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Abstract

In his 1938 Master’s Thesis, Shannon demonstrated that any Boolean function can be realized by a switching
relay circuit, leading to the development of deterministicdigital logic. Here, we replace each classical switch with
a probabilistic switch (pswitch). We present algorithms for synthesizing circuits closed with a desired probability,
including an algorithm that generates optimal size circuits for any binary fraction. We also introduce a new duality
property for series-parallel stochastic switching circuits. Finally, we construct a universal probability generator
which maps deterministic inputs to arbitrary probabilistic outputs. Potential applications exist in the analysis and
design of stochastic networks in biology and engineering.

I. INTRODUCTION.

Claude Shannon, in his 1938 Master’s Thesis, discovered a systematic synthesis procedure to realize a
given Boolean function using deterministic switches [Sha38]. This classical contribution led to the devel-
opment of modern digital logic design and is at the foundation of our ability to design and manufacture
digital circuits with millions of transistors.

Most importantly, Shannon showed how logic (Boolean algebra) can be mapped to physics (relay-
based switching circuits). Shannon focused on deterministic variables and functions; by closing a subset
of switches, a switching circuit and its associated Booleanfunction yield a deterministic output.

The natural question is: can we create a similar theory for stochastic variables and functions? Namely,
given a desired probability distribution and a set of probabilistic switches (that we callpswitches) as
building blocks, can we systematically design a switching circuit that realizes a desired probability
distribution? Our main contribution is a positive answer tothis question for the case where the probability
distributions involved are Bernoulli.

Shannon’s work focused on the so-called two-terminal series-parallel circuits. Atwo-terminal circuit
is an undirected graph with exactly two nodes labeled as terminals, where each node can be visited by a
path between the terminals. A two-terminal circuitC is series-parallel (sp) iff C is: (1) a single switch,
or (2) a series or parallel combination of two sp circuits.

In this paper, we will also investigate a surprisingly powerful subset of series-parallel circuits that we
call simple series-parallel (ssp). A two-terminal circuitC is ssp iff C is: (1) a single switch, or (2) a
single switch in series or parallel with a ssp circuit.

Shannon’s work focused on deterministic switching circuits, circuits where each switch is associated
with a Boolean variable defining whether the switch is closed. We instead focus onstochastic switch-
ing circuits, circuits where each pswitch is associated with a Bernoullirandom variable defining the
(independent) probability that the pswitch is closed.

Let Pr(C) represent the probability that some switching circuitC is closed. A circuit is closed iff
its terminals are connected; otherwise, it is open. Some probability x is realized by C iff x = Pr(C).
Connecting a single terminal ofA with one terminal ofB places them in series such that the new circuit
is closed only when bothA andB are closed (see Figure 1b). Connecting both terminals of twoswitching
circuits A andB places them in parallel, such that the new circuit is closed only when at least one ofA
andB are closed (see Figure 1c).
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Fig. 1. Series and Parallel Constructions. The relationship between graphs and switching circuits is shown. There are only two ways to
combine two single-pswitch circuits, both shown here.(a) Only one single-pswitch circuit exists.(b) Series. Only when both pswitches are
closed is a series circuit closed.(c) Parallel. Only when both pswitches are open is a parallel circuit open.

Now, we will add a single pswitch closed with probabilityx to an established circuitC. Let F = Pr(C).
First, note that only one switching circuit exists with a single pswitch (see Figure 1a). If the pswitch is
added in series, then the pswitch andC must both be closed; hence, the new circuit is closed with
probability F ′ = Fx. If the pswitch is added in parallel, then the circuit is onlyopen if both the pswitch
andC are open; hence, the new circuit is closed with probabilityF ′ = 1− (1−x)(1−F ) = (1−x)F +x.

In this paper, we shall construct two-terminal stochastic switching circuits where each pswitch is closed
with some rational probability. The set of possible pswitchclosure probabilities from which a circuit is
constructed will be referred to as thepswitch set S. We will call a circuit which realizes a Bernoulli
distribution using the fewest possible pswitches anoptimal size circuit. For example, given a pswitch set
S = {1

2
}, we can use four pswitches to construct a stochastic switching circuit with probabilityP = 11

16

(see Figure 2). No other circuit can be constructed which realizes it with fewer pswitches (proven in
Section II), and so it is also an optimal size circuit.

We are now ready to state the main results in the paper:
1) Synthesizing optimal size switching circuits which realize Bernoulli distributions. (Sections II, III)
2) A duality property allowing for optimality and existence proofs. (Section III)
3) A universal probability generator (UPG) which mapsn deterministic input bits to alln-bit binary

fractions (in increasing order) using only4n − 2 switches. The UPG can be used to synthesize a
circuit realizing any arbitrary deterministic to probabilistic mapping. (Section IV)

In the final two sections, we will discuss additional relationships between Boolean algebra and stochastic
switching circuits. In Section V, we discuss two additionalrepresentations of stochastic switching circuits
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Fig. 2. Realizing F = 11

16
= 0.10112 . Progressing from the least-significant to the most-significant bit in the binary representation ofF ,

a pswitch is added in series if ’0’ and in parallel if ’1’. The probability that each circuit is closed as a binary fraction is printed beneath
each circuit.(a) Begin with a single pswitch; the least significant bit is always one, since we can remove any trailing zeros.(b) To add a
pswitch in parallel, we shift the binary fraction representing the circuit’s probability of closure right with replacement. (c) To add a pswitch
in series, we shift the binary fraction right without replacement.(d) Using this algorithm, the generated switching circuit is proven to use
the least possible number of pswitches to realize the binaryfraction, across all switching circuits.

