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Foreword

Early computers replaced calculators and typewriters, and programmers focused
on scientific computing (calculations involving numbers) and string processing
(manipulating sequences of alphanumeric characters, or strings). Ironically, in
modern applications, string processing is an integral part of scientific computing,
as strings are an appropriate model of the natural world in a wide range of
applications, notably computational biology and chemistry. Beyond scientific
applications, strings are the lingua franca of modern computing, with billions
of computers having immediate access to an almost unimaginable number of
strings.

Decades of research have met the challenge of developing fundamental al-
gorithms for string processing and mathematical models for strings and string
processing that are suitable for scientific studies. Until now, much of this knowl-
edge has been the province of specialists, requiring intimate familiarity with the
research literature. The appearance of this new book is therefore a welcome
development. It is a unique resource that provides a thorough coverage of the
field and serves as a guide to the research literature. It is worthy of serious study
by any scientist facing the daunting prospect of making sense of huge numbers
of strings.

The development of an understanding of strings and string processing algo-
rithms has paralleled the emergence of the field of analytic combinatorics, under
the leadership of the late Philippe Flajolet, to whom this book is dedicated.
Analytic combinatorics provides powerful tools that can synthesize and simplify
classical derivations and new results in the analysis of strings and string pro-
cessing algorithms. As disciples of Flajolet and leaders in the field nearly since
its inception, Philippe Jacquet and Wojciech Szpankowski are well positioned
to provide a cohesive modern treatment, and they have done a masterful job in
this volume.

Robert Sedgewick
Princeton University





Preface

Repeated patterns and related phenomena in words are known to play a cen-
tral role in many facets of computer science, telecommunications, coding, data
compression, data mining, and molecular biology. One of the most fundamen-
tal questions arising in such studies is the frequency of pattern occurrences in a
given string known as the text. Applications of these results include gene finding
in biology, executing and analyzing tree-like protocols for multiaccess systems,
discovering repeated strings in Lempel–Ziv schemes and other data compression
algorithms, evaluating string complexity and its randomness, synchronization
codes, user searching in wireless communications, and detecting the signatures
of an attacker in intrusion detection.

The basic pattern matching problem is to find for a given (or random) pat-
tern w or set of patterns W and a text X how many times W occurs in the
text X and how long it takes for W to occur in X for the first time. There are
many variations of this basic pattern matching setting which is known as exact
string matching. In approximate string matching, better known as generalized
string matching, certain words from W are expected to occur in the text while
other words are forbidden and cannot appear in the text. In some applications,
especially in constrained coding and neural data spikes, one puts restrictions on
the text (e.g., only text without the patterns 000 and 0000 is permissible), lead-
ing to constrained string matching. Finally, in the most general case, patterns
from the setW do not need to occur as strings (i.e., consecutively) but rather as
subsequences; that leads to subsequence pattern matching, also known as hidden
pattern matching.

These various pattern matching problems find a myriad of applications.
Molecular biology provides an important source of applications of pattern match-
ing, be it exact or approximate or subsequence pattern matching. There are
examples in abundance: finding signals in DNA; finding split genes where exons
are interrupted by introns; searching for starting and stopping signals in genes;
finding tandem repeats in DNA. In general, for gene searching, hidden pattern
matching (perhaps with an exotic constraint set) is the right approach for find-
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ing meaningful information. The hidden pattern problem can also be viewed
as a close relative of the longest common subsequence (LCS) problem, itself of
immediate relevance to computational biology but whose probabilistic aspects
are still surrounded by mystery.

Exact and approximate pattern matching have been used over the last 30
years in source coding (better known as data compression), notably in the
Lempel–Ziv schemes. The idea behind these schemes is quite simple: when
an encoder finds two (longest) copies of a substring in a text to be compressed,
the second copy is not stored but, rather, one retains a pointer to the copy (and
possibly the length of the substring). The holy grail of universal source coding
is to show that, without knowing the statistics of the text, such schemes are
asymptotically optimal.

There are many other applications of pattern matching. Prediction is one
of them and is closely related to the Lempel–Ziv schemes (see Jacquet, Sz-
pankowski, and Apostol (2002) and Vitter and Krishnan (1996)). Knowledge
discovery can be achieved by detecting repeated patterns (e.g., in weather pre-
diction, stock market, social sciences). In data mining, pattern matching algo-
rithms are probably the algorithms most often used. A text editor equipped with
a pattern matching predictor can guess in advance the words that one wants to
type. Messages in phones also use this feature.

In this book we study pattern matching problems in a probabilistic frame-
work in which the text is generated by a probabilistic source while the pattern
is given. In Chapter 1 various probabilistic sources are discussed and our as-
sumptions are summarized. In Chapter 6 we briefly discuss the algorithmic as-
pects of pattern matching and various efficient algorithms for finding patterns,
while in the rest of this book we focus on analysis. We apply analytic tools
of combinatorics and the analysis of algorithms to discover general laws of pat-
tern occurrences. Tools of analytic combinatorics and analysis of algorithms are
well covered in recent books by Flajolet and Sedgewick (2009) and Szpankowski
(2001).

The approach advocated in this book is the analysis of pattern matching
problems through a formal description by means of regular languages. Basi-
cally, such a description of the contexts of one, two, or more occurrences of
a pattern gives access to the expectation, the variance, and higher moments,
respectively. A systematic translation into the generating functions of a com-
plex variable is available by methods of analytic combinatorics deriving from
the original Chomsky–Schützenberger theorem. The structure of the implied
generating functions at a pole or algebraic singularity provides the necessary
asymptotic information. In fact, there is an important phenomenon, that of
asymptotic simplification, in which the essentials of combinatorial-probabilistic
features are reflected by the singular forms of generating functions. For instance,
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variance coefficients come out naturally from this approach, together with a suit-
able notion of correlation. Perhaps the originality of the present approach lies in
this joint use of combinatorial-enumerative techniques and analytic-probabilistic
methods.

We should point out that pattern matching, hidden words, and hidden mean-
ing were studied by many people in different contexts for a long time before com-
puter algorithms were designed. Rabbi Akiva in the first century A.D. wrote a
collection of documents called Maaseh Merkava on secret mysticism and medi-
tations. In the eleventh century the Spaniard Solomon Ibn Gabirol called these
secret teachings Kabbalah. Kabbalists organized themselves as a secret society
dedicated to the study of the ancient wisdom of Torah, looking for mysterious
connections and hidden truths, meaning, and words in Kabbalah and elsewhere.
Recent versions of this activity are knowledge discovery and data mining, bib-
liographic search, lexicographic research, textual data processing, and even web
site indexing. Public domain utilities such as agrep, grappe, and webglimpse

(developed for example by Wu and Manber (1995), Kucherov and Rusinowitch
(1997), and others) depend crucially on approximate pattern matching algo-
rithms for subsequence detection. Many interesting algorithms based on regular
expressions and automata, dynamic programming, directed acyclic word graphs,
and digital tries or suffix trees have been developed. In all the contexts men-
tioned above it is of obvious interest to distinguish pattern occurrences from the
statistically unavoidable phenomenon of noise. The results and techniques of
this book may provide some answers to precisely these questions.

Contents of the book
This book has two parts. In Part I we compile all the results known to us
about the various pattern matching problems that have been tackled by ana-
lytic methods. Part II is dedicated to the application of pattern matching to
various data structures on words, such as digital trees (e.g., tries and digital
search trees), suffix trees, string complexity, and string-based data compression
and includes the popular schemes of Lempel and Ziv, namely the Lempel–Ziv’77
and the Lempel–Ziv’78 algorithms. When analyzing these data structures and
algorithms we use results and techniques from Part I, but we also bring to the
table new methodologies such as the Mellin transform and analytic depoissoniza-
tion.

As already discussed, there are various pattern matching problems. In its
simplest form, a patternW = w is a single string w and one searches for some or
all occurrences of w as a block of consecutive symbols in the text. This problem
is known as exact string matching and its analysis is presented in Chapter 2
where we adopt a symbolic approach. We first describe a language that contains
all occurrences of w. Then we translate this language into a generating function
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that will lead to precise evaluation of the mean and variance of the number of
occurrences of the pattern. Finally, we establish the central and local limit laws,
and large deviation results.

In Chapter 2 we assume that the text is generated by a random source
without any constraints. However, in several important applications in coding
and molecular biology, often the text itself must satisfy some restrictions. For
example, codes for magnetic recording cannot have too many consecutive zeros.
This leads to consideration of the so-called (d, k) sequences, in which runs of
zeros are of length at least d and at most k. In Chapter 3 we consider the exact
string matching problem when the text satisfies extra constraints, and we coin
the term constrained pattern matching. We derive moments for the number of
occurrences as well as the central limit laws and large deviation results.

In the generalized string matching problem discussed in Chapter 4 the pat-
tern W is a set of patterns rather than a single pattern. In its most general
formulation, the pattern is a pair (W0,W) where W0 is the so-called forbidden
set. If W0 = ∅ then W is said to appear in the text X whenever a word from
W occurs as a string, with overlapping allowed. When W0 6= ∅ one studies the
number of occurrences of strings from W under the condition that there is no
occurrence of a string from W0 in the text. This is constrained string matching,
since one restricts the text to those strings that do not contain strings fromW0.
Setting W = ∅ (with W0 6= ∅), we search for the number of text strings that
do not contain any pattern from W0. In this chapter we present a complete
analysis of the generalized string matching problem. We first consider the so-
called reduced set of patterns in which one string in W cannot be a substring of
another string in W . We generalize our combinatorial language approach from
Chapter 2 to derive the mean, variance, central and local limit laws, and large
deviation results. Then we analyze the generalized string pattern matching. In
our first approach we construct an automaton to recognize a pattern W , which
turns out to be a de Bruijn graph. The generating function of the number of oc-
currences has a matrix form; the main matrix represents the transition matrix of
the associated de Bruijn graph. Our second approach is a direct generalization
of the language approach from Chapter 2. This approach was recently proposed
by Bassino, Clement, and Nicodeme (2012).

In the last chapter of Part I, Chapter 5, we discuss another pattern matching
problem called subsequence pattern matching or hidden pattern matching. In
this case the pattern W = w1a2 · · ·wm, where wi is a symbol of the underlying
alphabet, occurs as a subsequence rather than a string of consecutive symbols
in a text. We say that W is hidden in the text. For example, date occurs
as a subsequence in the text hidden pattern, four times in fact but not even
once as a string. The gaps between the occurrences of W may be bounded
or unrestricted. The extreme cases are: the fully unconstrained problem, in



Preface xvii

which all gaps are unbounded, and the fully constrained problem, in which all
gaps are bounded. We analyze these and mixed cases. Also, in Chapter 5
we present a general model that contains all the previously discussed pattern
matchings. In short, we analyze the so-called generalized subsequence problem.
In this case the pattern is W = (W1, . . . ,Wd), where Wi is a collection of
strings (a language). We say that the generalized pattern W occurs in the
text X if X contains W as a subsequence (w1, w2, . . . , wd), where wi ∈ Wi.
Clearly, the generalized subsequence problem includes all the problems discussed
so far. We analyze this generalized pattern matching for general probabilistic
dynamic sources, which include Markov sources and mixing sources as recently
proposed by Vallée (2001). The novelty of the analysis lies in the translation
of probabilities into compositions of operators. Under a mild decomposability
assumption, these operators possess spectral representations that allow us to
derive precise asymptotic behavior for the quantities of interest.

Part II of the book starts with Chapter 6, in which we describe some data
structures on words. In particular, we discuss digital trees, suffix trees, and the
two most popular data compression schemes, namely Lempel–Ziv’77 (LZ’77)
and Lempel–Ziv’78 (LZ’78).

In Chapter 7 we analyze tries and digital search trees built from independent
strings. These basic digital trees owing to their simplicity and efficiency, find
widespread use in diverse applications ranging from document taxonomy to IP
address lookup, from data compression to dynamic hashing, from partial-match
queries to speech recognition, from leader election algorithms to distributed
hashing tables. We study analytically several tries and digital search tree pa-
rameters such as depth, path length, size, and average profile. The motivation
for studying these parameters is multifold. First, they are efficient shape mea-
sures characterizing these trees. Second, they are asymptotically close to the
parameters of suffix trees discussed in Chapter 8. Third, not only are the an-
alytical problems mathematically challenging, but the diverse new phenomena
they exhibit are highly interesting and unusual.

In Chapter 8 we continue analyzing digital trees but now those built from
correlated strings. Namely we study suffix trees, which are tries constructed from
the suffixes of a string. In particular we focus on characterizing mathematically
the length of the longest substring of the text occurring at a given position
that has another copy in the text. This length, when averaged over all possible
positions of the text, is actually the typical depth in a suffix trie built over
(randomly generated) text. We analyze it using analytic techniques such as
generating functions and the Mellin transform. More importantly, we reduce its
analysis to the exact pattern matching discussed in depth in Chapter 2. In fact,
we prove that the probability generating function of the depth in a suffix trie
is asymptotically close to the probability generating function of the depth in a
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trie that is built over n independently generated texts analyzed in Chapter 7, so
we have a pretty good understanding of its probabilistic behavior. This allows
us to conclude that the depth in a suffix trie is asymptotically normal. Finally,
we turn our attention to an application of suffix trees to the analysis of the
Lempel–Ziv’77 scheme. We ask the question how many LZ’77 phrases there
are in a randomly generated string. This number is known as the multiplicity
parameter and we establish its asymptotic distribution.

In Chapter 9 we study a data structure that is the most popular and the
hardest to analyze, namely the Lempel–Ziv’78 scheme. Our goal is to charac-
terize probabilistically the number of LZ’78 phrases and its redundancy. Both
these tasks drew a lot of attention as being open and difficult until Aldous and
Shields (1988) and Jacquet and Szpankowski (1995) solved them for memoryless
sources. We present here a simplified proof for extended results: the central limit
theorem for the number of phrases and the redundancy as well as the moderate
and large deviation findings. We study this problem by reducing it to an analy-
sis of the associated digital search tree, already discussed in part in Chapter 7.
In particular, we establish the central limit theorem and large deviations for the
total path length in the digital search tree.

Finally, in Chapter 10 we study the string complexity and also the joint string
complexity, which is defined as the cardinality of distinct subwords of a string or
strings. The string complexity captures the “richness of the language” used in a
sequence, and it has been studied quite extensively from the worst case point of
view. It has also turned out that the joint string complexity can be used quite
successfully for twitter classification (see Jacquet, Milioris, and Szpankowski
(2013)). In this chapter we focus on an average case analysis. The joint string
complexity is particularly interesting and challenging from the analysis point
of view. It requires novel analytic tools such as the two-dimensional Mellin
transform, depoissonization, and the saddle point method.

Nearly every chapter is accompanied by a set of problems and related bibli-
ography. In the problem sections we ask the reader to complete a sketchy proof,
to solve a similar problem, or to actually work on an open problem. In the
bibliographical sections we briefly describe some related literature.

Finally, to ease the reading of this book, we illustrate each chapter with
an original comic sketch. Each sketch is somewhat related to the topic of the
corresponding chapter, as discussed below.
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About the sketches

In order to ease the reading of this book, full of dry equations, Philippe drew
a comic sketch for each chapter. In these sketches we introduced two recurrent
comic characters. They are undefined animals like rats, worms, or lizards, some-
times more like fish or butterflies. We, Wojtek and Philippe, appear in some
sketches: Wojtek with his famous moustache appears as the butterfly hunter
and Philippe appears as a fisherman.

For us patterns are like small animals running over a text, and we see a text
like a forest or a garden full of words, as illustrated below. We have given names

to these two animals: Pat for Patricia Tern, and Mat for Mathew Tching. They
are mostly inspired by Philippe’s twin cats, Calys and Gypsie who often play
and hide wherever they can.

Let us give you some hints on how to read these sketches:

1. The probabilistic model chapter shows Pat and Mat in a chess game, be-
cause probability and games are deeply entangled concepts. Here is the
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question: who will win the game (chess mat) and who will lose (pat)?
Colours in the checker board are omitted in order to complicate the puz-
zle.

2. In exact string matching, Pat and Mat are in their most dramatic situation:
escaping the pattern matching hunters.

3. In the constrained pattern matching chapter, Pat and Mat must escape
a stubborn pattern matching hunter who is ready to chase them in the
hostile (constrained) submarine context.

4. In general string matching, the issue is how to catch a group of patterns.
This is symbolised by a fisherman holding several hooks. Whether the
fisherman looks like Philippe is still an open question, but he tried his
best.

5. In the subsequence pattern matching chapter, Pat and Mat are butterflies
facing a terrible hunter. Yes, he looks like Wojtek, but without his glasses,
so that the butterflies have a chance.

6. In the algorithms and data structures chapter, Pat and Mat are resting
under the most famous pattern matching data structure: the tree. In this
case, the tree is an apple tree, and Mat is experiencing the gravity law as
Isaac Newton did in his time.

7. In the digital trees chapter, Pat and Mat find themselves in the situation
of Eve and Adam and are collecting the fruits of knowledge from the tree.

8. In the suffix tree and Lempel–Ziv’77 chapter, Mat tries to compress his
pal. Yes, it is really painful, but they are just cartoon characters, aren’t
they?

9. In the Lempel–Ziv’78 compression chapter, Pat is having her revenge from
the previous chapter.

10. At least in the string complexity chapter, Pat and Mat are achieving a
concerted objective: to enumerate their common factors, the small kid
animals of “AT”, “A”, and “T”. Congratulations to the parents.

11. In the bibliography section, Pat and Mat find some usefulness in their
existence by striving to keep straight the impressive pile of books cited in
this work.
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ANALYSIS





CHAPTER 1

Probabilistic Models

In this book we study pattern matching problems in a probabilistic framework.
We first introduce some general probabilistic models of generating sequences.
The reader is also referred to Alon and Spencer (1992), Reinert, Schbath, and
Waterman (2000), Szpankowski (2001) and Waterman (1995a) for a brief intro-
duction to probabilistic models. For the convenience of the reader, we recall
here some definitions.

