A Bit of network information theory

Suhas Diggavi¹ Email: suhas.diggavi@epfl.ch URL: http://licos.epfl.ch

Parts of talk are joint work with S. Avestimehr², S. Mohajer¹, C. Tian³, D. Tse²

¹Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

²University of California, Berkeley, California, USA

³AT&T Shannon Laboratories, Florham Park, New Jersey, USA

The holy grail

Information flow over shared networks

- Unicast, multicast, multiple unicast (multicommodity flow).
- Significant progress for graphs (routing, network coding etc).
- Less understood for flows over wireless networks.

Network data compression: Motivation → sensor networks.

- Some successes in side-information coding: Slepian-Wolf, Wyner Ziv etc.
- Many unresolved questions: Distributed source coding, multiple description coding.

Question: How can we make progress to fundamentally characterize flow of information over networks?

Approximate characterizations

Philosophy: Gain insight into central difficulties of problem by identifying underlying deterministic/lossless structures.

Goal: Use the insight of underlying problem to get (provable) approximate characterization for noisy/lossy problem.

- Underlying problem should be characterized exactly to give insight into solution structure for general case.
- Universal approximation: Approximation should depend only on the problem structure and not on parameters (like channel gains, distortions etc.).

Question: Can we identify the appropriate underlying problems and use them to get provable (universal) approximations.

Overall agenda

Central theme: Obtain (universal) approximate characterizations for network flow problems.

Talk outline:

- Wireless relay networks
- Multiple description coding

 - Use multi-level rate region approximation for lossy case.

 Broadcast: Transmit signal potentially received by multiple receivers.

- Broadcast: Transmit signal potentially received by multiple receivers.
- Multiple access: Transmitted signals mix at the receivers.

- Broadcast: Transmit signal potentially received by multiple receivers.
- Multiple access: Transmitted signals mix at the receivers.
- High dynamic range: Large range in relative signal strengths.

- Broadcast: Transmit signal potentially received by multiple receivers.
- Multiple access: Transmitted signals mix at the receivers.
- High dynamic range: Large range in relative signal strengths.

Implications:

Complex signal interactions at different signal levels.

- Broadcast: Transmit signal potentially received by multiple receivers.
- Multiple access: Transmitted signals mix at the receivers.
- High dynamic range: Large range in relative signal strengths.

Implications:

- Complex signal interactions at different signal levels.
- Interacting signals from nodes contain information (not to be treated as noise).

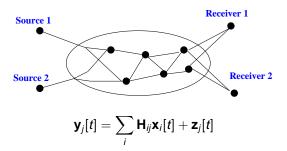
- Broadcast: Transmit signal potentially received by multiple receivers.
- Multiple access: Transmitted signals mix at the receivers.
- High dynamic range: Large range in relative signal strengths.

Implications:

- Complex signal interactions at different signal levels.
- Interacting signals from nodes contain information (not to be treated as noise).

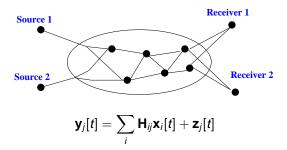
Question: Can we develop cooperative mechanisms to utilize signal interaction?

Signal interaction: Gaussian wireless networks



- Broadcast because transmission x_i is heard by all receivers.
- Multiple access because transmitted signals from all nodes mix linearly at the receiver j.
- Dynamic range depends on relative "strengths" of H_{ij}.

Signal interaction: Gaussian wireless networks



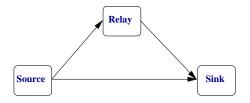
- Broadcast because transmission x_i is heard by all receivers.
- Multiple access because transmitted signals from all nodes mix linearly at the receiver j.
- Dynamic range depends on relative "strengths" of H_{ij}.

Question: Can we characterize capacity of such networks?

Resolved: Point-to-point channel, multiple access channel, broadcast channel (private messages).

Resolved: Point-to-point channel, multiple access channel, broadcast channel (private messages).

