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Abstract

In his 1938 Master's Thesis, Shannon demonstrated that anjeBn function can be realized by a switching
relay circuit, leading to the development of determinisligital logic. Here, we replace each classical switch with
a probabilistic switch (pswitch). We present algorithms $gnthesizing circuits closed with a desired probability,
including an algorithm that generates optimal size cisctor any binary fraction. We also introduce a new duality
property for series-parallel stochastic switching citsuiFinally, we construct a universal probability generato
which maps deterministic inputs to arbitrary probabitisbutputs. Potential applications exist in the analysis and
design of stochastic networks in biology and engineering.

|. INTRODUCTION.

Claude Shannon, in his 1938 Master’s Thesis, discoveredt@msatic synthesis procedure to realize a
given Boolean function using deterministic switches [S8]aJhis classical contribution led to the devel-
opment of modern digital logic design and is at the foundatb our ability to design and manufacture
digital circuits with millions of transistors.

Most importantly, Shannon showed how logic (Boolean algglwan be mapped to physics (relay-
based switching circuits). Shannon focused on deterngnistriables and functions; by closing a subset
of switches, a switching circuit and its associated Boolianttion yield a deterministic output.

The natural question is: can we create a similar theory fochsstic variables and functions? Namely,
given a desired probability distribution and a set of pralstic switches (that we calpswitches) as
building blocks, can we systematically design a switchimguit that realizes a desired probability
distribution? Our main contribution is a positive answethis question for the case where the probability
distributions involved are Bernoulli.

Shannon’s work focused on the so-called two-terminal squarallel circuits. Atwo-terminal circuit
is an undirected graph with exactly two nodes labeled asitets) where each node can be visited by a
path between the terminals. A two-terminal circditis series-parallel (sp) iff C' is: (1) a single switch,
or (2) a series or parallel combination of two sp circuits.

In this paper, we will also investigate a surprisingly pofuesubset of series-parallel circuits that we
call ssimple series-parallel (ssp). A two-terminal circuitC is ssp iff C' is: (1) a single switch, or (2) a
single switch in series or parallel with a ssp circuit.

Shannon’s work focused on deterministic switching cirgudircuits where each switch is associated
with a Boolean variable defining whether the switch is closég instead focus omstochastic switch-
ing circuits, circuits where each pswitch is associated with a Bernaaltidom variable defining the
(independent) probability that the pswitch is closed.

Let Pr(C) represent the probability that some switching ciratiitis closed. A circuit is closed iff
its terminals are connected; otherwise, it is open. Soméahitity = is realized by C iff © = Pr(C).
Connecting a single terminal of with one terminal ofB places them in series such that the new circuit
is closed only when botll and B are closed (see Figure 1b). Connecting both terminals ofstmitching
circuits A and B places them in parallel, such that the new circuit is closelg ahen at least one oft
and B are closed (see Figure 1c).
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Fig. 1. Series and Parallel Constructions. The relationship between graphs and switching circuith@. There are only two ways to
combine two single-pswitch circuits, both shown hd@. Only one single-pswitch circuit existgh) Series. Only when both pswitches are
closed is a series circuit closeft) Parallel. Only when both pswitches are open is a paralleugiopen.

Now, we will add a single pswitch closed with probabilityo an established circuft. Let F' = Pr(C).
First, note that only one switching circuit exists with aglan pswitch (see Figure 1a). If the pswitch is
added in series, then the pswitch a6dmust both be closed; hence, the new circuit is closed with
probability /" = Fx. If the pswitch is added in parallel, then the circuit is oplyen if both the pswitch
andC' are open; hence, the new circuit is closed with probabfiity=1—(1—z)(1—-F) = (1 —2)F + .

In this paper, we shall construct two-terminal stochastiitching circuits where each pswitch is closed
with some rational probability. The set of possible pswittbsure probabilities from which a circuit is
constructed will be referred to as thgswitch set S. We will call a circuit which realizes a Bernoulli
distribution using the fewest possible pswitchesoptimal size circuit. For example, given a pswitch set
S = {%}, we can use four pswitches to construct a stochastic swigcbircuit with probability P = %

(see Figure 2). No other circuit can be constructed whiclizes it with fewer pswitches (proven in
Section 1), and so it is also an optimal size circuit.

We are now ready to state the main results in the paper:

1) Synthesizing optimal size switching circuits which realize Bernoulli distributions. (Sections I, 111)

2) A duality property allowing for optimality and existence proofs. (Section) Il

3) A universal probability generator (UPG) which maps: deterministic input bits to alh-bit binary

fractions (in increasing order) using ondy:, — 2 switches. The UPG can be used to synthesize a
circuit realizing any arbitrary deterministic to probaskilc mapping. (Section 1V)

In the final two sections, we will discuss additional relagbips between Boolean algebra and stochastic
switching circuits. In Section V, we discuss two additiongbresentations of stochastic switching circuits
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Fig. 2. Realizing F = }—(1) = 0.10115. Progressing from the least-significant to the most-sigmificit in the binary representation f,

a pswitch is added in series if '0’ and in parallel if '1’. Theopability that each circuit is closed as a binary fractisnprinted beneath
each circuit.(a) Begin with a single pswitch; the least significant bit is aj@ane, since we can remove any trailing zer@.To add a
pswitch in parallel, we shift the binary fraction represegtthe circuit’s probability of closure right with replagent. (c) To add a pswitch
in series, we shift the binary fraction right without reptacent.(d) Using this algorithm, the generated switching circuit isy@an to use
the least possible number of pswitches to realize the bifragtion, across all switching circuits.