We also briefly discuss some analytic tools such as generating functions, the
residue theorem, and the Cauchy coefficient formula. For in-depth discussions
the reader is referred to Flajolet and Sedgewick (2009) and Szpankowski (2001).
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1.1. Probabilistic models on words

Throughout we shall deal with sequences of discrete random variables. We
write (Xk)

∞
k=1 for a one-sided infinite sequence of random variables; however,

we will often abbreviate it as X provided that it is clear from the context that
we are talking about a sequence, not a single variable. We assume that the
sequence (Xk)

∞
k=1 is defined over a finite alphabet A = {a1, . . . , aV } of size

V . A partial sequence is denoted as Xn
m = (Xm, . . . , Xn) for m < n. Finally,

we shall always assume that a probability measure exists, and we will write
P (xn1 ) = P (Xk = xk, 1 ≤ k ≤ n, xk ∈ A) for the probability mass, where we
use lower-case letters for a realization of a stochastic process.

Sequences are generated by information sources, usually satisfying some con-
straints. We also refer to such sources as probabilistic models. Throughout,
we assume the existence of a stationary probability distribution; that is, for
any string w we assume that the probability that the text X contains an oc-
currence of w at position k is equal to P (w) independently of the position k.
For P (w) > 0, we denote by P (u|w) the conditional probability, which equals
P (wu)/P (w).

The most elementary information source is a memoryless source; also known
as a Bernoulli source:

(B) Memoryless or Bernoulli Source. The symbols from the alphabet
A = {a1, . . . , aV } occur independently of one another; thus the string X =
X1X2X3 · · · can be described as the outcome of an infinite sequence of Bernoulli
trials in which P (Xj = ai) = pi and

∑V
i=1 pi = 1. Throughout, we assume that

at least for one i we have 0 < pi < 1.

In many cases, assumption (B) is not very realistic. When this is the case,
assumption (B) may be replaced by:

(M)Markov source. There is a Markov dependency between the consecutive
symbols in a string; that is, the probability pij = P (Xk+1 = aj |Xk = ai) de-
scribes the conditional probability of sampling symbol aj immediately after sym-
bol ai. We denote by P = {pij}Vi,j=1 transition matrix and by π = (π1, . . . , πV )
the stationary row vector satisfying πP = π. (Throughout, we assume that the
Markov chain is irreducible and aperiodic.) A general Markov source of order r is
characterized by the V r×V the transition matrix with coefficients P (j ∈ A | u)
for u ∈ Ar.

In some situations more general sources must be considered (for which one
still can obtain a reasonably precise analysis). Recently, Vallée (2001) introduced
dynamic sources, which we briefly describe here and will use in the analysis of
the generalized subsequence problem in Section 5.6. To introduce such sources
we start with a description of a dynamic system defined by:
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(a) (b)

Figure 1.1. Plots of Im versus x for the dynamic sources discussed
in Example 1.1.1: (a) a memoryless source with shift mapping Tm(x) =
(x − qm)/pm+1 for p1 = 1/2, p2 = 1/6, and p3 = 1/3; (b) a continued
fraction source with Tm(x) = 1/x−m = 〈1/x〉.

• a topological partition of the unit interval I = (0, 1) into a disjoint set of
open intervals Ia, a ∈ A;

• an encoding mapping e which is constant and equal to a ∈ A on each Ia;

• a shift mapping T : I → I whose restriction to Ia is a bijection of class
C2 from Ia to I; the local inverse of T restricted to Ia is denoted by ha.

Observe that such a dynamic system produces infinite words of A∞ through
the encoding e. For an initial x ∈ I the source outputs a word, say w(x) =
(e(x), (e(T (x)), . . .).

(DS) Probabilistic dynamic source. A source is called a probabilistic dy-
namic source if the unit interval of a dynamic system is endowed with a proba-
bility density f .

Example 1.1.1. A memoryless source associated with the probability distri-
bution {pi}Vi=1, where V can be finite or infinite, is modeled by a dynamic source
in which the components wk(x) are independent and the corresponding topolog-
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ical partition of I is defined as follows:

Im := (qm, qm+1], qm =
∑

j<m

pj .

In this case the shift mapping restricted to Im, m ∈ A, is defined as

Tm =
x− qm
pm+1

, qm < x ≤ qm+1.

In particular, a symmetric V -ary memoryless source can be described by

T (x) = 〈V x〉, e(x) = ⌊V x⌋,

where ⌊x⌋ is the integer part of x and 〈x〉 = x − ⌊x⌋ is the fractional part of x.
In Figure 1.1(a) we assume A = {1, 2, 3} and p1 = 1/2, p2 = 1/6, and p3 = 1/3,
so that q1 = 0, q1 = 1/2, q2 = 2/3, and q4 = 1. Then

T1 = 2x, T2 = 6(x− 1/2), T3 = 3(x− 2/3).

For example, if x = 5/6 then

w(x) = (e(x), e(T3(x)), e(T2(T3(x))), . . .) = (3, 2, 1, . . .).

Here is another example of a source with a memory related to continued
fractions. The alphabet A is the set of all natural numbers and the partition
of I is defined as Im = (1/(m + 1), 1/m). The restriction of T to Im is the
decreasing linear fractional transformation T (x) = 1/x−m, that is,

T (x) = 〈1/x〉, e(x) = ⌊1/x⌋.

Observe that the inverse branches hm of the mapping T (x) are defined as
hm(x) = 1/(x+m) (see Figure 1.1(b)).

Let us observe that a word of length k, say w = w1w2 . . . wk, is associated
with the mapping hw := hw1 ◦hw2 ◦· · ·◦hwk

, which is an inverse branch of T k. In
fact all words that begin with the same prefix w belong to the same fundamental
interval, defined as Iw = (hw(0), hw(1)). Furthermore, for probabilistic dynamic
sources with density f one easily computes the probability of w as the measure
of the interval Iw.

The probability P (w) of a word w can be explicitly computed through a
special generating operator Gw, defined as follows

Gw[f ](t) := |h′w(t)|f ◦ hw(t). (1.1)
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One recognizes in Gw[f ](t) a density mapping, that is, Gw[f ](t) is the density
of f mapped over hw(t). The probability of w can then be computed as

P (w) =

∣∣∣∣∣

∫ hw(1)

hw(0)

f(t)dt

∣∣∣∣∣ =
∫ 1

0

|h′w(t)|f ◦ hw(t)dt =
∫ 1

0

Gw[f ](t)dt. (1.2)

Let us now consider a concatenation of two words w and u. For memoryless
sources P (wu) = P (w)P (u). For Markov sources one still obtains the product of
the conditional probabilities. For dynamic sources the product of probabilities
is replaced by the product (composition) of the generating operators. To see
this, we observe that

Gwu = Gu ◦Gw, (1.3)

where we write Gw := Gw[f ](t). Indeed, hwu = hw ◦ hu and

Gwu = h′w ◦ huh′uf ◦ hw ◦ hu
while Gw = h′wf ◦ hw and so

Gu ◦Gw = h′uh
′
w ◦ huf ◦ hw ◦ hu,

as desired.
Another generalization of Markov sources, namely the mixing source, is very

useful in practice, especially for dealing with problems of data compression or
molecular biology when one expects long(er) dependency between the symbols
of a string.

(MX) (Strongly) ψ-mixing source. Let Fnm be a σ-field generated by the
sequence (Xk)

n
k=m for m ≤ n. The source is called mixing if there exists a

bounded function ψ(g) such that, for all m, g ≥ 1 and any two elements of the
σ-field (events) A ∈ Fm1 and B ∈ F∞

m+g, the following holds:

(1− ψ(g))P (A)P (B) ≤ P (AB) ≤ (1 + ψ(g))P (A)P (B). (1.4)

If, in addition, limg→∞ ψ(g) = 0 then the source is called strongly mixing.

In words, the model (MX) postulates that the dependency between (Xk)
m
k=1

and (Xk)
∞
k=m+g gets weaker and weaker as g becomes larger (note that when

the sequence (Xk) is independent and identically distributed (i.i.d.) we have
P (AB) = P (A)P (B)). The degree of dependency is characterized by ψ(g). A
weaker mixing condition, namely φ-mixing, is defined as follows:

− φ(g) ≤ P (B|A) − P (B) ≤ φ(g), P (A) > 0, (1.5)

provided that φ(g) → 0 as g → ∞. In general, strong ψ-mixing implies the
φ-mixing condition but not vice versa.
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1.2. Probabilistic tools

In this section, we briefly review some probabilistic tools used throughout the
book. We will concentrate on the different types of stochastic convergence.

The first type of convergence of a sequence of random variables is known as
convergence in probability. The sequence Xn converges to a random variable X

in probability, denoted Xn → X (pr.) or Xn
pr→X , if, for any ε > 0,

lim
n→∞

P (|Xn −X | < ε) = 1.

It is known that if Xn
pr→ X then f(Xn)

pr→ f(X) provided that f is a continuous
function (see Billingsley (1968)).

Note that convergence in probability does not say that the difference between
Xn and X becomes very small. What converges here is the probability that the
difference between Xn and X becomes very small. It is, therefore, possible,
although unlikely, for Xn and X to differ by a significant amount and for such
differences to occur infinitely often. A stronger kind of convergence that does
not allow such behavior is almost sure convergence or strong convergence. This
convergence ensures that the set of sample points for which Xn does not converge
to X has probability zero. In other words, a sequence of random variables Xn

converges to a random variable X almost surely, denoted Xn → X a.s. or

Xn
(a.s.)→ X , if, for any ε > 0,

lim
N→∞

P ( sup
n≥N
|Xn −X | < ε) = 1.

From this formulation of almost sure convergence, it is clear that if Xn → X
(a.s.), the probability of infinitely many large differences between Xn and X is
zero. As the term “strong” implies, almost sure convergence implies convergence
in probability.

A simple sufficient condition for almost sure convergence can be inferred from
the Borel–Cantelli lemma, presented below.

Lemma 1.2.1 (Borel–Cantelli). If
∑∞
n=0 P (|Xn − X | > ε) < ∞ for every

ε > 0 then Xn
a.s.→ X.

Proof. This follows directly from the following chain of relationships:

P

(
sup
n≥N
|Xn −X | ≥ ε

)
= P


 ⋃

n≥N
|Xn −X | ≥ ε


 ≤

∑

n≥N
P (|Xn−X | ≥ ε)→ 0.
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The inequality above is a consequence of the fact that the probability of a union
of events is smaller than the sum of the probability of the events (see Boole’s
or the union inequality below). The last convergence is a consequence of our
assumption that

∑∞
n=0 P (|Xn −X | > ε) <∞.

A third type of convergence is defined on distribution functions Fn(x). The
sequence of random variables Xn converges in distribution or converges in law

to the random variable X , this convergence being denoted as Xn
d→ X , if

lim
n→∞

Fn(x) = F (x) (1.6)

for each point of continuity of F (x). In Billingsley (1968) it was proved that the

above definition is equivalent to the following: Xn
d→ X if

lim
n→∞

E[f(Xn)] = E[f(X)] (1.7)

for all bounded continuous functions f .
The next type of convergence is convergence in mean of order p or conver-

gence in Lp, which postulates that E[|Xn −X |p]→ 0 as n→∞. We write this

type of convergence as Xn
Lp

→ X . Finally, we introduce convergence in moments
for which limn→∞ E[Xp

n] = E[Xp] for any p ≥ 1.
We now describe the relationships (implications) between the various types

of convergence. The reader is referred to Billingsley (1968) for a proof.

Theorem 1.2.2. We have the following implications:

Xn
a.s.→ X ⇒ Xn

pr→ X, (1.8)

Xn
Lp

→ X ⇒ Xn
pr→ X, (1.9)

Xn
pr→ X ⇒ Xn

d→ X, (1.10)

Xn
Lp

→ X ⇒ E[Xp
n]→ E[Xp]. (1.11)

No other implications hold in general.

It is easy to devise an example showing that convergence in probability does
not imply convergence in mean (e.g., takeXn = n with probability 1/n andXn =
0 with probability 1−1/n). To obtain convergence in mean from convergence in
probability one needs somewhat stronger conditions. For example, if |Xn| ≤ Y
and E[Y ] < ∞ then, by the dominated convergence theorem, we know that
convergence in probability implies convergence in mean. To generalize, one
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introduces so-called uniform integrability. It is said that a sequence {Xn, n ≥ 1}
is uniformly integrable if

sup
n≥1

E [|Xn|I(|Xn| > a)]→ 0 (1.12)

when a → ∞; here I(B) is the indicator function, equal to 1 if A holds and 0
otherwise. The above is equivalent to

lim
a→∞

sup
n≥1

∫

|x|>a
xdFn(x) = 0.

Then the following is true, as shown in Billingsley (1968): if Xn is uniformly

integrable then Xn
pr→ X implies that Xn

L1

→ X .
In the probabilistic analysis of algorithms, inequalities are very useful for

establishing these stochastic convergences. We review now some inequalities
used in the book.

Boole’s or the union inequality. For any set of events A1, . . . , An the fol-
lowing is true:

P (A1 ∪ A2 ∪ · · · ∪An) ≤ P (A1) + P (A2) + · · ·+ P (An). (1.13)

The proof follows from iterative applications of P (An ∪ A2) ≤ P (A1) + P (A2),
which is obvious.

Markov’s inequality. For a nonnegative function g(·) and a random variable
X ,

P (g(X) ≥ t) ≤ E[g(X)]

t
(1.14)

holds for any t > 0. Indeed, we have the following chain of obvious inequalities:

E[g(X)] ≥ E [g(X)I(g(X) ≥ t)] ≥ tE[I(g(X) ≥ t)] = tP (g(X) ≥ t),

where we recall that I(A) is the indicator function of event A.

Chebyshev’s inequality. If one replaces g(X) by |X −E[X ]|2 and t by t2 in
Markov’s inequality then we have

P (|X −E[X ]| ≥ t) ≤ Var[X ]

t2
, (1.15)

which is known as Chebyshev’s inequality.

Schwarz’s inequality (also called the Cauchy–Schwarz inequality). Let X
and Y be such that E[X2] <∞ and E[Y 2] <∞. Then

E[|XY |]2 ≤ E[X2]E[Y 2] , (1.16)
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where throughout the book we shall write E[X ]2 = (E[X ])2.

Jensen’s inequality. Let f(·) be a downward convex function, that is, for
λ ∈ (0, 1)

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).
Then

f(E[X ]) ≤ E[f(X)]; (1.17)

equality holds when f(·) is a linear function.

Minkowski’s inequality. If E[|X |p] < ∞, and E[|Y |p] < ∞ then E[|X +
Y |]p <∞ and

E[|X + Y |p]1/p ≤ E[|X |p]1/p + E[|Y |p]1/p (1.18)

for 1 ≤ p <∞.

Inequality on means. Let (p1, p2, . . . , pn) be a probability vector such that∑n
i=1 pi = 1 and (a1, a2, . . . , an) any vector of positive numbers. The mean of

order b 6= 0 (−∞ ≤ b ≤ ∞) is defined as

Mn(b) :=

(
n∑

i=1

pia
b
i

)1/b

.

The inequality on means asserts that Mn(b) is a nondecreasing function of b

r < s ⇒ Mn(r) ≤Mn(s); (1.19)

equality holds if and only if a1 = a2 = · · · = an. Furthermore, we haveHilbert’s
inequality on means which states that

lim
b→−∞

Mn(b) = min{a1, . . . , an}, (1.20)

lim
b→∞

Mn(b) = max{a1, . . . , an}. (1.21)

First and second moment methods. In establishing convergence in proba-
bility, the following two inequalities are of particular interest:
(i) First moment method. For a nonnegative integer random variable X , the
following holds:

P (X > 0) ≤ E[X ]; (1.22)

this is obvious by the definition of the expectation and the discreteness of X .
(ii) Second moment method. For a nonnegative discrete random variable X , the
following holds:

P (X > 0) ≥ (E[X ])2

E[X2]
. (1.23)
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To see this we apply Schwarz’s inequality (1.16), to obtain

E[X ]2 = E[I(X 6= 0)X ]2 ≤ E[I(X 6= 0)]E[X2] = P (X 6= 0)E[X2],

from which the inequality (1.23) follows.

Chernov’s bound. Let Sn = X1 + · · ·+Xn. Then

P (Sn ≥ x} ≤ min
λ>0

{
e−λxE[eλSn ]

}
(1.24)

provided that the right-hand side exists for some λ > 0.

Hoeffding and Azuma inequality. Let Sn = X1 + · · ·+Xn for independent
Xi such that ai ≤ Xi ≤ bi for some constants ai, bi for 1 ≤ i ≤ n. Then

P (|Sn| > x) ≤ 2 exp

(
− 2x2

(b1 − a1)2 + · · ·+ (bn − an)2
)
. (1.25)

A more in depth discussion of large deviation inequalities can be found in Buck-
lew (1990), Dembo and Zeitouni (1993), Durrett (1991), Janson (2004) and
Szpankowski (2001).

Berry–Esseen inequality. When deriving the generating functions of discrete
structures, we often obtain an error term. To translate such an analytic error
term into a distribution error term, we often use the Cauchy estimate. In some
situations, however, the following estimate of Berry and Esseen is very useful.
The proof can be found in Durrett (1991) or Feller (1971). We write ‖|f‖|∞ :=
supx |f(x)|.

Lemma 1.2.3 (Berry–Esseen inequality). Let F and G be distribution func-
tions with characteristic functions φF (t) and φG(t). Assume that G has a
bounded derivative. Then

‖|F −G‖|∞ ≤
1

π

∫ T

−T

∣∣∣∣
φF (t)− φG(t)

t

∣∣∣∣ dt+
24

π

‖|G′‖|∞
T

(1.26)

for any T > 0.

This inequality is used to derive Hwang’s power law Hwang (1994, 1996)
which we quote below.

