the Qi are more likely to be smooth than numbers

near n/2 because they are small. The algorithm uses the continued fraction ex-

pansion for
√

n to generate the sequences {Pi}, {Qi}, {qi} and {Ai mod n} via

Equations (1.4), (1.5), (1.6) and (1.3), and tries to factor each Qi by Trial Di-

vision. Morrison and Brillhart restricted the primes in the Trial Division to

those below some fixed bound B, called the factor base. CFRAC saves the

B-smooth Qi, together with the corresponding Ai−1, representing the relation

A2
i−1 ≡ (−1)iQi (mod n). When enough relations have been collected, Gaussian

elimination is used to find linear dependencies (modulo 2) among the exponent

vectors of the relations. We have enough relations when there are more of them

than primes in the factor base. Each linear dependency produces a congruence

x2 ≡ y2 (mod n) and a chance to factor n by Theorem 1.7.

Assuming two plausible hypotheses, Pomerance [49] proved that the time

complexity of CFRAC is L(n)
√

2, where L(x) = exp
(√

(ln x) ln ln x
)

.

Let me say more about the linear algebra step. Suppose there are K primes in

the factor base. Call them p1, p2, . . ., pK . (These are the primes p ≤ B for which

n is a quadratic residue modulo p. They comprise about half of the primes≤ B.)

The goal is to find a set S of i for which the product
∏

i∈S (−1)iQi is the square

of an integer. Since a square must be positive, the “prime” p0 = −1 is added

to the factor base. For each i for which (−1)iQi is B-smooth, write (−1)iQi =
∏K

j=0 p
ei j

j
. When (−1)iQi is B-smooth, define the vector ~vi = (ei0, ei1, . . . , eiK).

Note that when (−1)iQi and (−1)kQk are multiplied, the corresponding vec-

tors ~vi, ~v j are added. A product like
∏

i∈S (−1)iQi is a square if and only if all

entries in the vector sum
∑

i∈S ~vi are even numbers. Form a matrix with K + 1

columns whose rows are the vectors~vi (reduced modulo 2) for which (−1)iQi is

B-smooth. If there are more rows than columns in this matrix, Gaussian elim-

ination will find nontrivial dependencies among the rows modulo 2. Let S be

the set of i for which the row ~vi is in the dependency. Each nontrivial depen-

dency, say,
∑

i∈S ~vi = ~0, gives a product
∏

i∈S (−1)iQi which is a square, say, y2.

Let x =
∏

i∈S Ai−1 mod n. Then x2 ≡ y2 (mod n), an instance of Theorem 1.7.

The idea of combining several relations x2
i
≡ ri mod n to form a congruence

x2 ≡ y2 (mod n) and get a chance to factor n goes back at least to Kraitchik

[29] and Lehmer and Powers [30] around 1930.

Here are the most important new ideas in [45]:

• the fixed factor base,

• using linear algebra modulo 2 to combine relations to form a square, and

• using large primes to augment the factor base.
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Here is how the third idea works. When you try to factor Qi using the

primes in the factor base, you often fail because a cofactor > 1 remains. It

is easy to test the cofactor for primality. If it is prime, save the relation. If

another relation with the same large prime is found, then one can create a

useful relation by multiplying them. Suppose A2
i−1 ≡ (−1)iQi (mod n) and

A2
j−1
≡ (−1) jQ j (mod n). Their product, (Ai−1A j−1)2 ≡ (−1)i+ jQiQ j (mod n),

will have one prime not in the factor base appearing on the right side, but

this prime will be squared, so it will not appear in the matrix, and the prod-

uct relation can be used to find a congruence x2 ≡ y2 (mod n). If the number

of possible large primes is t, then repeated large primes will begin to appear

roughly when the number of relations with large primes reaches 1.18
√

t by the

birthday paradox. Using large primes this way does not change the theoretical

time complexity of CFRAC, but it does have practical value. If B and the upper

limit on the size of large primes are chosen well, then most of the relations will

come from pairing repeated large primes.

In the 1980s, Smith and Wagstaff [53], [64] and [67] fabricated an Extend-

ed-Precision Operand Computer for factoring large integers by the CFRAC.

It had a 128-bit wide main processor to generate the Ai and Qi, and sixteen

remaindering units to divide a Qi by sixteen different primes p j in parallel,

finding only the remainders. As each Qi was generated, it was loaded into a

wide shift register. Sixteen trial divisors p j were loaded into registers of simple

arithmetic-logic units. While the main processor generated the next Qi and Ai

the current Qi was shifted out of its register, one bit at a time, and broadcast

to the remaindering units, which reported when a remainder was 0. The main

processor used the reports to determine whether Qi was smooth enough for

the relation to be saved. A personal computer connected to the main processor

stored the smooth relations. The linear algebra was done on a larger computer.

1.4 The Reformation: A Quadratic Sieve

This section adds a new idea to CFRAC: Factor the right hand sides of many

relations together with an efficient algorithm called a sieve rather than sepa-

rately with slow Trial Division.

1.4.1 The Sieve of Eratosthenes

The Sieve of Eratosthenes finds the primes below some limit J. It writes the

numbers 1, 2, . . ., J. Then it crosses out the number 1, which is not prime.

After that, let p be the first number not crossed out. Cross out all multiples of
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p greater than p. Repeat these steps, replacing p by the next number not yet

crossed out, as long as p ≤
√

J. When p reaches
√

J all numbers crossed out

are composite (or 1) and all numbers not crossed out are prime.

A computer program would use an array P[] to represent the numbers 1 to J.

Let “1” mean that the number is not crossed out and “0” mean that the number

is crossed out. The algorithm starts by marking 1 as “crossed out” and the other

numbers as “not crossed out.” For each prime p, cross out all multiples of the

prime p. Then the first number not yet crossed out is the next prime p. At the

end, the value of P[i] is 1 if i is prime and 0 if i is 1 or composite. The Sieve

of Eratosthenes computes all primes ≤ J in O(J log log J) steps.

A variation of this sieve factors the numbers in the range of a polynomial

f (x) with integer coefficients, but it only finds the prime factors of each f (x)

which lie in a finite set P of primes. The polynomial f (x) is fixed. This sieve

algorithm is the heart of the Quadratic and Number Field Sieve factoring algo-

rithms. For each i, a linked list L[i] holds the distinct prime factors of f (i).
Sieve to Factor the Range of a Polynomial

Input: Integers J > I > 1 and a finite set P of primes.
for (i := I to J) { L[i] := empty }
for each p ∈ P {

Find the roots r1, . . ., rd of f (x) ≡ 0 (mod p)
for ( j := 1 to d) {

i := the least integer ≥ I and ≡ r j (mod p)
while (i ≤ J) { append p to L[i]; i := i + p }
}

}
Output: For I ≤ i ≤ J, L[i] lists the factors in P of f (i).

The output L[i] lists only the distinct prime factors of f (i) in P. A modifica-

tion of this algorithm also finds the number of repetitions of each prime factor

of f (i) without ever forming that number, which may be huge.