— as probabilistic Binary Decision Diagrams (BDDs) [Mei28jd as Boolean polynomials [Lec71]. We
use probabilistic BDDs to prove the correctness of the Byatlgm, a major synthesis result discussed in
Section Il. We also show that the symbolic probability of @&golean switching circuit being closed is
equivalent to its Boolean polynomial.

Before we continue with the details of our results, we déscsome of the related literature. Series-
parallel circuits, a subset of switching circuits, haverbagorously analyzed, including their enumeration
[RS42], duality properties [Mac92], and other interestiogological properties [Duf65]. For instance,
Duffin found that the presence of a Wheatstone bridge is sacgsand sufficient to make a circuit
non-series-parallel [Duf65].

Many duality properties for series-parallel circuits hdneen studied, particularly with resistor networks
[Mac92], logic gate networks (e.g. De Morgan’s Law) [Whigahd electrical networks [Tel40].

Circuit elements have been traditionally modeled stoatabt to assess reliability of components
[Col87]. To produce a system failure, a series connectioonamhponents only requires a single failure,
whereas a parallel connection of components requires afipoments to fail. Several physical circuits
have also been proposed for designing stochastic systamn&xBmple, Gill suggested how to generate
a probability transformation element using sequential mgnhogic [Gil63].

[I. REALIZING BINARY FRACTIONS.

We first present a simple algorithm that constructs:goswitch circuit for any probability expressable
as ann-bit binary fraction. We prove that the resulting circuitdptimal in size, for any switching circuit.

The B-algorithm: an algorithm for generating circuits that realize binargctions with pswitch set
S = {%}. Let F; be the:th least significant bit off", an n-bit binary fraction with (WLOG) a nonzero
least-significant bit.

1) Let circuitC; be the single-pswitch circuit.
2) For bit F;, i = 2 to n, let circuit C; be:

a) If F; =0, Cy in series withC;_1, or
b) If F; =1, C; in parallel withC;_;.

See Figure 2 for an example which realizZds'16; namely, we use the B-algorithm with = 1011,.
Theorem 1: The B-algorithm synthesizes a stochastic switching dirclased with probabilityF'.
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Fig. 3. Tree of ssp Circuits. The binary tree depicted here shows how to generate all ldesssp circuits. Each left branch depicts
inserting a pswitch in series, and each right branch dejnsisrting a pswitch in parallel. Note that adding a seriesioh shifts '0’ into
the most significant bit of the binary probability fractiofye addition of a parallel pswitch shifts in "1’.

Proof: The proof is by induction on the number of bits in For the base case, we begin with
as the single-pswitch circuit closed with probability 1i@;other words,Pr(C;) = 0.15.

Now, suppose that some circdit is closed with probability?r(C;) = 0.7, wherez is a bit vector. Then,
we will show that a pswitch added in series or parallel yieldsC;,,) = 0.0z or Pr(C;+1) = 0.17,
respectively. Adding a pswitch in series yield¥(C;.,) = Pr(C;)/2, namely, a right shift with an
addition of '0" in the most significant bit o’r(C;). Adding a pswitch in parallel yield$r(C;.;) =
1/2 + Pr(C;)/2, namely, a right shift with an addition of "1’ in the most sifjcant bit of Pr(C;).

Hence, by using this construction for each of thédits in £, an n-pswitch circuit that realize$” is
synthesized. [ ]

Note that the B-algorithm only produces a subset of all dwiiitg circuits — those synthesizable by
adding single pswitches in series or in parallel. To see HmB-algorithm works graphically, see Figure
3.

We will now prove that even wheall switching circuits are considered, the B-algorithm is oyati in
the number of pswitches. To do this, we will first present anatigpn that holds for all switching circuits.
Suppose that we add a new pswitch closed with probabhilitg an existing circuit. Then, wher€ and
O are the probabilities of the circuit formed by adding a wireda short in place of the new pswitch,
respectively:

P =a2C+(1-1)0 (1)

Using this equation, we can prove statements about all agtichswitching circuits (beyond those which
are enumerably series-parallel). Note tidat> O. Intuitively, by adding a new pswitch we create a new
potential path between the terminals. Hence, for the neeuitin/, Pr(M) > O. Since closing the new
path makes the terminals more likely to be connected, thien Pr(M). This demarkation of” > O
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actually stems from a sign conventionz—represents the probability that a circuit is closed ratiant
open.

In the following theorem, we shall use the previous equaittioprove a general lower bound for pswitch
sets. Here, the optimality of the B-algorithm corresporashie case; = 2.

Theorem 2: Let ¢ be an arbitrary positive integer. Using the pswitch Set {1/q,2/q, ..., (¢ — 1)/q},
an optimal size circuit” that realizes a rational’ = a/q¢", 0 < a < ¢", requires at least pswitches.