– as probabilistic Binary Decision Diagrams (BDDs) [Mei98]and as Boolean polynomials [Lec71]. We
use probabilistic BDDs to prove the correctness of the B-algorithm, a major synthesis result discussed in
Section II. We also show that the symbolic probability of anyBoolean switching circuit being closed is
equivalent to its Boolean polynomial.

Before we continue with the details of our results, we describe some of the related literature. Series-
parallel circuits, a subset of switching circuits, have been rigorously analyzed, including their enumeration
[RS42], duality properties [Mac92], and other interestingtopological properties [Duf65]. For instance,
Duffin found that the presence of a Wheatstone bridge is necessary and sufficient to make a circuit
non-series-parallel [Duf65].

Many duality properties for series-parallel circuits havebeen studied, particularly with resistor networks
[Mac92], logic gate networks (e.g. De Morgan’s Law) [Whi61], and electrical networks [Tel40].

Circuit elements have been traditionally modeled stochastically to assess reliability of components
[Col87]. To produce a system failure, a series connection ofcomponents only requires a single failure,
whereas a parallel connection of components requires all components to fail. Several physical circuits
have also been proposed for designing stochastic systems. For example, Gill suggested how to generate
a probability transformation element using sequential memory logic [Gil63].

II. REALIZING BINARY FRACTIONS.

We first present a simple algorithm that constructs ann-pswitch circuit for any probability expressable
as ann-bit binary fraction. We prove that the resulting circuit isoptimal in size, for any switching circuit.

The B-algorithm: an algorithm for generating circuits that realize binary fractions with pswitch set
S = {1

2
}. Let Fi be theith least significant bit ofF , an n-bit binary fraction with (WLOG) a nonzero

least-significant bit.
1) Let circuit C1 be the single-pswitch circuit.
2) For bit Fi, i = 2 to n, let circuit Ci be:

a) If Fi = 0, C1 in series withCi−1, or
b) If Fi = 1, C1 in parallel withCi−1.

See Figure 2 for an example which realizes11/16; namely, we use the B-algorithm withF = 10112.
Theorem 1: The B-algorithm synthesizes a stochastic switching circuit closed with probabilityF .
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Fig. 3. Tree of ssp Circuits. The binary tree depicted here shows how to generate all possible ssp circuits. Each left branch depicts
inserting a pswitch in series, and each right branch depictsinserting a pswitch in parallel. Note that adding a series pswitch shifts ’0’ into
the most significant bit of the binary probability fraction;the addition of a parallel pswitch shifts in ’1’.

Proof: The proof is by induction on the number of bits inF . For the base case, we begin withC1

as the single-pswitch circuit closed with probability 1/2;in other words,Pr(C1) = 0.12.
Now, suppose that some circuitCi is closed with probabilityPr(Ci) = 0.x, wherex is a bit vector. Then,

we will show that a pswitch added in series or parallel yieldsPr(Ci+1) = 0.0x or Pr(Ci+1) = 0.1x,
respectively. Adding a pswitch in series yieldsPr(Ci+1) = Pr(Ci)/2, namely, a right shift with an
addition of ’0’ in the most significant bit ofPr(Ci). Adding a pswitch in parallel yieldsPr(Ci+1) =
1/2 + Pr(Ci)/2, namely, a right shift with an addition of ’1’ in the most significant bit of Pr(Ci).

Hence, by using this construction for each of then bits in F , an n-pswitch circuit that realizesF is
synthesized.

Note that the B-algorithm only produces a subset of all switching circuits – those synthesizable by
adding single pswitches in series or in parallel. To see how the B-algorithm works graphically, see Figure
3.

We will now prove that even whenall switching circuits are considered, the B-algorithm is optimal in
the number of pswitches. To do this, we will first present an equation that holds for all switching circuits.
Suppose that we add a new pswitch closed with probabilityx to an existing circuit. Then, whereC and
O are the probabilities of the circuit formed by adding a wire and a short in place of the new pswitch,
respectively:

P ′ = xC + (1 − x)O (1)

Using this equation, we can prove statements about all stochastic switching circuits (beyond those which
are enumerably series-parallel). Note thatC > O. Intuitively, by adding a new pswitch we create a new
potential path between the terminals. Hence, for the new circuit M , Pr(M) > O. Since closing the new
path makes the terminals more likely to be connected, thenC > Pr(M). This demarkation ofC > O
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actually stems from a sign convention –x represents the probability that a circuit is closed rather than
open.

In the following theorem, we shall use the previous equationto prove a general lower bound for pswitch
sets. Here, the optimality of the B-algorithm corresponds to the caseq = 2.

Theorem 2: Let q be an arbitrary positive integer. Using the pswitch setS = {1/q, 2/q, ..., (q − 1)/q},
an optimal size circuitC that realizes a rationalF = a/qn, 0 < a < qn, requires at leastn pswitches.

Proof: We will assume that every optimal size circuitC as defined in the claim of the theorem has
size at mostn−1. The idea is to show that ifC (which realizesF ∈ {0, q−1}n, the base-q representation
of the desired probability) of sizen− 1 exists, then eventually we must realize a non-integral probability
with zero pswitches, a contradiction.

