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Sparsity: When only “a few” out of many
options are possible...

• Sparsity in information theory:

– Error-control codes: when only a “few errors” are possible;

– Superimposed Euclidean and group testing codes: when only
“a few” items are biased, “a few” individuals infected, “a few”
users active, etc.

– Digital fingerprinting (CS): when only “a few” colluders align.

– Signal processing - compressed sensing (CS): when only “a few”
coefficients in a linear superposition of real-valued signatures
are non-zero.

• Where does sparsity arise: data storage and transmission; wire-
less communication; signal processing; life sciences; fault tolerant
computing.

• Topics of current interest: Sparsity/sparse superpositions in infor-
mation theory and life sciences.
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Sparsity: When only “a few” out of many
options are possible...

• Sparsity in biology:

– Observation I: Biological systems evolved in complex environ-
ments with almost unlimited number of external stimula (large
dimensional signal spaces!).

– Observation II: Developing individual response mechanisms for
each stimulus prohibitively costly.

– Observation III: Fortunately, only a few signals present at the
same time and/or location.

– Observation IV: Based on group tests, have to determine which
signals were present.

• Where does sparsity arise in biology: Neuroscience - group testing
in sensory systems, sparse (multidimensional) neural coding, sparse
network interactions.

• Where does sparsity arise in biology: Bioinformatics - group testing
in immunology, sparse gene/protein network interactions, etc.
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Information theory: Error-control coding
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Hamming codes: [7,4,3]
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Linear Block Codes (LBCs) over Fq

• Definition: A linear binary code C is a collection of

codewords of length n, with k information symbols and

n− k parity-check symbols. The code rate is defined as

R = k/n.

• A set of m = n − k parity-check equations, arranged

row-wise, form a parity-check matrix of the code, H.

Clearly,

x ∈ C ⇐⇒ Hx = 0.

The rows represent basis-vectors of the null-space of C.
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Error-control Coding and Sparse Superpositions

• Error-control coding: The support of e, supp(e), is the
set of indices in [1, . . . , n] for which ei 6= 0. Hence

Hy =
∑

i∈ supp (e)

ei hi,

where hi is the i-th column of H.

• Error-control coding: With an abuse of standard coding-
theoretic language, refer to the columns of H as code-
words. Then an r-error correcting code is a set of n
codewords hi, i = 1, . . . , n, with the property that all the
Fq-linear combinations of collections of not more than
r codewords (“a few” ≤ r) are distinct.

• Robust error-control coding: A s-robust, r′-error cor-
recting code is a collection of n codewords hi, with the
property that any two distinct Fq-linear combinations of
collections involving not more than r′ codewords have
Hamming distance at least s.
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Information theory: group testing
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Given 12 identical-looking coins with one defective coin (heavier, say, than 
others), identify the defective coin using at most three weighings of a balance.

Test coins in group:

“1” denotes defective – heavier

Test is “positive” if at least one element is defective.

Non-adaptive group testing works only if small number of coins are defective.

8



Codes over F2: OR (Group Testing) Codes

• Generalizations: A F2-sum is just the Boolean XOR

function. Since we are working with the syndrome, can

claim that “superposition=linear function” of columns

of H is all we need for decoding. Can we use other

functions (superposition strategies) instead?

• One “neglected” example: Kautz and Singleton’s (KS)

superimposed codes, 1964.

Motivation: database retrieval (signature files) (KS,

1964), quality control testing (Colbourn et.al., 1996),

de-randomization of pattern-matching algorithms (In-

dyk, 1997).

Definition: A superimposed design is a set of n code-

words of length m, with the property that all bit-wise

logical OR functions of collections of not more than r

(”a few”) codewords are distinct.
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Codes over F2: Superimposed Coding and
Beyond

• Generalizations: A robust superimposed code obeys the

more restrictive constraint that the distinct OR func-

tions are at Hamming distance at lest s from each other.

One may also impose “joint constraints” on the code-

words, such as fixed weight of the rows of the superim-

posed code (design) matrix (Renýi search model, Dy-

achkov et.al. 1990).