1.4.2 The Quadratic Sieve Factoring Algorithm

The Quadratic Sieve Factoring Algorithm, QS, and the CFRAC differ only in

the method of producing relations x2 ≡ q (mod n) with q factored completely.

The CFRAC forms x and q from the continued fraction expansion of
√

n and

factors q by slow Trial Division. The QS produces x and q using a quadratic

polynomial q = f (x) and factors the q with a sieve, much faster than Trial

Division. The quadratic polynomial f (x) is chosen so that the q will be as

small as possible. Most q of them will exceed 2
√

n, but not by a large factor,

so that they are almost as likely to be smooth as the q in CFRAC.
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Let f (x) = x2 − n and s = ⌈
√

n ⌉. The QS factors some of the numbers

f (s), f (s + 1), f (s + 2), . . .

by the algorithm in Section 1.4.1. If there are K primes in the factor base

and we find R > K B-smooth numbers f (x), then there will be R relations

involving K primes and linear algebra will produce at least R− K congruences

x2 ≡ y2 (mod n), each of which has probability at least 1/2 of factoring n, by

Theorem 1.7.

Sieve using the fast algorithm in Section 1.4.1 to find the B-smooth numbers

among f (s), f (s + 1), f (s + 2), . . .. The factor base P consists of the primes

p < B for which the Legendre symbol (n/p) , −1. Write the numbers f (s + i)

for i in some interval a ≤ i < b of convenient length. The first interval will

have a = s. Subsequent intervals will begin with a equal to the endpoint b

of the previous interval. For each prime p < B, remove all factors of p from

those f (s + i) which p divides. Since f (x) = x2 − n, p divides f (x) precisely

when x2 ≡ n (mod p). The solutions x to this congruence lie in the union of

two arithmetic progressions with common difference p. If the roots of x2 ≡
n (mod p) are x1 and x2, then the arithmetic progressions begin with the first

numbers ≡ x1 and x2 (mod p) which are ≥ a. The sieve is much faster than

Trial Division. Pomerance proved that the time complexity of the QS is L(n) =

exp
(√

(ln n) ln ln n
)

.

Several variations speed the practical QS Algorithm, although they do not

change its theoretical complexity. They include:

• Using large primes (larger than B), as in CFRAC.

• Multiple polynomials (not just f (x) = x2 − n) [62] and [2].

• Self-initializing polynomials (amortize the root-finding) [2].

The front page of the New York Times newspaper of October 12, 1988, had

an article titled, “A Most Ferocious Math Problem Tamed.” In it, journalist

Malcom W. Browne described how Lenstra and Manasse factored a hard 100-

digit number by the QS.

In 1994, the QS was used to factor the 129-digit RSA challenge number

mentioned in Section 1.2. Atkins, Graff, Lenstra and Leyland [3] used a varia-

tion of the QS with two large primes [34] allowed in each relation. This means

that each relation may have zero, one or two primes larger than the greatest

one in the factor base. When the relations are harvested at the end of the sieve,

after the primes in the factor base have been removed from f (s), if the remain-

ing cofactor is composite, then some effort is made to factor this number, often

with the Elliptic Curve Method. If it can be factored easily, then the relation is

saved. Using two large primes complicates the linear algebra only slightly.
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In the 1990s, George Sassoon organized all the personal computers on the

Isle of Mull, Scotland, into a factoring group. They used the multiple polyno-

mial version of the QS, with each machine sieving a different set of polynomi-

als. As these computers were not interconnected, the relations were collected

on floppy disks and carried to one machine for the linear algebra. They factored

more than a dozen numbers this way, including one with 101-digits.

In another large factoring endeavor, many people used multiple personal

computers to distribute the sieving of the Quadratic or Number Field Sieve,

and then emailed the relations to one large machine used for the linear algebra.

See Lenstra and Manasse [33] for factoring by email.

1.5 The Revolution: A Number Field Sieve

Pollard [48] invented the Number Field Sieve, NFS, by suggesting raising the

degree of the polynomial in the QS, although only for numbers with special

form. He factored the Fermat number F7 = 227

+ 1 (which had been factored

earlier by Morrison and Brillhart with CFRAC) using the cubic polynomial

2x3 + 2 on a small computer. Manasse and the Lenstra brothers [37] soon ex-

tended Pollard’s ideas to higher degree polynomials, but still only for numbers

of the form re − s, for small integers r and |s|. Their goal was to factor F9, the

smallest Fermat number with no known prime factor. They hoped to use the

special form of F9 = 2512 − (−1) to make the numbers that had to be smooth

smaller than those needed for the QS. After they factored F9 in 1990, they and

others extended the NFS to general numbers. See Lenstra and Lenstra [32] for

more details of the early history of this factoring algorithm. See Pomerance

[50] for a summary of the algorithm. Crandall and Pomerance [14] describe

the modern algorithm.

Recall that the QS produces many relations x2
i
≡ qi (mod n) with qi factored.

After we have enough relations, we match the prime factors of the qi and create

a subset of the qi whose product is square. In this way, we find congruences

x2 ≡ y2 (mod n) which may factor n by Theorem 1.7.

Now drop the requirement that the left side of a relation must be square.

Instead seek relations ri ≡ qi (mod n) in which both ri and qi have been factored

completely. Use linear algebra to match the prime factors of ri and the prime

factors of qi and select a subset of the relations for which both the product of

the ri and the product of the qi are square. This is a fine idea, but too slow to

be practical. The main difficulty is that at least one of |ri|, |qi| must exceed n/2,

so it has little chance of being smooth.

The NFS solves this problem by letting the numbers on one side of each
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relation be algebraic integers from an algebraic number field. The idea is to

match the irreducible factors so that each occurs an even number of times and

hope the product of the algebraic integers in the selected subset of the relations

might be a square in the algebraic number field.

1.5.1 Number Fields

See the books [24], [25], [19], [23] for more about number fields. An alge-

braic number is the zero of a polynomial with integer coefficients. If the poly-

nomial is monic, then the algebraic number is called an algebraic integer. An

algebraic number field is a field which contains only algebraic numbers. The

smallest algebraic number field containing the algebraic number α is written

Q(α).

The set of all algebraic integers in Q(α) is written Z(α). This set forms a

commutative ring with unity. A unit in Z(α) is an element having a multiplica-

tive inverse in Z(α). A nonzero, nonunit element γ of Z(α) is irreducible if it

can be factored in Z(α) only as γ = uβwhere u is a unit. When γ = uβ, where u

is a unit, β is called an associate of γ (and γ is an associate of β). An algebraic

integer γ has unique factorization (in Z(α)) if any two factorizations of γ into

the product of irreducible elements and units are the same except for replacing

irreducibles by their associates and using different units.

The polynomial of lowest degree having an algebraic number α as a zero

must be irreducible, that is, it doesn’t factor into the product of two polyno-

mials of lower degree. If an algebraic number α is a zero of the irreducible

polynomial f (x) ∈ Z[x], then the conjugates of α are all of the zeros of f (x).

The norm N(α) of α is the product of all of the conjugates of α including α.