Here is the idea in the proof. Suppose we have a circuitCi such thatF i associated withPr(Ci) hasi
digits in the alphabet{0, . . . , q − 1}. We can assume thatF i has a nonzero value in the least significant
digit. Then, we will choose some pswitchx in Ci, create two new circuits by opening or closingx, and
prove that one of the circuits has probability represented by F i−1, with i − 1 digits and a nonzero value
in its least significant digit. Namely, we can reduce the number of pswitches by one and get a probability
value that uses one less digit. This process will lead to a contradiction.

By the laws of probability,

Pr(Ci) = Pr(Ci|x open)Pr(x open) + (2)

Pr(Ci|x closed)Pr(x closed)

= a/qi.

We know thatPr(x closed)∈ S and Pr(x open)∈ S, sincePr(x open)= 1 − Pr(x closed). Both
denominators areq, so for some integersb and c where0 < b, c < q − 1,

a

qi−1
= bPr(Ci|x open) + cPr(Ci|x closed). (3)

Let F i be the string associated with circuitCi, wherePr(Ci) = a/qi, for integersa and q. F i has
lengthi and a non-zero least significant digit. Then, by opening or closing some pswitchx in Ci, one of
the new circuits is at leasti− 1 digits long. Why? Suppose that both of the new circuit probabilities are
r, s < i−1 bits long. Then, there existsb′, c′ ∈ N such thata/qi−1 = b′/qr+c′/qs, where each fraction has
a nonzero digit in its least significant digit. Then,a = b′qi−r−1 + c′qi−s−1 = qi−r−1(b′ + c′qr−s). However,
q|a, so a has a 0 in its least significant digit, producing a contradiction.

If we assume that there existsC as defined in the claim of the theorem with at mostn − 1 pswitches
realizing anF with n digits, then we can apply the above processn − 1 times and eliminate all the
pswitches. However, the resulting probability will still be a fraction, and we reach a contradiction.

III. D UALITY .

Duality is an important property integral to the study of circuits. Thedual of a circuit is a systematic
change of the structure of the circuit at each stage in its construction to yield some inverse global property.
This concept of duality appears in many domains, three of which are illustrated in Figure 4.

To take the inverse (the NOT) of a Boolean function composed of AND and OR gates, we can apply
De Morgan’s duality law; namely,A ∧ B = A ∨ B (see Figure 4a) [Whi61].

Likewise, Macmahon showed that the dual of a series-parallel resitor network composed ofr-ohm
resistors with equivalent resistance(p/q)r has the equivalent resistance(q/p)r (the inverse) [Mac92] (see
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Fig. 4. Duality. Duality has played an important role in the analysis of circuits. (a) The dual of logic gates, by De Morgan’s Law (in
words, (a AND b) = NOT ((NOT a) OR (NOT b)) = NOT (a OR b)); (b) The dual of series-parallel resistor circuits of equal resistance,
by Macmahon. Series connections are now parallel, and vice versa; the equivalent resistance coefficients are reciprocals. (c) The dual of
stochastic series-parallel switching circuits. Each pswitch closed with probabilityp is closed with1 − p in the dual. Note the similarity to
the dual of (b).

Figure 4b). The construction of a series-parallel circuitC is a series of stages involving inserting a series-
parallel circuit in series or parallel to an existing series-parallel circuit. To achieve Macmahon’s duality
result, the same sequence of steps is followed, but each insertion is inverted, i.e. if a circuit is added in
series inC, then in the dual ofC it is inserted in parallel, and vice versa. Then, if some resistor circuit
C comprised ofr-ohm resistors has equivalent resistancepr, then the resulting dual circuit will have an
equivalent resistance of(1/p)r.

We have found that duality exists in series-parallel stochastic switching circuits as well. Like Macma-
hon’s algorithm, if a series-parallel circuit is added in series to a circuit, it is added in parallel to the dual
(and vice versa). Like De Morgan, instead of adding a circuitclosed with probabilityp, we add a circuit
closed with probability1− p. Then, if the original circuit is closed with probabilityP , the dual circuit is
closed with probability(1 − P ), the inverse in probabilistic terms (see Figure 4c).

We will use duality in this section to find algorithms for realizing general probability classes (e.g. the
probability class of all binary fractions).

First, note that the dual ofC only exists ifC is series-parallel, and if for every pswitchx used inC,
the pswitch1 − x exists inS. We will now show an important property – the dual ofC is closed with
probability 1 − Pr(C).

Theorem 3: Duality Theorem. Given some stochastic series-parallel circuitC and its dualC, then
Pr(C) + Pr(C) = 1.
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Fig. 5. Expressive Power. Here, we are given an initial pswitch setS. Further, we assume that all rationalsa/qn, 0 ≤ a < qn, for some
positive integerq, can be realized. Using duality, we show how to realize allb/qn+1, 0 < b < qn+1, by adding a single pswitch. The
numeratorb is shown on each number line along with which pswitch to add torealize it.(a) All a/2n can be synthesized usingn pswitches.
(b) All a/3n can be synthesized usingn pswitches.(c) All a/4n can be synthesized usingn + 1 pswitches. Note that usingn pswitches
we can only generate the evens in the middle half. To generatesome odd numeratoro, place a1/2 pswitch in series with2o, usingn + 1
pswitches (ifo > 2 · 4n, then use duality).