Proof: We will assume that every optimal size circditas defined in the claim of the theorem has
size at most— 1. The idea is to show that &' (which realizest’ € {0, ¢— 1}", the basey representation
of the desired probability) of size — 1 exists, then eventually we must realize a non-integral aibdhky
with zero pswitches, a contradiction.

Here is the idea in the proof. Suppose we have a cil€yisuch thatF* associated withPr(C;) has:
digits in the alphabefo0,...,q — 1}. We can assume thdt’ has a nonzero value in the least significant
digit. Then, we will choose some pswitahin C;, create two new circuits by opening or closimgand
prove that one of the circuits has probability represented~b !, with i — 1 digits and a nonzero value
in its least significant digit. Namely, we can reduce the nend pswitches by one and get a probability
value that uses one less digit. This process will lead to dradiction.

By the laws of probability,

Pr(C;) = Pr(C;|z openPr(z open + 2
Pr(C;|x closed Pr(z closed
=a/q'.

We know thatPr(z closed)e S and Pr(z open) e S, since Pr(x open)= 1 — Pr(z closed). Both
denominators areg, so for some integers andc where(0 < b,¢ < g — 1,

a

—— = bPr(C;|x open + cPr(C;|z closed. 3

qz’—l -

Let F* be the string associated with circuit, where Pr(C;) = a/q', for integersa andq. F* has
lengthi and a non-zero least significant digit. Then, by opening osiog some pswitch in C;, one of
the new circuits is at leagt— 1 digits long. Why? Suppose that both of the new circuit praligds are
r,s < i—1 bits long. Then, there exist, ¢ € N such thatu/¢"~! = V//q"+/¢*, where each fraction has
a nonzero digit in its least significant digit. Then= V¢ "1 + ¢! = ¢" "1 (¥ + ¢¢"~*). However,
qla, soa has a 0 in its least significant digit, producing a contradict

If we assume that there exists as defined in the claim of the theorem with at mast 1 pswitches
realizing anF' with n digits, then we can apply the above process 1 times and eliminate all the
pswitches. However, the resulting probability will stileka fraction, and we reach a contradiction.

u

[1l. DUALITY.

Duality is an important property integral to the study ofcciits. Thedual of a circuit is a systematic
change of the structure of the circuit at each stage in itstroation to yield some inverse global property.
This concept of duality appears in many domains, three othviare illustrated in Figure 4.

To take the inverse (the NOT) of a Boolean function compodedND and OR gates, we can apply
De Morgan’s duality law; namelyd A B = AV B (see Figure 4a) [Whi61].

Likewise, Macmahon showed that the dual of a series-paradkgtor network composed of-ohm
resistors with equivalent resistange/q)r has the equivalent resistangg/p)r (the inverse) [Mac92] (see
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Fig. 4. Duality. Duality has played an important role in the analysis of diccua) The dual of logic gates, by De Morgan’s Law (in
words, @ AND b) = NOT ((NOT a) OR (NOT b)) = NOT (a OR b)); (b) The dual of series-parallel resistor circuits of equal s&sice,
by Macmahon. Series connections are now parallel, and vécsay the equivalent resistance coefficients are recifgo@@ The dual of
stochastic series-parallel switching circuits. Each pshwilosed with probability is closed withl — p in the dual. Note the similarity to
the dual of (b).

Figure 4b). The construction of a series-parallel circuits a series of stages involving inserting a series-
parallel circuit in series or parallel to an existing sefesallel circuit. To achieve Macmahon’s duality
result, the same sequence of steps is followed, but eachiorsés inverted, i.e. if a circuit is added in
series inC, then in the dual of” it is inserted in parallel, and vice versa. Then, if somestesicircuit

C comprised ofr-ohm resistors has equivalent resistapeethen the resulting dual circuit will have an
equivalent resistance @t /p)r.

We have found that duality exists in series-parallel stetihaswitching circuits as well. Like Macma-
hon’s algorithm, if a series-parallel circuit is added imieg to a circuit, it is added in parallel to the dual
(and vice versa). Like De Morgan, instead of adding a circlgsed with probabilityp, we add a circuit
closed with probabilityl — p. Then, if the original circuit is closed with probabilit?, the dual circuit is
closed with probability(1 — P), the inverse in probabilistic terms (see Figure 4c).

We will use duality in this section to find algorithms for rzathg general probability classes (e.g. the
probability class of all binary fractions).

First, note that the dual of' only exists ifC' is series-parallel, and if for every pswitehused inC,
the pswitchl — z exists inS. We will now show an important property — the dual ©fis closed with
probability 1 — Pr(C).

Theorem 3: Duality Theorem. Given some stochastic series-parallel ciratitand its dualC, then

Pr(C)+ Pr(C) = 1.
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Fig. 5. Expressive Power. Here, we are given an initial pswitch sBt Further, we assume that all rationalgq™, 0 < a < ¢™, for some
positive integerg, can be realized. Using duality, we show how to realizeb@lf" ™, 0 < b < ¢"™*, by adding a single pswitch. The
numerator is shown on each number line along with which pswitch to adeb#dize it.(a) All a/2™ can be synthesized usingpswitches.
(b) All a/3™ can be synthesized using pswitches.(c) All a/4™ can be synthesized using+ 1 pswitches. Note that using pswitches
we can only generate the evens in the middle half. To genemte odd numeratas, place al/2 pswitch in series witl2o, usingn + 1
pswitches (ifo > 2 - 4™, then use duality).