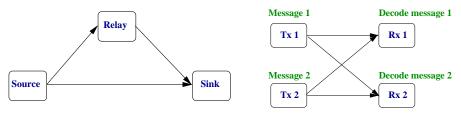
Unresolved:



RELAY CHANNEL: Cover, El-Gamal (1979)

Resolved: Point-to-point channel, multiple access channel, broadcast channel (private messages).

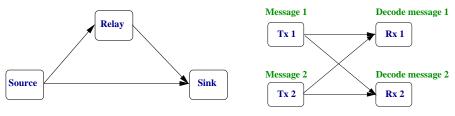
Unresolved:



RELAY CHANNEL: Cover, El-Gamal (1979) INTERFERENCE CHANNEL: Han-Kobayashi (1981)

Resolved: Point-to-point channel, multiple access channel, broadcast channel (private messages).

Unresolved:



RELAY CHANNEL: Cover, El-Gamal (1979) INTERFERENCE CHANNEL: Han-Kobayashi (1981)

Question: Thirty years have gone by... How can we make progress

Focus on signal interaction not noise

Observation: Success of network coding was through examination of flow on wireline networks, a special deterministic channel.

Focus on signal interaction not noise

Observation: Success of network coding was through examination of flow on wireline networks, a special deterministic channel. **Idea:**

- Many wireless systems are interference rather than noise limited.
- Use deterministic channel model to focus on signal interaction and not noise.

Focus on signal interaction not noise

Observation: Success of network coding was through examination of flow on wireline networks, a special deterministic channel.

- Many wireless systems are interference rather than noise limited.
- Use deterministic channel model to focus on signal interaction and not noise.

Hope:

- Deterministic models more tractable.
- Use insight to obtain approximate characterizations for noisy (Gaussian) networks.

Focus on signal interaction not noise

Observation: Success of network coding was through examination of flow on wireline networks, a special deterministic channel. **Idea:**

- Many wireless systems are interference rather than noise limited.
- Use deterministic channel model to focus on signal interaction and not noise.

Hope:

- Deterministic models more tractable.
- Use insight to obtain approximate characterizations for noisy (Gaussian) networks.

Question: Can we develop relevant models and analyze networks with deterministic signal interactions to get the insights?

Agenda: Relay networks

- Introduce deterministic channel model.
- Motivate the utility of deterministic model with examples.
- Develop achievable rates for general deterministic relay networks
- Characterizations for linear finite field deterministic models.

Agenda: Relay networks

- Introduce deterministic channel model.
- Motivate the utility of deterministic model with examples.
- Develop achievable rates for general deterministic relay networks
- Characterizations for linear finite field deterministic models.
- Connection to wireless networks: Use insights on achievability of deterministic networks to obtain approximate characterization of noisy relay networks.

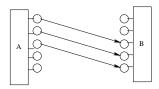
Example 1: Point-to-point link

Gaussian

$$y=2^{\alpha/2}x+z$$

Capacity is $\log(1+2^{\alpha}) \approx \alpha \log 2$ assuming unit variance noise.

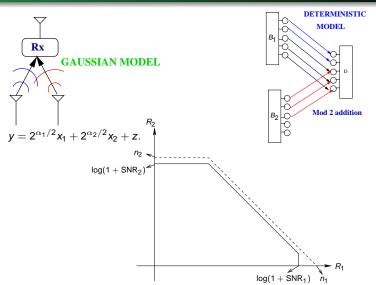
Deterministic



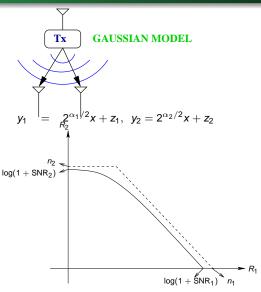
Receiver observes α most significant bits of transmitted signal.

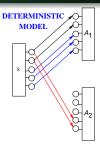
- Number of levels received shows scale of channel strength.
- Scale important when signals interact in broadcast and multiple access.