Theorem 1.2.4 (Hwang, 1994). Assume that the moment generating functions
Mn(s) = E[esXn ] of a sequence of random variables Xn are analytic in the disk
|s| < ρ for some ρ > 0 and satisfy there the expansion

Mn(s) = eβnU(s)+V (s)

(
1 +O

(
1

κn

))
(1.27)
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for βn, κn → ∞ as n → ∞, where U(s), V (s) are analytic in |s| < ρ. Assume
also that U ′′(0) 6= 0. Then

E[Xn] = βnU
′(0) + V ′(0) +O(κ−1

n ), (1.28)

Var[Xn] = βnU
′′(0) + V ′′(0) +O(κ−1

n ) (1.29)

and, for any fixed x,

P

(
Xn − βnU ′(0)√

βnU ′′(0)
≤ x

)
= Φ(x) +O

(
1

κn
+

1√
βn

)
, (1.30)

where Φ(x) is the distribution function of the standard normal distribution.

1.3. Generating functions and analytic tools

In this book we systematically view generating functions as analytic complex
functions. Here, we briefly review some often used facts. The reader is referred to
Flajolet and Sedgewick (2009) and Szpankowski (2001) for a detailed discussion;
the book by Henrici (1997) is a good source of knowledge about complex analysis.

The generating function of a sequence {an}n≥0 (e.g., representing the size of
the objects belonging to a certain class) is defined as

A(z) =
∑

n≥0

anz
n,

where the meaning of z is explained below. In this formal power series we are
assuming that A(z) is an algebraic object, more precisely, that the set of such
formal power series forms a ring. In this case z does not take any particular
value, but one can identify the coefficient at zn. Moreover, we can manipulate
formal power series to discover new identities and establish recurrences and exact
formulas for the coefficients. The convergence of A(z) is not an issue.

In the analytic theory of generating functions, we assume that z is a complex
number, and the issue of convergence is now pivotal. In fact, the singularity
points of A(z) (i.e., points where A(z) is not defined) determine the asymptotics
of the coefficients.

Convergence issues are addressed by the Hadamard theorem.

Theorem 1.3.1 (Hadamard). There exists a number 0 ≤ R ≤ ∞ such that
the series A(z) converges for |z| < R and diverges for |z| > R. The radius of
convergence R can be expressed as

R =
1

lim supn→∞ |an|
1
n

, (1.31)
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where by convention 1/0 = ∞ and 1/∞ = 0. The function A(z) is analytic for
|z| < R.

For our purposes it is more important to find the coefficient of A(z) at zn,
which we write as

an = [zn]A(z).

Cauchy’s theorem allows us to compute the coefficient at zn as a complex inte-
gral. If A(z) is analytic in the vicinity of z = 0 then

an = [zn]A(z) =
1

2πi

∮
A(z)

zn+1
dz (1.32)

where the integral is around any simple curve (contour) encircling z = 0. Indeed,
since A(z) is analytic at z = 0 it has a convergent series representation

A(z) =
∑

k≥0

akz
k.

Thus ∮
A(z)

zn+1
dz =

∑

k≥0

ak

∮
z−(n+1−k)dz = 2πian,

where the last equality follows from

∮
z−ndz =

∫ 1

0

e−2πi(n−1)dt =

{
2πi for n = 1
0 otherwise.

The interchange of the integral and sum above is justified since the series con-
verges uniformly.

Finally, we should mention that Cauchy’s formula is often used to establish
a bound on the coefficients an. Let

M(R) = max
|z|≤R

|A(z)|.

Then for all n ≥ 0

|an| ≤
M(R)

Rn
, (1.33)

which follows immediately from (1.32) and a trivial majorization under the in-
tegral.

In most cases, the Cauchy integral (1.32) is computed through the Cauchy
residue theorem, which we discuss next. The residue of f(z) at a point a is the
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coefficient at (z − a)−1 in the Laurent expansion of f(z) around a, and it is
written as

Res [f(z); z = a] := f−1 = lim
z→a

(z − a)f(z).

There are many rules to evaluate the residues of simple poles and the reader can
find them in any standard book on complex analysis (e.g., Henrici (1997)). For
example, if f(z) and g(z) are analytic around z = a, then

Res

[
f(z)

g(z)
; z = a

]
=
f(a)

g′(a)
, g(a) = 0, g′(a) 6= 0; (1.34)

if g(z) is not analytic at z = a then

Res[f(z)g(z); z = a] = f(a) Res[g(z); z = a]. (1.35)

Evaluating the residues of multiple poles is much more computationally in-
volved. Actually, the easiest way is to use the series command in MAPLE,
which produces a series development of a function. The residue is simply the
coefficient at (z − a)−1.

Residues are very important in evaluating contour integrals such as the
Cauchy integral (1.32).

Theorem 1.3.2 (Cauchy residue theorem). If f(z) is analytic within and on
the boundary of a simple closed curve C except at a finite number of poles
a1, a2, . . . , aN within C having residues Res[f(z); z = a1], . . . ,Res[f(z); z = aN ],
respectively, then

1

2πi

∫

C
f(z)dz =

N∑

j=1

Res[f(z); z = aj ],

where the curve C is traversed counterclockwise. Also, the following holds

f (k)(z) =
k!

2πi

∮
f(w)dw

(w − z)k+1
(1.36)

where f (k)(z) is the kth derivative of f(z).

Sketch of proof. Let us assume there is only one pole at z = a. Since f(z) is
meromorphic, it has a Laurent expansion, which after integration over C leads
to

∫

C
f(z)dz =

∑

n≥0

fn

∫

C
(z − a)ndz + f−1

∫

C

dz

z − a = 2πi Res[f(z), z = a],

since the first integral is zero.
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1.4. Special functions

Throughout this book we will often make use of special functions such as the
Euler gamma function Γ(z) and the Riemann zeta function ζ(z). We briefly
review some properties of these functions.

1.4.1. Euler’s gamma function

A desire to generalize n! to the complex plane led Euler to introduce one of
the most useful special functions, namely, the gamma function. It is defined as
follows:

Γ(z) =

∫ ∞

0

tz−1e−tdt, ℜ(z) > 0. (1.37)

To see that the above integral generalizes n!, let us integrate it by parts. We
obtain

Γ(z + 1) = −
∫ ∞

0

tzd
(
e−t
)
= zΓ(z). (1.38)

Observe now that Γ(1) = 1, and so Γ(n+ 1) = n! for natural n, as desired.
To analytically extend Γ(z) to the whole complex plane, we first extend the

definition to −1 < ℜ(z) < 0 by considering (1.38) and writing

Γ(z) =
Γ(z + 1)

z
, −1 < ℜ(z) < 0.

Since Γ(z + 1) is well defined for −1 < ℜ(z) < 0 (indeed, ℜ(z + 1) > 0), we can
enlarge the region of definition to the strip −1 < ℜ(z) < 0. However, at z = 0
there is a pole whose residue is easy to evaluate; that is,

Res[Γ(z); z = 0] = lim
z→0

zΓ(z) = 1.

In general, let us assume that we have already defined Γ(z) up to the strip
−n < ℜ(z) < −n+ 1. Then, extension to −n− 1 < ℜ(z) < −n is obtained as

Γ(z) =
Γ(z + n+ 1)

z(z + 1) · · · (z + n)
.

The residue at z = −n becomes

Res[Γ(z); z = −n] = lim
z→−n

(z + n)Γ(z) =
(−1)n
n!

(1.39)

for all n = 0, 1, . . .
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Closely related to the gamma function is the beta function, defined as

B(w, z) =

∫ 1

0

tw−1(1− t)z−1dt, ℜ(w) > 0 and ℜ(z) > 0. (1.40)

It is easy to see that

B(w, z) =
Γ(w)Γ(z)

Γ(w + z)
. (1.41)

In many applications Stirling’s asymptotic formula for n! proves to be ex-
tremely useful. Not surprisingly, then, the same is true for the asymptotic
expansion of the gamma function. It can be proved that

Γ(z) =
√
2πzz−1/2e−z

(
1 +

1

12z
+

1

288z2
+ · · ·

)

for z →∞ when | arg(z)| < π.
Finally, when bounding the gamma function along the imaginary axis it is

useful to know the following estimate:

|Γ(x+ iy)| ∼
√
2π|y|x−1/2e−π|y|/2 as |y| → ±∞ (1.42)

for any real x and y.

Psi function. The derivative of the logarithm of the gamma function
plays an important role in the theory and applications of special functions. It is
known as the psi function and is thus defined as

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
.

The following can be proved:

ψ(z) = −γ +

∞∑

n=0

(
1

n+ 1
− 1

z + n

)
, z 6= 0,−1,−2, . . . (1.43)

From the above, we conclude that the psi function possesses simple poles at all
nonpositive integers and that

Res[ψ(z); z = −n] = lim
z→−n

(z + n)ψ(z) = −1, n ∈ N. (1.44)

Laurent’s expansions. As we observed above, the gamma function and the
psi function have simple poles at all nonpositive integers. Thus one can expand
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these functions around z = −n using a Laurent series. The following is known
(cf. Temme (1996)):

Γ(z) =
(−1)n
n!

1

(z + n)
+ ψ(n+ 1) (1.45)

+
1

2
(z + n)

(
π2/3 + ψ2(n+ 1)− ψ′(n+ 1)

)
+O((z + n)2),

ψ(z) =
−1
z + n

+ ψ(m+ 1) +

∞∑

k=2

(
(−1)nζ(n) +

k∑

i=1

i−k
)
(z + n)k−1,(1.46)

where ζ(z) is the Riemann zeta function defined in (1.49) below. In particular,

Γ(z) =
1

z
− γ +O(z), (1.47)

Γ(z) =
−1
z + 1

+ γ − 1 +O(z + 1). (1.48)

We shall use these expansions quite often in this book.

1.4.2. Riemann’s zeta function

The Riemann zeta function ζ(z) is a fascinating special function, which still hides
from us some beautiful properties (e.g., the Riemann conjecture concerning the
zeros of ζ(z)). We will uncover merely the tip of the iceberg. The reader is
referred to Titchmarsh and Heath-Brown (1988) for a more in-depth discussion.
The Riemann zeta function is defined as

ζ(z) =

∞∑

n=1

1

nz
, ℜ(z) > 1. (1.49)

The generalized zeta function ζ(z, a) (also known as the Hurwitz zeta function)
is defined as

ζ(z, a) =

∞∑

n=0

1

(n+ a)z
, ℜ(z) > 1,

where a 6= 0,−1,−2, . . . is a constant. It is evident that ζ(z, 1) = ζ(z).
We know that ζ(z) has only one pole at z = 1. It can be proved that its

Laurent series around z = 1 is

ζ(z) =
1

z − 1
+

∞∑

k=0

(−1)kγk
k!

(z − 1)k, (1.50)
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where the γk are the so-called Stieltjes constants for k ≥ 0:

γk = lim
m→∞

(
m∑

i=1

lnk i

i
− lnk+1m

k + 1

)
.

In particular, γ0 = γ = 0.577215 . . . is the Euler constant, and γ1 = −0.072815 . . .
From the above we conclude that

Res[ζ(z); z = 1] = 1.

We shall use the ζ function often in this book.

1.5. Exercises

1.1 Prove that the (k + 1)th moment of a discrete nonnegative random
variable X is given by

E[Xk+1] =
∑

m≥0

P (X > m)

k∑

i=0

(m+ 1)k−imi,

and, in particular, that

E[X ] =
∑

m≥0

P (X > m).

1.2 Prove the following result: if Xn is a sequence of nonnegative random

variables such that Xn
a.s.→ X and E[Xn]→ E[X ] then Xn

L1

→ X .

1.3 Prove that if Xn
pr→ X then f(Xn)

pr→ f(X) provided that f is a contin-
uous function.

1.4 Let X = X1 + · · · + Xm where the Xj are binary random variables.
Prove that

P (X > 0) ≥
m∑

j=1

E[Xj]

E[X |Xj = 1]
.

1.5 Prove the following inequality, known as the fourth moment method:

E[|X |] ≥ E[X2]3/2

E[X4]1/2
,

provided that it possesses the first four moments.
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1.6 Extend Liouville’s theorem to polynomial functions, that is, prove that
if f(z) is of at most polynomial growth, that is, |f(z)| ≤ B|z|r for some
r > 0, then it is a polynomial.

1.7 Estimate the growth of the coefficients fn = [zn]f(z) of

f(z) =
1

(1− z)(1− 2z)
.

1.8 Using the Weierstrass product formula for the gamma function, that is,

1

Γ(z)
= zeγz

∞∏

n=1

[(
1 +

z

n

)
e−z/n

]
,

prove the expansion (1.43) of the psi function

ψ(z) = −γ +

∞∑

n=0

(
1

n+ 1
− 1

z + n

)
, z 6= 0,−1,−2, . . .

1.9 Prove the following asymptotic expansion for ℜ(b− a) > 0 (see Temme
(1996)):

Γ(z + a)

Γ(z + b)
∼ za−b

∞∑

n=0

cn
Γ(b− a+ n)

Γ(b− a)
1

zn
as z →∞ (1.51)

where

cn = (−1)nB
a−b+1
n (a)

n!
,

and B
(w)
n (x) are the so-called generalized Bernoulli polynomials defined

as

exz
(

z

ez − 1

)w
=

∞∑

n=0

B
(w)
n (x)

n!
zn |z| < 2π.

Hint. Express the ratio Γ(z + a)/Γ(z+ b) in terms of the beta function,
that is, write

Γ(z + a)

Γ(z + b)
=
B(z + a, b− a)

Γ(b− a) .

Then use the integral representation of the beta function to show that

Γ(z + a)

Γ(z + b)
=

1

Γ(b− a)

∫ ∞

0

ub−a−1e−zuf(u)du,

where

f(u) = e−au
(
1− e−u

u

)b−a−1

.
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CHAPTER 2

Exact String Matching

In the exact string matching problem we are searching for a given pattern w =
w1w2 · · ·wm of length m in a text X over an alphabet A. In the probabilistic
version of the problem, which is the subject of this book, the text X = Xn

1 =
X1 · · ·Xn of length n is generated by a random source. We will deal mostly with
pattern matching problems with fixed length patterns, that is, we shall assume
throughout that m = O(1). However, in Section 2.5.4 we analyze a version of
the problem in which the pattern length m grows with the text length n.

2.1. Formulation of the problem

There are several parameters of interest in string matching, but two stand out.
The first is the number of times that the pattern w occurs in the text X which
we denote as On = On(w) and define formally by

On(w) =
∣∣{i : X i

i−m+1 = w, m ≤ i ≤ n}
∣∣ .
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We can write On(w) in an equivalent form as follows:

On(w) = Im + Im+1 + · · ·+ In (2.1)

where Ii = 1 if w occurs at position i and Ii = 0 otherwise.
The second parameter is the waiting time Tw, defined as the first time that

w occurs in the text X ; that is,

Tw := min{n : Xn
n−m+1 = w}.

One can also define Tj as the minimum length of text in which the pattern w
occurs j times. Clearly, Tw = T1. Observe the following relation between On
and Tw:

{Tw > n} = {On(w) = 0}. (2.2)

More generally,
{Tj ≤ n} = {On(w) ≥ j}. (2.3)

Relation (2.3) is called the duality principle. In fact, exact pattern matching can
be analyzed through the discrete random variable On or the continuous random
variable Tw. In this book we mostly concentrate on the frequency of pattern
occurrences On. The reader is referred to Chapter 6 of Lothaire (2005) for an
alternative approach based on Tj .

Our goal is to estimate the frequency of pattern occurrences On in a text
generated by memoryless or Markov sources. We allow a pattern w to overlap
when counting occurrences (e.g., if w = abab then it occurs twice in X = abababb
when overlapping is allowed, but only once if overlapping is not allowed). We
study the probabilistic behavior of On through two generating functions, namely

Nr(z) =
∑

n≥0

P (On(w) = r)zn,

N(z, x) =
∞∑

r=1

Nr(z)x
r =

∞∑

r=1

∞∑

n=0

P (On(w) = r)znxr

which are defined for |z| ≤ 1 and |x| ≤ 1. We note that P (On(w) = r) is the
probability that in a text X the pattern w occurs r times.

Throughout this book we adopt a combinatorial approach to string matching,
that is, we use combinatorial calculus to find combinatorial relationships between
sets of words satisfying certain properties (i.e., languages).
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2.2. Language representation

We start our combinatorial analysis with some definitions. For any language L
we define its generating function L(z) as

L(z) =
∑

u∈L
P (u)z|u|,

where P (u) is the stationary probability of occurrence of the word u and |u| is
the length of u.1 We also assume that P (ε) = 1, where ε is the empty word.
Notice that L(z) is defined for all complex z such that |z| < 1. In addition, we
define the w-conditional generating function of L as

Lw(z) =
∑

u∈L
P (u|w)z|u| =

∑

u∈L

P (wu)

P (w)
z|u|.

Since we are allowing overlaps, the structure of the pattern w has a pro-
found impact on the number of occurrences. To capture this, we introduce the
autocorrelation language and the autocorrelation polynomial.

Given a string w, we define the autocorrelation set

S = {wmk+1 : wk1 = wmm−k+1}, (2.4)

where m is the length of the pattern w. By P(w) we denote the set of position
numbers k ≥ 1 satisfying wk1 = wmm−k+1. Thus if w = vu or w = ux for some
words v, x, and u then x belongs to S and |u| ∈ P(w). Notice that ε ∈ S.
The generating function of the language S is denoted as S(z) and we call it
the autocorrelation polynomial. Its w-conditional generating function is denoted
Sw(z). In particular, for Markov sources of order 1,

Sw(z) =
∑

k∈P(w)

P (wmk+1|wkk)zm−k. (2.5)

Before we proceed, let us present a simple example illustrating the definitions
introduced so far.