Proof: This is shown using induction on the definition of seriesafiat. For the base case, the dual
of a single-pswitch circuit with pswitch is the single-pswitch circuit with pswitch— z. Now, suppose
that the dual of a stochastic circditis closed with probability — Pr(C'). Adding a second series-parallel
circuit C’ in series withC' to form C yields Pr(Cs) = Pr(C)Pr(C"). Adding C’ in parallel to the dual of
C to form C,, yields Pr(C,) = 1—[1—(1—Pr(C")|][1—(1—Pr(C))] = 1—Pr(C)Pr(C") = 1— Pr(Cy).
The case of adding” in parallel is identical. [ |

This duality property is a powerful tool for analyzing stashic switching circuits. Suppose that for
every pswitchz in a circuit C, a pswitchl — x is in S. As follows, the duality property can be used to
prove which probability classes can be realized by all sarg@ries-parallel circuits gives.

Theorem4: S = {3}. All Pr(C") = &, 0 < a < 2", (i.e. all n-bit binary fractions) can be realized
with at mostn pswitches.

Proof: Suppose that all rational probabilitieg2™ can be realized. Now, add a pswitch in series with
each circuit, realizing al(1/2)(a/2") = a/2"™, 0 < a < 2". By applying the Duality Theorem, every
b/2"tL =1 — a/2", where2" < b < 2"*1, can be realized by synthesizing the dual of each original
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Fig. 6. Realizing P = 32, given S = {1/3},{2/3}. Each box represents an unknown circuit closed with the elégirobability P.
(a) This is an example of backwards construction, and we ihjtiaégin with an unknown circuit closed with probabili#. (b) Initially,
Py = 40/81, and herel - 3° < P; < 2- 3%, Since the numeratot0 is additionally even, then we must add2a3 pswitch in series. The
remainder of the circuit must be closed with probabilRy = P;/(2/3) = 20/27. (c) Now, P, = 20/27 > 2-3%/27, so the second-to-last
pswitch is2/3 in parallel. Hence, the probability the remaining circuitish be closed iP5 = 1?:22/33 =2/9.(d) Ps =2/9 < 3'/9, so
the next pswitch is 1/3 in series. The remaining circuit mosstclosed with probabilityPs = Ps/(1/3) = 2/3. () Now, P, = 2/3 is in

our switch set. We replace the final missing circuit box whist and we are finished.

circuit.
Hence, we can realize all-bit binary fractions withn pswitches (see Figure 5a).
[ |
Theorem 5: S = {3, 2}. All rational Pr(C™) = &, 0 < a < 3", (i.e. all n-trit ternary fractions) can

be realized withn pswitches.

Proof: Suppose that all rationals/3", 0 < a < 3", can be realized. Now, addlg3 pswitch in series
with each circuit, realizing alk/3"*1, 0 < a < 3". By the Duality Theorem, alb/3"™! = 1 — a/3""!
can be realized by the dual of each original circuit, wh2re8” < b < 3**!. Hence, we can synthesize
the lower third and upper third of the new probabilities.

Now, we add a2/3 pswitch in series with each circuit, realizing all evef8"™!, 3" < ¢ < 2- 371
By the Duality Theorem, we can realize all- ¢/3""!, i.e. all odds in the center range, by synthesizing
the dual of each of the/3-series circuits.

Hence, alln-trit ternary fractions can be realized withpswitches (see Figure 5b). [ |

Note that an optimal algorithm for realizing any rationaldtiona/3" can be obtained from the previous
proof. From Theorem 24(= 3), a minimum ofn pswitches is required to realize alitrit ternary fractions;
hence, the strategy in the proof is optimal. Given a desimedability 7 andS = {1/3,2/3}, then the
algorithm is (see Figure 6 for an example):

1) Begin with an open circuit.

2) If F=1/3 or F =2/3, then add the pswitclt' and halt. Otherwise, let be the numerator of".

3) Add a pswitch:

a) If a < 3", add a 1/3 pswitch in series. (Lpt=1/3.)
b) If 3" <a<2-3", then:
i) If ais odd, add a 1/3 pswitch in parallel. (Let=1/3.)
i) If ais even, add a 2/3 pswitch in series. (et 2/3.)
c) If 2-3" <a < 3", add a 2/3 pswitch in parallel. (Let= 2/3.)

8



4) Find the new desired probability:

a) If a pswitch was added in series, Bt = F/p.
b) If a pswitch was added in parallel, |7 = %*5.

5) Let F =F'. Goto 2.

This trend ofn-pswitch circuits realizing all rational numbedgq™ cannot continue. Fay > 3, already
in the case ofr = 2 there are fractions/¢? that cannot be realized by a size two circuit. We formalize
this result in the following theorem.

Theorem 6: We are given a pswitch set containing only rational numbeth @Wenominatorg, where
q > 3. Then, there exist rational probabilitiegq*> which cannot be realized by a pswitch circuit of size
two.