Example 2: Multiple access channel

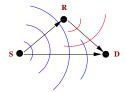


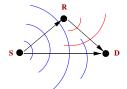
Example 3: Scalar broadcast channel

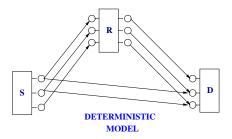


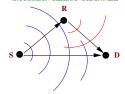


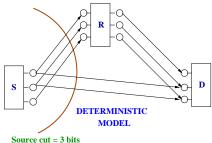
Approximation of 1 bit

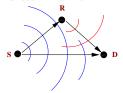


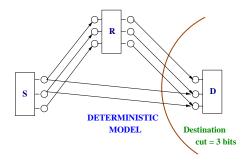


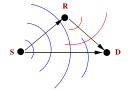


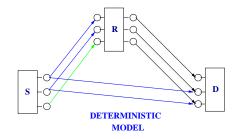


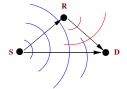


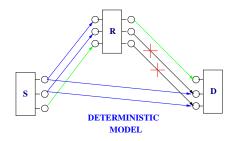


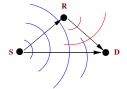


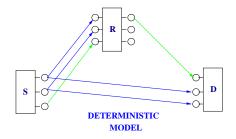


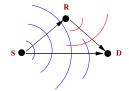


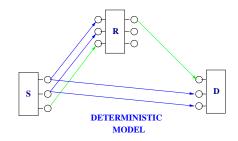






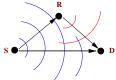


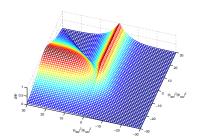




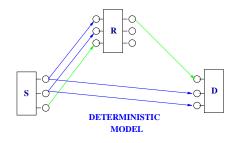
Cut-set bound achievable.

Decode and forward is optimal.





Result: Gap from cut-set less than 1 bit, on average much less.

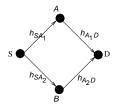


Cut-set bound achievable.

Decode and forward is optimal.

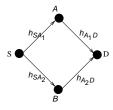
Diamond network

Gaussian

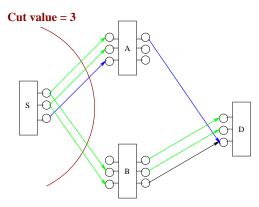


Diamond network

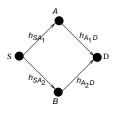
Gaussian



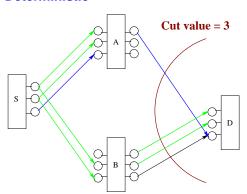
Deterministic



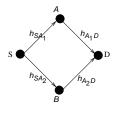
Gaussian



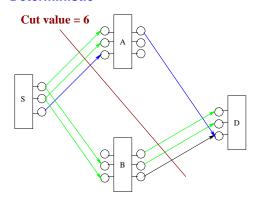
Deterministic



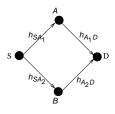
Gaussian



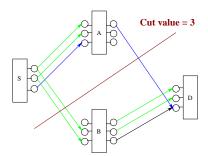
Deterministic



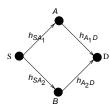
Gaussian



Deterministic

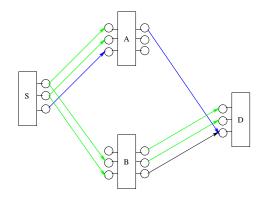


Gaussian



Result: Gap from cut-set less 1 bit.

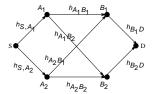
Deterministic



Cut-set bound achievable.
Partial decode-forward is optimal.

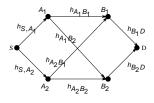
Two-layer network

Gaussian

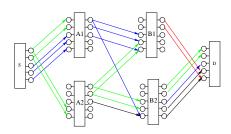


Two-layer network

Gaussian



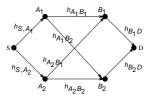
Deterministic



Cut-set bound achievable. Linear map and forward is optimal.

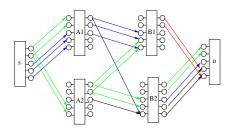
Two-layer network

Gaussian



Result: Gap from cut-set less than constant number of bits.

