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Two topics

Feature selection with mutual iInformation

Information in stochastic
local-search-based
optimization (brainstorming)
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Feature selection with
mutual iInformation

R. Battiti.

Using the mutual information for selecting
features in supervised neural net learning.

IEEE Transactions on Neural Networks, 5(4):537-

-550, 1994.
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Feature selection

Classification: input features F = class C
‘Supervised learning

Feature selection / pre-processing
sreduce computational cost during training and operation
simprove classification accuracy (less noise, less overtraining)
‘better explanation (more compact models which can be
understood and explained)
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Feature selection

Example: DNA microarray gene expression profiles.

Of the tens of thousands of genes in experiments, only a
small number of them is related to the targeted
phenotypes. For example, in a two-class cancer
subtype classification problem only a few genes are
often sufficient.

When a small number of genes are selected, their
biological relationship with the target

diseases is more easily identified.

These “marker” genes thus provide additional scientific
understanding of the problem.
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Feature selection

Two general approaches to feature selection:
filters and wrappers

are essentially data pre-processing methods.
Features are selected based on the intrinsic characteristics, which
determine their relevance with regard to the target classes.

In wrapper type methods, feature selection is “wrapped” around a
learning method: the usefulness of a feature is directly judged by
the estimated accuracy of the learning method.

Computationally demanding!
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Feature selection

Abstract—This paper investigates the application of the mutual
information criterion to evaluate a set of candidate features
and to select an informative subset to be used as input data
for a neural network classifier. Because the mutual information
measures arbitrary dependencies between random variables, it
is suitable for assessing the “information content” of features
in complex classification tasks, where methods bases on linear
relations (like the correlation) are prone to mistakes. The fact
that the mutual information is independent of the coordinates
chosen permits a robust estimation. Nonetheless, the use of
the mutual informatiorn for tasks characterized by high input
dimensionality requires suitable approximations because of the
prohibitive demands on computation and samples. An algorithm
is proposed that is based on a “greedy” selection of the features
and that takes both the mutual information with respect to the
output class and with respect to the already-selected features
into account. Finally the results of a series of experiments are
discussed.
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R. Battiti

In general, the conditional entropy will be less than or
equal to the initial entropy. It is equal if and only if one
has independence between features and output class (i.e., if
the joint probability density is the product of the individual
densities: P(c,f) = P(e)P(f) ). The amount by which
the uncertainty is decreased is, by definition, the mutual
information 1(C; F') between variables c and f:

I(C;F) = H(C) — H(C|F) 5)

This function is symmetric with respect to C and F and,
with simple algebraic manipulations, can be reduced to the
following expression:

P(c, f)
I(C;F) = I(F;C) = ) _P(c, f)log
G - 150 = 2 76 s 7l

The mutual information is therefore the amount by which
the knowledge provided by the feature vector decreases the
uncertainty about the class. If one considers the uncertainty
in the combined events (c, f), i.e., H(C; F'), in general this
is less than the sum of the individual uncertainties H(C') and
H(F') and it is possible to demonstrate the following relation:

H(C;F) = H(C) + H(F) — I{(C;F) Ul




Feature selection

[FRn-k:] Given an initial set of n features, find the subset

with £ < n features that is “maximally informa-
tive” about the class.

[FRn-k] Given an initial set F' with n features, find the
subset S C F with k features that minimizes

H(C|S), i.e., that maximizes the mutual informa-
tion 1(C;S).

Obstacles:

senormous number of samples when dimension grows

«all possible subsets of size k...
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Feature selection

Approximations:
1. Ml only between couples of variables

2. Greedy selection
The MIFS algorithm (“mutual information based feature
selection”) can be described by the following procedure:

1) (Initialization) Set F' — “initial set of n features;” S «—

“empty set.”

2} (Computation of the MI with the output class) for each

feature f € F' compute I(C; f).