Example 2.2.1. Let us assume that w = aba over a binary alphabet A =
{a, b}. Observe that P(w) = {1, 3} and S = {ε, ba}. Thus, for an unbiased
memoryless source we have S(z) = 1 + z2/4, while for the Markov model of
order 1 we obtain Saba(z) = 1 + P (w3

2 = ba|w1 = a)z2 = 1 + pabpbaz
2.

1We use | · | for both the cardinality of a set and the length of a pattern, but this should
not lead to any confusion.



26 Chapter 2. Exact String Matching

Our goal is to estimate the number of pattern occurrences in a text. Alter-
natively, we can seek the generating function of a language that consists of all
words containing certain occurrences of a pattern w. Given the pattern w, we
introduce the following languages:

(i) Tr, a set of words each containing exactly r occurrences of w;

(ii) the “right” language R, a set of words containing only one occurrence of
w, located at the right-hand end of the word;

(iii) the “ultimate” language U , defined as

U = {u : wu ∈ T1}, (2.6)

that is, a word u belongs to U if wu has exactly one occurrence of w, at
the left-hand end of wu;

(iv) the “minimal” languageM, defined as

M = {v : wv ∈ T2, i.e., w occurs at the right-hand end of wv},

that is, M is a language such that any word in wM has exactly two
occurrences of w, at the left-hand and right-hand ends. Here w ·M means
that the pattern w is concatenated with all possible words of the language
M.2

Example 2.2.2. Let A = {a, b} and w = abab. Then v = aaabab ∈ R (see
(ii) above) since there is only one occurrence of w, at the right-hand end of
v. Also, u = bbbb ∈ U (see (iii) above) since wu has only one occurrence of
w at the left-hand end; but v = abbbb /∈ U since wv = abababbbb has two
occurrences of w. Furthermore, ab ∈M (see (iv) above) since wab = ababab ∈ T2
has two occurrences of w, at the left-hand and the right-hand ends. Finally,
t = bbabababbbababbb ∈ T3, and one observes that t = vm1m2u where v =
bbabab ∈ R, m1 = ab ∈ M, m2 = bbabab ∈ M, and u = bb ∈ U .

We now describe the languages Tr and T≥1 =
⋃
r≥1 Tr (the sets of words

containing exactly r and at least one occurrence of w) in terms of R, M, and
U . Recall thatMr denotes the concatenation of r languagesM andM0 = {ε}.
Also, we have thatM+ = ∪r≥1M

r andM∗ = ∪r≥0M
r.

2We mostly write wu when concatenating two words w and u but we will use · to represent
the concatenation between a word and a language or languages (e.g., w ·M).
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Theorem 2.2.3. The languages Tr for r ≥ 1 and T≥1 satisfy the relation

Tr = R ·Mr−1 · U , (2.7)

and therefore
T≥1 = R ·M∗ · U . (2.8)

In addition, we have
T0 · w = R · S. (2.9)

Proof. To prove (2.7), we obtain the decomposition of Tr as follows. The first
occurrence of the pattern w in a word belonging to Tr determines a prefix p ∈ Tr
that is in R. After concatenating a nonempty word v we create the second
occurrence of w provided that v ∈ M. This process is repeated r − 1 times.
Finally, after the last w occurrence we add a suffix u that does not create a new
occurrence of w, that is, wu is such that u ∈ U . Clearly, a word belongs to T≥1

if for some 1 ≤ r <∞ it is in Tr. The derivation of (2.9) is left to the reader as
Exercise 2.3 at the end of the chapter.

Example 2.2.4. Let w = TAT . The following word belongs to the language
T3:

R︷ ︸︸ ︷
CCTAT AT︸︷︷︸

M

GATAT︸ ︷︷ ︸
M

U︷ ︸︸ ︷
GGA

as is easy to check.

We now prove the following result, which summarizes the relationships be-
tween the languages R,M, and U .

Theorem 2.2.5. The languages M, R, and U satisfy

M∗ = A∗ · w + S, (2.10)

U · A =M+ U − {ε}, (2.11)

w · (M− ε) = A · R−R. (2.12)

Proof. We first deal with (2.10). Clearly, A∗w contains at least one occurrence
of w on the right, hence A∗ · w ⊂ M∗. Furthermore, a word v inM∗ is not in
A∗ ·w if and only if its size |v| is smaller than |w| (e.g., consider v = ab ∈ M for
w = abab). Then the second w occurrence in wv overlaps with w, which means
that v is in S.

Let us turn now to (2.11). When one adds a character a ∈ A directly after a
word u from U , two cases may occur. Either wua still does not contain a second
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occurrence of w (which means that ua is a nonempty word of U) or a new w
appears, clearly at the right-hand end. Hence U · A ⊆ M + U − ε. Now let
v ∈ M− ε; then by definition wv ∈ T2 ⊆ UA− U , which proves (2.11).

We now prove (2.12). Let x = av, where a ∈ A, be a word in w · (M−ε). As
x contains exactly two occurrences of w, located at its left-hand and right-hand
ends, v is in R and x is in A ·R−R; hence w · (M− ε) ⊆ A ·R−R. To prove
that A · R − R ⊆ w · (M− ε), we take a word avw from A · R that is not in
R. Then avw contains a second w-occurrence starting in av. As vw is in R, its
only possible position is at the left-hand end, and so x must be in w · (M− ε).
This proves (2.12).

2.3. Generating functions

The next step is to translate the relationships between languages into the as-
sociated generating functions. Therefore, we must now select the probabilistic
model according to which the text is generated. We will derive results for a
Markov model of order 1. We adopt the following notation. To extract a partic-
ular element, say with index (i, j), from a matrix P, we shall write [P]i,j = pi,j .
We recall that we have (I − P)−1 =

∑
k≥0 P

k, where I is the identity matrix,
provided that ‖ P ‖< 1, for a matrix norm ‖ · ‖. We also write Π for the station-
ary matrix that consists of |A| identical rows given by π. By Z we denote the
fundamental matrix Z = (I − (P − Π))−1. Finally, for Markov sources of order
1, we often use the following obvious identity:

P (u) = P (u1u2 · · ·um) = P (u1)P (u2 · · ·um|u1) = πu1P (u2 · · ·um|u1) (2.13)

for any u ∈ Am.
The next lemma translates the language relationships (2.10)–(2.12) into the

generating functions Mw(z), Uw(z), and R(z) of the languages M, U , and R
(we recall that the first two generating function are conditioned on w appearing
just before any word fromM and U). We define a function

F (z) =
1

πw1


∑

n≥0

(P −Π)n+1zn



wm,w1

=
1

πw1

[(P−Π)(I− (P −Π)z)−1]wm,w1

(2.14)
for |z| <‖ P−Π ‖−1, where πw1 is the stationary probability of the first symbol
w1 of w. For memoryless sources F (z) = 0.



2.3. Generating functions 29

Lemma 2.3.1. For stationary Markov sources (of order 1), the generating
functions associated with the languages M,U , and R satisfy

1

1−Mw(z)
= Sw(z) + P (w)zm

(
1

1− z + F (z)

)
, (2.15)

Uw(z) =
Mw(z)− 1

z − 1
, (2.16)

R(z) = P (w)zm · Uw(z), (2.17)

provided that the underlying Markov chain is aperiodic and ergodic. If the source
is memoryless then F (z) = 0.

Proof. We first prove (2.16). Let us consider the language relationship (2.11),
which we rewrite as U · A − U =M− ε. Observe that

∑
b∈A pabz = z. Hence,

the set U · A yields (conditioning on the left-hand end occurrence of w)

∑

u∈U

∑

b∈A
P (ub|w)z|ub| =

∑

a∈A

∑

u∈U ,ℓ(u)=a
P (u|w)z|u|

∑

b∈A
pabz = Uw(z)z,

where ℓ(u) denotes the last symbol of the word u. Of course, M− ε and U
translate into Mw(z)− 1 and Uw(z), and (2.16) is proved.

We now turn our attention to (2.17) and use the relationship (2.12), w ·M−
w = A·R−R. In order to compute the conditional generating function of A·R
we proceed as follows:

∑

ab∈A2

∑

bv∈R
P (abv)z|abv| = z2

∑

a∈A

∑

b∈A
πapab

∑

bv∈R
P (v|v−1 = b)z|v|.

Owing to the stationarity of the underlying Markov chain,
∑
a πapab = πb. As

πbP (v|v−1 = b) = P (bv), we get zR(z). Furthermore, w ·M−w translates into
P (w)zm(Mw(z)− 1). Then by (2.16), proved above, we have

P (w)zmUw(z)(z − 1) = P (w)zm(Mw(z)− 1),

which after simplification leads to (2.17).
Finally, we deal with (2.15) and prove it using (2.10). The left-hand side of

(2.10) involves the languageM, hence we must condition on the left-hand end
occurrence of w. In particular,

⋃
r≥1Mr + ε of (2.10) translates into 1/(1 −

Mw(z)). Now we deal with the term A∗ · w on the right-hand side of (2.10),
which we use in the form

w ·M∗ = w · A∗ · w + w · S.
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Thus, conditioning on the left-hand end occurrence of w, the generating function
Aw(z) of A∗ · w is given by

Aw(z) =
∑

n≥0

∑

|u|=n
zn+mP (uw|u−1 = wm)

=
∑

n≥0

∑

|u|=n
znP (uw1|u−1 = wm)P (w2 · · ·wm|w1)z

m.

We have P (w2 · · ·wm|w1) = P (w)/πw1 and, for n ≥ 0:

∑

|u|=n
P (uw1|u−1 = wm) = [Pn+1]wm,w1

where, we recall, wm is the last character of w. In summary, the language

A∗ ·w contributes P (w)zm
[

1
πw1

∑
n≥0 P

n+1zn
]
wm,w1

while the language S−{ε}
contributes Sw(z)−1. Using the equality Pn+1−Π = (P−Π)n+1 (which follows
from consecutive applications of the identity ΠP = PΠ = Π) and observing,
that for any symbols a and b,


 1

πb

∑

n≥0

Πzn



ab

=
∑

n≥0

zn =
1

1− z ,

we obtain the sum in (2.15) and complete the proof of the lemma.

Lemma 2.3.1, together with Theorem 2.2.3, suffices to derive the generating
functions Nr(z) and N(z, x) from Section 2.1 in an explicit form.

Theorem 2.3.2. Let w be a given pattern of size m and X be a random text
of length n generated according to a stationary Markov chain with transition
probability matrix P. Define

Dw(z) = (1− z)Sw(z) + zmP (w)(1 + (1− z)F (z)). (2.18)

Then

N0(z) =
1−R(z)
1− z =

Sw(z)

Dw(z)
, (2.19)

Nr(z) = R(z)M r−1
w (z)Uw(z), r ≥ 1, (2.20)

N(z, x) = R(z)
x

1− xMw(z)
Uw(z), (2.21)
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where

Mw(z) = 1 +
z − 1

Dw(z)
, (2.22)

Uw(z) =
1

Dw(z)
, (2.23)

R(z) = zmP (w)
1

Dw(z)
. (2.24)

We recall that for memoryless sources F (z) = 0, and hence

D(z) = (1 − z)S(z) + zmP (w). (2.25)

Proof. We only need to comment on the derivation of N0(z) since the rest follows
directly from our previous results. Observe that

N0(z) =
∑

n≥0

P (On = 0)zn =
∑

n≥0

(1− P (On > 0))zn =
1

1− z −
∞∑

r=1

Nr(z);

from thus the first expression follows (2.20). The second expression is a direct
translation of T0 ·w = R·A (see (2.9)), which reads N0(z)P (w)z

m = R(z)Sw(z)
in terms of the corresponding generating functions.

Memoryless source. For a memoryless source F (z) = 0, and thereforeD(z) =
(1−z)S(z)+zmP (w). Note that conditioning on w is not necessary. Thus, from
Section 2.1,

N(z, x) =
zmP (w)x

D(z) [D(z)− x(D(z) + z − 1)]
.

In N(z, x) we have summed from r = 1. If we set N(z, x) = N(z, x) + N0(z)
then

N(z, x) =
x+ (1− x)S(z)

(1− z)((1− x)S(z) + x) + zmP (w)(1 − x) . (2.26)

2.4. Moments

In the previous section we derived explicit formulas for the generating functions
N(z, x) =

∑
n≥0 E[xOn ]zn and Nr(z). These formulas can be used to obtain

explicit and asymptotic expressions for the moments of On, the central limit
theorem, large deviation results, and the Poisson law. We start with derivations
of the mean and the variance of On.
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Theorem 2.4.1. Under the assumptions of Theorem 2.3.2 one has, for n ≥ m,

E[On(w)] = P (w)(n −m+ 1) (2.27)

and
Var[On(w)] = nc1 + c2 +O(R−n), for R > 1, (2.28)

where

c1 = P (w)(2Sw(1)− 1− (2m− 1)P (w) + 2P (w)E1)), (2.29)

c2 = P (w)((m − 1)(3m− 1)P (w) − (m− 1)(2Sw(1)− 1)− 2S ′w(1))
−2(2m− 1)P (w)2E1 + 2E2P (w)

2 (2.30)

and the constants E1, E2 are given by

E1 =
1

πw1

[(P−Π)Z]wm,w1 , E2 =
1

πw1

[(P2 −Π)Z2]wm,w1

with, as we recall, Z = (I− (P−Π))−1.

Proof. Notice that first moment estimate can be derived directly from the def-
inition of the stationary probability of w. In order to obtain the higher mo-
ments we will use analytic tools applied to generating functions. We can com-
pute the first two moments of On from N(z, x) since E[On] = [zn]Nx(z, 1) and
E[On(Nn − 1)] = [zn]Nxx(z, 1) where Nx(z, 1) and Nxx(z, 1) are the first and
second derivatives ofN(z, x) with respect to the variable x at (z, 1). By Theorem
2.3.2 we find that

Nx(z, 1) =
zmP (w)

(1− z)2 ,

Nxx(z, 1) =
2zmP (w)Mw(z)Dw(z)

(1 − z)3 .

Now we observe that both expressions admit as a numerator a function that is
analytic beyond the unit circle. Furthermore, for a positive integer k > 0,

[zn](1− z)−k =

(
n+ k − 1

k − 1

)
=

Γ(n+ k)

Γ(k)Γ(n+ 1)
, (2.31)

where Γ(x) is the Euler gamma function. We find that for n ≥ m,

E[On] = [zn]Nu(z, 1) = P (w)[zn−m](1− z)−2 = (n−m+ 1)P (w).

In order to estimate the variance we introduce

Φ(z) = 2zmP (w)Mw(z)Dw(z),
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and observe that

Φ(z) = Φ(1) + (z − 1)Φ′(1) +
(z − 1)2

2
Φ′′(1) + (z − 1)3f(z), (2.32)

where f(z) is the remainder of the Taylor expansion of Φ(z) up to order 3 at
z = 1. Hence, by (2.31) we arrive at

E[On(On − 1)] = [zn]Nxx(z, 1) = Φ(1)
(n+ 2)(n+ 1)

2
− Φ′(1)(n+ 1) +

1

2
Φ′′(1).

However,Mw(z)Dw(z) = Dw(z) + (1− z), which is easy to evaluate except for
the term

[zn]
2z2mP (w)2F (z)

(1− z)2 ,

where F (z), defined in (2.14), is analytic beyond the unit circle for |z| ≤ R,
with R > 1. Then the first two terms in the Taylor expansion of F (z) are
E1 + (1− z)E2, and applying (2.31) yields the result.

Memoryless source. For memoryless sources P = Π, so E1 = E2 = 0 and
(2.28) vanishes for n ≥ 2m−1, since Φ(z) and thus f(z) in (2.32) are polynomials
of degree 2m− 2 and [zn](z − 1)f(z) is 0 for n ≥ 2m− 1. Thus

Var[On(w)] = nc1 + c2 (2.33)

with

c1 = P (w)(2S(1)− 1− (2m− 1)P (w)),

c2 = P (w)((m − 1)(3m− 1)P (w)− (m− 1)(2S(1)− 1)− 2S′(1)).

In passing we mention again that from the generating function N(z, x) we
can compute all moments of On.

2.5. Limit laws

In this section we estimate asymptotically P (On(w) = r) for various ranges
of r, including small r = O(1), the central law regime r = E[On] + ξVar[On]
for fixed ξ, and large deviation regime r = (1 + δ)E[On)] for some δ > 0 (see
Theorems 2.5.1, 2.5.3, and 2.5.4). These laws are derived under the assumption
that the given pattern w is of fixed length m, that is, E[On] = nP (w) → ∞
if n → ∞. In fact, we assume m = O(1). When E[On] = nP (w) = O(1)
the Gaussian law cannot hold, and one enters the rare events regime, which we
discuss in the next section.
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2.5.1. Pattern count probability for small values of r

In this subsection we estimate the asymptotic probability P (On = r) when the
number of times that the pattern of interest occurs in a text, r, is fixed and
small.

Theorem 2.5.1. Assume that m = O(1). For a Markov source, let ρw be
the root of Dw(z) = 0 having the smallest modulus and multiplicity 1 (see
Lemma 2.5.2 below). Then ρw is real and such that ρw > 1, and there exists
ρ > ρw such that, for fixed r > 1,

P (On(w) = r) =

r+1∑

j=1

(−1)jaj
(

n

j − 1

)
ρ−(n+j)
w +O(ρ−n), (2.34)

where

ar+1 =
ρmwP (w) (ρw − 1)

r−1

(D′
w(ρw))

r+1 (2.35)

and the remaining coefficients can be computed according to

aj =
1

(r + 1− j)! lim
z→ρw

dr+1−j

dzr+1−j
(
Nr(z)(z − ρw)r+1

)
(2.36)

with j = 1, 2, . . . , r. For r = 0 we have

P (On(w) = 0) = − S(ρw)

D′(ρw)
ρ−(n+1)
w +O(ρn) (2.37)

where ρ > ρw; Nr(z) and Sw(z) are given by (2.20) and (2.5).

In order to prove Theorem 2.5.1, we need the following simple result.