The norm of an algebraic integer is a rational integer. The norm function is

multiplicative:N(αβ) = N(α)N(β). If β = γ2 for some γ ∈ Z(α), thenN(β) is

the square of the integer N(γ). If the algebraic integer α is a zero of the irre-

ducible polynomial f (x) = xd+cd−1xd−1+· · ·+c1x+c0 and a and b are integers,

then the norm of a − bα is N(a − bα) = F(a, b), where F is the homogeneous

polynomial

F(x, y) = xd + cd−1xd−1y + · · · + c1xyd−1 + c0yd = yd f (x/y). (1.7)

1.5.2 The Number Field Sieve

We now return to the NFS. Recall that we are letting the numbers on one side

of each relation be algebraic integers from an algebraic number field. Then we

proposed to match the irreducible factors so that each occurs an even number
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of times and thus form two squares of integers congruent modulo the number

n to factor.

The first problem is writing a congruence modulo n with an algebraic inte-

ger on one side. This problem is solved by using a homomorphism h from the

algebraic integers Z(α) to Zn, the integers modulo n. Suppose we have many al-

gebraic integers θi, each factored into irreducibles, and also every h(θi) factored

into the product of primes. Then we may match the irreducibles and match the

primes to choose a subset of the θi whose product is a square γ2 in Z(α) and

so that the product of the h(θi) is a square y2 in the integers. Let x = h(γ), a

residue class modulo n. We have

x2 = (h(γ))2 = h(γ2) = h















∏

i∈S
θi















=
∏

i∈S
h(θi) ≡ y2 (mod n),

which may factor n by Theorem 1.7.

Now we explain how to choose the algebraic number field and construct the

homomorphism. We want to have an irreducible monic polynomial

f (x) = xd + cd−1xd−1 + · · · + c1x + c0

with integer coefficients. Let α be a zero of f in the complex numbers C. The

algebraic number field will be Q(α). Let Z[α] be the set of all
∑d−1

j=0 a jα
j, where

the a j are integers. This is a ring contained in the ring Z(α) of integers of Q(α).

We also need an integer m for which f (m) ≡ 0 (mod n). The homomorphism

from Z[α] to Zn will be defined by setting h(α) = m (mod n), that is,

h

















d−1
∑

j=0

a jα
j

















≡
d−1
∑

j=0

a jm
j (mod n).

The numbers θ will all have the form a − bα. We seek a set S of pairs (a, b)

of integers such that
∏

(a,b)∈S
(a − bm) is a square in Z, (1.8)

and
∏

(a,b)∈S
(a − bα) is a square in Z[α]. (1.9)

Let the integer y be a square root of the first product. Let γ ∈ Z[α] be a square

root of the second product. We have h(γ2) ≡ y2 (mod n), since h(a − bα) ≡
a − bm (mod n). Let x = h(γ). Then x2 ≡ y2 (mod n), which will factor n with

probability at least 1/2, by Theorem 1.7.

The degree d of the polynomial f (x) is 4, 5 or 6 for numbers we currently
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factor. In addition to being irreducible and having a known zero m modulo n,

we want f (x) to have “small” coefficients compared to n. The next two sections

give ways we might satisfy all these conditions.

1.5.3 The Special Number Field Sieve

The requirements on f (x) are easily met in the Special Number Field Sieve,

which factors numbers n = re − s, where r and |s| are small positive integers.

Suppose we decide (based on experience) that d is the proper degree for the

polynomial. Let k be the least positive integer for which kd ≥ e. Let t = srkd−e.

Let f (x) be the polynomial xd − t. Let m = rk. Then f (m) = rkd − srkd−e =

rkd−en ≡ 0 (mod n).

Example 1.8 Let us factor n = 7346+1. Let d = 6, m = 758 and f (x) = x6+49.

then f (m) = (758)6 + 49 = 7348 + 72 = 72(7346 + 1) = 49n ≡ 0 (mod n).

Kleinjung, Bos and Lenstra [27] factored many large Mersenne numbers

2p − 1 with the Special NFS. These factorizations are the current record for

factoring integers by the NFS.

1.5.4 The General Number Field Sieve

In the General Number Field Sieve, n lacks the special form just considered,

so there is no obvious polynomial. One standard approach to finding a good

polynomial (of degree 5, say) to factor n is to let m be an integer slightly

larger than n1/5. Write n =
∑5

i=0 dim
i in base m with digits di in the interval

0 ≤ di < m, small compared to n. Let the polynomial be f (x) =
∑5

i=0 dix
i. See

the article [9] by Buhler, Lenstra and Pomerance for the origins of the General

Number Field Sieve. Montgomery and Murphy [43] give better ways to choose

a polynomial for the General Number Field Sieve. Of course, the GNFS would

be used to factor an RSA public key because it would not have the special form

re − s.

1.5.5 The Number Field Sieve Again

We now return to both forms of the NFS. The program will have two sieves,

one for a − bm and one for a − bα. The sieve on a − bm is simple: For each

fixed 0 < b < M we try to factor the numbers a − bm for −M < a < M by the

sieve algorithm in Section 1.4.1.

The goal of the sieve on the numbers a−bα is to allow us to choose a set S of

pairs (a, b) so that the product in Equation (1.9) is a square. Rather than try to
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factor the algebraic integers a−bα, let us work with their norms. If the product

in Equation (1.9) is a square, then its norm is a square, and its norm is the

product of allN(a− bα) with (a, b) ∈ S. Since the norms are rational integers,

rather than algebraic integers, it is easy to match the prime factors of norms to

form squares. Furthermore, the norm of a−bα is a polynomial, F(a, b) in (1.7),

and therefore is something we can factor with sieve algorithm in Section 1.4.1.

For each fixed b between 0 and M, sieve the polynomial F(x, b) = N(x − bα)

for x between −M and M to find smooth values ofN(a − bα).

Whenever both a − bm and N(a − bα) are smooth, save the pair (a, b) to

represent the relation h(a − bα) ≡ a − bm (mod n). After we have found many

relations, use linear algebra to construct sets S of pairs (a, b) for which the

product of a − bm is a square and the product of the norms of a − bα is a

square.

Several problems arise, even in this simple description of the NFS algorithm.

For example, the fact thatN(θ) is square need not imply θ is square. One prob-

lem is that the norm function does not distinguish among associates. Another

is the lack of unique factorization in most number fields. A third problem is

computing the square root of algebraic number. All of these problems can be

solved. See Crandall and Pomerance [14] for the details.

One can show that the NFS is faster than the QS when n is large and the

degree d is chosen well. A careful analysis shows that the time complexity of

the NFS is exp
(

c(ln n)1/3(ln ln n)2/3
)

for some constant c > 0. The constant c is

smaller for the Special than for the General NFS because the coefficients can

be made smaller. Lenstra et al. [10] factored several RSA challenge numbers

using the General NFS.

Shamir [59] (see also Lenstra and Shamir [35]) proposed an optoelectronic

device called TWINKLE to execute the Number Field Sieve algorithm. Each

prime in the factor base is represented by a light-emitting diode. The LED for

prime p glows once every p time units; its intensity is proportional to log p.

A sensor views the total intensity of all LEDs and saves the current value of

a time unit counter whenever the intensity exceeds a threshold. It locates B-

smooth numbers by adding the logarithms of their prime factors.