3) (Choice of the first feature) find the feature f that

maximizes I(C: f): set F «— F\{f}:set S «— {f}

4) (Greedy selection) repeat until |S| = &:

a) (Computation of the MI between variables) for all
couples of variables (f,s) with f € F, s € S
compute I(f;s), if it is not already available.

b) (Selection of the next feature) choose feature f as
the one that maximizes I(C; f) — B ,cs I(f;3);
set F — F\ {f}; set S — SU{f}

5) Output the set S containing the sclected features.
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Feature selection

Estimating Ml has difficulties:
-Effect of noise
-Adaptive discretization (Fraser)

= 1
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)

(

for the details). Now, because the typical fluctuation of the

countings is of the order of the square root of the mean values,
we can arrive at the following approximation:

1
AI~ ==(K.Ks ~ K. - Ky) (10)
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Feature selection

Fraser 1986

o

X

Fig. 11. Recursive partitioning of the X-Y plane executed by Fraser's
algorithm. If substructure is found, an element is subdivided into four
subelements.
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Feature selection

Fraser 1986

R. Battiti

I(X,Y)=

F(Ro(Ko))
Ny

— log,(No) (22)

where the function F() takes a partition element as argument
and returns a real value (a floating point number). If the
element has no substructure:

F(Rpm(Km)) = Nkm 10ogs(Ngm)

where Ng,,, is the number of events contained in the element,
otherwise the function calls itself four times in a recursive
way, and returns:

3
F(Rm(Km)) = Nimlogs(4) + ) F(Rm1(Km. )

3=0
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Feature selection

Fraser 1986

R. Battiti

The x-square test is used to check for substructure. Let us

infroduce the following variables. that count the number of
events in the initial element and in the elements of the first
and second subdivision:

N = N(Ro(Km))
ai = N(Rans1(Km, 1))

bij = N(Rvn+2(Kmr i’:.?))

The null hypothesis that P.,(z,y) is flat over R,,(K,,)
is disproved if at least one of the following inequalities fails
(reduced y-square statistics and 20% confidence levels):




Feature selection

Lesson learned

- Ml is valid in particular when nonlinear
dependencies

- Ml can be approximated in a crude

manner while still obtaining optimal
classification results
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Feature selection:
A couple of citations of bielogical interest

MINIMUM REDUNDANCY FEATURE SELECTION FROM
MICROARRAY GENE EXPRESSION DATA
CHRIS DING and HANCHUAN PENG

Journal of Bioinformatics and Computational Biology
Vol. 3, No. 2 (2005) 185-205 Published: 22 September 2004

Profiled support vector machines for antisense oligonucleotide
efficacy prediction

Gustavo Camps-Valls, Alistair M Chalk, Antonio J Serrano-Lépez
José D Martin-Guerrero and Erik LL Sonnhammer

BMC Bioinformatics

Published: 22 September 2004
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Feature selection:
A couple of citations of biological interest

An Entropy-based gene selection method for cancer classification
using microarray data

Xiaoxing Liu, Arun Krishnan and Adrian Mondry
Published: 24 March 2005
BMC Bioinformatics 2005
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Reactive search:
optimization with
online learning

18



WHY...condemned to live with heuristics!

Papadimitriou and Steiglitz ‘82

> 6. Heuristics Any of the < five > approaches above
without a formal guarantee of performance can be
considered a “heuristic.” However unsatisfactory

mathematically, such approaches are certainly valid in
practical situations.

“hardness of approximation™ results (in addition
to NP-hardness results) of last decades: for
many problems abandon the hope of finding
approximation algorithms (with formal
performance guarantees)!
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WHY RS and Intelligent Optimization?

> Basic optimization Is a solved problem

More and more difficult to discover radically new
technigues

o Optimization in the large”

Algorithm selection, adaptation, integration, comprehensive
solution.

Diversity, stochasticity, dynamicity
Interaction with final user (HCI)

Relationships between problem definition and problem solution
(learning the definition!)

Increase in automation = final user wins...
... but more challenging work for the

researcher... no off-the-shelf hyper-heuristics




Reactive search

ON-LINE MACHINE LEARNING FOR OPTIMIZATION

on-line dynamic and adaptive search

on-line reinforcement learning for optimization

Reactive Search: Learning on the Job

Intelligent optimization includes also learning Iin
different contexts: off-line tuning, swarm intelligence,
genetic algorithms and natural adaptation, tabu
search, ...
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Who Invented reactive search ?

lceman - Otz
"L'uomq venuto
dal ghiaccio™
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The role of the user
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The role of the user

> choices and free parameters

Algorithm(T)

> the user as a crucial learning component
(“trial and error”)

where experiments are designed, with
the support of statistical estimation (parameter
identification) tools.
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Automated tuning through
machine learning

> . The time-consuming tuning
phase Is now substituted by an automated
Process.