• Some more recent work: Use “thresholded” Fq-sums,

logical AND and other non-linear tests...
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Information theory: multi-access
channels
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Codes over Rn: Euclidean Superimposed Codes

User ↔ signature vi, at most K users active. Norm con-

straint ↔ power constraint. Goal is to identify active users.
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Codes over Rn: Partitioned Euclidean
Superimposed Codes

Each user has a codebook of signatures, and at most K

users active.
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Information theory (?): compressed
sensing
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Compressed sensing: Codewords over Rm, weights from R,

R-linear combinations. As for superimposed codes, it is

assumed that there is a bound on the number of active

users/components: ||x||0 ≤ K.
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Sparsity as side information: Knowledge about signal being

sparse allows for simple, information-preserving dimension-

ality reductions! In addition, reconstruction algorithms are

polynomial time.
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CS, Group testing, and sparse
superpositions in Biology
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Group testing and CS - Neuroscience
(with D. Wilson, Oklahoma University)
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The Olfactory System

Buck and Malnic (Nobel Prize, 2004) 
Sense of smell uses “combinatorial approach
to recognizing and processing odors". 

Instead of assigning to each (10 000) smell a 
unique receptor, the olfactory system uses a 
small collection (100) of “combinatorial group 
testing sensors" to create a specific smell 
response within the neurons of the brain.

http://www.infinitevitalheart.com/Olf
actory_System.html

“Smell system” in mammals responsible for:
1) Creating representation of smells. 

2) Determining the concentration of smells. 
3) Distinguishing new smells from 

background.  
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Group testing in the epithelium: Shape-based, one receptor

protein (methaloprotein) locks onto several “basic odor-

ants”.

Spatial grouping of receptors: Responses of receptors for

the same group of odorants (i.e., same type of receptors)

converge to the same glomeruli region in the olfactory bulb.

Detection, estimation, and classification is performed in

the reduced dimensional space: CS theory - see work by

Baraniuk et. al., although sometimes “fanning in - fanning

out” effects are possible.
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Sparse Spatio-Temporal Coding

• Sparse spatial coding: At each point of time, only cer-

tain groups of neurons are active (“a few” groups).

• Sparse and dense temporal coding: Neuronal spikes are

infrequent/frequent in time.
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Example: Sparse/dense temporal coding
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Example: Sparse spatial coding
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Sparse Spatio-Temporal Coding

• Question 1: What is the exact nature of non-linear

superposition mechanisms?

• Question 2: How does the type of coding method relate

to the function of group of neurons?

• Question 3: What kind of processing algorithms (esti-

mation, detection, classification) does the neural sys-

tem use for non-linear CS data?
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Group testing and CS - Bioinformatics
(with J. Dingel, A. MacNeil, J. Shisler)
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Group testing and CS as part of the immune system re-

sponse: “Shape-based”, one T cell type recognizes many

viral epitopes. Competition of immune system cells is reg-

ulated in such a way that only a few of the most efficient

T cells are produced during equilibrium response. Good

from the perspective of energy preservation, big drawback

when fighting HIV viruses (original antigenic sin). Also of

importance when studying oncolytic viral treatments.

In coding theoretic language, only keep the projections with

length exceeding a certain threshold (some form of quanti-

zation). How do these projections “preserve information”

when the input signal changes?.
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Inferring topology/dynamics of sparse gene
regulatory networks: E. coli SOS network

• Except for a few exceptions, most genes are regulated

by only a few other genes: can assume that gene re-

sponse is a (linear?) superposition of input responses

of a few regulatory genes.

• How do we do this inference efficiently: coding-theoretic

inspired reconstruction algorithms for CS and group

testing.
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Linear superposition model - improvement in interaction

prediction
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Biologically inspired sensing systems:

Artificial nose technology by Ken Suslick (UIUC).

CS (group testing) DNA microarrays and aptamer arrays

(UIUC).

Single pixel camera (Rice university).
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4096 Pixels
800 Measurements
(20%)

Original
Object

Single Pixel Camera: Baraniuk et.al., Rice University

Compressed Sensing DNA 
Microarrays: Milenkovic et.al., UIUC
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INTERESTING MATHEMATICS?
ERROR-CONTROL AND SOURCE CODING,

ALGORITHMS,...
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CS and Superimposed Coding
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Hybrids Between ESC and CS: Constrained and
Nonlinear CS

• Settings allow for handling three important drawbacks

of CS strategies: a) noise intolerance; b) lack of de-

terministic design strategies for Φ; c) uncertainties in

sensing matrix; d) additional constraints imposed on

the structure of sensing matrices (non-negativity, `1, `2
norm constraints, etc.); f) non-linearities (“higher har-

monics”, ”polynomial CS”).