Lemma 2.5.2. The equation Dw(z) = 0 has at least one root, and all its roots
are of modulus greater than 1.

Proof. The singularities of Dw(z) = (1 − z)/(1 −Mw(z)) are clearly poles of
1/(1 −Mw(z)). As 1/(1 −Mw(z)) is the generating function of the language
M∗, it converges for |z| < 1 and has no pole of modulus smaller than 1. Since
Dw(1) 6= 0, z = 1 is a simple pole of 1/(1 −Mw(z)). As all its coefficients are
real and non negative, there is no other pole of modulus |z| = 1. It follows that
the roots of Dw(z) are all of modulus greater than 1. The existence of a root
is guaranteed since Dw(z) is either a polynomial (in the Bernoulli model) or a
ratio of polynomials (in the Markov model).
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Proof of Theorem 2.5.1. We first rewrite the formula (2.20) for Nr(z) as follows,
for r ≥ 1:

Nr(z) =
zmP (w)(Dw(z) + z − 1)r−1

Dr+1
w (z)

. (2.38)

Observe that P (On(w) = r) is the coefficient at zn of Nr(z). By Hadamard’s
theorem 1.3.1, the asymptotics of the coefficients of a generating function depend
on the singularities of the generating function itself. In our case the generating
function Nr(z) is a rational function, thus we can only expect poles (for which
the denominator Dw(z) vanishes). Lemma 2.5.2 above establishes the existence
and properties of such a pole. Therefore the generating function Nr(z) can be
expanded around the root of Dw(z) of smallest modulus. Say this root is ρw.
Then the Laurent series becomes

Nr(z) =
r+1∑

j=1

aj
(z − ρw)j

+ Ñr(z) (2.39)

where Ñr(z) is analytic in |z| < ρ′ and ρ′ is defined as ρ′ = inf{|ρ| : ρ >
ρw and Dw(ρ) = 0}. The aj satisfy (2.36). The formula (2.38) simplifies into
(2.35) for the leading coefficient ar+1. As a consequence of the analyticity we
have, for 1 < ρw < ρ < ρ′,

[zn]Ñ (r)(z) = O(ρ−n).

Hence the term Ñr(z) contributes only to the lower terms in the asymptotic
expansion of Nr(z). After some algebra, and noting as in (2.31) that

[zn]1(1− z)−k−1 =

(
n+ k

n

)
,

Theorem 2.5.1 is proved. For r = 0 we use the explicit expression (2.19) for
N0(z) and the Cauchy residue theorem 1.3.2 to find the probability P (On = 0).

2.5.2. Central limit laws

In the next theorem we establish the central limit theorem in its strong form
(i.e., the local limit theorem). In this subsection we merely sketch the proof.
Detailed proofs for a more general case of the generalized pattern matching are
presented in Chapter 4. Throughout this section we assume that nP (w)→∞.
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Theorem 2.5.3. For an aperiodic and ergodic Markov source, let nP (w) →
∞. Then

P (On(w) ≤ E[On] + ξ
√
Var[On]) =

(
1 +O

(
1√
n

))
1√
2π

∫ ξ

−∞
e−t

2/2dt.

(2.40)
If, in addition, pij > 0 for all i, j ∈ A then, for any bounded real interval B,

sup
ξ∈B

∣∣∣∣∣P (On(w) = ⌊E[On] + ξ
√
Var[On]⌋)−

1√
2πVar(On)

e−
1
2 ξ

2

∣∣∣∣∣ = o

(
1√
n

)

(2.41)
as n→∞.

Proof. Let r = ⌊E[On] + ξ
√

Var[On]⌋ with ξ = O(1). We will compute
P (On(w) ≤ r) (in the case of the central limit theorem) and P (On(w) = r) (in
the case of the local limit theorem) for r = E(On)+ξ

√
Var(On) when ξ = O(1).

Let νn = E[On(w)] = (n − m + 1)P (w) and σ2
n = Var[On(w)] = c1n + O(1).

To establish the normality of (On(w) − νn)/σn it suffices, according to Lévy’s
continuity theorem, to prove the following:

lim
n→∞

e−τνn/σnNn(e
τ/σn) = eτ

2/2 (2.42)

for complex τ (actually, τ = iv suffices). Again by Cauchy’s coefficient formula
(1.32),

E[xOn ] =: Nn(x) =
1

2πi

∮
N(z, x)

zn+1
dz =

1

2πi

∮
xP (w)

D2
w(z)(1− xMw(z))zn+1−m dz,

where the integration is along a circle around the origin. The evaluation of this
integral is standard and appeals to the Cauchy residue theorem 1.3.2. Namely,
we enlarge the circle of integration to a larger circle, with, say radius R > 1, such
that the larger circle contains the dominant pole of the integrand function. Since
Dw(1) 6= 1, observe that the Cauchy integral over the larger circle is O(R−n).
Let us now substitute x = et and z = eρ. Then the poles of the integrand are
the roots of the equation

1− etMw(e
ρ) = 0. (2.43)

This equation implicitly defines in some neighborhood of t = 0 a unique C∞

function ρ(t), satisfying ρ(0) = 0. Notably, all other roots ρ satisfy inf |ρ| = ρ′ >
0. The residue theorem with eρ

′

> R > eρ > 1 now leads to

Nn(e
t) = C(t)e−(n+1−m)ρ(t) +O(R−n) (2.44)
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where

C(t) =
P (w)

D2
w(ρ(t))M

′
w(ρ(t))

.

To study the properties of ρ(t), we observe thatE[On(w)] = [t] logNn(e
t) and

σ2
n = [t2] logNn(e

t), where we recall again that [tr]f(t) denotes the coefficient
of f(t) at tr. In our case νn = −nρ′(0) +O(1) and σ2

n = −nρ′′(0) +O(1). Now,
in (2.44) set t = τ/σn → 0 for some complex τ . Since uniformly in t we have
ρ(t) = tρ′(0) + ρ′′(0)t2/2 +O(t3) for t→ 0, our estimate (2.44) leads to

e−τνn/σnNn(e
τ/σn) = exp

(
τ2

2
+O(nτ3/σ3

n)

)

= eτ
2/2
(
1 +O(1/

√
n)
)
,

which proves (2.40) without the error term. After applying the Berry–Esseen
inequality, one can derive the error term O(1/

√
n). The reader is encouraged to

fill in the missing details. We will prove a more general version in Theorem 4.2.6
of Chapter 4.

To establish the local limit theorem we observe that if pij > 0 for all i, j ∈ A
then ρ(t) > 0 for t 6= 0 (see Exercise 2.8). In fact, we can obtain a much more
refined local limit result. Indeed, we find for x = o(n1/6),

P (On = E[On] + ξ
√
nc1) =

1√
2πnc1

e−
1
2 ξ

2

(
1− κ3

2c
3/2
1

√
n

(
ξ − ξ3

3

))

+O(n−3/2) , (2.45)

where κ3 is a constant. This completes the proof of Theorem 2.5.3.

In the central law regime, we conclude that the normalized random vari-
able (On −E[On])/

√
Var[On] converges also in moments to the moments of the

standard normal distribution. This follows from the fact just proved, that the
normalized generating function converges to an analytic function, namely eτ

2/2

for τ complex in the vicinity of zero. Since an analytic function has well-defined
derivatives, convergence in moments follows. We shall leave a formal proof to
the reader (see Exercise 2.7).

2.5.3. Large deviations

Finally, we establish precise large deviations for On, still under the assumption
that nP (w) → ∞. Large deviation results play a central role in many applica-
tions, most notably in data mining and molecular biology, since they allow one
to establish thresholds for determining over-represented and under-represented
patterns.
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Theorem 2.5.4. Assume thatm = O(1). Let r = aE[On] with a = (1+δ)P (w)
for δ 6= 0. For complex t, define ρ(t) to be the root of

1− etMw(e
ρ) = 0 (2.46)

and define ωa and σa by

−ρ′(ωa) = a, −ρ′′(ωa) = σ2
a.

Then

P (On(w) = (1 + δ)E[On]) ∼
1

σa
√
2π(n−m+ 1)

e−(n−m+1)I(a)+θa, (2.47)

where I(a) = aωa + ρ(ωa) and

θa = log
P (w)emρ(ωa)

Dw(eρ(ωa)) + (1− eρ(ωa))D′
w(e

ρ(ωa))
, (2.48)

and Dw(z) was defined in (2.18).

Proof. From (2.44) we conclude that

lim
n→∞

logNn(e
t)

n
= −ρ(t).

By the Gärtner–Ellis theorem we find that

lim
n→∞

logP (On > na)

n
= −I(a)

where
I(a) = aωa + ρ(ωa)

with ωa a solution of −ρ′(t) = a. A stronger version of the above result is
possible and we will derive it in Chapter 4. In fact, we will use (2.45) to do this
and the “shift of mean” technique to be discussed next.

As in the local limit regime, we could use Cauchy’s formula to compute the
probability P (On = r) for r = E[On] + ξO(

√
n), but formula (2.45) is only

good for ξ = O(1); we need ξ = O(
√
n) for large deviations. To expand its

validity we shift the mean of the generating function Nn(x) to a new value, say
m = an = (1 + δ)P (w)(n −m + 1), so that we can again apply the local limit
theorem (2.45) around the new mean. To accomplish this, let us rewrite (2.44)
as

Nn(e
t) = C(t)[g(t)]n−m+1 +O(R−n)
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for any R > 0, where g(t) = e−ρ(t). (In the derivation below, for simplicity we
will drop the O(R−n) term.) The above suggests that Nn(e

t) is the moment
generating function of a sum Sn of n − m + 1 “almost” independent random
variables X1, . . . , Xn−m+1 having moment generating function g(t) and an inde-
pendent random variable Y whose moment generating function is C(t). Observe
that E(Sn) = (n−m+1)P (w), while we need to estimate the tail of Sn around
(1 + δ)(n −m+ 1)P (w). To achieve this, we introduce a new random variable,

X̃i, whose moment generating function g̃(t) is given by

g̃(t) =
g(t+ ω)

g(ω)
,

where ω will be chosen later. Then the mean and variance of the new variable
X̃ are

E[X̃] =
g′(ω)

g(ω)
= −ρ′(ω),

Var[X̃] =
g′′(ω)

g(ω)
−
(
g′(ω)

g(ω)

)2

= −ρ′′(ω).

Let us now choose ωa such that

−ρ′(ωa) =
g′(ωa)

g(ωa)
= a = P (w)(1 + δ)

(we will prove the uniqueness of this expression in the next chapter). Then the

new sum S̃n − Y = X̃1 + · · ·+ X̃n−m+1 has a new mean (1 + δ)P (w)(n −m +

1) = a(n − m + 1), and hence we can apply to S̃n − Y the local limit result

(2.45). To translate from S̃n− Y to Sn we use the following simple formula (see
Exercise 2.9):

[etM ] (gn(t)) =
gn(ω)

eωM
[etM ]

(
gn(t+ ω)

gn(ω)

)
, (2.49)

where M = a(n−m+ 1) and, as before, [etn]g(t) denotes the coefficient of g(t)
at zn = etn (where z = et). Now we can apply (2.45) to the right-hand side of
the above equation, to arrive at

[etM ]

(
gM (t+ ω)

gM (ω)

)
∼ 1

σa
√
2π(n−m+ 1)

.

To obtain the final result we must take into account the effect of Y whose moment
generating function is C(t). This leads to the replacement of a = 1 + δ by a =
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1 + δ + C′(0)/n, resulting in the correction term eθa = eC
′(0)ωa . Theorem 2.5.4

is proved.

We now illustrate the above results with an example taken from molecular
biology.

Example 2.5.5. Biologists apply the so-called Z-score and p-value to deter-
mine whether biological sequences such as DNA or protein contain a biological
signal, that is, an under-represented or over-represented pattern. A fundamental
question is how one classifies an occurrence of a pattern as significant. Here,
the term “significant” is used for observed data that are interesting, surprising,
suspicious, or perhaps most importantly, meaningful; we classify a pattern as
significant if it is unlikely to occur fortuitously, that is, in a randomly gener-
ated instance of the problem. Thus, we compare the experimental data with a
reference model, which in our case is the probabilistic model developed in this
book.

In particular, the Z-score and p-value are defined as

Z(w) =
E[On]−On(w)√

Var[On(w)]
,

pval(r) = P (On(w) > r).

The Z-score indicates by how many standard deviations the observed value
On(w) is away from the mean. Clearly, this score makes sense only if one can
prove, as in Theorem 2.5.3, that Z satisfies (at least asymptotically) the central
limit theorem (CLT). However, the p-value is used for rare occurrences, far from
the mean, where one needs to apply large deviation results as in Theorem 2.5.4.

The ranges of validity of the Z-score and p-value are important, as illustrated
in Table 2.1 where results for 2008 nucleotide long fragments of A.thaliana (a
plant genome) are presented. In the table for each 9-mer the number of obser-
vations is presented in the first column followed by the large deviations prob-
ability computed from Theorem 2.5.4 and the Z-score. We observe that for
AATTGGCGG and AAGACGGTT the Z-scores are about 48 (which indicates
that these two strings have the same statistical significance) while the p-values
differ by two orders of magnitude. In fact the occurrences of these 9-mers are
very rare and therefore the Z-score is not an adequate measure.

2.5.4. Poisson laws

In this section we will assume that E[On] = nP (w) is small and does not grow
with n. We concentrate on the case when limm→∞ nP (w) = λ > 0, which
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Oligomer Obs. p-val Z-sc.
(large dev.)

AATTGGCGG 2 8.059× 10−4 48.71
TTTGTACCA 3 4.350× 10−5 22.96
ACGGTTCAC 3 2.265× 10−6 55.49
AAGACGGTT 3 2.186× 10−6 48.95
ACGACGCTT 4 1.604× 10−9 74.01
ACGCTTGG 4 5.374× 10−10 84.93
GAGAAGACG 5 0.687× 10−14 151.10

Table 2.1. The Z score and the p-values of tandem repeats in A.thaliana.

leads to the compound Poisson distribution. We also analyze the case when
limm→∞ nP (w) = 0.

Let us first review the situation. When E[On] = nP (w) is very small, the
number of pattern occurrences tends to zero, too. Clearly, the Gaussian law can-
not hold; rather we should expect a Poisson distribution of rare events. However,
periodic patterns may overlap, introducing dependency, as we have already ob-
served. This results in a compound Poisson limit law. More precisely, we will
establish in this section that the limit law is the Polýa–Aeppli distribution with
parameters λ̃ = nP (w)/Sw(1) and θ = (Sw(1) − 1)/Sw(1). The Polýa–Aeppli
distribution is a convolution of the Poisson distribution Po(λ̃) and the shifted
geometric distribution Geom(θ) that starts at 1. The Polýa–Aeppli limiting dis-
tribution for the pattern counts has an easy interpretation. Occurrences come
in clumps of intensity λ̃ and size governed by a geometric distribution with pa-
rameter θ. We now make this more precise. The next result gives our main
findings of this section.

Theorem 2.5.6. For a Markov source (of order 1), let nP (w) → λ > 0 while
mP (w) → 0. Then the probability generating function Nn(x) for the pattern
counts becomes, for any x in a compact set,

Nn(x) = exp


nP (w)
Sw(1)

x− 1

1− xSw(1)−1
Sw(1)


(1 +O(mP (w) +O(nP 2(w))

)
(2.50)

as n→∞. In other words, the limiting distribution of the pattern counts is the
convolution of a Poisson and a geometric distribution, that is, Po(λ̃)⋆Geom(θ),
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where

λ̃ =
nP (w)

Sw(1)
and θ =

Sw(1)− 1

Sw(1)
;

this constitutes the Polýa–Aeppli distribution.

Proof. We present here only the proof for a memoryless source. This extension
to Markov sources is left as Exercise 2.11.

The starting point is the bivariate generating function N̄(z, x) = N(z, x) +
N0(z) =

∑
r≥0

∑
n≥0 P (On(w=r)x

rzn, which is given by (2.26):

N̄(z, x) =
x+ (1 − x)S(z)

(1− z)((1− x)S(z) + x) + zmP (w)(1 − x) .

To find the probability generating function Nn(x) = E[xOn(w)] = [zn]N̄(z, x),
we apply the Cauchy coefficient formula to yield

Nn(x) =
1

2πi

∮
x+ (1− x)S(z)

(1− z)((1− x)S(z) + x) + zmP (w)(1 − x)
dz

zn+1
.

The evaluation of this integral is standard. We apply the residue theorem, to
find that

Nn(x) = −Res(N̄(z, x)z−(n+1), z = z0(x)) +O(R−n)

where R > 1 and z0(x) is the smallest root of the denominator of Nn(x), i.e.,
the smallest root of

(1− z)((1− x)S(z) + x) + zmP (w)(1 − x) = 0.

For mP (w)→ 0, we realize that this root must be close to unity; thus we define
z0(x) = 1 + ε(x). Simple but tedious algebra reveals that

ε(x) =
P (w)(1 − x)

x+ (1− x)S(1) (1 +O(mP (w))) .

This leads to

Nn(x) = exp


nP (w)

S(1)
· x− 1

1− xS(1)−1
S(1)


(1 +O(mP (w) +O(nP 2(w)

)

which further translates into the Polýa–Aeppli distribution.

The condition nP (w) = O(1) of the above theorem holds whenm = O(log n),
but we can infer the limiting distribution even for nP (w) → 0, that is, when
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m grows faster than logarithmically. In this case we additionally assume that
mP (w) = o(nP (w)), hence thatm grows more slowly than n. Then our estimate
(2.50) still holds. In view of this we conclude that

Nn(x) = 1 +
nP (w)

S(1)

x− 1

1− xS(1)−1
S(1)

+ o(nP (w)).

We can translate this into the following limiting distribution:

P (On(w) = k) =
nP (w)

S2(1)

(
S(1)− 1

S(1)

)k
(2.51)

for k ≥ 1. In Exercise 2.12 the reader is asked to extend (2.51) when m = Θ(n).