>
. The algorithm becomes
self-contained: Its quality can be judged
iIndependently from the designer.

Complexity is shifted
Final user = algorithm developer
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On-line tuning

> [ ake Into account:

. dependent
. -dependent
. properties in configuration space

(see local search), parameters are
dynamically tuned based on
optimization state and previous history
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Reactive search IS about

> Integration of sub-symbolic machine learning
technigues into search heuristics. The word
hints at a ready response to events
during the search through an internal online
feedback loop for the self-tuning of critical
parameters.

Methodologies of interest for Reactive Search
Include machine learning and statistics, In
particular reinforcement learning, active or guery.
learning, transfer learning, neural networks
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Different from Markov process

Y — NEIGHBOR( N(X"))
vit+) {3 if f(Y)< f(X®)

Simulated Annealing

-AfT x(h)

Y with probability e otherwise

> Asymptotic convergence Is Irrelevant

> Slow “speed of convergence” to the
stationary distribution... Complete
enumeration can be faster!
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Reactive prohibitions

> beyond local optimality: use prohibitions
for diversification

It is a good morning exercise for a
research scientist to discard a pet
hypothesis every day before

> Prohibition-pbased: breakfast. It keeps him young.

hiStOry Konrad Lorenz

« Steiglitz Weiner- denial strategy for TSP (once
common features are detected in many suboptimal
solutions, they are forbidden) (opposite to reduction
strategy: all edges that are common to a set of local
optima are fixed)

o Lin-Kernighan for graph partitioning
o Tabu Search
o Steepest Ascent Mildest Descent
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An example: prohibition-basead
local search

> X IS the search space 0010110001000

> Neighborhood
N(X®)y={X e X suchthat X = p; o X i=0,..]

> Search trajectory RN UaE.

Y — BEST-NEIGHBOR( N(X'"))

E:‘I:f'l' 1::I _ ‘[ 1_ N i f L f I: 'j:' :| < L ;IF I: }:- |.t.| :|
| 1 X' otherwise (search stops)
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Prohibition-based local search

> Local search leads to local minima

> What next?

o (random) restart

o try to during the
previous searches

o ... EScape from previously visited basins of
attraction around a local minimizer

o SIMple
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Pronipition-based local search (3)

>

0010110001000

0010010001000 H=1

0010010011000 H=2
> Binary strings: If one prohibits changing
again a bit for T Iterations, Hamming
distance has to increase up to T+1
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T=1 example

000 E=0 (local minimizer)

trajectory with T=1 7/
. _,.l'"
J-'..:.I".l
r'.f
.

o
A
."IF

100 E=1 .HEIIl 0 E=2 f_ﬂﬂl E=3

, . I

110 E=3

‘-
o
Wy, T,

" . " . .I.
1._‘.'\._ ..l‘r

111 E= -1 (glebal
minimizer)
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Prohibition and diversification

Basic relationships

¢ The Hamming distance H between a starting point and successive point along the tra-
jectory is strictly increasing for T' + 1 steps.

HXU) XO) =7 for 7<T+1

¢ The minimum repetition interval R along the trajectory is 2(T + 1).

X[t+R]| _X (t) = R> Z{T 4 1]
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Some forms of Tabu Search

> Allowed neighbors

Na (X)) C N(X®)

> Discrete dynamical system

BEsST-NEICHBOR [ Nal X (®) _:'J)

‘_.-!_l._ LLOW ( ,_:.I'hr l' "5: '::t + 1::' II ..-'I'::- |' I 'I o "5: |::f: + 1::| 1}
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Tabu Search: Prohibition Mechanisms

> Strict-T

> Fixed-TS

NA(X"Y ={X =poX¥ s t. LASTUSED(u!) < (t—T)}

> Reactive-TS

? Are the dynamical systems comparable ?
? Or gualitative differences ?
Distinguish pelicies from mechanisms
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ISsues In prohibition-based search

> (offline vs. reactive/online)

> Appropriate for storing and
accessing search history

> for a variety of applications
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Reactive Prohibition-based search

O

—

i~

—

Minimal diversificati

sufficient to escape \
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Motivations for a dynamic T