• Amenable for low-complexity decoding: Combination

of algorithmic decoding/reconstruction techniques from

CS and CT theory, such as list decoding, belief-propagation

decoding, and orthogonal matching pursuit algorithms

(OMP, ROMP, CSOMP).
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WESC and Non-linear SC: Extensions

Let Bt = {−t,−t+ 1, · · · ,−1,1, · · · , t} = [−t, t], t ∈ Z+, be a

symmetric, bounded set of integers. For a given set I ∈
[1, N ] and a coefficient vector b ∈ B|I|t , let

f (I,b) =
∑
i∈I

bi vi,

where bi is the ith element of b and vi is the ith column of

C. Define, as before,

dE (C,K) = min
((I1,b1),(I2,b2))

‖f (I1,b1)− f (I2,b2)‖2 ,

where I1,2 ∈ IK, (I1,b1) 6= (I2,b2).

Definition: A code C is said to be a weighted ESC (WESC)

with parameters (N,m,K, d,Bt) if dE (C,K) ≥ d, for some 0 ≤
d ≤ 1.
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WESC and Non-linear SC: Extensions

Definition: Let C be a set of N codewords (vectors)
∑Di
d=1 ai,dv

d
i ,

where vi ∈ Rm×1, i = 1,2, · · · , N and Di is the degree of

the polynomial associated with a vector vi. A code C is

said to be a polynomial wESC (WESC) with parameters

(N,m,K, d,Bt) if it is a WESC over the extended set of

polynomial codewords.

Less formally, it is a family of codes in which each code-

word can have several “harmonics”. For the example of

a 2-harmonic code, one can take K2 to be the number

of selected columns having exactly two harmonics, so that

K2 + ‖b‖0 ≤ K.
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Theoretical Results: Fundamental
Reconstruction Limits for WESCs

• Definition: Let

N (m,K, d,Bt) := max {N : C (N,m,K, d,Bt) 6= φ} .

The asymptotic code exponent is defined as

R (K, d,Bt) := lim sup
m→∞

logN (m,K, d,Bt)

m
.

• Theorem: For constant t, the asymptotic code expo-

nent of WESCs can be bounded as

logK

4K

(
1 + ot,d (1)

)
≤ R (K, d,Bt) ≤

logK

2K

(
1 + ot,d (1)

)
where ot,d (1) is a function of t and d, and ot,d (1) → 0 as

K →∞.
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Theoretical Results: Fundamental
Reconstruction Limits for WESCs

• Theorem: The polynomial code superposition rate is

upper bounded by

logK

2K
(1 + F (t, d)) ,

where

F (t, d) =
2

logK
log

(
2
√
Am (t+ 1)

d
+

1√
K

)
, (1)

with A = max{
∑Dij
d=1

∣∣∣aij,d∣∣∣}.
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Interpretation

• The compression parameters m and N satisfy

2K
log N

log K
≤ m ≤ 4K

log N

log K
. (2)

• Order of asymptotic code exponent does not depend on

minimum Euclidean distance - can make the distance

arbitrarily close to one.
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WESC: More Extensions

• Features of WSEC I: The parameter t can be a constant, or it can
grow with K or m.

• Features of WSEC II: Can impose additional restrictions on the
weighting set/alphabet Bt - and include rational values. Can try
to bridge the “gap to real numbers” using the fact that for every
real number ψ and an integer Q, there exists an irreducible rational
number a/q such that

0 < q ≤ n,

∣∣∣∣ψ − a

q

∣∣∣∣ ≤ 1

q (Q+ 1)
.

By restricting the alphabet of the weights to integers/rationals,
can enforce minimum distance constraints - i.e., make the schemes
robust to errors/noise.

• Features of WSEC III: Can enforce “norm distribution” on the
codewords in order to improve code rate.

• Features of WSEC IV: Can work with different normed spaces -

both with respect to distance measure and codewords. Interesting

connection to Milman’s theorem on Almost Euclidean Quotient

Spaces/Volumes of Convex Bodies.
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WESC with Code Uncertainty

Rather than having one signature sequence, each user can

have a signature code with W codewords. This can also be

seen as an instant of CS with sensing matrix uncertainty.

Laczay (2005) showed that the optimal asymptotic code

rate log N/n satisfies

log K

4K
−

log W

n
≤

log N

n
≤

log K

2K
−

log W

n
.
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Decoding/Reconstruction: Dense and Sparse
WESCs

Why Dense: Most sensing matrices are dense, and need

general reconstruction algorithms (redundant WESC de-

coders, Subspace Pursuit (SP), etc).

Why Sparse: Sparse problems can be solved more effi-

ciently - Matching Pursuit, LP, Belief Propagation.