Proof: The idea in the proof is to show that there exists a prime nurhlseich thath/¢* cannot be
realized by two pswitches.

A network with two pswitches in series results in a compositienerator (or a prime numerator that
belongs to the pswitch set). Now notice that a circuit wittotwy/q pswitches in parallel results in
the smallest fraction obtainable by adding two pswitchepanallel. The probability of this circuit is
(2 —1)/q".

Hence, the range of numerators for which only composite mataes can be generatedgs< a < 2¢—2.

By Bertrand’s Postulate [Ram19] [Erd34], there exists asteone prime number betweerand 2q — 2,
for ¢ > 3; hence, a prime numerator always exists within this range ¢annot be realized. [ ]

As an example, suppose we have the pswitclsset{1/4,2/4,3/4}, and we want to realiz& = 5/16,
where the numerator is prime, using two pswitches. ThenJdlgest prime-numerator fraction realized
by placing the pswitches in series 3§16. The smallest fraction realized by placing the pswitches in
parallel is7/16 (placing1/4 in parallel with1/4). Hence,5/16 cannot be realized using two pswitches.

Now, we provide an upper-bound on the number of pswitchegssery to realize any fraction/4”
using the pswitch set of all fourths.

Theorem 7: S = {1,2,3}. All rational Pr(C") = &, 0 < a < 4" can be realized with: pswitches,
wheren < z < 2n.

Proof: Suppose that all rational numbers of the foui™, 0 < a < 4™, can be realized. Now, by
adding al/4 pswitch in series, the lower quadrant @f4"** can be realized. By the Duality Theorem,
the upper quadrant can be realized by synthesizing the dusdah 1/4-series circuit.

By adding a2/4 pswitch in series with each of the original circuits, the e#gning even numerators can
be synthesized. Now, any remaining odd numeratoan be generated by realizirag /4" and adding a
1/2 pswitch in series (or, ik > 2 - 4™, realizing twice the dual o).

Each stage requires at most two switches with the excepfigheofirst, and so alk/4", 0 < a < 4™,
can be realized by at mo8t. — 1 pswitches (see Figure 5c). [ |

The previous proof suggests that many stages may requirswiohes. However, in practice often no
more thamn + 1 pswitches are required, provided that certain prime nutoesaare not synthesized. As
an examplep/16 cannot be realized with two pswitches, but it can be realizét three.

Discovering the optimal number of pswitches required tdizeaany a/4™ (given g pswitch sef =
{1/4,2/4,3/4}) is still an open problem, as is an algorithm to generate fhtéral size circuit.

IV. A UNIVERSAL PROBABILITY GENERATOR

Shannon showed how to synthesize any deterministic cifouih a truth table — an explicit mapping
of n-bit inputs to output bits. This synthesis procedure wasralfumental building block in the evolution
of modern-day computing. Here, we show an efficient synthpsbcedure for a similar building block,
the synthesis of any arbitrary probabilistic truth table mapping ofn-bit deterministic inputs to output
probabilities. In other words, deterministic inputs wilhange the structure of the probabilistic circuit to
realize any desired binary fraction.
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Fig. 7. The Universal Probability Generator (UPG). Here, we show the construction of the UPG, a circuit which sndpterministic
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constructions foiC; are shown — one which uses a single pswitch (left), which isimml, and one which is monotonic in the deterministic
switches (right). Each recursive circuit stage requiresadditional four switches.

Most impressive, however, is that the underlying stockasiicuit powering this — the Universal
Probability Generator (UPG) — can be synthesized using arlipear number of switches. To generate
everyn-bit binary fraction " total probabilities) in increasing order, selectable gsirdeterministic bits,
requires onlydn — 2 switches. Onlyn of these, the minimum possible number, need be probabilisti

After we show how to construct a UPG, we will then return to @t@n’s deterministic synthesis
results to build a combinational logic block which maps dwieistic inputs to arbitrary probabilistic
outputs. Then, we will have a synthesis procedure for cansitrg any probabilistic truth table (where
the probabilities are binary fractions).

We define auniversal probability generator (UPG) to be a circuit which maps deterministic input
bits to all 2™ n-bit binary fractions in increasing order (e.g. for= 3, see Figure 7a).

This can be easily accomplished using an exponential nuoftexitches; we simply construct each of
the 2" probabilistic circuits separately then uniquely sele@nthwith deterministic switches. Using the
B-algorithm from earlier, we can synthesize afl probabilistic circuits closed with rational probability
a/2", where0 < a < 2", each requiring: pswitches. Then, we can add a deterministic selector which
only selects one of the™ probabilistic circuits, depending on the deterministic input bits. This is an
inefficient method, however, since it minimally requires exponential number of pswitches.

Here, we propose two constructions which require obly— 2 total switches. The first construction
requiresn pswitches, the fewest possible; the second is monotonieindlue of its deterministic variables.
In this section, all pswitches will be closed with probatyili /2.

Theorem 8. The following recursive construction will synthesize arbit deterministic input UPG
circuit C,, using4n — 2 switches:

1) Given a deterministic input, let C; be a switch and pswitch in series as in Figure 7b.