Deterministic



Cut-set bound achievable. Linear map and forward is optimal.

Questions

• Is the cut-set bound achievable for the deterministic model in arbitrary networks?

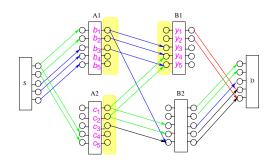
Questions

- Is the cut-set bound achievable for the deterministic model in arbitrary networks?
- What is the structure of the optimal strategy?

Questions

- Is the cut-set bound achievable for the deterministic model in arbitrary networks?
- What is the structure of the optimal strategy?
- Can we use insight from deterministic analysis to get approximately optimal strategy for Gaussian networks?

Algebraic representation



$$\boldsymbol{S} = \left[\begin{array}{ccccc} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \end{array} \right]$$

S is shift matrix of size $q = \max_{i,j} n_{i,j}$.

$$\mathbf{y}_{B_1} = \begin{vmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ b_1 \\ b_2 \\ b_3 \end{vmatrix} \oplus \begin{vmatrix} 0 \\ 0 \\ 0 \\ c_1 \\ c_2 \end{vmatrix} = \mathbf{S}^{5-3} \mathbf{x}_{A_1} \oplus \mathbf{S}^{5-2} \mathbf{x}_{A_2} = \mathbf{S}^{5-3} \mathbf{b} \oplus \mathbf{S}^{5-2} \mathbf{c}$$

Generalizations

Linear finite field model

- Channel from *i* to *j* is described by channel matrix G_{ij} operating over \mathbb{F}_2 .
- Received signal at node j:

$$\mathbf{y}_j[t] = \sum_{i=1}^N \mathbf{G}_{ij} \mathbf{x}_i[t]$$

Special case: our model given in examples

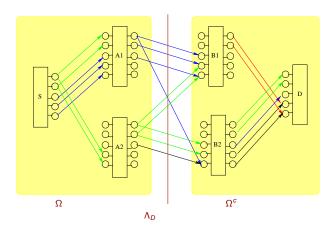
$$\mathbf{G}_{ij} = \mathbf{S}^{q-lpha_{ij}}$$

General deterministic network:

$$\mathbf{y}[t] = \mathbf{G}(\mathbf{x}_1[t], \dots, \mathbf{x}_N[t])$$

Observation: Wireline networks are a special case.

Information-theoretic cut-set



Cut: Separates S from D

Cut transfer matrix G Ω, Ω^c : Transfer function from nodes in Ω to Ω^c .

Cutset upper bound

General relay network:

$$C_{ ext{relay}} \leq ar{C} = \max_{oldsymbol{
ho}(oldsymbol{X}_1,...,oldsymbol{X}_{
ho})} \min_{\Omega} \emph{I}(oldsymbol{X}_{\Omega^c};oldsymbol{Y}_{\Omega^c}|oldsymbol{X}_{\Omega^c})$$

Cutset upper bound

General relay network:

$$C_{ ext{relay}} \leq ar{C} = \max_{oldsymbol{
ho}(oldsymbol{X}_1,...,oldsymbol{X}_{
ho})} \min_{\Omega} \emph{I}(oldsymbol{X}_{\Omega^c};oldsymbol{Y}_{\Omega^c}|oldsymbol{X}_{\Omega^c})$$

General deterministic relay network:

$$C_{ ext{relay}} \leq ar{C} = \max_{oldsymbol{
ho}(oldsymbol{X}_1,...,oldsymbol{X}_N)} \min_{\Omega} oldsymbol{H}(oldsymbol{Y}_{\Omega^c}|oldsymbol{X}_{\Omega^c})$$

Cutset upper bound

General relay network:

$$C_{ ext{relay}} \leq ar{C} = \max_{oldsymbol{p}(oldsymbol{X}_1,...,oldsymbol{X}_N)} \min_{\Omega} \emph{I}(oldsymbol{X}_{\Omega^c}|oldsymbol{X}_{\Omega^c})$$