1.6 An Exquisite Diversion: Elliptic Curves

In 1985, H. W. Lenstra, Jr. [39] invented a factoring method using elliptic

curves. Lenstra freed Pollard’s p − 1 factoring algorithm from its dependency

on a single number, namely p−1, being smooth. He replaced the multiplicative

group of integers modulo p in that algorithm with an elliptic curve modulo p.
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Now the integer that must be smooth is the size of the elliptic curve modulo

p. This number is about the same size as p. Soon after this discovery, Miller

[42] and Koblitz [28] made the same group replacement in many cryptographic

algorithms. This change allows one to use smaller p and construct fast crypto-

graphic algorithms with the same level of security as slower ones. Now elliptic

curves are an important tool in cryptography.

1.6.1 Basic Properties of Elliptic Curves

An elliptic curve is the graph of an equation like y2 = x3+ax2+bx+c with one

extra point∞. For simplicity we use the Weierstrass form y2 = x3 +ax+b. For

cryptography, a, b, x and y lie in a finite field. For factoring, they are integers

modulo p or n. We begin by allowing them to be real numbers so that the

elliptic curve is a curve in the plane with an added point∞.

We will define a way to “add” points of the set

Ea,b = {(x, y) : x, y ∈ K, y2 = x3 + ax + b} ∪ {∞}.

If P = (x, y) lies on the graph of y2 = x3 + ax + b, define −P = (x,−y), that is,

−P is P reflected in the x-axis. Also define −∞ = ∞.

Given two points P and Q, on the graph but not on the same vertical line,

define P + Q = R, where −R is the third point on the straight line through P

and Q. If P and Q are distinct points on the graph and on the same vertical

line, then they must have the form (x,±y), that is, Q = −P, and we define

P + Q = P + (−P) = ∞. Also define P +∞ = ∞ + P = P for any element P of

the elliptic curve (including P = ∞). To add a point P , ∞ to itself, draw the

tangent line to the graph at P. If the tangent line is vertical, then P = (x, 0) and

we define P + P = ∞. If the tangent line is not vertical, then it intersects the

graph in exactly one more point R, and we define P + P = −R. (If P is a point

of inflection, then R = P.)

Theorem 1.9 An elliptic curve Ea,b with the addition operation + forms an

abelian group with identity∞. The inverse of P is −P.

We will need formulas for computing the coordinates of P + Q in terms of

those of P and Q. If one of P, Q is∞, then we have already defined P+Q. Let

P = (x1, y1) and Q = (x2, y2) be on the graph of y2 = x3 + ax + b. If x1 = x2

and y1 = −y2, then P = −Q and P + Q = ∞. Otherwise, let s be the slope

defined as follows. When P , Q, let s = (y2 − y1)/(x2 − x1) be the slope of the

line through P and Q. When P = Q, let s = (3x2
1
+ a)/(2y1) be the slope of the

tangent line to the graph at P. Then P + Q = (x3, y3), where x3 = s2 − x1 − x2

and y3 = s(x1 − x3) − y1.
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Now consider elliptic curves modulo a prime p. The formulas for adding

points show that if a and b and the coordinates of points P and Q on the elliptic

curve Ea,b are all rational numbers, then the coordinates of P+Q will be rational

numbers (unless P+Q = ∞). Therefore, if a and b and the coordinates of points

P and Q on the elliptic curve Ea,b are integers modulo p, then the coordinates

of P + Q will be integers modulo p, unless P + Q = ∞, provided that any

division needed in the slope calculation is by a number relatively prime to p.

Of course, the graph is just a set of pairs of numbers modulo p, not a curve in

the plane.

When i is a positive integer and P is a point on an elliptic curve, let iP mean

P added to itself i times. It is easy to compute iP when i is large. The algorithm

below takes about log2 i point additions on the elliptic curve.
Fast Point Multiplication.

Input: A point P on Ea,b modulo m and an integer i ≥ 0.
Q := ∞
R := P
while (i > 0) {

if (i is odd) { Q := (Q + R) mod m }
R := (R + R) mod m
i := ⌊i/2⌋
}

Output: iP = the final value of Q.

Theorem 1.10 Let p be an odd prime. Let (r/p) denote the Legendre symbol.

The number Mp,a,b of points on the elliptic curve y2 ≡ x3 + ax + b (mod p)

satisfies Mp,a,b = p + 1 +
∑p−1

x=0

(

(x3 + ax + b)/p
)

.

Since the Legendre symbol in Theorem 1.10 has the value +1 about as often

as the value −1, we expect the number of points on a random elliptic curve

modulo p to be close to p + 1. Hasse proved that this is so.

Theorem 1.11 (Hasse) Let the elliptic curve Ea,b modulo a prime p have

Mp,a,b points. Then p + 1 − 2
√

p ≤ Mp,a,b ≤ p + 1 + 2
√

p.

The range of possible values for Mp,a,b is called the Hasse interval.

1.6.2 Factoring with Elliptic Curves

In 1985, H. W. Lenstra, Jr. [39] invented the Elliptic Curve Method or ECM,

a factoring algorithm using elliptic curves. Let Rp denote the multiplicative

group of integers modulo a prime p. Recall that Pollard’s p − 1 Factoring Al-

gorithm in Section 1.1.3 performs a calculation in the integers modulo n that

hides a calculation in Rp. The factor p of n is discovered when the size p−1 of
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the group Rp divides L = B!, but p is not found when p− 1 has a prime divisor

larger than B. Lenstra replaced Rp with an elliptic curve group Ea,b modulo

p. By Hasse’s Theorem, the two groups have roughly the same size, namely,

approximately p. Lenstra’s algorithm discovers p when Mp,a,b divides L = B!.

It fails to find p when Mp,a,b has a prime factor larger than B. There is only one

group Rp, but lots of elliptic curve groups Ea,b modulo p. If the size of Rp has

a prime factor > B, we are stuck. But if the size of Ea,b modulo p has a prime

factor > B, we just change a and b and try a new elliptic curve. Each curve

gives an independent chance to find the prime factor p.

Compare this algorithm with Pollard’s p − 1 algorithm. The two algorithms

work exactly the same way, except that Pollard’s p − 1 algorithm raises a to

the power i while the Elliptic Curve Method multiplies P by i. The former

algorithm explicitly computes a greatest common divisor with n while the latter

algorithm hides this operation in the slope calculation of the elliptic curve point

addition. The quantity 4a3 + 27b2 in the algorithm is the discriminant of the

cubic polynomial, which tells whether it has a repeated zero. For technical

reasons, the algorithm excludes polynomials with a repeated zero.
Simple Elliptic Curve Factorization Method

Input: A composite positive integer n to factor and a bound B.
Find the primes p1 = 2, p2, . . ., pk ≤ B
Choose a random elliptic curve Ea,b modulo n

and a random point P , ∞ on it
g := gcd(4a3 + 27b2, n)
if (g = n) { choose a new curve and point P }
if (g > 1) { report the factor g of n and stop }
for (i := 1 to k) {

P := iP or else find a factor g of n
}

Give up or try another random elliptic curve.
Output: A proper factor p of n, or else give up.