2) To synthesize circui€;, substituteC;_; into the template foC; given in Figure 7b.

3) Let all deterministic switches added for circdit be closed (unless negated) iff thih bit from the least significant

input bit is '0’.
Proof: For (', if the deterministic switch is open, we realize 0/2; if it agbosed, we realize 1/2.
Hence, we realize all-bit binary fractions (See Figure 8a).

Suppose that we can generate (@l 1)-bit binary fractions with circuitC;_;. Then, we shall show
we can generate altbit binary fractions with circuitC;. If the ith least significant input bit is '0’, then
the deterministic switches added fOf are open (unless negated). Hence, in both constructiongurd-
7b, al/2 pswitch is connected in series wity_;. This yields the first half of the new numerators, since
a/2"-1/2 = a/2"*1. Similarly, if the ith bit is '1’, then al/2 pswitch is connected in parallel witfi;_;,

10
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Fig. 8. One-bit and Two-bit UPGs. (a) For one deterministic bit/;, a UPG can generate all probabilitiég2 and 1/2, in increasing
order by the deterministic inputb) For two deterministic bits/> and J:, a UPG generates all probabiliti€g2?, 1/2%, 2/22, and 3/22,
again in increasing order.

yielding the second half of the new numerators, sifice1/2 - (1 — a/2") = a/2""! + 1/2 (see Figure
8b). Hence, every-bit binary fraction is generated for each recursive steppping each deterministic
input = to x/2".

In both constructions, four switches are required for eaghexcludingC; for which only two are
required. Hence, aftet — 1 recursions and the base case, we can genefrapgobabilities with4n — 2
switches. [ ]

In addition to these two constructions, also note that thed dfithe series-parallel UPG construction is
also a valid UPG circuit. By the Duality Theorem, this couostion will realize alll — Pr(C,,), yielding
again 2™ unique n-bit binary fractions. Also, note that a parallel circuitncalso be used fo€’;; this
would map each deterministic inputto (x + 1)/2", generating an always-closed circudt’(2") rather
than an always-open circuif (2").

After generating the UPG, deterministic inputs yield proitides in increasing order. To create an
arbitrary mapping, a combinational logic block can be ad¢szk Figure 9a) which maps the desired
deterministic inputs to the UPG deterministic inputs usttegsical logic synthesis.

We will now provide an example of constructing a circuit whiealizes the truth table in Figure 9b.
First, since3-bit binary fractions must be realized by the circuit, we ldua 3-bit deterministic input
UPG by following the construction rules (see Figure 9c). THeG maps three deterministic inputs to
probabilities as shown in Figure 7a. Hence, we will add carational logic to map the circuit deterministic
inputs/ to the UPG deterministic inputs.

Note that the mentioned probabilistic truth table also canifterpreted as a discrete probability
distribution. By only using pswitches and deterministicitsives, by the procedure above any discrete
probability distribution of binary fractions can be gertech

11
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Fig. 9. Realizing a Probabilistic Truth Table. As an example, we will synthesize a UPG and combinationat lbtpck which satisfies
a given mapping between deterministic inputs and prohasli(a) Combinational logic allows arbitrary mappings to be achi\b) The
desired truth table, mapping two input bits to probabiitiec) A UPG construction which can realize aBybit binary fraction. To achieve
the mapping in the truth table, the following Boolean fuont must be realized in the combinational logic/: I, Jo : I A I, and
J3: 1V Is.

V. REPRESENTATIONS

In this section, we shall show alternative representatminstochastic switching circuits using binary
decision diagrams and Boolean polynomials.

A. Probabilistic Binary Decision Diagrams.

Binary Decision Diagrams (BDDs) describe Boolean formulasig binary trees [Mei98]. A proba-
bilistic BDD associates a random variable with each nok-siode, indicating the probability that each
child is selected [HTPO06]. Using these, we will show an adddl proof of the B-algorithm.

We define asingle-chain BDD to be a BDD where, for each node, the '0’ child leads to:

1) a 0-sink and the "1’ child either leads to a one-sink or algirchain BDD, or

2) a single-chain BDD and the '1’ child leads to a one-sink.

Theorem 9: Simple series-parallel (ssp) circuits and single-chairDBCare isomorphic.

Proof: One-to-one. We claim that for each ssp circuit there exists a unique shapkin BDD. We
will show this by induction on the definition of the ssp circuiBuppose the ssp circuit is a single switch.
Then, it can be represented as a single leaf node branchiagztro-sink and a one-sink, which is a
single-chain BDD by definition.

Now, suppose that some ssp circuit withpswitchesC),, can be represented by the single-chain BDD
O,, and that a pswitch is added in parallel@y. Add a new nodeV,, to O,, representing the new pswitch.
If the switch is closed, then the circuit is closed, so onddcbf NV, is a one-sink. If the pswitch is open,
then the circuit is closed whefi, is closed, so the second child 8f, is the root node ofD,. Hence,
O, 1 Is a single-chain BDD. When a nodé, representing the added pswitch is added in serieS,to
then a single-chain BDD is formed in a similar manner.