General deterministic relay network:

$$C_{ ext{relay}} \leq ar{C} = \max_{p(\mathbf{X}_1,...,\mathbf{X}_N)} \min_{\Omega} H(\mathbf{Y}_{\Omega^c}|\mathbf{X}_{\Omega^c})$$

Linear finite field network: Optimal input distribution $\mathbf{x}_1, \dots, \mathbf{x}_N$ independent and uniform

$$C_{\mathrm{relay}} \leq ar{C} = \min_{\Omega} \mathrm{rank}(\mathbf{G}_{\Omega,\Omega^c})$$

where $\mathbf{G}_{\Omega,\Omega^c}$ is the transfer matrix $\mathbf{X}_{\Omega} \to \mathbf{Y}_{\Omega^c}$.

Main results: Deterministic relay networks

Theorem (Avestimehr, Diggavi and Tse, 2007)

Given a general deterministic relay network (with broadcast and multiple access), we can achieve all rates R upto

$$\max_{\prod_i p(\mathbf{X}_i)} \min_{\Omega} H(\mathbf{Y}_{\Omega^c} | \mathbf{X}_{\Omega^c})$$

Multicast information flow:

Theorem (Avestimehr, Diggavi and Tse, 2007)

Given a general deterministic relay network (with broadcast and multiple access), we can achieve all rates R from S multicasting to all destinations $D \in \mathcal{D}$ up to,

$$\max_{\prod_{i \in \mathcal{V}} p(x_i)} \min_{D \in \mathcal{D}} \min_{\Omega \in \Lambda_D} H(Y_{\Omega^c} | X_{\Omega^c})$$

Application

Linear deterministic models

Corollary (Avestimehr, Diggavi and Tse, 2007)

Given a linear finite-field relay network (with broadcast and multiple access), the capacity C of such a relay network is given by,

$$C = \min_{\Omega \in \Lambda_D} \operatorname{rank}(\textbf{G}_{\Omega,\Omega^c}).$$

Multicast information flow:

Corollary (Avestimehr, Diggavi and Tse, 2007)

Given a linear finite-field relay network (with broadcast and multiple access), the multicast capacity C of such a relay network is given by,

$$C = \min_{\mathcal{D} \in \mathcal{D}} \min_{\Omega \in \Lambda_{\mathcal{D}}} \mathrm{rank} \big(\textbf{G}_{\Omega,\Omega^c} \big).$$

Consequences: Deterministic Relay Networks

General deterministic networks: Cutset upper bound was $C_{\text{relay}} \leq \max_{p(\mathbf{X}_1,...,\mathbf{X}_N)} \min_{\Omega} H(\mathbf{Y}_{\Omega^c}|\mathbf{X}_{\Omega^c}) \Longrightarrow$ achievable if optimum was product distribution.

Linear finite field model: Cutset upper bound was $C_{\mathrm{relay}} \leq \min_{\Omega} \mathrm{rank}(\mathbf{G}_{\Omega,\Omega^c}) \Longrightarrow \text{cutset bound achievable}$

For wireline graph model $\operatorname{rank}(\mathbf{G}_{\Omega,\Omega^c})$ is number of links crossing the cut.

Observation: We have a generalization of Ford-Fulkerson max-flow min-cut theorem to linear finite field relay networks with broadcast and multiple access.

Main results: Gaussian relay networks

Theorem (Avestimehr, Diggavi and Tse, 2007)

<u>Given a Gaussian relay network, G, we can achieve all rates R up to $C - \kappa$. Therefore the capacity of this network satisfies</u>

$$\overline{\mathbf{C}} - \kappa \leq \mathbf{C} \leq \overline{\mathbf{C}},$$

where \overline{C} is the cut-set upper bound on the capacity of \mathcal{G} , and κ is a constant independent of channel gains.

