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Two topics

•Feature selection with mutual information

•Information in stochastic 

local-search-based 

optimization (brainstorming) 
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Feature selection with 

mutual information 
R. Battiti. 

Using the mutual information for selecting 

features in supervised neural net learning. 

IEEE Transactions on Neural Networks, 5(4):537-

-550, 1994.
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Feature selection 

•Classification: input features F  class C

•Supervised learning

•Feature selection / pre-processing
•reduce computational cost during training and operation

•improve classification accuracy (less noise, less overtraining)

•better explanation (more compact models which can be 

understood and explained)
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Feature selection 

Example: DNA microarray gene expression profiles. 

Of the tens of thousands of genes in experiments, only a 

small number of them is related to the targeted 

phenotypes. For example, in a two-class cancer

subtype classification problem only a few genes are 

often sufficient.

When a small number of genes are selected, their 

biological relationship with the target

diseases is more easily identified. 

These “marker” genes thus provide additional scientific

understanding of the problem. 
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Feature selection 

Two general approaches to feature selection: 

filters and wrappers

Filter type methods are essentially data pre-processing methods.

Features are selected based on the intrinsic characteristics, which 

determine their relevance with regard to the target classes.

In wrapper type methods, feature selection is “wrapped” around a 

learning method: the usefulness of a feature is directly judged by 

the estimated accuracy of the learning method.

Computationally demanding!
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Feature selection 
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Feature selection 
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Feature selection 

Obstacles:

•enormous number of samples when dimension grows

•all possible subsets of size k…
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Feature selection 
Approximations:

1. MI only between couples of variables

2. Greedy selection
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Feature selection 

Estimating MI has difficulties:

-Effect of noise

-Adaptive discretization (Fraser)
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Feature selection 

Fraser 1986
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Feature selection 

Fraser 1986
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Feature selection 

Fraser 1986
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Feature selection 

Lesson learned

- MI is valid in particular when nonlinear

dependencies

- MI can be approximated in a crude

manner while still obtaining optimal

classification results
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Feature selection:

A couple of citations of biological interest 

MINIMUM REDUNDANCY FEATURE SELECTION FROM

MICROARRAY GENE EXPRESSION DATA

CHRIS DING and HANCHUAN PENG

Journal of Bioinformatics and Computational Biology

Vol. 3, No. 2 (2005) 185–205

Profiled support vector machines for antisense oligonucleotide

efficacy prediction

Gustavo Camps-Valls, Alistair M Chalk, Antonio J Serrano-López

José D Martín-Guerrero and Erik LL Sonnhammer

BMC Bioinformatics

Published: 22 September 2004

Published: 22 September 2004
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Feature selection:

A couple of citations of biological interest

An Entropy-based gene selection method for cancer classification

using microarray data

Xiaoxing Liu, Arun Krishnan and Adrian Mondry

Published: 24 March 2005

BMC Bioinformatics 2005
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Reactive search: 

optimization with 

online learning
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WHY…condemned to live with heuristics!

Papadimitriou and Steiglitz „82
 6. Heuristics Any of the < five > approaches above 

without a formal guarantee of performance can be 
considered a “heuristic.” However unsatisfactory 
mathematically, such approaches are certainly valid in 
practical situations.

“hardness of approximation” results (in addition 
to NP-hardness results) of last decades: for 
many problems abandon the hope of finding 
approximation algorithms (with formal 
performance guarantees)!
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WHY RS and Intelligent Optimization?

 Basic optimization is a solved problem

More and more difficult to discover radically new 

techniques

 Optimization ``in the large’’

• Simplify life for the final user! ..automating the design process.

• Algorithm selection, adaptation, integration, comprehensive 

solution.

• Diversity, stochasticity, dynamicity

• Interaction with final user (HCI)

• Relationships between problem definition and problem solution 

(learning the definition!)

Increase in automation  final user wins…

… but more challenging work for the 

researcher… no off-the-shelf hyper-heuristics
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Reactive search
=

ON-LINE MACHINE LEARNING FOR OPTIMIZATION 

= 

on-line dynamic and adaptive search

=

on-line reinforcement learning for optimization

Intelligent optimization includes also learning in 
different contexts: off-line tuning, swarm intelligence, 
genetic algorithms and natural adaptation, tabu
search, …

Reactive Search:  Learning on the Job
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Machine 

learning

and neural 

nets
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Who invented reactive search ?
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The role of the user



(c) R. Battiti Reactive Search 25

The role of the user

 choices and free parameters

Algorithm(T)

 the user as a crucial learning component
(“trial and error”)

 Parameter tuning is a typical “learning” 
process where experiments are designed, with 
the support of statistical estimation (parameter 
identification) tools.
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Automated tuning through 

machine learning

Automation. The time-consuming tuning 

phase is now substituted by an automated 

process.

Complete and unambiguous 

documentation. The algorithm becomes 

self-contained:  its quality can be judged 

independently from the designer.

Complexity is shifted

Final user  algorithm developer
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On-line tuning

Take into account:

 Problem-dependent

 Task-dependent

 Local properties in configuration space 

(see local search), parameters are 

dynamically tuned based on 

optimization state and previous history
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Reactive search is about
 integration of sub-symbolic machine learning

techniques into search heuristics. The word 
reactive hints at a ready response to events
during the search through an internal online 
feedback loop for the self-tuning of critical
parameters. 