Proof: This is shown using induction on the definition of series-parallel. For the base case, the dual
of a single-pswitch circuit with pswitchx is the single-pswitch circuit with pswitch1− x. Now, suppose
that the dual of a stochastic circuitC is closed with probability1−Pr(C). Adding a second series-parallel
circuit C ′ in series withC to form Cs yieldsPr(Cs) = Pr(C)Pr(C ′). AddingC ′ in parallel to the dual of
C to form Cp yieldsPr(Cp) = 1− [1−(1−Pr(C ′))][1−(1−Pr(C))] = 1−Pr(C)Pr(C ′) = 1−Pr(Cs).
The case of addingC ′ in parallel is identical.

This duality property is a powerful tool for analyzing stochastic switching circuits. Suppose that for
every pswitchx in a circuit C, a pswitch1 − x is in S. As follows, the duality property can be used to
prove which probability classes can be realized by all simple series-parallel circuits givenS.

Theorem 4: S = {1

2
}. All Pr(Cn) = a

2n , 0 < a < 2n, (i.e. all n-bit binary fractions) can be realized
with at mostn pswitches.

Proof: Suppose that all rational probabilitiesa/2n can be realized. Now, add a pswitch in series with
each circuit, realizing all(1/2)(a/2n) = a/2n+1, 0 < a < 2n. By applying the Duality Theorem, every
b/2n+1 = 1 − a/2n+1, where2n < b < 2n+1, can be realized by synthesizing the dual of each original

7



P1 =

20/81

a b

d

2
3

P2 =

20/27

P3 =

2/3

2
3

2
3

1
3

P3 =

2/9

c

2
3

2
3

e

2
3

2
3

1
3

2
3

Fig. 6. Realizing P = 40

81
, given S = {1/3}, {2/3}. Each box represents an unknown circuit closed with the desired probabilityP .

(a) This is an example of backwards construction, and we initially begin with an unknown circuit closed with probabilityP . (b) Initially,
P1 = 40/81, and here1 · 33 < P1 < 2 · 33. Since the numerator40 is additionally even, then we must add a2/3 pswitch in series. The
remainder of the circuit must be closed with probabilityP2 = P1/(2/3) = 20/27. (c) Now, P2 = 20/27 > 2 · 32/27, so the second-to-last
pswitch is2/3 in parallel. Hence, the probability the remaining circuit must be closed isP3 = P2−2/3

1−2/3
= 2/9. (d) P3 = 2/9 < 31/9, so

the next pswitch is 1/3 in series. The remaining circuit mustbe closed with probabilityP4 = P3/(1/3) = 2/3. (e) Now, P4 = 2/3 is in
our switch set. We replace the final missing circuit box with this, and we are finished.

circuit.
Hence, we can realize alln-bit binary fractions withn pswitches (see Figure 5a).

Theorem 5: S = {1

3
, 2

3
}. All rational Pr(Cn) = a

3n , 0 < a < 3n, (i.e. all n-trit ternary fractions) can
be realized withn pswitches.

Proof: Suppose that all rationalsa/3n, 0 < a < 3n, can be realized. Now, add a1/3 pswitch in series
with each circuit, realizing alla/3n+1, 0 < a < 3n. By the Duality Theorem, allb/3n+1 = 1 − a/3n+1

can be realized by the dual of each original circuit, where2 · 3n < b < 3n+1. Hence, we can synthesize
the lower third and upper third of the new probabilities.

Now, we add a2/3 pswitch in series with each circuit, realizing all evenc/3n+1, 3n < c < 2 · 3n+1.
By the Duality Theorem, we can realize all1− c/3n+1, i.e. all odds in the center range, by synthesizing
the dual of each of the2/3-series circuits.

Hence, alln-trit ternary fractions can be realized withn pswitches (see Figure 5b).
Note that an optimal algorithm for realizing any rational fractiona/3n can be obtained from the previous

proof. From Theorem 2 (q = 3), a minimum ofn pswitches is required to realize alln-trit ternary fractions;
hence, the strategy in the proof is optimal. Given a desired probability F andS = {1/3, 2/3}, then the
algorithm is (see Figure 6 for an example):

1) Begin with an open circuit.
2) If F = 1/3 or F = 2/3, then add the pswitchF and halt. Otherwise, leta be the numerator ofF .
3) Add a pswitch:

a) If a < 3n, add a 1/3 pswitch in series. (Letp = 1/3.)
b) If 3n < a < 2 · 3n, then:

i) If a is odd, add a 1/3 pswitch in parallel. (Letp = 1/3.)
ii) If a is even, add a 2/3 pswitch in series. (Letp = 2/3.)

c) If 2 · 3n < a < 3n+1, add a 2/3 pswitch in parallel. (Letp = 2/3.)
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4) Find the new desired probability:

a) If a pswitch was added in series, letF ′ = F/p.
b) If a pswitch was added in parallel, letF ′ = F−p

1−p
.

5) Let F = F’. Goto 2.

This trend ofn-pswitch circuits realizing all rational numbersa/qn cannot continue. Forq > 3, already
in the case ofn = 2 there are fractionsa/q2 that cannot be realized by a size two circuit. We formalize
this result in the following theorem.