Theorem (Multicast information flow)

Given a Gaussian relay network, \mathcal{G} , we can achieve all multicast rates R up to $\overline{C}_{mcast} - \kappa$, i.e., for $\overline{C}_{mcast} = \min_{D \in \mathcal{D}} \overline{C}_{D}$,

$$\overline{\mathbf{C}}_{mcast} - \kappa \leq \mathbf{C} \leq \overline{\mathbf{C}}_{mcast}$$

Ingredients and insights

Main steps: Gaussian strategy

- Relay operation: Quantize received signal at noise-level.
- Relay function: Random mapping from received quantized signal to transmitted signal.
- Handle unequal (multiple) paths between nodes like "inter-symbol interference".

Consequences:

- With probabilistic method we demonstrate min-cut achievability for linear deterministic networks.
- Gaussian networks constant gap independent of SNR operating point.
- Engineering insight of (almost) optimal coding strategies.

Compound relay networks

Compound model: Channel realizations from a set $h_{i,j} \in \mathcal{H}_{i,j}$, unknown to sender.

Observations:

- Relay strategy does not depend on the channel realization.
- Overall network from source to destination behaves like a compound channel.
- Utilize point-to-point compound channel ideas get approximate characterization for compound network.

Theorem

Given a compound Gaussian relay network the capacity Ccn satisfies

$$\overline{C}_{cn} - \kappa \leq C_{cn} \leq \overline{C}_{cn}$$

where $\overline{C}_{cn} = \max_{p(\{x_i\}_{i \in \mathcal{V}})} \inf_{h \in \mathcal{H}} \min_{\Omega \in \Lambda_D} I(Y_{\Omega^c}; X_{\Omega} | X_{\Omega^c}).$

Relay networks: Open questions and extensions

Extensions:

- Outage set behavior for full duplex networks.
- Analysis of half-duplex systems with fixed transmit fractions.
- Ergodic channel variations.

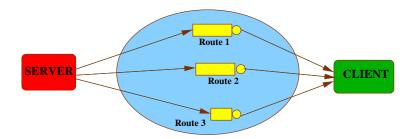
Open questions:

- D-M trade-off for channel dependent half-duplex systems.
- Tightening gap to cut-set bound.
- Use deterministic model directly to get Gaussian result.

Extensions of deterministic approach

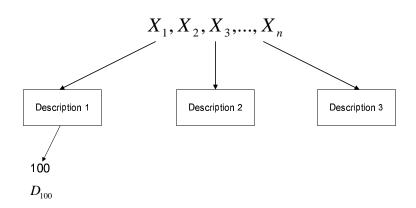
- Interference channel: Successfully used to generate approximate characterization (Bresler and Tse, 2007),
- K-user interference channel: Used to demonstrate new phenomenon of interference alignment (Bresler-Tse, 2007, Jafar 2007).
- Relay-interference networks: Extension of multiple unicast to wireless networks (Mohajer, Diggavi, Fragouli and Tse, 2008).
- Wireless network secrecy: Used to demonstrate secrecy over networks (Diggavi, Perron and Telatar, 2008).
- Network data compression: Identify correct multi-terminal lossless structures to get approximations — next topic.

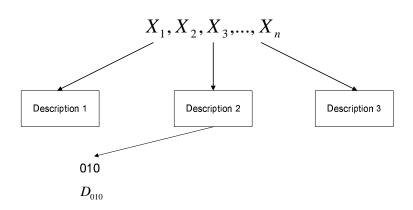
Multiple description coding: route diversity

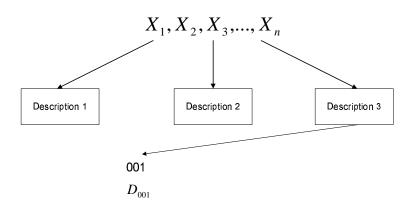


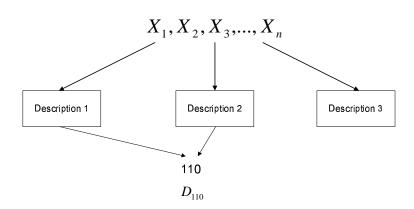
- Route diversity: Multiple routes from source to destination.
- Goal: Graceful degradation in performance with route failures
 multiple description source coding.
- Generate binary streams with rate constraints with distortion guarantees when only subset of routes succeed.