2.6. Waiting times

We shall now discuss the waiting times Tw and Tj, where Tw = T1 is the first time
that the pattern w occurs in the text while Tj is the minimum length of text in
which w occurs j times. Fortunately, we do not need to rederive the generating
function of Tj since, as we have already indicated in (2.3), the following duality
principle holds:

{On ≥ j} = {Tj ≤ n}
and, in particular, {Tw > n} = {On = 0}. Therefore, if

T (x, z) =
∑

n≥0

∑

j≥0

P (Tj = n)znxj

then by the duality principle we have

(1− x)T (x, z) + x(1 − z)N(z, x) = 1,

and we can obtain T (x, z) using N(z, x) from Theorem 2.3.2.
Finally, observe that the above duality principle implies that

E[Tw] =
∑

n≥0

P (On = 0) = N0(1).

In particular, for memoryless sources, from Theorem 2.3.2 we conclude that

N0(z) =
zmS(z)

(1− z)S(z) + zmP (w)
.
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Hence

E[Tw] =
∑

n≥0

P (On(w) = 0) = N0(1) =
S(1)

P (w)

=
∑

k∈P(w)

1

P (wk1 )
=

1

P (w)
+

∑

k∈P(w)−{m}

1

P (wk1 )
. (2.52)

We have just recovered an old result of Feller (1970).

2.7. Exercises

2.1 Find the autocorrelation set for w = ababbbaababbbaa. Assuming that
the text was generated by a memoryless source with pa = 0.3, find the
autocorrelation polynomial.

2.2 Let A = {a, b, c}. Find the generating function of the language A∗ −
{ε} − {a} − {b} − {c}.

2.3 Prove (2.9), that is, that T0 · w = R · S.
2.4 For an alphabet A = {α, β} define the following language

U (α)
w = {v : v starts with α and wv has exactly one occurrence of wα

and no occurrences of wβ},
where v is a word of the language and w is the pattern of interest.
Compute its generating function (see Section 8.3 of Chapter 8).

2.5 For the alphabet A = {α, β} define the language

H(α)
w =Mw ∩ (αA∗)

that is, the words of the languageMw that begin with α. Compute the
generating function of Hw (see (8.49) of Chapter 8).

2.6 In Theorem 2.4.1 we proved that for an irreducible aperiodic Markov
chain Var[On] = nc1 + c2 (see (2.28)). Prove that c1 > 0.

2.7 Prove that (On − E[On])/
√
Var[On] converges in moments to the ap-

propriate moments of the standard normal distribution.

2.8 Let ρ(t) be a root of 1 − etMW(eρ) = 0. Observe that ρ(0) = 0. Prove
that ρ(t) > 0 for t 6= 0 for pij > 0 for all i, j ∈ A.

2.9 For any nonnegative integers n and m and some α, prove the following
change of variables:

[zm]Gn(z) =
Gn(α)

αm
[zm]

(
G(αz)

G(α)

)n

where G(z) is a generating function.
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2.10 Prove the expression (2.48) for θa of Theorem 2.5.4 (see Denise and
Régnier (2004)).

2.11 Prove Theorem 2.5.6 for Markov sources.

2.12 Assume that m = αn for some α < 1. Prove that the limiting distribu-
tion (2.51) still holds provided that n is replaced by (1− α)n.
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(2001). We finally mention some other work on exact string matching such as
Cowan (1991), Robin and Daudin (1999) and Robin and Daudin (2001).

The Gaussian law for memoryless sources can be found in Waterman (1995a).
The extension to Markov sources is due to Prum et al. (1995) who used a prob-
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CHAPTER 3

Constrained Exact String

Matching

The main idea of constrained pattern matching is to search for pattern strings
in a text satisfying certain additional structural restrictions (e.g., that some pat-
terns are forbidden); such a text is known also as a constrained sequence. In
digital communication systems such as magnetic and optical recording, the main
purpose of constrained pattern matching is to improve performance by match-
ing the system characteristics to those of the channel. In biology, constrained
sequences are in abundance (e.g., the spike trains of neuronal data). In this
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chapter our goal is to study and understand some aspects of pattern matching
in constrained sequences.

To simplify our presentation we restrict our analysis further, to so-called
(d, k) sequences, in which runs of zeros cannot be smaller than d nor larger than
k, where 0 ≤ d < k. Such sequences have proved to be useful in digital recording
and biology. In digital recording they have been widely used in hard disk drives
and digital optical disks such as CDs, DVDs, and Blu-ray. In biology, the spike
trains of neuronal data recorded from different neurons in the brain of an animal
seem to satisfy structural constraints that exactly match the framework of (d, k)
binary sequences. This follows from the fact that a neuron cannot fire two spikes
in too short a time; this translates into the constraint that the induced binary
spike train needs to contain at least a certain number of 0s, corresponding to no
activity, between any two consecutive 1s, corresponding to spikes.

In these applications one often requires that the word w constituting the
pattern of interest does not occur or occurs only a few times in a (d, k) sequence.
Therefore, we study here the following problem: given such a word w, how many
times does it occur in a (d, k) sequence? For such a problem we coin the term
constrained pattern matching, which is a natural extension of the exact pattern
matching discussed in the previous chapter. As throughout this book, we study
this problem in a probabilistic framework. However, to simplify our presentation
we restrict our discussion to memoryless sources, leaving the analysis of Markov
sources to the exercises.

3.1. Enumeration of (d, k) sequences

As a warm-up for this chapter, we consider the enumeration of (d, k) sequences,
that is, we will count the number of (d, k) sequences of length n. This count is
needed to compute the Shannon capacity of a noiseless constrained channel.

Let Wd,k denote the collection of all (d, k) sequences. We also define the set

Ad,k = {0 . . .0︸ ︷︷ ︸
d

, . . . , 0 . . . 0︸ ︷︷ ︸
k

},

that is, a set of runs of zeros of length between d and k. Its generating function
is

A(z) = zd + zd+1 + · · ·+ zk =
zd − zk+1

1− z . (3.1)

We now observe that Wd,k for d > 0 can be symbolically written as

Wd,k = Ad,k ·
(
ε+ {1} · Ad,k + ({1} · Ad,k)2 + · · · ({1} · Ad,k)k + · · ·

)
(ε+ {1})

+{1} ·
(
ε+ (Ad,k · {1}) + · · · (Ad,k · {1})k + · · ·

)
(ε+Ad,k) , (3.2)
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where · denotes a Cartesian product of sets (that is, the concatenation of words).
Equation (3.2) basically says that the members of the collection Wd,k of (k, d)
sequences

• either start with an allowed run of 0s followed by repeated 1s and allowed
runs of 0s, followed by a 1 or an empty symbol;

• or start with a 1 followed by repeated 1s and allowed runs of 0s, followed
by an allowed run of 0s or an empty symbol.

The language construction (3.2) can be written in a simpler way using a
sequence construction. For a language B we write

SEQ(B) = ε+ B + B × B + B × B × B + · · · . (3.3)

Thus (3.2) can be written as

Wd,k = Ad,k · SEQ({1} · Ad,k) + {1} · SEQ({1} · Ad,k) (ε+Ad,k) .

The generating function of the language Wd,k is given by

Wd,k(z) =
∑

u∈Wd,k

z|u| =
∞∑

n=0

znWn,

where Wn := [zn]Wd,k(z) is the number of (d, k) sequences of length n. Since
language concatenation translates into products of generating functions, (3.2)
directly implies that

Wd,k(z) =
A(z) + z(1 +A(z))

1− zA(z) , (3.4)

where A(z) is given by (3.1). Extracting the coefficient at zn (e.g., using
Maple), one finds exactly the number of (d, k) sequences of length n. For
example, there are W20 = 3151 constraint sequences with d = 1 and k = 3.

In order to obtain the asymptotics of Wn := [zn]Wd,k(z) we apply Cauchy’s
formula. Let B(z) = zA(z) and let the roots of

1− zA(z) = 0

be ρ0 < |ρ1| ≤ . . . < |ρk|. The smallest root ρ0 is real and less than 1. Indeed,
B(0) = 0A(0) = 0, B(1) = k + d− 1 > 0, and B(z) is an increasing function in
the interval (0, 1). Let us also define

λ0 =
1

ρ0
.
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Then, from Cauchy’s formula,

Wn =
1

2πi

∮
Wd,k(z)

zn+1
dz =

1 + ρ0 + ρ20
1 +A′(ρ0)ρ20

(
1

ρ0

)n+1

+O(rn), (3.5)

where r < 1/ρ0. Then Shannon’s capacity, defined as

Cd,k = lim
n→∞

1

n
logWn,

then becomes
Cd,k = logλ0 +O(1/n). (3.6)

For d = 0 we need to modify slightly our derivation since now the symbol 1
does not separate runs of 0s. In this case we have to replace (3.2) by a simpler
expression, namely

W0,k = A0,k ·
(
ε+ ({1} · A0,k) + ({1} · A0,k)

2 + · · ·+ ({1} · A0,k)
k + · · ·

)
,

which leads to

W0,k(z) =
A(z)

1− zA(z) .

In particular, there must be 1024 (0, 10) sequences and, indeed, [z10]W0,10(z) =
1024.

Later in this chapter we will need the number of (d, k) sequences that start
with 0 and end with 1; we call them restricted (d, k) sequences. We denote such
a set by Wr

d,k. Clearly

Wr
d,k = ε+ Bd,k + Bd,k + · · ·+ Bkd,k + · · · = SEQ(B), (3.7)

where Bd,k = Ad,k · {1}. The above translates into the generating function
W r
d,k(z) as follows:

W r
d,k(z) =

1

1− zA(z) =
1

1−B(z)
. (3.8)

Then W r
n = [zn]W r

d,k(z) and, by Cauchy’s formula,

W r
n =

1

B(1/λ0)
λn+1
0 +O(rn) (3.9)

where, as before, ρ0 = 1/λ0 is the smallest real root of B(z) = 1.
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3.1.1. Languages and generating functions

We now focus on the main topic of this chapter, namely pattern matching in
constrained sequences. In this chapter, by constrained sequences we mean (d, k)
sequences. In fact, for ease of presentation we first derive all results for restricted
(d, k) sequences, which start with 0 and end with 1. We will relax this assump-
tion in Section 3.6. We are aiming to find the probability distribution of the
number of occurrences of a given pattern w in a (d, k) sequence generated by a
binary memoryless source. Here w is a pattern that is itself a (d, k) sequence,
and pattern overlapping is allowed.

We recall two languages defined in the previous section, namely

Ad,k = {0 . . .0︸ ︷︷ ︸
d

, · · · , 0 . . . 0︸ ︷︷ ︸
k

}

the extended alphabet (see the text after (3.7))

Bd,k = Ad,k · {1} = {0 · · · 0︸ ︷︷ ︸
d

1, . . . , 0 · · · 0︸ ︷︷ ︸
k

1}.

The elements of Bd,k are known as super-symbols. Restricted (d, k) sequences
are built over Bd,k. More importantly, we also count pattern occurrences over
the super-symbols of Bd,k, not over A, as illustrated in the next example.

Example 3.1.1. Let the pattern w = 01. This super-symbol does not occur in
the restricted (d, k) = (1, 4) sequence 0010001. But the sequence does contain
two other super-symbols, 001 and 0001, from Bd,k.

As in the previous chapter, we now introduce some languages that play a
major role in our analysis. We start by considering the autocorrelation set over
the extended alphabet Bd,k. Let w = w1 · · ·wm ∈ {0, 1}m with wm = 1 so that
w is itself a restricted (d, k) sequence. In Bd,k we have the decomposition w =

β1 · · ·βm′ , where βi ∈ Bd,k and
∑m′

i=1 |βi| = m. Let S denote the autocorrelation
set of w over Bd,k, that is,

S = {βm′

ℓ+1 : β
ℓ
1 = βm

′

m′−ℓ+1}, 1 ≤ ℓ ≤ m′,

where βji = βi · · ·βj and βji = ε if i > j. Notice that, by definition, the
autocorrelation set always contains the empty word ε.

As in the previous chapter we introduce four languages, T (d,k)
r , R(d,k), U (d,k),

andM(d,k) as follows, given a restricted (d, k) pattern w defined over Bd,k:
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(i) T (d,k)
r , the set of all (d, k) sequences containing exactly r occurrences of
w;

(ii) the “right” language R(d,k), the set of all (d, k) sequences containing only
one occurrence of w, located at the right-hand end;

(iii) the “ultimate” language U (d,k), defined by

U (d,k) = {u : wu ∈ T (d,k)
1 },

that is, a word u belongs to U (d,k) if u is a (d, k) sequence and wu has
exactly one occurrence of w, at the left-hand end of wu;

(iv) the “universal” languageM(d,k), defined by

M(d,k) = {v : wv ∈ T (d,k)
2 and w occurs at the right-hand end of wv},

that is, any word in {w} ·M(d,k) has exactly two occurrences of w, one at
the left-hand end and the other at the right-hand end.

To simplify our notation we drop the upper index (d, k). It is easy to see
that, for r ≥ 1,

Tr = R ·Mr−1 · U , (3.10)

T0 · {w} = R · S. (3.11)

In order to find relationships between the languages R, M, and U , we extend
the approach discussed in the previous chapter, to yield

M∗ = B∗ · {w} + S, (3.12)

U · B =M+ U − {ε}, (3.13)

{w} ·M = B · R − (R− {w}), (3.14)

where B∗ is the set of all restricted (d, k) sequences, that is,

B∗ = SEQ(B) = {ε}+ B + B2 + B3 + · · · .

Similarly,M∗ =
∑∞

i=0Mi, whereM0 = {ε}. For example, (3.12) indicates that
any word in the languageM∗ is either in S (if the length of the word fromM∗

is smaller than that of w) or it must end with w.
At this point we need to set up a probabilistic framework. Throughout, we

assume that a binary sequence is generated by a binary memoryless source with
p the probability of emitting a zero and q = 1− p. We will find the conditional
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probability distribution of the number of occurrences of w in a (d, k) sequence.
We also compute the probability that a randomly generated sequence is a (d, k)
sequence.

The language relationships (3.12)–(3.14) are translated into probability gen-
erating functions:

1

1−M(z)
=

1

1−B(z)
zmP (w) + S(z), (3.15)

U(z) =
M(z)− 1

B(z)− 1
, (3.16)

R(z) = zmP (w)U(z), (3.17)

where

B(z) = pdqzd+1 + pd+1qzd+2 + · · ·+ pkqzk+1

= zq
(zp)

d − (zp)
k+1

1− zp . (3.18)

In particular, from (3.10), (3.11), and above one finds that

T0(z) =
S(z)

D(z)
, (3.19)

Tr(z) =
zmP (w)(D(z) +B(z)− 1)

r−1

D(z)r+1 , (3.20)

where
D(z) = S(z)(1−B(z)) + zmP (w). (3.21)

Let On be a random variable representing the number of occurrences of w in
a (regular) binary sequence of length n. Then the generating function Tr(z) for
(d, k) sequences is defined as follows:

Tr(z) =
∑

n≥0

P (On = r,Dn)zn,

where Dn is the event that a randomly generated binary sequence of length n is
a (d, k) sequence. Let us also define the bivariate generating function T (z, x) as

T (z, x) =
∑

r≥0

Tr(z)x
r =

∑

r≥0

∑

n≥0

P (On = r,Dn)znxr.

From (3.10) and (3.11) we find that

T (z, x) = R(z)
x

1− xM(z)
U(z) + T0(z). (3.22)
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Observe that T (z, x) is not a bivariate probability generating function since
[zn]T (z, 1) 6= 1, but we can easily make it into a conditional probability gener-
ating function. First, define

P (Dn) = [zn]T (z, 1)

as the probability that a randomly generated sequence of length n is a (d, k)
sequence. We also introduce the short-hand notation On(Dn) for the conditional
number of occurrences of w in a (d, k) sequence. More formally,

P (On(Dn) = r) = P (On = r | Dn).

Therefore, the probability generating function for On(Dn) is

E[xOn(Dn)] =
[zn]T (z, x)

[zn]T (z, 1)
.

Next, we derive moments and establish several limit laws for P (On(D) = r)
for various ranges of r. Throughout this chapter we assume that m is fixed, that
is, nP (w)→∞. In Exercise 3.4 we ask the reader to extend our analysis to the
case when nP (w) = O(1) and so establish the Poisson limit law.

3.2. Moments

We start with the first two moments of the word count. The expected value of
On(Dn) is

E[On(Dn)] =
[zn]Tx(z, 1)

[zn]T (z, 1)
, (3.23)

where Tx(z, 1) is the derivative of T (z, x) at x = 1, and

E[On(Dn)(On(Dn)− 1)] =
[zn]Txx(z, 1)

[zn]T (z, 1)
,

is the second factorial moment, where Txx(z, 1) is the second derivative with
respect to x at x = 1.

Our first main result is presented next.

Theorem 3.2.1. Let ρ := ρ(p) be the unique positive real root of B(z) = 1
where B(z) is defined in (3.18), and let λ = 1/ρ. Then the probability of gener-
ating a (d, k) sequence is equal to

P (Dn) =
1

B′(ρ)
λn+1 +O(ωn), (3.24)
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for some ω < λ. Furthermore,

E[On(Dn)] =
(n−m+ 1)P (w)

B′(ρ)
λ−m+1 +O(1),

and the variance is given by

Var[On(Dn)] = (n−m+ 1)P (w)

[
(1− 2m)P (w)

B′(ρ)2
λ−2m+2 (3.25)

+
P (w)B′′(ρ)

B′(ρ)3
λ−2m+1 +

2S(ρ)− 1

B′(ρ)
λ−m+1

]
+O(1), (3.26)

for large n.

We will prove Theorem 3.2.1 in several steps. We first obtain asymptotic
formulas for the mean and the variance of On(Dn). From (3.15)–(3.22), we find

T (z, 1) =
1

1−B(z)
, quadTx(z, 1) =

zmP (w)

(1−B(z))2
,

and

Txx(z, 1) =
2zmP (w)M(z)

U(z)(1−B(z))3
=

2zmP (w)D(z)

(1−B(z))3
− 2zmP (w)

(1 −B(z))2
.