A good way to choose the elliptic curve parameters is to choose a random a

modulo n and a random point P = (x1, y1) modulo n and then let b = (y2
1 − x3

1
−

ax1) mod n. In other words, b has the correct value modulo n so that the point

P is on Ea,b. Lenstra [39] proved that when many curves and points are chosen

this way, the sizes Mp,a,b of the curves modulo a prime p are well distributed

in the Hasse interval.

Whenever two points are added during the computation of iP the coordinates

are reduced modulo n. Imagine that the coordinates are also reduced modulo p,

an unknown prime divisor of n. If the size Mp,a,b of the elliptic curve modulo

p divides L = i!, then LP = ∞ in the elliptic curve modulo p. Since P , ∞,

somewhere during the calculation we must have P1 + P2 = ∞ for two points
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P1, P2 , ∞, working with coordinates modulo p. This means that P1 and P2

will have the same x-coordinate modulo p. But we are computing modulo n,

and the x-coordinates of the two points will probably not be the same modulo

n. In the slope computation, we will try to invert a number not relatively prime

to n, so we will factor n instead.

Theorem 1.12 Let n be a positive integer with an unknown prime factor p.

Let B be the optimal bound for finding p by the elliptic curve algorithm. As-

sume that a random elliptic curve Ea,b modulo p has a B-smooth size with

probability u−u, where u = (ln p)/ ln B, as Dickman’s theorem [16] would pre-

dict. Define L(x) = exp
(√

(ln x) ln ln x
)

. Then B = L(p)
√

2/2. The expected total

number of point additions performed when the Elliptic Curve algorithm is used

to discover p is L(p)
√

2. The expected total work needed to discover one prime

factor of n is at most L(n) point additions.

The ECM has a second stage, just like the Pollard p − 1 algorithm. The

second stage finds a factor p of n when the largest prime factor of Mp,a,b is less

than B2 and all the other prime factors of Mp,a,b are less than B.

Efficient modern versions of the ECM discover prime factors up to about

20 digits in a few seconds and those up to about 40 digits in a few hours.

Luck is required to discover factors having more than 60 digits. See Silverman

and Wagstaff [63] for some practical aspects of ECM. See Zimmermann and

Dodson [72] for more about ECM.

1.6.3 Factoring Helping Elliptic Curves Used in Cryptography

Almost all of this chapter concerns factoring to break the RSA public-key ci-

pher. This section, however, uses factoring integers to build efficient crypto-

graphic protocols. There are many uses of elliptic curves in cryptography. Here

we mention two ways factoring helps to construct elliptic curves that are well

suited for use in cryptography.

One application is how to choose an elliptic curve with simple formulas for

adding points. Elliptic curves used in cryptography are groups whose points are

defined by an equation over a finite field. The size of a finite field is a prime

power q = pk. The size of q is typically about 128 or 256 bits for cryptography.

Some of the most useful elliptic curves have size equal to q ± 1. The points

(other than ∞) of an elliptic curve over Fq are pairs of numbers in Fq. The

formulas for adding two points use arithmetic in Fq. When q is prime, the

arithmetic is in the integers modulo q and it is slow, especially for devices with

limited computing power. But if p is a small prime, then arithmetic in Fpk can

be done in steps with numbers no larger than p, so it is fast on a slow machine.
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Elliptic curves often lie over Fpk with k > 1. The size of such a curve might

be pk + 1. The factorization of the size is needed to ensure that the elliptic

curve discrete logarithm problem (ECDLP) is hard. To make ECDLP hard,

pk + 1 should have at least one large prime factor. The ECDLP is to find x

so that Q = xP, where P and Q are two points on an elliptic curve. Many

cryptographic algorithms depend on the ECDLP being intractable.

Another use of factoring is for efficient computation of pairings. Let Ea,b

be an elliptic curve over Fq. A pairing on Ea,b is a function that takes pairs of

points of Ea,b to the n-th roots of unity µn in an algebraic closure of Fq satisfy-

ing several mathematical properties. The first use of a pairing in cryptography

was in an attack on the ECDLP in 1993. The attack by Menezes, Okamoto and

Vanstone [41] changes the problem Q = xP on an elliptic curve over Fpk to an

equivalent problem a = bx in Fpk ; the latter problem is easier to solve. Since

2000, many constructive uses of pairings have been found in cryptographic

protocols, including three-way key agreement, identity-based encryption and

short signatures. These protocols could be broken if the ECDLP were easy.

The naive computation of a pairing by its definition is too slow. There are

faster ways to compute pairings for supersingular elliptic curves, whose sizes

are numbers pk±1. Unfortunately, supersingular elliptic curves are the ones for

which the pairing-based MOV attack on the ECDLP works best. Consequently,

the parameter choice for these curves is a delicate balance between ease of

computing the pairing and the need to keep the ECDLP hard. This decision

requires knowledge of the factorization of the elliptic curve size, which has the

form pn ± 1.

See Washington [69] for definitions of the pairings. Boneh and Franklin

[7] designed an identity-based encryption system using pairings, which allows

someone to use your email address as your public key. See Trappe and Wash-

ington [66] for a simple description of the Weil pairing and identity-based

encryption. See Estibals [20] for ways of using factors of 2n − 1 and 3n − 1 to

construct elliptic curves in which pairings are easy to compute, but the ECDLP

is intractable.

1.7 The Future: How Hard Can Factoring Be?

In this section we discuss factoring from a theoretical computer science point

of view and then present some ways to factor RSA public keys. We end with

suggestions for new methods of factoring and make some predictions about the

future of factoring.
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1.7.1 Theoretical Aspects of Factoring

It would be great if we could find an algorithm for factoring n that we could

prove always works and runs in a specified time. Of course, Trial Division de-

scribed in Section 1.1.1 has this property and factors n in O(n1/2) steps. There

is an algorithm of Pollard [46] and Strassen [65] (see Section 5.5 of [14]) that

uses fast polynomial evaluation to factor n in O(n1/4+ε) steps. These algorithms

are rigorous and deterministic, that is, they do not choose random numbers and

one can prove before they begin that they will succeed in a specified number

of steps. Shanks [60] invented a fast algorithm for factoring n by computing

the class number of primitive binary quadratic forms of discriminant n. This

complicated algorithm runs in O(n1/4+ε) steps, but can be modified to factor

n in O(n1/5+ε) steps, assuming the Extended Riemann Hypothesis. Algorithms

like Shanks’ O(n1/5+ε) one, CFRAC, QS and NFS are fast and deterministic,

but the proofs of their running times depend on heuristic hypotheses, so they

are not rigorous.

A probabilistic algorithm1 for factoring integers uses random numbers and

may or may not factor the number, depending on the random choices it makes.

For a given input, it may perform different steps each time it is invoked and

may produce different factorizations or none at all. For example, the Elliptic

Curve Method of Section 1.6.2 chooses a random elliptic curve and a random

point on it, and then works deterministically to compute a large multiple of

the point. For some choices it will factor the input number, perhaps finding

different factors (say, if n has two prime factors of about the same size).