Any given ssp circuit is a unique construction of series aadhjel pswitches. All single-chain BDDs
can be generated by adding left- and right-children. A sirgiain BDD is added as the left-child when
a pswitch is added in parallel and as a right-child when a fgéwis added in series. Hence, the BDD for
each ssp circuit is unique. Therefore, by induction we whilbw that any ssp circuit can be represented
by a unique single-chain BDD.

Onto. We claim that the number of ssp circuits is equivalent to thmier of single-chain BDDs. We
claim there are2”~! single-chain BDDs given exactly nodes. For a single node, there exists exactly
one single-chain BDD, where both children are constantd,2an' = 1. As shown above, each node can
either add the existing BDD as a left-child or as a right-@hHlence, since there are only two possibilities,
then fork + 1 nodes, there aré - 2¥—! = 2 possibilities. By induction, then, for exactly nodes there
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Fig. 10. An ssp Circuit and Single-Chain BDD. The isomorphic single-chain BDD of an ssp circuit is showhe Probability that the
circuit is closed can be computed easily from the BDD. Eachicswi is on or off, represented by, = 1 and z; = 0, respectively. By
constructing a vectoy which for eachi, y; = 1 iff the BDD returns "1’ whenz; = 1, then the circuit can also be represented compactly
as a binary string.

exist 2! single-chain BDDs. We have shown previously that thereteXis! ssp circuits given exactly
n switches. Then, because it was shown that the mapping isosoee, all possible single-chain BDDs
must be mapped to.

As shown, the mapping between ssp circuits and simple BDDsésto-one and onto. Hence, they are
isomorphic. [ |

Now, we will prove the B-algorithm using probabilistic BDDs

Theorem 10: The B-algorithm. Given a ssp circuit’,, with n pswitches, each closed with probability
1/2, such thatPr(C,,) is a binary fraction (i.e. a rational number of the forp2"), thenC,, is exactly
described by the binary representationaofvith n bits.

Proof: By the previous theorem, there exists some single-chain BOsomorphic toC,,. Then,

the probability ofC,, being closed is equivalent to reaching a one-sink by a randatk down the BDD
of O,,. Suppose that some binary vecgprdescribes the single-chain BDD in the following manner: for
somei, y; = 1 if node N; has a child which is a one-sink (where nallg_, is the root node), ang; = 0
otherwise. For anyy;, ¢« paths must be followed, each with probability 1/2, to redud dne-sink present
at node:. So, the probability of reaching the ith node one-sinkl1ig2)"~*. Then, the total probability of
reaching a one-sink iw,, is the sum of the probabilities of reaching each one-sink, or

P = Z yié)”‘i = 7?:;512@"’. 4)

Now, the numerator is the decimal expansion of the binaryorec with n bits, wheren is the number

of switches inC,,. Hence, the numerator is equivalentddn the probability expression. Sg, exactly
describes”,,, and it is the binary representation of [ |
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For an example of how a ssp circuit and single-chain BDD alated, see Figure 10. Note that, as
discussed in [Mei98], the ordering of the Boolean varialiethe BDD (i.e. the Boolean variable which
each layer corresponds to) affects whether a single-chBib Ban be formed. Hence, to be more precise,
above we proved that for each simple series-parallel dirthiere exists at least one ordering of variables
such that a single-chain BDD can be formed.

B. Boolean Polynomials.

The relationship between Boolean functions and switchinguits was explored by Shannon in 1938
[Sha38]. In this paper, we investigate the relationshipvieen probability functions and stochastic switch-
ing circuits. However, it is also of interest to investigate relationship between Boolean functions and
probability functions. For example, the circuit OR B is equivalent toA + B in Boolean algebra, but it
is Pr(A) + Pr(B) — Pr(AB) in probabilistic terms. Hence, we ask in this section whethere exists a
single form that can express both Boolean expressions anmhpilistic expressions. We answer this in the
affirmative — for any switching circuit, the probability fation is equivalent to the Boolean polynomial.

A Boolean polynomial is a sum of monomials, each the product of Boolean varialethis context,
for every Boolean variable, = € 0, 1. Polynomials of this form were referred to in an early papér o
George Bool [Boo47]. In prior literature, it has been shovwatta unique Boolean polynomial exists
for every Boolean function [Lec71]. As an example, the BaoldormulaA A B, where A and B are
Boolean variables, is equivalent to the Boolean polynomialB. If A= B =1,thenA-B=1-1=1.
When neitherA nor B is 1, then A - B = 0. Note that these compute theN D function. As a second
example, the Boolean formuld v B is isomorphic to the Boolean polynomidl = A + B — AB. Here,
if A=B =0, thenP =0+ 0— 0= 0. Otherwise,P = 1, just as the logical functiod® R.

For the below theorems, for some switehlet ¢(z) ando(z) be Boolean polynomials describing the
switching circuit formed when: is closed and open, respectively.

Theorem 11: Given any switching circuit, adding a switehbetween any two terminals A and B yields
the Boolean polynomigl’ = z(c(z) — o(x)) + o(x).