Theorem 6: We are given a pswitch set containing only rational numbers with denominatorq, where
q > 3. Then, there exist rational probabilitiesa/q2 which cannot be realized by a pswitch circuit of size
two.

Proof: The idea in the proof is to show that there exists a prime number b such thatb/q2 cannot be
realized by two pswitches.

A network with two pswitches in series results in a compositenumerator (or a prime numerator that
belongs to the pswitch set). Now notice that a circuit with two 1/q pswitches in parallel results in
the smallest fraction obtainable by adding two pswitches inparallel. The probability of this circuit is
(2q − 1)/q2.

Hence, the range of numerators for which only composite numerators can be generated isq < a ≤ 2q−2.
By Bertrand’s Postulate [Ram19] [Erd34], there exists at least one prime number betweenq and2q − 2,
for q > 3; hence, a prime numerator always exists within this range that cannot be realized.

As an example, suppose we have the pswitch setS = {1/4, 2/4, 3/4}, and we want to realizeP = 5/16,
where the numerator is prime, using two pswitches. Then, thelargest prime-numerator fraction realized
by placing the pswitches in series is3/16. The smallest fraction realized by placing the pswitches in
parallel is7/16 (placing1/4 in parallel with1/4). Hence,5/16 cannot be realized using two pswitches.

Now, we provide an upper-bound on the number of pswitches necessary to realize any fractiona/4n

using the pswitch set of all fourths.
Theorem 7: S = {1

4
, 2

4
, 3

4
}. All rational Pr(Cn) = a

4n , 0 < a < 4n can be realized withx pswitches,
wheren ≤ x < 2n.

Proof: Suppose that all rational numbers of the forma/4n, 0 < a < 4n, can be realized. Now, by
adding a1/4 pswitch in series, the lower quadrant ofa/4n+1 can be realized. By the Duality Theorem,
the upper quadrant can be realized by synthesizing the dual of each1/4-series circuit.

By adding a2/4 pswitch in series with each of the original circuits, the remaining even numerators can
be synthesized. Now, any remaining odd numerators can be generated by realizing2s/4n and adding a
1/2 pswitch in series (or, ifs > 2 · 4n, realizing twice the dual ofs).

Each stage requires at most two switches with the exception of the first, and so alla/4n, 0 < a < 4n,
can be realized by at most2n − 1 pswitches (see Figure 5c).

The previous proof suggests that many stages may require twoswitches. However, in practice often no
more thann + 1 pswitches are required, provided that certain prime numerators are not synthesized. As
an example,5/16 cannot be realized with two pswitches, but it can be realizedwith three.

Discovering the optimal number of pswitches required to realize any a/4n (given q pswitch setS =
{1/4, 2/4, 3/4}) is still an open problem, as is an algorithm to generate the optimal size circuit.

IV. A U NIVERSAL PROBABILITY GENERATOR

Shannon showed how to synthesize any deterministic circuitfrom a truth table – an explicit mapping
of n-bit inputs to output bits. This synthesis procedure was a fundamental building block in the evolution
of modern-day computing. Here, we show an efficient synthesis procedure for a similar building block,
the synthesis of any arbitrary probabilistic truth table – amapping ofn-bit deterministic inputs to output
probabilities. In other words, deterministic inputs will change the structure of the probabilistic circuit to
realize any desired binary fraction.
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Fig. 7. The Universal Probability Generator (UPG). Here, we show the construction of the UPG, a circuit which maps deterministic
inputs to probabilities.(a) The mappings for a UPG with three deterministic input bits.(b) C1 is two switches in series. Two possible
constructions forCi are shown – one which uses a single pswitch (left), which is minimal, and one which is monotonic in the deterministic
switches (right). Each recursive circuit stage requires anadditional four switches.

Most impressive, however, is that the underlying stochastic circuit powering this – the Universal
Probability Generator (UPG) – can be synthesized using onlya linear number of switches. To generate
everyn-bit binary fraction (2n total probabilities) in increasing order, selectable using n deterministic bits,
requires only4n − 2 switches. Onlyn of these, the minimum possible number, need be probabilistic.

After we show how to construct a UPG, we will then return to Shannon’s deterministic synthesis
results to build a combinational logic block which maps deterministic inputs to arbitrary probabilistic
outputs. Then, we will have a synthesis procedure for constructing any probabilistic truth table (where
the probabilities are binary fractions).

We define auniversal probability generator (UPG) to be a circuit which mapsn deterministic input
bits to all 2n n-bit binary fractions in increasing order (e.g. forn = 3, see Figure 7a).

This can be easily accomplished using an exponential numberof switches; we simply construct each of
the 2n probabilistic circuits separately then uniquely select them with deterministic switches. Using the
B-algorithm from earlier, we can synthesize all2n probabilistic circuits closed with rational probability
a/2n, where0 ≤ a < 2n, each requiringn pswitches. Then, we can add a deterministic selector which
only selects one of the2n probabilistic circuits, depending on then deterministic input bits. This is an
inefficient method, however, since it minimally requires anexponential number of pswitches.

Here, we propose two constructions which require only4n − 2 total switches. The first construction
requiresn pswitches, the fewest possible; the second is monotonic in the value of its deterministic variables.
In this section, all pswitches will be closed with probability 1/2.