By Cauchy’s coefficient formula and the residue theorem (see Chapter 1) we find
that

P (Dn) = [zn]T (z, 1) = [zn]
1

1−B(z)
=

1

B′(ρ)
λn+1 +O(ωn),

where ρ is the unique positive real root of B(z) = 1, λ = 1/ρ, and ω < λ. In
the lemma below we prove that there always exists a unique positive real root
of B(z) = 1, which is greater than 1 and whose modulus is the smallest complex
root.

Lemma 3.2.2. The equation B(z) = 1 has one positive real root ρ that is
greater than 1. All other roots ρ′ satisfy |ρ′| > ρ.

Proof. By definition, B(z) := pdqzd+1 + pd+1qzd+2 + · · ·+ pkqzk+1. Let f(z) =
1−B(z). Then we observe that f(1) = 1−B(1) > 0 and lim

z→∞
f(z) = −∞. We

also see that f ′(z) = −B′(z) < 0 for z > 0, that is, f(z) is a decreasing function.
Therefore, f(z) = 0 has one real root on (1,∞).

To prove the second part of the theorem, we appeal to Rouché’s theorem.
Let ρ be the real root, and let h(z) = 1 and g(z) = −B(z). We consider a closed
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contour C = {z : |z| = ρ − ε} where ε is an arbitrarily small positive constant.
Rouché’s theorem (see Henrici (1997)) states that if f(z) = g(z)+h(z) = 1−B(z)
and h(z) = 1 are analytic inside and on C and if |g(z)| < |h(z)| = 1 then h(z)
and f(z) = g(z) + h(z) = 1−B(z) have the same number of zeros inside C. At
points on C we have

|g(z)| ≤ pdq|z|d+1 + pd+1q|z|d+2 + · · ·+ pkq|z|k+1

= pdq(ρ− ε)d+1 + pd+1q(ρ− ε)d+2 + · · ·+ pkq(ρ− ε)k+1

< pdqρd+1 + pd+1qρd+2 + · · ·+ pkqρk+1 = 1 = |h(z)|.

Thus, by Rouché’s theorem f(z) and h(z) = 1 have the same number of zeros
inside C, that is, f(z) has no root inside C. Therefore, all other complex roots
ρ′ satisfy |ρ′| ≥ ρ.

Suppose that another complex root ρ′ satisfies |ρ′| = ρ, that is, ρ′ = ρeiθ for
some θ. Then

|1| = |B(ρ′)| = |pdqρd+1ei(d+1)θ + pd+1qρd+2ei(d+2)θ + · · ·+ pkqρk+1ei(k+1)θ|
≤ pdqρd+1|ei(d+1)θ|+ pd+1qρd+2|ei(d+2)θ|+ · · ·+ pkqρk+1|ei(k+1)θ |
= pdqρd+1 + pd+1qρd+2 + · · ·+ pkqρk+1 = 1.

In the second line, equality holds only when θ = 2πj for some integer j. Thus,
ρ′ must be a real root, which is ρ; all other roots ρ′ satisfy |ρ′| > ρ.

To find moments, we proceed as follows. Consider

[zn]Tx(z, 1) = [zn]
zmP (w)

(1−B(z))2
=

P (w)

B′(ρ)2

(
(n−m+ 1)λ+

B′′(ρ)

B′(ρ)

)
λn−m+1

+O(ωn).

Thus

E[On(Dn)] =
[zn]Tx(z, 1)

[zn]T (z, 1)
=

(n−m+ 1)P (w)

B′(ρ)
λ−m+1 +O(1).

Similarly,

Var[On(Dn)] =
[zn]Txx(z, 1)

[zn]T (z, 1)
+E[On(Dn)]−E[On(Dn)]2.

After some algebra, we can establish the formula for the variance in (3.26).
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3.3. The probability count

We will now estimate the probability P (On(D) = r) for various values of r. We
start with fixed r.

Theorem 3.3.1. Let τ := τ(p, w) be the smallest positive real root of D(z) = 0
where D(z) is defined in (3.21), and let ρ := ρ(p) < τ be the unique positive real
root of B(z) = 1. Then, for r = O(1) with r ≥ 1,

P (On(Dn) = r) ∼ P (w)B′(ρ)(1−B(τ))
r−1

D′(τ)r+1τr−m

(
n−m+ r

r

)(ρ
τ

)n+1

.

for large n.

Proof. By Cauchy’s coefficient formula and the residue theorem,

P (On = r,Dn) = [zn]Tr(z) = [zn−m]
P (w)(D(z) +B(z)− 1)

r−1

D(z)r+1

=

r+1∑

j=1

(−1)jaj
(
n−m+ j − 1

j − 1

)(
1

τ

)n−m+j

+O(tn),

where τ < t−1 is the smallest positive real root of D(z) = 0, and

ar+1 =
P (w)(B(τ) − 1)r−1

D′(τ)r+1 .

In Lemma 3.3.2 below we prove that there exists at least one positive real root
of D(z) = 0, which is greater than ρ. Finally, we find that

P (On(Dn) = r) := P (On = r|Dn) =
P (On = r,Dn)

P (Dn)

∼ P (w)B′(ρ)(1 −B(τ))
r−1

D′(τ)r+1

(
n−m+ r

r

)
ρn+1

τn−m+r+1
,

as desired.

Thus to complete the proof, we need to show the existence of a positive root
of D(z), and we present this next. We should point out that in Lemma 2.5.2 we
established this existence in the case of exact pattern matching.

Lemma 3.3.2. The equation D(z) = 0 has at least one positive real root τ ,
and this root is greater than ρ.
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Proof. For 0 ≤ z ≤ ρ, we observe that D(z) := S(z)(1 − B(z)) + zmP (w) > 0.
This follows from the fact that S(z) > 0 and 1−B(z) > 0 (for 0 < z < ρ). Note
also that D(0) = 1 and D(ρ) = ρmP (w).

Now let us consider z > ρ. Let m′ be the length of the pattern over the
extended alphabet Bd,k. Notice that d + 1 ≤ m/m′ ≤ k + 1. First, let us
assume that m′ = 1, that is, d + 1 ≤ m ≤ k + 1. Then, since S(z) = 1 and
P (w) = pm−1q,

D(z) = 1−B(z) + pm−1qzm.

Thus D(z)→ −∞ as z →∞ because B(z) has at least two terms, one of which
cancels out pm−1qzm. Therefore, there exists at least one real root on (ρ,∞).

Now we can assume thatm′ ≥ 2, and first consider when m/m′ is either d+1

or k+1, that is, the pattern is periodic. If m/m′ = d+1 then P (w) = (pdq)
m′

,
so

S(z) = 1 + pdqzd+1 +
(
pdqzd+1

)2
+ · · ·+

(
pdqzd+1

)m′−1
,

and this leads to
D(z) = 1− S(z)(B(z)− pdqzd+1).

Thus, again D(z) → −∞ as z → ∞. The same is true when m/m′ = k + 1.
Therefore, there exists at least one real root.

Next, we consider the case d+1 < m/m′ < k+1; we will show thatD(z0) ≤ 0
for some positive z0. Let us define two integers, ℓ and u, as the largest integer
smaller than m/m′ and the smallest integer larger than m/m′, respectively.
Then

D(z) ≤ 1−B(z) + zmP (w)

= (1− pℓ−1qzℓ)(1− pu−1qzu)− (B(z)− pℓ−1qzℓ − pu−1qzu)

−pℓ+u−2q2zℓ+u + pm−m′

qm
′

zm.

If m = ℓ + u then m′ must be 2. Thus,

D(z) ≤ (1− pℓ−1qzℓ)(1 − pu−1qzu)− (B(z)− pℓ−1qzℓ − pu−1qzu),

and either z0 =
(
pℓ−1q

)−1/ℓ
or z0 =

(
pu−1q

)−1/u
makes D(z0) ≤ 0.

If m 6= ℓ + u, then we choose z0 as the root of the equation pm−m′

qm
′

zm =
pℓ+u−2q2zℓ+u, that is,

z0 =
(
pℓ+u−2−m+m′

q2−m
′
)1/(m−ℓ−u)

.

After some algebra we arrive at

D(z0) ≤ (1− pℓ−1qzℓ0)(1− pu−1qzu0 ) = (1− (q/p)x) (1− (p/q)y) ,
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Figure 3.1. Plots of λ versus p for (a) (1, 2) sequences; and (b) (3, 6)
sequences.

where

x =
m− ℓm′ − (u− ℓ)

m− ℓ− u
and

y =
um′ −m− (u− ℓ)

m− ℓ− u .

Here we can observe that x and y have the same sign and from this observation
we can easily see that D(z0) ≤ 0. Hence, there always exists a positive z0 such
that D(z0) ≤ 0, and consequently there always exists at least one positive real
root on (ρ, z0].

Finally, we offer some remarks. In Figure 3.1, we plot λ = 1/ρ versus p for
various (d, k) sequences. Observe that the probability P (Dn) ≍ λn is asymptot-
ically maximized for some p 6= 0.5 (corresponding to a biased source), and this
may be used to design better run-length coding.

Observe also that when the binary source is unbiased (p = q = 1/2), we can
count the number Nn(r) of (d, k) sequences of length n that contain w exactly
r times, by computing [zn]Tr(2z) (with r fixed with respect to n.) In fact,
Nn(r) = 2nP (On = r,Dn) and so one can find the asymptotics of Nn(r) from
part (i) of Theorem 3.3.1. In particular, the Shannon entropy is

C(r) = lim
n→∞

log2Nn(r)

n
= log2

(
2

τ

)
,
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where τ = τ(1/2, w) is defined in Theorem 3.3.1 for p = 1/2.

3.4. Central limit law

We now establish the central limit law for fixed m, that is, for nP (w) → ∞.
We will estimate P (On(Dn) = r) for r = E[On(Dn)] + ξ

√
Var[On(Dn)] with

ξ = O(1). Define

Tn(x) = E[uOn(Dn)] =
[zn]T (z, x)

[zn]T (z, 1)
(3.27)

and
µn = E[On(Dn)], σn =

√
Var[On(Dn)].

By Goncharov’s theorem, it suffices to prove the following:

lim
n→∞

e−νµn/σnTn(e
ν/σn) = eν

2/2,

for all ν = it′ where −∞ < t′ < ∞. However, we shall now establish that the
above holds for complex ν.

Theorem 3.4.1. For r = E[On(Dn)] + ξ
√

Var[On(Dn)] with ξ = O(1),

On(Dn)−E[On(Dn)]√
Var[On(Dn)]

d→ N(0, 1),

as n→∞.

Proof. Let ρ(x) be the smallest real root of 1 − xM(z) = 0. We easily find
that the pole of T0(z) is always greater than ρ(x). Then, by Cauchy’s coefficient
formula and the residue theorem, from (3.22) we obtain

[zn]T (z, x) = c(x)λn+1(x) +O(ωn(x)), (3.28)

c(x) =
R(ρ(x))U(ρ(x))

M ′(ρ(x))
,

and λ(x) = 1/ρ(x) where |ω(x)| < λ(x). Thus, by (3.27),

P (Dn)Tn(x) = c(x)λn+1(x) +O(ωn(x)), (3.29)

since P (Dn) = [zn]T (z, 1).
Let x = et and t = ν/σn. Since t→ 0 and x→ 1 as n→∞, expanding in a

Taylor series around t = 0 we arrive at

λ(et) = λ(1) + λ′(1)t+
λ′′(1) + λ′(1)

2
t2 +O(t3). (3.30)
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Now let us find λ′(1) and λ′′(1). From (3.28) we observe that

[zn]Tx(z, 1) = (n+ 1)c(1)λn(1)λ′(1) + c′(1)λn+1(1) +O(nωn(1)). (3.31)

By (3.23), (3.28), and (3.31) we obtain

λ′(1) =
µn
n+ 1

λ(1)− c′(1)

(n+ 1)c(1)
λ(1) +O (nθn(1)) , (3.32)

where θ(x) = ω(x)/λ(x). We note that |θ(x)| < 1. Similarly, after some algebra,
we arrive at

λ′′(1) =

(
σ2
n − µn
n+ 1

+
µ2
n

(n+ 1)
2

)
λ(1) +O

(
1

n

)
. (3.33)

Using (3.29), (3.30), (3.32), (3.33), and the fact that t = O (1/
√
n), we find that

P (Dn)Tn(et) = c(x)λn+1(x) · (1 +O(θn(x)))

= c(x)λn+1(1)

[
1 +

µn
n+ 1

t+
1

2

(
σ2
n

n+ 1
+

µ2
n

(n+ 1)
2

)
t2 +O(t3)

]n+1

×(1 +O(θn(x))).

Therefore

e−νµn/σnP (Dn)Tn(eν/σn) = c(x)λn+1(1)

(
1 +

σ2
n

2(n+ 1)
t2 +O(t3)

)n+1

(1 +O(θn(x)))

and

lim
n→∞

e−νµn/σnTn(e
ν/σn) = lim

n→∞

(
1 +

ν2

2(n+ 1)
+O(t3)

)n+1

= exp

(
ν2

2

)
.

This completes the proof.

3.5. Large deviations

Finally we establish the large deviation results, that is, we compute P (On(Dn) =
r) for r = (1 + δ)E[On(Dn)] for some δ > 0. Let a be a real constant such that
na = (1 + δ)E[On(Dn)]. We will compute P (On(Dn) = na) asymptotically for
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the case when na is an integer (when na is not an integer, we need to replace
na by the closest integer). Clearly,

P (On(Dn) = na) = [xna]Tn(x) =
[zn][xna]T (z, x)

[zn]T (z, 1)
. (3.34)

By (3.22),

[xna]T (z, x) = [xna]

(
T0(z) + xR(z)U(z)

∞∑

i=0

(xM(z))
i

)

= R(z)U(z)M(z)
na−1

=
P (w)zm

[D(z)]2
M(z)

na−1
.

Hence, Cauchy’s coefficient formula leads to

[zn][xna]T (z, x) =
1

2πi

∮
P (w)zm

[D(z)]2
M(z)

na−1 1

zn+1
dz,

where integration is along any contour around zero in the convergence circle.
In order to derive the large deviation results, we need to apply the saddle

point method. We now review this method. It is summarized in Table 3.1. The
reader is referred to Flajolet and Sedgewick (2009) and Szpankowski (2001) for
an in-depth discussion.

Following Table 3.1, we define the function ha(z) of a complex variable z as

ha(z) = a logM(z)− log z,

such that

[zn][xna]T (z, x) =
1

2πi

∮
enha(z)g(z)dz,

where

g(z) =
P (w)zm−1

D(z)
2
M(z)

.

In the lemma below, we characterize some properties of ha(z) that are needed
to estimate the integral.

Lemma 3.5.1. The following holds.

(i) There exists a unique real root za of the equation h′a(z) = 0 that satisfies
0 < za < ρ for some constant a.

(ii) h′′a(za) > 0.
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Table 3.1. Summary of the saddle point approximation.

Input. Let g(z) be analytic in |z| < R (0 < R < +∞) with nonnegative Taylor
coefficients and “fast growth” as z → R−. Let h(z) := log g(z)− (n+ 1) log z.
Output. The asymptotic formula (3.39) for gn := [zn]g(z):

gn =
1

2iπ

∫

C
g(z)

dz

zn+1
=

1

2iπ

∫

C
eh(z) dz, (3.35)

where C = {z | |z| = r} is a loop around z = 0.

(SP1) Saddle point contour. Assume that g′(z)/g(z)→ +∞ as z → R−. Let
r = r(n) be the unique positive root of the saddle point equation, when r → R
as n→∞

h′(r) = 0 or
rg′(r)

g(r)
= n+ 1. (3.36)

(SP2) Basic split. Assume that h′′′(r)1/3h′′(r)−1/2 → 0. Define δ = δ(n),
the range of the saddle point, by δ =

∣∣h′′′(r)−1/6h′′(r)−1/4
∣∣ , so that δ →

0, h′′(r)δ2 → ∞, and h′′′(r)δ3 → 0. Split C into C0 ∪ C1, where C0 =
{z ∈ C | | arg(z)| ≤ δ}, and C1 = {z ∈ C | | arg(z)| ≥ δ}.
(SP3) Elimination of tails. Assume that |g(reiθ)| ≤ |g(reiδ)| on C1. Then

∣∣∣∣
∫

C1

eh(z) dz

∣∣∣∣ = O
(
|e−h(reiδ)|

)
. (3.37)

(SP4) Local approximation. Assume that h(reiθ) − h(r) − 1
2r

2θ2h′′(r) =
O(|h′′′(r)δ3|) on C0. Then the central integral is asymptotic to a complete Gaus-
sian integral, and

1

2iπ

∫

C0

eh(z) dz =
g(r)r−n√
2πh′′(r)

(
1 +O(|h′′′(r)δ3|)

)
. (3.38)

(SP5) Collection. Assumptions (SP1), (SP2), (SP3), and (SP4) imply the esti-
mate

[zn]g(z) =
g(r)r−n√
2πh′′(r)

(
1 +O(|h′′′(r)δ3|)

)
∼ g(r)r−n√

2πh′′(r)
. (3.39)
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(iii) ha(za) < − log ρ.

Proof. By the definition of ha(z),

h′a(z) =
aM ′(z)

M(z)
− 1

z
=

−D(z)2 + (azB′(z) + 1−B(z))D(z) + az(1−B(z))D′(z)

zD(z)(D(z)− 1 +B(z))
.

We notice that the denominator is always positive for 0 < z < ρ.
Let us define fa(z), a function of a real variable z, as the numerator of h′a(z).

That is, by the definition of D(z) in (3.21),

fa(z) = [(1− S(z))S(z) + azS′(z)] (1 −B(z))
2

+zmP (w) [azB′(z) + (1− 2S(z) + am)(1−B(z))− zmP (w)] .