Proof: Suppose that is closed. Theng = 1 andp’ = ¢(x) sincex directly connects terminals A
and B. Suppose that is open. Theng = 0 andp’ = o(z) sincez ensures that terminals A and B we
not connected. Since the polynomjal= z(c(z) — o(x)) + o(z) meets these two conditions, it accurately
describes the new circuit. [ |

Theorem 12: Given any switching circuit”, the Boolean polynomiagd describing the circuit is equiv-
alent to the probability” of the circuit being closed.

Proof: For any pswitche in C', suppose that’ andO express the probabilities that is closed given
that x is respectively closed or open. Then, by the laws of proigpil

P=2x2C+(1-2)0. (5)

Note that wherC' is an open circuitC’ = 0 andO = 1. WhenC'is a closed circuitC' =1 andO = 0.
Note thatC' and O can be defined inductively by using these as base cases. Barmgament,

P=z(C-0)+0. (6)

From above, it was shown that for any switefand polynomials:(x) ando(z) (for when the terminals
connectingr are connected or not connected, respectively),

P =z(c(x) — o(x)) + o(x). (7)

Note that wherC' is a closed circuitg(z) = 1 andc(o) = 0. When(' is an open circuitg(x) = 0 and
o(z) = 1. ¢ ando can also be defined recursively.

14



&,
5
. P1 = PY e :
62/125

P2 =
4/25

a b

AN AN

&, &,

*o— ° —e *— ° —e
2 25 & =
A % %
c d

Fig. 11. Realizing P = % given S = {2/5}. Each box represents the unknown circuit required to makeettiige circuit closed with
probability P. (a) This is an example of backwards construction, and we ifyjtiaégin with an unknown circuit closed with probability
P. (b) Initially, P, = 62/125 > 2/5, so the last-added pswitch is in parallel. To find the prolitgthe remaining circuit must be closed

by, we computeP, = % = 4/25. (c) Now, P, = 4/25 < 2/5, so the second-to-last pswitch is in series. Hence, theapibty the
Py—P

remaining circuit must be closed % = 25~ = 2/5. (d) Finally, P; = 2/5, so the remaining unknown circuit is a single pswitch.
1-2/5

Since all switching circuit€' can be described recursively by the addition of a switch betwany two
terminals, all switching networks can be constructed byaibeve recursive formulas. Since both formulas
have the same inductive and base conditions, the formulasxfaressing the probability of closure and
the resulting logic value are equivalent for all switchingcuits. [ ]

VI. A BACKWARD ALGORITHM.

Switching circuits can be synthesized using forward atyons, where circuits are built first-pswitch
first, or backward algorithms, where circuits are built fpstvitch first. ForS = {1/2} above, a forward
algorithm (the B-algorithm) was used to realize any binamcfion. ForS = {1/3,2/3}, a backward
algorithm was used to realize any ternary fraction. Sirhilao binary search, the backward algorithms
presented in this paper recursively divide the rationaktepantil the target probability is reached.

Given any single pswitch sét = {p} of a single rational probability, the following algorithmgrgthesizes
an ssp circuit which realizes any ration@| but halts only if 7 can be realized:

1) Define circuitC; such thatPr(Cy) = F.

2) While F # p:

a) Let circuitC;; be:
i) If F'<p,apswitch in series witlC’; such thatPr(C;) = F/p, or
i) If F> p, apswitch in parallel and’; such thatPr(C;) = %5.
b) Let F = Pr(C%).

3) Define circuitC; as two connected terminals.

See Figure 11 for an example of synthesizing27 given S = {1/3}.

Now, we will show that at each stage it is only possible to insige switch in series or parallel (but
not both) to realize a given probability. Hence, if the proitisy can be realized, it must be realized using
the specific circuit generated by the algorithm.
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Theorem 13: Given a desired rational probability’, then to realizeF’ using an ssp circuit, the last
pswitch inserted must be in seriesAf < x and in parallel if ¥ > x, given a pswitch set consisting of a
single rational probabilityt.

Proof: We claim that when we add each pswitch, the decision whethgrsert the pswitch in series
or parallel is forced — in only one situation are both operadilegal (when the desired probability is the
same as a pswitch). For a circdit adding a pswitch in series yield%, such that) < Pr(Cs) < z, since
Pr(Cs) = Pr(C)/2 is increasing and < Pr(C') < 1. Similarly, adding a pswitch in parallel yields,
such thatr < Pr(C,) < 1. Hence, the only way to realize some probability< = is to place a pswitch
in series. The only way to realizE > z is to place a pswitch in parallel. Then, the above algoritsm i
the only possible way to realiz€ with an ssp circuit. [ |

VIlI. CONCLUSIONS

In this paper, we introduced probabilistic switches as aeresion to classical deterministic switches.
We showed that a random variable, particularly a Bernowhdom variable, can be associated with
each pswitch, allowing circuits to realize probability tdiisutions. We found an algorithm to generate the
optimal circuit for any binary or trinary fraction. We shod/éow duality extends from resistor networks
and logic gates to the pswitch realm, using it to prove eristaesults. Finally, we constructed a linear-size
universal probability generator, capable of mapping aryo$éeterministic inputs to unique probabilistic
outputs.

Extending the work to find algorithms for more general rand@arables and multiple terminals would
be useful for applied work, particularly in modeling stostia events in biology and engineering.
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