A probabilistic algorithm may or may not be rigorous. The Elliptic Curve

Method is probabilistic and not rigorous because it assumes without proof that,

with a certain probability, there is an elliptic curve having B-smooth size in the

Hasse interval. The ability to make random choices is a powerful tool that

can make a probabilistic algorithm faster than a deterministic algorithm for the

same job. In order to say that a probabilistic algorithm for factoring is rigorous,

there must be a proof without unproved assumptions that it will factor the input

number n with positive probability in a specified number of steps. It turns out

that there is a rigorous probabilistic algorithm for factoring integers with a

subexponential running time. Dixon [18] invented such an algorithm in 1981.

Dixon’s algorithm for factoring n has two parameters, u and v, to be specified

later. It begins by choosing a set S of u random integers between 1 and n. The

remainder of the algorithm is deterministic. Call the algorithm AS . Let the fac-

tor base consist of all primes < v. For each z ∈ S , try to factor w = (z2 mod n)

using only the primes in the factor base. If you succeed in factoring w com-

1 Technically, a Las Vegas probabilistic algorithm.
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pletely, save the relation z2 ≡ (the product of the factors of w) (mod n). After

the factoring is finished, combine the relations using linear algebra modulo 2

as in the QS. The method used to factor the numbers w doesn’t matter; even

Trial Division would be fast enough for the theorem.

Let L(n) = exp
(√

(ln n) ln ln n
)

. Dixon [18] proved this theorem about the

set of algorithms {AS : S ⊆ [1, n], size(S ) = u}.

Theorem 1.13 (Dixon) Let n be an odd integer with at least two different

prime factors. Let v = L(n)
√

2 and u = ⌈v2⌉. Then the average number of

steps taken in the execution of algorithm AS is L(n)3
√

2. The probability that

algorithm AS fails to factor n is proportional to L(n)−
√

2, uniformly in n.

The theorem says that when n is large, almost all of the algorithms AS with

correct parameters u and v will factor n successfully and that all AS run in

subexponential time L(n)3
√

2.

Although they have rigorous proofs of their time complexities, the algo-

rithms mentioned above are much slower than the QS and NFS.

The RSA cryptosystem and several other cryptographic algorithms depend

on factoring integers being a hard problem. Can we prove that factoring inte-

gers is hard?

One must phrase this question carefully. Suppose n has a million decimal

digits, and the low-order digit is 6. Then obviously 2 is a prime factor of n.

One can trivially “factor” n as 2 · (n/2).

Here is one way to ask the question. As a function of n, what is the minimum,

taken over all integer factoring algorithms, of the maximum, taken over all

integers M between 2 and n, of the number of steps the algorithm takes to

factor M? The integer factoring algorithm has input M and outputs a list of all

prime factors of M. Integer factoring would be a polynomial-time problem if

the answer were O((log n)c) for some constant c.

The model of computation, that is, what constitutes a “step,” probably mat-

ters a lot in answering the question. Suppose we decide that a single arithmetic

operation (+, −, ×, ÷) is one step. Assume that integers are stored in binary

notation and that each register (memory location) may hold one integer of any

size. Shamir [58] proved that, in this model, one can factor n in O(log n) steps.

Shamir’s result shows that we can factor n in a polynomial (in log n) number of

steps provided that an arithmetic operation with numbers as large as n! counts

as one step. This shows why we need to consider the complexity of arithmetic

with large numbers when analyzing number theoretic algorithms.
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1.7.2 Factor an RSA public key

In this section and the following we consider various ways to factor a large

integer with the help of special information available about it. Some of the

special information might include its use as a public key for the RSA cipher.

Theorem 1.14 There is a polynomial time algorithm for factoring a com-

posite integer n, given a base a to which n is a pseudoprime but not a strong

pseudoprime.

If we could find such a base quickly, then we would have a fast method of

factoring integers.

There are ways to factor an RSA public modulus n when some information

is known about it or the parameters are chosen poorly. None of these tricks

actually threaten the RSA cipher because, when the cipher is used properly,

the needed information about the modulus is not leaked.

A. Lenstra et al. [38] collected several million 1024-bit RSA public keys

from X.509 certificates and PGP on the Web. Most of these keys appeared

valid. They computed the GCD of each pair of these n and were able to factor

a few of them because they shared a single secret prime factor. This finding

suggests poor seeds for random number generators, that is, two (or more) users

used the same seed to generate a prime for their RSA key.

There are other attacks on the RSA cipher besides factoring n. For exam-

ple, if Alice happens to encipher the same message M via RSA using different

enciphering exponents e1 and e2, but the same RSA modulus n, then an at-

tacker can recover M from the two ciphertexts without factoring n. Boneh [5]

describes all the attacks below and many more.

Theorem 1.15 If n is the product of two different primes p and q, then one

can factor n in polynomial time, given n and φ(n).

Proof We have φ(n) = (p − 1)(q − 1) = n − (p + q) + 1 and n = pq. Thus,

n + 1 − φ(n) = p + q = p + n/p or p2 − (n + 1 − φ(n))p + n = 0. This

quadratic equation in the unknown p has the two solutions p and q, which may

be computed easily by the quadratic formula. �

Theorem 1.15 shows why one must not reveal φ(n) when n is an RSA public

key. One must also not reveal the deciphering exponent d when n is an RSA

public key. Not only could one decipher all ciphertext knowing d, but one can

factor n, too. Of course, the enciphering exponent e is public. This theorem

appears in the original RSA paper [55].

Theorem 1.16 There is a probabilistic polynomial time algorithm to factor
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n, given an integer n which is the product of two unknown primes and given

two integers e, d, between 1 and n with ed ≡ 1 (mod φ(n)).

There is a deterministic method for factoring n, given e and d, but it is more

complicated. As we saw above, we can factor n given n and φ(n) by solving

a quadratic equation. May [40] showed how to find φ(n) from n, e and d in

deterministic polynomial time. His result depends on a theorem of Copper-

smith telling how to find small solutions to a polynomial congruence modulo

n. Coppersmith’s theorem relies in turn on the LLL [36] algorithm for finding a

reduced basis for a lattice. As this work leads to several other attacks on RSA,

we describe them in the following section.

Here is one more way to factor n when a parameter is chosen badly. One can

factor n when d is unknown, but satisfies d ≤ 4
√

n/3, according to Wiener [70].

Theorem 1.17 (Wiener) There is a polynomial time algorithm which can

factor n, given n and e, provided e < φ(n) and n = pq, where p and q are

(unknown) primes with q < p < 2q, and there is an (unknown) integer d <

n1/4/3 satisfying ed ≡ 1 (mod φ(n)).

Finally, we give an example of factoring an RSA modulus n by exploiting a

hardware failure during signature generation. We explained in Section 1.2 how

Alice can set up RSA as a public key cipher to receive encrypted messages

from Bob. Alice can sign a message M to Bob as S = Md mod n, where d

is her private RSA deciphering exponent. When Bob receives S he can verify

Alice’s signature by getting her public RSA key n, e, and computing M =

S e mod n. The fact that this M is meaningful text shows that it came from

Alice because only Alice could construct such a signature S . Now she can

accelerate this calculation of S by a factor of four using her knowledge of the

factors p and q of n. She computes S p = S mod p and S q = S mod q by Fast

Exponentiation with smaller numbers and then combines these values with the

Chinese Remainder Theorem to obtain S .