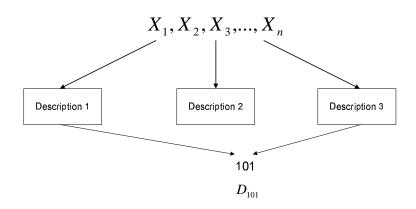
Problem statement
Encoder architecture
Main results
Extensions and discussio

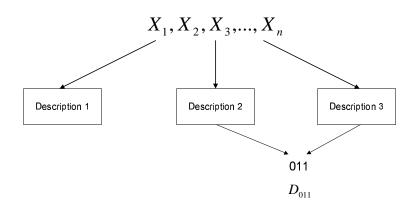


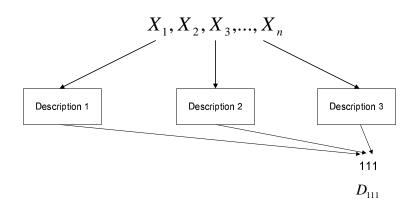


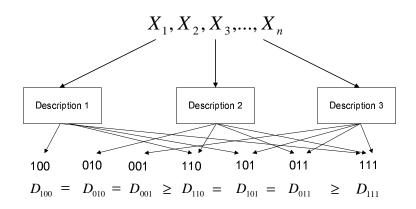






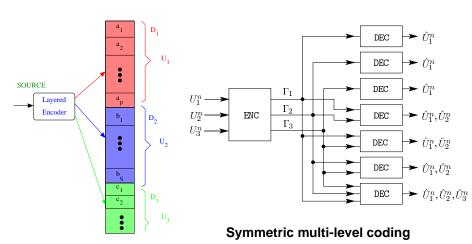






Goal: Characterize tuple $(R_1, R_2, R_3, D_1, D_2, D_3)$, for Gaussian quadratic source, where R_i are rates on descriptions and D_i are distortions for i successful descriptions.

Simple architecture: lossless multilevel source codes



Overall strategy

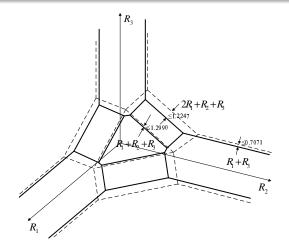
Approach:

- Identify underlying lossless coding problem and solve rate region.
- Use polytopic lossless rate region as "template".
- Derive outer bound using intuition from the template.

Technical ideas:

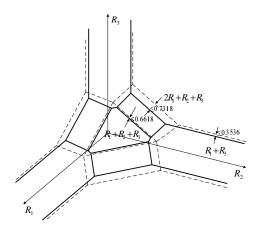
- New lower bounding technique: Expand auxiliary random variable space to K-1 for K-descriptions.
- Intuition: Each auxiliary variable captures distortion "level".
- Use structure for auxiliary variables to obtain lower bound to match inner bound region.

An approximate characterization for SR-MLD



Bottom line: Simple architecture almost optimal!

Improved approximation using binning scheme



Results have been generalized to K > 3 using bounding hyperplanes specification.

Extensions

Symmetric MD

- Lower bound extension to arbitrary K description problem (DCC 2008).
- Approximation for K > 3 rate-region using the symmetric MLD (K > 3) insights (ISIT 2008).
- Extension to non-Gaussian sources.

Asymmetric problem

- Solved underlying 3-description lossless asymmetric multi-level coding rate region (DCC 2008)
- Used insight to approximate asymmetric Gaussian MD rate region (ISIT 2008).

Discussion

Program:

- Focus on underlying deterministic or lossless coding problem
 this identification is a central challenge.
- Obtain exact characterization of underlying problem.
- Use insight to obtain approximation of rate region of noisy/lossy problem.

Hope:

- The program will yield insight to network flow problems.
- Exposes the central difficulties, solution insights and new schemes?
- Approximations may be sufficient for engineering practice.