For the latter case, deal with sparse WESC: A WSEC code

Cs is said to be a regular, sparse code, with sparsity s (where

s|m), if every codeword v ∈ Cs has support size m/s.

Discouraging fact: Loose a lot with sparsity requirement

with correlation decoder! Will briefly discuss a new method

that combines sparse/dense reconstruction!
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Redundant WESCs Decoding

The WESC pursuit decoder: Given the measurement y,
find the ith element of the input signal x via

xi = −arg min
a∈Bt

⋃
{0}

‖avi + y‖2 .

Iterate process with adequate changes in v. Use “redun-
dant codewords” in the WESCs matrix.

Computational complexity: Smaller than that of OMP,
since we essentially only need to compute the inner prod-
uct of vi and y once. In OMP, similar type of inner product
has to be evaluated K times for each vi.

Theorem: Consider a measurement matrix V ∈ Rm×N with
unit norm columns. For given K and t, m and N sufficiently
large, if

logN

m
>

1

8K2t2
(1 + oK (1)) ,

then there exists a V such that the WESC pursuit decoding
algorithm can reconstruct every K-sparse signal.
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The Subspace-Pursuit (SP) Algorithm

Similar to order-statistics Dykstra’s algorithm, known in

coding theory as A∗ (Han and Hartmann, 1992). Exten-

sions: produce list of candidate data vectors.
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The Subspace-Pursuit (SP) Algorithm:
Theoretical Guarantees

Definitions: A matrix Φ ∈ Rm×N satisfies the Restricted
Isometry Property (RIP) with parameters (K, δ) for K ≤ m,
if for all index sets I ⊂ {1, · · · , N} such that |I| ≤ K and for
all q ∈ R|K|, it holds

(1− δ) ‖q‖22 ≤ ‖ΦIq‖22 ≤ (1 + δ) ‖q‖22 .
For an RIP matrix, define δK as

δK := inf
{
δ : (1− δ) ‖q‖22 ≤ ‖ΦIq‖22 ≤ (1 + δ) ‖q‖22 ,

∀q ∈ RK, ∀ |I| ≤ K
}
.

Theorem: Assume that x ∈ RN is an arbitrary K-sparse
signal, and let the weighted sum of the codewords be y =
Φx ∈ Rm. If the measurement matrix Φ satisfies the RIP
with parameter

δ3K < 6−
√

35 ≈ 0.084, (3)

then the SP algorithm can exactly recover x from y, using
a finite number of iterations.
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The Subspace-Pursuit (SP) Algorithm:
Complexity

• LP-Decoding: Condition for exact recovery

δ3K < 0.33;

Complexity: O(N3).

• ROMP: Condition for exact recovery

δ3K <
0.03

logK
;

Complexity: O(mN K).

• SP-Decoding: Condition for exact recovery

δ3K < 0.12;

Complexity: O(mN K) or O(mN log K), depending on

the compressibility of the signal (and given p).

46



The SP Algorithm: 0− 1 signals
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The Sparse-Dense Codes and Reconstruction
Algorithms

Special Structure of Φ: the sensing matrix consists of all

non-zero codewords of a low-density parity-check (LDPC)

code. Computation of correlation between y and the code-

words boils down to LDPC decoding. For the latter, use

LP or BP decoding, complexity only of the order of m3 or

m, respectively.
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Deterministic Code/Matrix
Constructions
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The Design Approaches

• Spherical Codes: Ericsson and Zinoviev, 2001. Sophis-
ticated constructions involving specialized binary trees
and nested codes assigned to interior nodes of the tree.

• Superimposed Codes: Can be generated from spherical
codes (Danev, 2004) or based on real-valued mappings
from q-ary error-control codes, or primitive polynomials.

• Example: Let C be a binary linear [N,K,D] block code
that contains the all-ones codeword. Delete all code-
words starting with “1” and puncture the remaining
ones in the first position. Apply the mapping

a→
a√

N − 1
, a ∈ {0,1}.

Provided that D,K,N and d satisfy certain conditions,
the code can be shown to be ESC. Similar mappings
(but slightly more involved) can be devised for WSEC
and other CS categories).
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The Design Approaches

• Definition: Bh Sequences: A sequence of distinct non-

negative integers n1, n2, n3, . . . , nM, ni ∈ [1, N ], is a Bh
sequence if the sums of not more than h elements are

all distinct. More details in Halberstam and Roth, Se-

quences, 1983.

• Expansions of elements of Bh sequences lead to columns

of WSEC/CS matrices.
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THANK YOU!
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