Theorem 8: The following recursive construction will synthesize ann-bit deterministic input UPG
circuit Cn using4n − 2 switches:

1) Given a deterministic inputx, let C1 be a switch and pswitch in series as in Figure 7b.
2) To synthesize circuitCi, substituteCi−1 into the template forCi given in Figure 7b.
3) Let all deterministic switches added for circuitCi be closed (unless negated) iff theith bit from the least significant

input bit is ’0’.

Proof: For C1, if the deterministic switch is open, we realize 0/2; if it isclosed, we realize 1/2.
Hence, we realize all1-bit binary fractions (See Figure 8a).

Suppose that we can generate all(i − 1)-bit binary fractions with circuitCi−1. Then, we shall show
we can generate alli-bit binary fractions with circuitCi. If the ith least significant input bit is ’0’, then
the deterministic switches added forCi are open (unless negated). Hence, in both constructions in Figure
7b, a1/2 pswitch is connected in series withCi−1. This yields the first half of the new numerators, since
a/2n · 1/2 = a/2n+1. Similarly, if the ith bit is ’1’, then a1/2 pswitch is connected in parallel withCi−1,

10
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Fig. 8. One-bit and Two-bit UPGs. (a) For one deterministic bitJ1, a UPG can generate all probabilities0/2 and 1/2, in increasing
order by the deterministic input.(b) For two deterministic bitsJ2 and J1, a UPG generates all probabilities0/22, 1/22, 2/22, and3/22,
again in increasing order.

yielding the second half of the new numerators, since1 − 1/2 · (1 − a/2n) = a/2n+1 + 1/2 (see Figure
8b). Hence, everyi-bit binary fraction is generated for each recursive step, mapping each deterministic
input x to x/2n.

In both constructions, four switches are required for eachCi, excludingC1 for which only two are
required. Hence, aftern − 1 recursions and the base case, we can generate2n probabilities with4n − 2
switches.

In addition to these two constructions, also note that the dual of the series-parallel UPG construction is
also a valid UPG circuit. By the Duality Theorem, this construction will realize all1−Pr(Cn), yielding
again2n uniquen-bit binary fractions. Also, note that a parallel circuit can also be used forC1; this
would map each deterministic inputx to (x + 1)/2n, generating an always-closed circuit (2n/2n) rather
than an always-open circuit (0/2n).

After generating the UPG, deterministic inputs yield probabilities in increasing order. To create an
arbitrary mapping, a combinational logic block can be added(see Figure 9a) which maps the desired
deterministic inputs to the UPG deterministic inputs usingclassical logic synthesis.

We will now provide an example of constructing a circuit which realizes the truth table in Figure 9b.
First, since3-bit binary fractions must be realized by the circuit, we build a 3-bit deterministic input
UPG by following the construction rules (see Figure 9c). TheUPG maps three deterministic inputs to
probabilities as shown in Figure 7a. Hence, we will add combinational logic to map the circuit deterministic
inputsI to the UPG deterministic inputsJ .

Note that the mentioned probabilistic truth table also can be interpreted as a discrete probability
distribution. By only using pswitches and deterministic switches, by the procedure above any discrete
probability distribution of binary fractions can be generated.

11



I2 I1      probability

0 0     3/4

0 1     1/8

1 0     1/2

1 1     5/8

b c

J1

J2

J2

J
2

J3

J3

J
3

Universal

Probability

Generator

Deterministic Input

A B

Combinational

Logic

a

A

B

J1J2J3

I1I2

Fig. 9. Realizing a Probabilistic Truth Table. As an example, we will synthesize a UPG and combinational logic block which satisfies
a given mapping between deterministic inputs and probabilities. (a) Combinational logic allows arbitrary mappings to be achieved. (b) The
desired truth table, mapping two input bits to probabilities. (c) A UPG construction which can realize any3-bit binary fraction. To achieve
the mapping in the truth table, the following Boolean functions must be realized in the combinational logic –J1 : I1, J2 : Ī1 ∧ Ī2, and
J3 : Ī1 ∨ I2.

V. REPRESENTATIONS.

In this section, we shall show alternative representationsof stochastic switching circuits using binary
decision diagrams and Boolean polynomials.

A. Probabilistic Binary Decision Diagrams.

Binary Decision Diagrams (BDDs) describe Boolean formulasusing binary trees [Mei98]. A proba-
bilistic BDD associates a random variable with each non-sink node, indicating the probability that each
child is selected [HTP06]. Using these, we will show an additional proof of the B-algorithm.

We define asingle-chain BDD to be a BDD where, for each node, the ’0’ child leads to:
1) a 0-sink and the ’1’ child either leads to a one-sink or a single-chain BDD, or
2) a single-chain BDD and the ’1’ child leads to a one-sink.

Theorem 9: Simple series-parallel (ssp) circuits and single-chain BDDs are isomorphic.
Proof: One-to-one. We claim that for each ssp circuit there exists a unique single-chain BDD. We

will show this by induction on the definition of the ssp circuit. Suppose the ssp circuit is a single switch.
Then, it can be represented as a single leaf node branching toa zero-sink and a one-sink, which is a
single-chain BDD by definition.