Methodologies of interest for Reactive Search
include machine learning and statistics, in 
particular reinforcement learning, active or query
learning, transfer learning, neural networks
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Different from Markov process

 Asymptotic convergence is irrelevant

 Slow “speed of convergence” to the 

stationary distribution... Complete 

enumeration can be faster!

Simulated Annealing
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Reactive prohibitions

 beyond local optimality: use prohibitions 
for diversification

 Prohibition-based:

history
 Steiglitz Weiner- denial strategy for TSP (once 

common features are detected in many suboptimal 
solutions, they are forbidden) (opposite to reduction 
strategy: all edges that are common to a set of local 
optima are fixed)

 Lin-Kernighan for graph partitioning

 Tabu Search

 Steepest Ascent Mildest Descent

It is a good morning exercise for a 

research scientist to discard a pet 

hypothesis every day before

breakfast. It keeps him young.

Konrad Lorenz
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An example: prohibition-based 

local search

 X is the search space

Neighborhood

 Search trajectory

0010110001000
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 Local search leads to local minima

What next?

 (random) restart

 try to use knowledge accumulated during the 

previous searches (learn !)

 … escape from previously visited basins of 

attraction around a local minimizer 

(diversification)

 simple diversification through prohibitions

Prohibition-based local search
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 diversification through prohibitions

 Binary strings: if one prohibits changing 

again a bit for T iterations, Hamming 

distance has to increase up to T+1

Prohibition-based local search (3)

0010110001000

0010010011000

0010010001000 H=1

H=2
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T=1 example
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Prohibition and diversification

Basic relationships
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Some forms of Tabu Search

 Allowed neighbors

Discrete dynamical system
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Tabu Search: Prohibition Mechanisms

 Strict-TS

 Fixed-TS

Reactive-TS

? Are the dynamical systems comparable ?

? Or qualitative differences ?

Distinguish policies from mechanisms
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Issues in prohibition-based search

 Tuning of T (offline vs. reactive/online)

 Appropriate data structures for storing and 

accessing search history

Robustness for a variety of applications
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Reactive Prohibition-based search 

Minimal diversification

sufficient to escape
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Motivations for a dynamic T

x

f(x)

Need large T!

Need small T!
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Self-adjusted T

 T=1 at the beginning

 Increase T if evidence of entrapment

 T  T  1.1

Decrease T if evidence disappears

 T  T 0.9

Details do not matter provided average

value is appropriate
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Self-adjusted T   (2)
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How to escape from an attractor

Cost= Hamming distance from 00000

 Strict-TS

Non so intensifying…
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How to escape from an attractor

 Strict-TS

Curse of dimensionality, “basin filling”
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How to escape from an attractor

 Fixed-TS

?Sufficient to

escape or not ?
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How to escape from an attractor

Reactive-TS (react when loc. minimum is 

repeated)

T Hamming dist.
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How to escape from an attractor

 Reactive-TS

 reachable Hamming distance is approximately 

O(√t) during the initial steps.

 Qualitative difference: an (optimistic) logarithmic 

increase in the strict algorithm, and a 

(pessimistic) increase that behaves like the 

square root of the number of iterations in the 

reactive case.
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Dynamical systems versus 

implementation (policies vs mechanisms)
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Dynamical systems versus 

implementation
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Other reaction opportunities

Objective function modifications, 
tunneling, dynamic local search

 Iterated Local Search, kicks, …

 Variable Neighborhood Search

Different randomness levels (SAT)
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Open problems

 Unification of methods to “escape from local 

minima” and qualitative differences

 Distinguish very clearly dynamical systems from 

implementation

 Fitness surface complexity and information

 Algorithm engineering of efficient and flexible 

frameworks

 Parallel and distributed schemes (with “gossip-

like” exchanges)

 Relationships with RL
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Relationships between RS and RL 

 Reinforcement Learning / NDP
 sequential decision process, optimize “long term 

reward”

 learning by interacting with an unknown environment

 learn actions by experimenting and getting feedback

 Reactive Search
 optimize f

 self-tune local search by analyzing local search 
history

 learns appropriate balance of intensification and 
diversification



Recent work: modelling RTS via RL

Reaction on T  implemented via RL

 MDP definition

 “Least-squares policy iteration” (LSPI) algorithm

• Basis function definition

 Examples generation: training phase executed online

while solving a single instance



Modelling RTS via RL

• Work in progress:

– different features / reward, actions, basis functions 

tested

– different SAT benchmarks (structured vs. random)

• Open issue:

– improve run time performance!

• Results: LSPI-based approach is competitive!

– In particular, on-line learning is also competitive



Experimental results
• Comparison with state of the art MAX-SAT solvers

•MAX-3-SAT random benchmark instances 
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Additional info:

www.reactive-search.org

www.reactive-search.com

BOOK:

Reactive search and Intelligent Optimization

Battiti, Brunato and Mascia, 

Springer Verlag, in press, 2008

(draft version in the web)

http://www.reactive-search.org/
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http://www.intelligent-optimization.org/LION3/



THE END
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