Need large T!

f(x)

Need small T!
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Self-adjusted T

> T=1 at the beginning
> Increase T If evidence of entrapment
e 1 € T 1.1

> Decrease T If evidence disappears
e T €T0.9

> Details do not matter provided average
value Is appropriate
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Self-adjusted T (2)

I I I
prehibition peried T
percent repetitions +

(c) R. Battiti Reactive Search



How to escape from an attractor

> Cost= Hamming distance from 00000
> SIrict-TS

string:
string:
string:
string:
string:
string: 0|1 0C
string:  0[1C Trajectory for L =
string:

string:

string:

stringg 1100

string:

siring: 1001

string:

string,»1 010

[l |
—_

_-Trajectory for L = 2

-] T O e LD bBO
L I e o]

[ ]
[TES P R e ]

Ht) < |log,(t)] +1

[=P]

|
sujieufisaiisejisnjisniissfaaiisa s jisejn aniisaise
— bJ

LS P T e

Non so intensifying...

vistted: 1101)
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How to escape from an attractor
> SIrict-TS

> Curse of dimensionality, “basin filling”
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How to escape from an attractor

> Fixed-TS i

?2Sufficient to
ﬂﬂ : % il
escape Or nOt ? I:In:n O am a0 ' - om0 100
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min{max{T x 1.1,T +1},L — 2|
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How to escape from an attractor

> Reactive-TS

> reachable Hamming distance is approximately
O(~t) during the initial steps.

> Qualitative difference: an (optimistic) logarithmic
Increase In the strict algorithm, and a
(pessimistic) increase that behaves like the
square root of the number of iterations in the
reactive case.
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Dynamical systems Versus
implementation (policies vs mechanisms)

DISCRETE DYNAMICAL SYSTEM
(search trajectory generation)

DETERMINISTIC STOCHASTIC

* gtrict TS
* probabhilistic TS

* fixed TS #* robust TS

* fixed TS with stochastic tie breaking

* reactive TS * reactive TS with stochastic tie breaking
* reactive TS with neighborhood sampling
(stochastic candidate list strategies)
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Dynamical systems vVersus
Implementation

IMPLEMENTATION
(data structures)

Radix Tree

fixed TS FIFO list
-;tm*age of last usage time of moves
exact storage of configuration
Hashin storage of hashed value
reactive T
Approx. storage of cost function

Reverse Elimination Method
strict TS§ Hashing (and storage of configuration)

Radix Tree
list of visited configurations

Reactive Search



Other reaction opportunities

> Objective function modifications,
tunneling, dynamic local search

> Iterated Local Search, kicks, ...
> Variable Neighborhood Search

> Different randomness levels san
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Open problems

> Unification of methods to “escape from local
minima” and qualitative differences

> Distinguish very clearly dynamical systems from
Implementation

> Fitness surface complexity and information

> Algorithm engineering of efficient and flexible
frameworks

> Parallel and distributed schemes (with “"gossip-
lke” exchanges)

> Relationships with RL
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Relationships between RS and RL

> Reinforcement Learning / NDP

o sequential decision process, optimize “long term
reward”

o learning by interacting with an unknown environment
o learn actions by experimenting and getting feedback

> Reactive Search
o Optimize f

» self-tune local search by analyzing local search
history

o learns appropriate balance of intensification and
diversification
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Recent work: modelling RTS via RL

Reaction on 7 implemented via RL

o MIDP definition

o Least-squares policy iteration” (LSPI) algorithm
Basis function definition

o Examples generation: training phase executed
while solving a single instance



Modelling RTS via RL

- Work In progress:

_ different features / reward, actions, basis functions
tested

_ different SAT benchmarks (structured vs. random)
- Open ISsue:
_ Improve run time performance!

. Results: LSPI-based approach is competitive!
_ In particular, on-line learning Is also competitive



Experimental results

* Comparison with state of the art MAX-SAT solvers

*MAX-3-SAT random benchmark instances
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Additional info:

www.reactive-search.org
WWW.reactive-search.com

BOOK:

Reactive search and Intelligent Opitimization
Battiti, Brunato and Mascia,

Springer Verlag, in press, 2008

(Arafiarersion in the wen)


http://www.reactive-search.org/
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THE END
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