Now, suppose that some ssp circuit withn pswitchesCn can be represented by the single-chain BDD
On and that a pswitch is added in parallel toCn. Add a new nodeNp to On representing the new pswitch.
If the switch is closed, then the circuit is closed, so one child of Np is a one-sink. If the pswitch is open,
then the circuit is closed whenCn is closed, so the second child ofNp is the root node ofOn. Hence,
On+1 is a single-chain BDD. When a nodeNs representing the added pswitch is added in series toOn,
then a single-chain BDD is formed in a similar manner.

Any given ssp circuit is a unique construction of series and parallel pswitches. All single-chain BDDs
can be generated by adding left- and right-children. A single-chain BDD is added as the left-child when
a pswitch is added in parallel and as a right-child when a pswitch is added in series. Hence, the BDD for
each ssp circuit is unique. Therefore, by induction we will show that any ssp circuit can be represented
by a unique single-chain BDD.

Onto. We claim that the number of ssp circuits is equivalent to the number of single-chain BDDs. We
claim there are2n−1 single-chain BDDs given exactlyn nodes. For a single node, there exists exactly
one single-chain BDD, where both children are constants, and 21−1 = 1. As shown above, each node can
either add the existing BDD as a left-child or as a right-child. Hence, since there are only two possibilities,
then fork + 1 nodes, there are2 · 2k−1 = 2k possibilities. By induction, then, for exactlyn nodes there
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Fig. 10. An ssp Circuit and Single-Chain BDD. The isomorphic single-chain BDD of an ssp circuit is shown. The probability that the
circuit is closed can be computed easily from the BDD. Each switch i is on or off, represented byxi = 1 and xi = 0, respectively. By
constructing a vectory which for eachi, yi = 1 iff the BDD returns ’1’ whenxi = 1, then the circuit can also be represented compactly
as a binary string.

exist 2n−1 single-chain BDDs. We have shown previously that there exist 2n−1 ssp circuits given exactly
n switches. Then, because it was shown that the mapping is one-to-one, all possible single-chain BDDs
must be mapped to.

As shown, the mapping between ssp circuits and simple BDDs isone-to-one and onto. Hence, they are
isomorphic.

Now, we will prove the B-algorithm using probabilistic BDDs.
Theorem 10: The B-algorithm. Given a ssp circuitCn with n pswitches, each closed with probability

1/2, such thatPr(Cn) is a binary fraction (i.e. a rational number of the forma/2n), thenCn is exactly
described by the binary representation ofa with n bits.

Proof: By the previous theorem, there exists some single-chain BDDOn isomorphic toCn. Then,
the probability ofCn being closed is equivalent to reaching a one-sink by a randomwalk down the BDD
of On. Suppose that some binary vectory describes the single-chain BDD in the following manner: for
somei, yi = 1 if nodeNi has a child which is a one-sink (where nodeNn−1 is the root node), andyi = 0
otherwise. For anyyi, i paths must be followed, each with probability 1/2, to reach the one-sink present
at nodei. So, the probability of reaching the ith node one-sink is(1/2)n−i. Then, the total probability of
reaching a one-sink inOn is the sum of the probabilities of reaching each one-sink, or:

P =
n∑

i=1

yi(
1

2
)n−i =

∑n
i=1(2

iyi)

2n
. (4)

Now, the numerator is the decimal expansion of the binary vector y with n bits, wheren is the number
of switches inCn. Hence, the numerator is equivalent toa in the probability expression. So,y exactly
describesCn, and it is the binary representation ofa.
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For an example of how a ssp circuit and single-chain BDD are related, see Figure 10. Note that, as
discussed in [Mei98], the ordering of the Boolean variablesin the BDD (i.e. the Boolean variable which
each layer corresponds to) affects whether a single-chain BDD can be formed. Hence, to be more precise,
above we proved that for each simple series-parallel circuit, there exists at least one ordering of variables
such that a single-chain BDD can be formed.

B. Boolean Polynomials.

The relationship between Boolean functions and switching circuits was explored by Shannon in 1938
[Sha38]. In this paper, we investigate the relationship between probability functions and stochastic switch-
ing circuits. However, it is also of interest to investigatethe relationship between Boolean functions and
probability functions. For example, the circuitA OR B is equivalent toA + B in Boolean algebra, but it
is Pr(A)+ Pr(B)−Pr(AB) in probabilistic terms. Hence, we ask in this section whether there exists a
single form that can express both Boolean expressions and probabilistic expressions. We answer this in the
affirmative – for any switching circuit, the probability function is equivalent to the Boolean polynomial.

A Boolean polynomial is a sum of monomials, each the product of Boolean variables.In this context,
for every Boolean variablex, x ∈ 0, 1. Polynomials of this form were referred to in an early paper of
George Bool [Boo47]. In prior literature, it has been shown that a unique Boolean polynomial exists
for every Boolean function [Lec71]. As an example, the Boolean formulaA ∧ B, whereA and B are
Boolean variables, is equivalent to the Boolean polynomialA · B. If A = B = 1, thenA · B = 1 · 1 = 1.
When neitherA nor B is 1, thenA · B = 0. Note that these compute theAND function. As a second
example, the Boolean formulaA ∨B is isomorphic to the Boolean polynomialP = A + B −AB. Here,
if A = B = 0, thenP = 0 + 0 − 0 = 0. Otherwise,P = 1, just as the logical functionOR.

For the below theorems, for some switchx, let c(x) ando(x) be Boolean polynomials describing the
switching circuit formed whenx is closed and open, respectively.