Suppose that a hardware error complements one bit of S p during this cal-

culation, but S q is computed correctly, so that she sends Bob an incorrect sig-

nature S ′. Suppose also that an eavesdropper Eve obtains S ′ and M. Eve can

factor Alice’s public modulus n, given only S ′, n, e and M, where e is Alice’s

public encryption exponent. We have M = S e mod n. Since the error occurred

in computing S p, we have M ≡ (S ′)e (mod q) but M . (S ′)e (mod p). There-

fore, gcd(M− (S ′)e, n) = q. This attack is due to Lenstra et al. [26]. See Boneh

[5] for another similar attack, in which Eve has S and S ′, but not M.
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1.7.3 Factoring With Lattices

In this section we give a brief overview of lattices and applications to factor-

ing an RSA public modulus. The definitions and theorems in this section are

somewhat vague. See [36] for the true definitions and theorems.

Lattices have many uses in cryptography. They may be used to define cryp-

tosystems and to attack RSA and other ciphers. Several attacks on the RSA

public key cipher with poor parameter choices use lattices and the LLL algo-

rithm. We describe here only the ways lattices can be used to factor an RSA

modulus.

Definition 1.18 The lattice generated by linearly independent vectors ~v1, . . .,

~vr with integer coordinates is the set of all linear combinations a1~v1 + · · ·+ar~vr

with integers ai.

A basis for a lattice L is a set of linearly independent vectors ~v1, . . ., ~vr

with integer coordinates such that any vector in L can be written as a linear

combination a1~v1 + · · · + ar~vr of the basis vectors with integer coefficients ai.

Every lattice has a basis. Every basis of a given lattice L has the same size

r, called the rank of L. The rank r is the same as the dimension of the vector

space (a subspace of Rn) spanned by any basis of L. A lattice has full rank if

r = n.

Recall that if ~v1, . . ., ~vr and ~w1, . . ., ~wr are two bases for the same vector

space, then each ~wi can be written as a linear combination of the ~v j.

Likewise, if ~v1, . . ., ~vr and ~w1, . . ., ~wr are two bases for the same lattice,

then each ~wi can be written as a linear combination of the ~v j with integer

coefficients. Let B be the r × n matrix whose rows are ~v1, . . ., ~vr. The “size” of

a lattice L is a real number det(L) defined in terms of any basis. If L has full

rank, then B is square and det(L) = | det(B)|, the latter “det” being the usual

determinant. This is the only case we will use below.

There exists a vector ~v1 in a lattice L with minimum positive norm, the

shortest vector. Let λ1(L) be the norm of this shortest ~v1. Every vector ~w ∈ L

which is linearly dependent on ~v1 must be ~w = t~v1 for some integer t. At least

two vectors have this minimum positive length since the norm of −~v equals the

norm of ~v.

For integer k ≥ 1, let λk(L) be the smallest positive real number so that

there is at least one set of k linearly independent vectors of L, with each vector

having length ≤ λk(L). This defines a sequence

λ1(L) ≤ λ2(L) ≤ λ3(L) ≤ · · · .

Note that we count lengths, not vectors, in this definition.
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A lattice is often presented by giving a basis for it. This basis sometimes

consists of very long, nearly parallel vectors. Sometimes it is more useful to

have a basis with shorter vectors that are closer to being orthogonal to each

other. The process of finding such a basis from a poor one is called reducing

the lattice or lattice reduction.

The nicest basis {v1, v2, . . . , vr} for L would have the length of vi be λi(L) for

each i. It turns out to beNP-hard to find a nicest basis.

The Gram-Schmidt process does not work for lattices because the mi, j are

usually not integers, so the new basis vectors are not integer linear combina-

tions of the original vectors. There are several definitions of reduced basis and

they are not equivalent. Lenstra, Lenstra and Lovász [36] give one definition.

Its vectors approximate the shortest possible vectors for a basis of a given lat-

tice, and the angle between any two reduced basis vectors is not allowed to

be too small. They give a polynomial time algorithm, related to the Gram-

Schmidt process, but more complicated, that computes a reduced basis from a

given one. They prove that their algorithm, called the LLL algorithm runs in

polynomial time and constructs a reduced basis.

We will use only the following special application of the LLL algorithm.

Theorem 1.19 (LLL [36]) Let L be a lattice spanned by ~v1, . . ., ~vr. With input

~v1, . . ., ~vr, the LLL algorithm finds in polynomial time a vector ~b1 with length

‖~b1‖ ≤ 2(r−1)/4 det(L)1/r.

Now we describe some attacks on RSA using LLL.

Recall the notation of RSA: n = pq is the product of two large primes and is

hard to factor. Choose e with gcd(e, φ(n)) = 1, where φ(n) = (p−1)(q−1). Via

the Extended Euclidean Algorithm, find d with ed ≡ 1 (mod φ(n)). Discard p

and q. The public key is n, e and the private key is d. Encipher plaintext M as

C = Me mod n. Decipher ciphertext C as M = Cd mod n.

Consider these three problems about the RSA cipher.

1. The RSA problem: Given n, e and C, find M.

2. Compute d: Given n and e, find d.

3. Factor n: Given n, find p and q.

Clearly, if we can solve (3), then we can solve (2); and if we can solve (2),

then we can solve (1). In fact, (3) is equivalent to (2). It is not known whether

(3) is equivalent to (1). The next theorem was proved by May [40]. Its proof

uses the LLL algorithm [36].

Theorem 1.20 (May) Let n = pq, where p and q are two primes of the same

bit length. Let positive integers e and d satisfy ed ≡ 1 (mod φ(n)) and ed ≤ n2.
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There is a deterministic polynomial time algorithm which factors n given the

input n, e, d.

Theorem 1.20 is a beautiful theoretical result. It says that knowing the RSA

deciphering exponent is deterministically polynomial time equivalent to know-

ing the factors of n. Of course, if an RSA deciphering exponent were acciden-

tally leaked, one could factor n easily in probabilistic polynomial time by the

method of Theorem 1.16.

Now assume we have some partial information about p or q or d because

they are limited somehow, perhaps by a poor choice of parameters or a faulty

random number generator.

Coppersmith [12] proved that if f (x) is a monic polynomial and b is an

unknown factor of a given integer n, then one can find all “small” solutions x

to f (x) ≡ 0 (mod b) quickly via the LLL lattice reduction algorithm.

Theorem 1.20 is one application of his method. Here is another application.

We can factor an RSA modulus given a few more than half of the high-order

bits of p (as a number p̃ ≈ p).

Theorem 1.21 (Coppersmith [12]) One can factor n = pq, where p > q, in

polynomial time, given n and an integer p̃ with |p − p̃| < n5/28/2.

Similar theorems allow one to factor n = pq given the high order half of the

bits of q or the low order bits of either p or q.

Coppersmith [11], [13] also proved a theorem that lets one find small roots of

a polynomial with two variables in polynomial time using the LLL algorithm.