Theorem 11: Given any switching circuit, adding a switchx between any two terminals A and B yields
the Boolean polynomialp′ = x(c(x) − o(x)) + o(x).

Proof: Suppose thatx is closed. Then,x = 1 and p′ = c(x) sincex directly connects terminals A
and B. Suppose thatx is open. Then,x = 0 and p′ = o(x) sincex ensures that terminals A and B we
not connected. Since the polynomialp′ = x(c(x)− o(x)) + o(x) meets these two conditions, it accurately
describes the new circuit.

Theorem 12: Given any switching circuitC, the Boolean polynomialp describing the circuit is equiv-
alent to the probabilityP of the circuit being closed.

Proof: For any pswitchx in C, suppose thatC andO express the probabilities thatC is closed given
that x is respectively closed or open. Then, by the laws of probability,

P = xC + (1 − x)O. (5)

Note that whenC is an open circuit,C = 0 andO = 1. WhenC is a closed circuit,C = 1 andO = 0.
Note thatC andO can be defined inductively by using these as base cases. By rearrangement,

P = x(C − O) + O. (6)

From above, it was shown that for any switchx and polynomialsc(x) ando(x) (for when the terminals
connectingx are connected or not connected, respectively),

P = x(c(x) − o(x)) + o(x). (7)

Note that whenC is a closed circuit,c(x) = 1 andc(o) = 0. WhenC is an open circuit,c(x) = 0 and
o(x) = 1. c ando can also be defined recursively.
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Fig. 11. Realizing P = 62

125
, given S = {2/5}. Each box represents the unknown circuit required to make theentire circuit closed with

probability P . (a) This is an example of backwards construction, and we initially begin with an unknown circuit closed with probability
P . (b) Initially, P1 = 62/125 > 2/5, so the last-added pswitch is in parallel. To find the probability the remaining circuit must be closed
by, we computeP2 = P1−P

1−2/5
= 4/25. (c) Now, P2 = 4/25 < 2/5, so the second-to-last pswitch is in series. Hence, the probability the

remaining circuit must be closed isP3 = P2−P
1−2/5

= 2/5. (d) Finally, P3 = 2/5, so the remaining unknown circuit is a single pswitch.

Since all switching circuitsC can be described recursively by the addition of a switch between any two
terminals, all switching networks can be constructed by theabove recursive formulas. Since both formulas
have the same inductive and base conditions, the formulas for expressing the probability of closure and
the resulting logic value are equivalent for all switching circuits.

VI. A B ACKWARD ALGORITHM.

Switching circuits can be synthesized using forward algorithms, where circuits are built first-pswitch
first, or backward algorithms, where circuits are built last-pswitch first. ForS = {1/2} above, a forward
algorithm (the B-algorithm) was used to realize any binary fraction. ForS = {1/3, 2/3}, a backward
algorithm was used to realize any ternary fraction. Similarly to binary search, the backward algorithms
presented in this paper recursively divide the rational space until the target probability is reached.

Given any single pswitch setS = {p} of a single rational probability, the following algorithm synthesizes
an ssp circuit which realizes any rationalF , but halts only ifF can be realized:

1) Define circuitC1 such thatPr(C1) = F .
2) While F 6= p:

a) Let circuitCi+1 be:

i) If F < p, a pswitch in series withCi such thatPr(Ci) = F/p, or
ii) If F > p, a pswitch in parallel andCi such thatPr(Ci) = F−p

1−p
.

b) Let F = Pr(Ci).

3) Define circuitCi as two connected terminals.

See Figure 11 for an example of synthesizing11/27 given S = {1/3}.
Now, we will show that at each stage it is only possible to insert the switch in series or parallel (but

not both) to realize a given probability. Hence, if the probability can be realized, it must be realized using
the specific circuit generated by the algorithm.
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Theorem 13: Given a desired rational probabilityF , then to realizeF using an ssp circuit, the last
pswitch inserted must be in series ifF < x and in parallel ifF > x, given a pswitch set consisting of a
single rational probabilityx.

Proof: We claim that when we add each pswitch, the decision whether to insert the pswitch in series
or parallel is forced – in only one situation are both operations legal (when the desired probability is the
same as a pswitch). For a circuitC, adding a pswitch in series yieldsCs such that0 < Pr(Cs) ≤ x, since
Pr(Cs) = Pr(C)/2 is increasing and0 < Pr(C) < 1. Similarly, adding a pswitch in parallel yieldsCp

such thatx ≤ Pr(Cp) < 1. Hence, the only way to realize some probabilityF < x is to place a pswitch
in series. The only way to realizeF > x is to place a pswitch in parallel. Then, the above algorithm is
the only possible way to realizeF with an ssp circuit.

VII. CONCLUSIONS

In this paper, we introduced probabilistic switches as an extension to classical deterministic switches.
We showed that a random variable, particularly a Bernoulli random variable, can be associated with
each pswitch, allowing circuits to realize probability distributions. We found an algorithm to generate the
optimal circuit for any binary or trinary fraction. We showed how duality extends from resistor networks
and logic gates to the pswitch realm, using it to prove existence results. Finally, we constructed a linear-size
universal probability generator, capable of mapping any set of deterministic inputs to unique probabilistic
outputs.

Extending the work to find algorithms for more general randomvariables and multiple terminals would
be useful for applied work, particularly in modeling stochastic events in biology and engineering.
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