This result gives a faster algorithm than Theorem 1.21 for factoring n = pq

when the high or low order half of the bits of either p or q are known. The

bivariate polynomial theorem also gives polynomial time algorithms for fac-

toring an RSA modulus n when some bits of d are known. Here is an example

of these results.

Theorem 1.22 (Boneh and Durfee [6]) There is a polynomial time algorithm

to factor n = pq, given n and e, provided that there exists an integer d < n0.292

such that ed ≡ 1 (mod φ(n)).

The lesson of Theorems 1.17 and 1.22 is that the deciphering exponent d in

RSA should not be too small, or else an attacker will be able to factor n. If you

are choosing RSA keys and notice that d < n2/3, say, then you should choose

new e and d. So far as I know, there is no risk in letting e be small; even e = 3

appears to be safe.
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1.7.4 The Future of Factoring

One way of predicting the future is by extrapolating from the past. Consider

the problem of completely factoring Fermat numbers, and consider the history

of how and when each Fermat number was factored.

The Fermat numbers Fm = 22m

+ 1 for 5 ≤ m ≤ 32 are composite. These

numbers have been completely factored for 5 ≤ m ≤ 11. This table, adapted

from [68], gives the year and method by which the factorization of these seven

numbers was finished. The abbreviation NFac denotes the number of prime

factors of Fm.

m NFac Year Method Who

5 2 1732 Trial Division Euler

6 2 1855 Trial Division and

p ≡ 1 (mod 2m+2)

Clausen and Landry

7 2 1970 CFRAC Morrison and Brillhart

8 2 1980 Pollard Rho Brent and Pollard

9 2 1990 NFS Lenstra, Manasse, et al.

10 4 1995 ECM Brent

11 5 1988 ECM Brent

Can one predict from this table when more Fermat numbers will be factored?

The year increases with m except for the last one. This is because F11 has

four factors small enough to discover easily by ECM, while F9 and F10 have

penultimate factors too big to find easily in 1989. In what year would you guess

F12 will be completely factored? In 1996, Richard Guy bet John Conway that

at least one more Fermat number would be factored completely by his 100th

birthday in 2016. Richard lost that bet. Six small factors of F12 are known.

The remaining cofactor is composite with 1133 decimal digits. This number is

too large to factor by QS or NFS. The only way it will be factored soon by a

known method is if it has just one very large prime factor and we can discover

its small prime factors by ECM. Six different algorithms were used to factor

the seven numbers. Perhaps someone will invent a new algorithm to finish F12.

A new factoring algorithm was invented about every five years from 1970 to

1995, as shown in this table taken from [68].
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Year Method Who

1970 CFRAC Morrison and Brillhart

1975 Pollard p − 1 and Rho Pollard

1980 Quadratic Sieve Pomerance

1985 ECM H.W. Lenstra, Jr.

1990 SNFS Pollard and Lenstra

1995 GNFS Pollard and Lenstra

Each of these algorithms did something that previous algorithms could not do.

Why have we found no new faster factoring algorithms since 1995? Many

have tried to find new ones. People have fashioned variations of QS, ECM

and NFS that lead to faster programs for these algorithms. The improved al-

gorithms are much faster than the first versions, but they still have the same

asymptotic time complexity as the first version. Have we already discovered

the fastest integer factoring algorithms? I doubt it.

We need a new factoring algorithm. The time complexities of the fastest

known algorithms have the form

exp
(

c(ln n)t(ln ln n)1−t
)

, (1.10)

for some constants c > 0 and 0 < t < 1. For QS and ECM, t = 1/2; for NFS,

t = 1/3. The time complexity has this shape because these algorithms have to

find one or more smooth numbers, and the density of such numbers is stated in

Dickman’s [16] theorem. Any new factoring algorithm that works by finding

smooth numbers probably would have time complexity of the form (1.10). A

polynomial time factoring algorithm likely would not rely on smooth numbers.

We suggest ideas for discovering new, faster ways to factor large numbers.

1. Combine the Number Field Sieve and lattices. Sieve the NFS polynomial

on the points of a lattice in the plane. C.-P. Schnorr [56], [57] has taken the

first steps in this direction.

2. The fastest general algorithms, the QS and GNFS, solve x2 ≡ y2 (mod n)

and use Theorem 1.7. Find a way to construct congruent squares modulo n

faster than by using smooth numbers to build relations.

3. Can you quickly find a 1 < b < n so that n is a pseudoprime to base b, but

not a strong pseudoprime to base b, and apply Theorem 1.14?

4. Factoring algorithms exist with running time (1.10) with t = 1/2 and 1/3.

Find one with t = 1/4. Note that this t is the reciprocal of 1 plus the number

of parameters that you can adjust to “tune” the algorithm. CFRAC, QS and
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NFS have factor base size as one parameter; NFS adds the degree of the

polynomial as a second parameter. ECM has the parameter B.

5. Find an algorithm to answer this question quickly. Given integers 1 < B <

n, does n have a factor p ≤ B? If you had a fast algorithm to answer this

yes/no question, then you could use it log2 n times in a binary search for

the least prime factor of n. Note that when ⌊
√

n⌋ ≤ B < n, the question just

asks whether n is composite, and Agrawal, Kayal and Saxena [1] answered

that question in polynomial time in 2002. See Section 1.1.4.

6. Build a quantum computer and use Shor’s method. In 1994, Shor [61] gave

an algorithm for factoring integers in polynomial time using a quantum

computer. Basically, Shor’s quantum computer computes a Fourier trans-

form with a very sharp peak at φ(n). When you observe this transform you

will learn φ(n). Then use Theorem 1.15.

7. Simulate Shor’s method on a conventional computer. Simulate each qbit by

a real variable between 0 and 1. Use non-linear optimization methods (as in

[15]) to locate the peak in the transform to find φ(n).

8. If none of the above works, then try to prove that factoring is hard. Remem-

ber Shamir’s O(log n)-step algorithm of Section 1.7.1. Can you even prove

that there is a constant c > 0 such that when factoring some numbers n on

a computer with fixed word size, at least c log2 n steps are required?

If quantum computers can be made to work, then factoring integers will

become easy. A secure RSA public modulus has more than 1000 bits. A quan-

tum computer using Shor’s method to factor such a number would require a

few million entangled qbits. At present, we can build quantum computers with

no more than a few dozen entangled qbits. One problem with building larger

quantum computers is decoherence, in which ambient energies observe the en-

tangled qbits before the computation ends. I cannot guess whether this problem

will be solved.

Let me go out on a limb and predict that the number of qbits in quantum

computers will increase gradually. I also predict that mathematicians will in-

vent slightly faster, but not polynomial time, factoring algorithms. As these

new methods are programmed and as quantum computers gradually improve,

there will be a slow increase over the next century in the size of integers that

humans can factor. This is what has happened during the past fifty years with

the Cunningham Project [8], which factors numbers of the form bn ± 1. The

smallest interesting number of this form that remains to be factored has in-

creased smoothly from 30 decimal digits fifty years ago to about 200 digits

now, the result of faster algorithms and faster computers.
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