We find that
fa(ρ) = ρmP (w) (aρB′(ρ)− ρmP (w)) > 0 (3.40)

since, for large n,

a = (1 + δ)
E[On(Dn)]

n
= (1 + δ)

ρm−1

B′(ρ)
P (w)

(
1−O

(
1

n

))
>
ρm−1

B′(ρ)
P (w).

First, we consider the case when the pattern is not self-overlapping, that is,
S(z) ≡ 1. Then

fa(z) = zmP (w) [azB′(z) + (am− 1)(1−B(z))− zmP (w)] .

The term of smallest degree in fa(z) is (am − 1)P (w)zm, and its coefficient is
negative since a < 1/m. Thus, there exists a sufficiently small ε > 0 such that
fa(ε) < 0. By this and (3.40), there exists a real root za of h′a(z) = 0.

Second, we consider the case when the pattern is self-overlapping, that is,

S(z) = 1 + crz
r + higher order terms (0 < r < m),

where r is the smallest degree of the nonconstant terms and cr is a positive
constant. Then the term of smallest degree in fa(z) becomes (ar − 1)crz

r, and
its coefficient is negative since a < 1/m < 1/r. As in the first case, fa(ε) < 0 for
sufficiently small ε > 0, and we get the same result. The uniqueness comes from
this result and part (ii) of the lemma because h′a(z) is continuous on z ∈ [0, ρ].

Next, we prove part (ii). By definition,

h′a(za) =
aM ′(za)

M(za)
− 1

za
= 0. (3.41)
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However, we can write M(z) =
∑

i≥0 piz
i with pi ≥ 0 since M(z) is the proba-

bility generating function of the languageM. Then

M ′(za)

M(za)
=

∑
i≥0 ipiz

i−1
a∑

i≥0 piz
i
a

=
1

za

∑

i≥0

i
piz

i
a∑

j≥0 pjz
j
a

=
1

za
E[X ], (3.42)

where X is a random variable such that

P (X = i) =
piz

i
a∑

j≥0 pjz
j
a

for i ≥ 0.

From (3.41) and (3.42), we see that E[X ] = 1/a. Now let us compute h′′a(za).
We have

h′′a(za) =
aM ′′(z)

M(z)
− a
(
M ′(z)

M(z)

)2

+
1

z2a

=
a

z2a
E[X(X − 1)]− a

(
E[X ]

za

)2

+
1

z2a
=

a

z2a
Var[X ].

Therefore h′′a(za) > 0 because the distribution is definitely not concentrated at
one value. This proves part (ii) of the lemma.

Finally, to prove part (iii) we observe that ha(ρ) = − log ρ and h′a(z) > 0 for
za < z ≤ ρ. Therefore ha(za) < ha(ρ) = − log ρ. This completes the proof of
the lemma.

Now we are in a position to formulate our main result of this section. As al-
ways in this chapter we assume that m is fixed, or more generally that nP (w)→
∞.

Theorem 3.5.2. For r = (1+δ)E[On(Dn)] with δ > 0, let a be a real constant
such that na = (1 + δ)E[On(Dn)] is an integer and let

ha(z) = a logM(z)− log z.

We denote by za the unique real root of the equation h′a(z) = 0 such that za ∈
(0, ρ). Then

P (On(Dn) = na) =
c1e

−nI(a)
√
2πn

[
1 +

c2
n

+O

(
1

n2

)]

and

P (On(Dn) ≥ na) =
c1e

−nI(a)
√
2πn(1 −M(za))

[
1 +O

(
1

n

)]
,
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where
I(a) = − log ρ− ha(za) > 0 (3.43)

and

c1 =
ρB′(ρ)g(za)

τa
, g(z) =

P (w)zm−1

D(z)
2
M(z)

, τ2a = h′′a(za).

The constant c2 is explicitly computed below in (3.5).

Proof. We follow now the steps outlined in Table 3.1. This can be viewed as an
illustration of an application of the saddle point method.

Let za be the unique positive real root of the equation h
′
a(z) = 0. To evaluate

the integral on C = {z : |z| = za} we first split C into C0 and C1 where C0 = {z ∈
C : | arg(z)| ≤ θ0} and C1 = {z ∈ C : | arg(z)| ≥ θ0} for some θ0. That is,

[zn][xna]T (z, x) = I0 + I1,

where

I0 =
1

2πi

∫

C0

enha(z)g(z)dz, and I1 =
1

2πi

∫

C1

enha(z)g(z)dz.

We compute I0 first and show that |I1| is exponentially smaller than I0.
Now set θ0 = n−2/5 and compute I0 with the change of variable z = zae

iθ:

I0 =
za
2π

∫ +θ0

−θ0
exp(nha(zae

iθ) + iθ)g(zae
iθ)dθ.

To simplify the notation, let us define some variables as follows:

τ2a = h′′a(za) (cf. part (ii) of Lemma 3.5.1), βa =
h
(3)
a (za)

3!τ3a
, and γa =

h
(4)
a (za)

4!τ4a
.

Using a Taylor series around θ = 0, we arrive at

ha(zae
iθ) = ha(za)−

τ2az
2
a

2
θ2 −

(
βaτ

3
az

3
a +

τ2az
2
a

2

)
iθ3

+

(
γaτ

4
az

4
a +

3

2
βaτ

3
az

3
a +

7

24
τ2az

2
a

)
θ4 +O(θ5)

since h′a(za) = 0. When |θ| ≤ θ0, nθ
k → 0 (k ≥ 3) as n → ∞. Thus, using the

Taylor series, we get

enha(zae
iθ)+iθ = exp

(
nha(za)−

τ2az
2
a

2
nθ2
)(

1 + α(θ) +
α(θ)

2

2!
+
α(θ)

3

3!
+ · · ·

)
,
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where

α(θ) = iθ −
(
βaτ

3
az

3
a +

τ2az
2
a

2

)
inθ3 +

(
γaτ

4
az

4
a +

3

2
βaτ

3
az

3
a +

7

24
τ2az

2
a

)
nθ4

+O(nθ5).

For ω0 = τazan
1/10 we then have

I0 =
enha(za)

2πτa
√
n

∫ +ω0

−ω0

exp

(
−ω

2

2

) (
1 + α(ω) +

α(ω)
2

2!
+ · · ·

)

×g
(
zae

iω/(τaza
√
n)
)
dω.

We observe that each term of odd degree of ω in
(
1 + η(ω) +

η(ω)2

2!
+
η(ω)3

3!
+ · · ·

)
g
(
zae

iω/(τaza
√
n)
)
,

contributes nothing to the integral. Thus, using the Taylor series of the function

g
(
zae

iω/(τaza
√
n)
)
around ω = 0, we arrive at

I0 =
enha(za)

2πτa
√
n

∫ +ω0

−ω0

exp

(
−ω

2

2

)(
A+Bω2 + Cω4 +Dω6 +O

(
1

n2

))
dω

where

A = g(za), B = − 1

n

(
g′′(za)

2τ2a
+

3g′(za)

2τ2aza
+
g(za)

2τ2az
2
a

)
,

C =
1

n

(
g′(za)

(
βa
τa

+
1

2τ2aza

)
+ g(za)

(
γa +

5βa
2τaza

+
19

24τ2az
2
a

))
,

and

D = −g(za)
2n

(
βa +

1

2τaza

)2

.

Using the fact that, as ω0 →∞,

∫ +∞

ω0

xke−
x2

2 dx = O
(
e−

1
2ω

2
0

)
, and

∫ +∞

−∞
x2ke−

x2

2 dx =
Γ(2k)

2k−1Γ(k)

√
2π,

we finally obtain

I0 =
g(za)e

nha(za)

τa
√
2πn

[
1 +

1

n

(
3βag

′(za)

τag(za)
− g′′(za)

2τ2ag(za)
+ 3γa −

15β2
a

2

)
+O

(
1

n2

)]
.

(3.44)
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It is easy to see that the main contribution to the large deviations comes from
I0. Thus, we only need to show that I1 is small.

We will compute a bound on |I1| and show that it is exponentially smaller
than I0. We can write I1 = I+1 + I−1 , where

I+1 =
za
2π

∫ π

θ0

enha(zae
iθ)g(zae

iθ)eiθdθ, I−1 =
za
2π

∫ π

θ0

enha(zae
iθ)g(zae

iθ)eiθdθ.

First we need to consider M(z), the probability generating function for the
nonempty language M. Clearly, the coefficients of M(z) are all nonnegative;
also M(z) is aperiodic, which is the subject of Lemma 3.5.3 below. Granted
the aperiodicity of M(z), by the nonnegativity of the coefficients the function
|M(zae

iθ)| has a unique maximum at θ = 0. It is also infinitely differentiable at
θ = 0. Consequently there exists an angle θ1 ∈ (0, π) such that

∣∣M(zae
iθ)
∣∣ ≤

∣∣M(zae
iθ1)
∣∣ for θ ∈ [θ1, π],

and |M(zae
iθ)| is decreasing for θ ∈ [0, θ1]. Thus, for large n,

∣∣M(zae
iθ)
∣∣ ≤

∣∣M(zae
iθ0)
∣∣ for θ ∈ [θ0, π],

since θ0 = n−2/5 < θ1. Therefore, for θ ∈ [θ0, π],

∣∣∣enha(zae
iθ)
∣∣∣ =

∣∣M(zae
iθ)
∣∣na

zna
≤
∣∣M(zae

iθ0)
∣∣na

zna
=
∣∣∣enha(zae

iθ0 )
∣∣∣ ,

and this leads to

|I+1 | ≤
zamax(g)

2π

∫ π

θ0

∣∣∣enha(zae
iθ)
∣∣∣ dθ ≤ zamax(g)

2π

∫ π

θ0

∣∣∣enha(zae
iθ0 )
∣∣∣ dθ

=
za(π − θ0)max(g)

2π
exp

(
nha(za)−

τ2az
2
a

2
n

1
5 + O(n− 1

5 )

)
= O

(
I0e

−cn
1
5

)
,

where max(g) is the maximum of |g(zaeiθ)| for θ ∈ [θ0, π] and c is a posi-
tive constant. Similarly, |I−1 | is bounded. Thus [zn][xna]T (z, x) = I0 + I1 =

I0

(
1 +O

(
e−cn

1/5
))

.

Finally, by (3.24), (3.34), (3.44) and the above we have

P (On(Dn) = na) =
ρB′(ρ)g(za)e−nI(a)

τa
√
2πn

×
[
1 +

1

n

(
3βag

′(za)

τag(za)
− g′′(za)

2τ2ag(za)
+ 3γa −

15β2
a

2

)
+O

(
1

n2

)]
,
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where I(a) = − log ρ−ha(za), which is positive. This establishes our result; the
constant c2 can be extracted from (3.5).

To complete the proof we need to prove the following lemma.

Lemma 3.5.3. The probability generating function M(z) is aperiodic if the
length of a pattern w defined over the extended alphabet Bd,k is greater than 1.

Proof. To prove the aperiodicity of M(z), we will show that there always
exist two words, u1 and u2, in M whose lengths differ by 1. Let Bd,k =
{βd, βd+1, . . . , βk} and ℓ be the length of the pattern w defined over Bd,k (ℓ ≥ 2).
We consider the following two cases: (a) some super-symbols of Bd,k do not ap-
pear in w; (b) all such super-symbols appear in w.

To prove the first case, let βi be super-symbol that does not appear in w.
Then, clearly both βiβdβiw and βiβd+1βiw are in M and their difference in
length is 1.

Now we prove the second case. For this, we consider three subcases, and
for each subcase we find two words in M which differ by 1 in length for each
subcase:

Subcase (i), |Bd,k| ≥ 3: Let

u1 = βd · · ·βd︸ ︷︷ ︸
ℓ

βd βd · · ·βd︸ ︷︷ ︸
ℓ

w and u2 = βd · · ·βd︸ ︷︷ ︸
ℓ

βd+1 βd · · ·βd︸ ︷︷ ︸
ℓ

w.

Then w can occur in wu1 only at the left-hand and the right-hand ends because
the occurrence of w elsewhere would imply that

w = βd · · ·βd︸ ︷︷ ︸
ℓ

,

which would contradict the assumption that all super-symbols appear in w.
Similarly, w occurs in wu2 only at the two ends. Otherwise, w would have only
one or two kinds of super-symbol, which contradicts the assumption. Thus both
u1 and u2 are inM.

Subcase (ii), |Bd,k| = 2 and ℓ ≥ 3. Let βi be a super-symbol that appears
more than once in w. Then, by a similar argument to that for the first case,

βj · · ·βj︸ ︷︷ ︸
ℓ

βiu1 = βj · · ·βj︸ ︷︷ ︸
ℓ

w and u2 = βj · · ·βj︸ ︷︷ ︸
ℓ

βj βj · · ·βj︸ ︷︷ ︸
ℓ

w

are inM, and their lengths differ by 1 because |i− j| = 1.

Subcase (iii), |Bd,k| = 2 and ℓ = 2. In this case, w must be either βdβk or
βkβd. Thus βdw and βkw are inM. Therefore M(z) is aperiodic.
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3.6. Some extensions

First, we relax our assumption that the (d, k) sequences are restricted. A small
modification can extend our previous analysis to all (d, k) sequences. Let T allr

be the set of all (d, k) sequences containing exactly r occurrences of w. Then,
for d ≥ 1,

T allr = {ε, 1} · Tr · ({ε}+Ad,k); (3.45)

the generating functions and asymptotic expressions can be derived from this
expression.

Next, we consider pattern occurrences in a binary alphabet rather than ex-
tended alphabet Bd,k (e.g., w = 01 occurs twice in the (1, 4) sequence 0010001
over A{0, 1} and not at all over Bd,k). Again, let w = w1 · · ·wm ∈ {0, 1}m
with wm = 1, and let w be represented over Bd,k, that is, w = β1 · · ·βm′ where
βi ∈ Bd,k. Then the autocorrelation set S2 over the binary alphabet is defined
as

S2 = {wmℓ+1 : wℓ1 = wmm−ℓ+1}, 1 ≤ ℓ ≤ m.
Using the languages Tr, R,M, and U defined after Example 3.1.1, we find

Tr = R ·Mr−1 · U , (3.46)

T0 · Z · {w} = R · S2, (3.47)

M∗ = B∗ · Z · {w}+ S2, (3.48)

U · B =M+ U − {ε}, (3.49)

Z · {w} ·M = B · R − (R−Z · {w}), (3.50)

where Z = {ε, 0, 00, . . . , 0k+1−|β1|}, and 0k denotes a run of zeros of length k.
We now replace S by S2 and {w} by Z · {w} in (3.10)–(3.14). The key idea
is that any word in Z · {w} is now considered to contain an occurrence of w.
Applying the same techniques as above we can derive the generating functions
and asymptotic results (see Exercise 3.8).

3.7. Application: significant signals in neural data

In this section we illustrate how our theoretical results can be used to ob-
tain some accurate statistical inferences from biological data. We apply The-
orem 3.5.2 to detect under- and over-represented structures in neuronal data
(spike trains). We shall first argue that neuronal data are best represented by
constrained sequences. Indeed, current technology allows for the simultaneous
recording of the spike trains from 100 (or more) different neurons in the brain of
a live animal. Such experiments have produced enormous amounts of extremely
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(a) w=[4][4][4] (b) w=[5][3][5]

(c) w=[4][5][3] (d) w=[5][5][5]

Figure 3.2. The number of occurrences of w within a window of size

500, where [i] stands for the pattern 0 · · · 01 with i − 1 zeros, for three

thresholds corresponding to αth = 10−6, 10−7, 10−8.

valuable data, and a core research area in neuroscience is devoted to developing
accurate and precise statistical tools to quantify and describe the information
that is contained in this data (see Paninski (2003)). Because of the nature of
the biological mechanisms that produce them, spike train data satisfy structural
constraints that match the framework of (d, k) binary sequences, as discussed in
the introduction to this chapter.
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We will consider the single-electrode experimental data from cortical neurons
under random current injection. The details can be found in Jolivet, Rauch,
Luscher, and Gerstner (2006). This spike timing data can be transformed into
a (d, k) sequence by setting the time resolution and dividing the time into bins
of the same size. Each time bin is represented by a bit 0 or 1. If there is a spike
in a certain time bin, the bin is represented by 1; otherwise it is represented by
0. Having this in mind, and using our large deviation results, we can derive a
threshold, Oth, above which pattern occurrences will be classified as statistically
significant. The threshold is defined as the minimum value of Oth such that

P (On(Dn) ≥ Oth) ≤ αth,

where αth is a given probability threshold. From Theorem 3.5.2 we easily con-
clude that, for αth in the range of the large deviation domain, the threshold is
Oth = nath, where

ath ≈ I−1(log(1/αth)/n),

and I−1(·) is the inverse of the function I(a) defined in (3.43) of Theorem 3.5.2.
To set up our probabilistic reference model, we need to fix the parameters

d, k, and p. First, we find d and k by inspecting the binary sequence (e.g.,
by finding the minimum and maximum lengths of runs of zeros between spikes
in the sequence). Then we can find p by solving the following simultaneous
equations in the variables ρ and p:

B(ρ) = 1 and 1− p = 1

ρB′(ρ)
.

Note that the coefficients of B(z) depend on p. The second equation follows from
the fact that ρB′(ρ) captures the average length of symbols of Bd,k in a (d, k)
sequence, and thus its reciprocal represents 1−p. In other words, we estimate p
indirectly through the estimation of d and k. One might be tempted to estimate
p by just counting the total number of 0s and dividing it by the length of the
sequence. But this could lead to a poor estimate since a large portion of the
(d, k) sequence set may not be typical.

In our experiment we set the size of the time bin to 3 ms and obtained a
(d, k) = (1, 6) sequence of length 2193 with p = 0.752686. Figure 3.2 shows the
number of occurrences for various patterns w within a (sliding) window of size
1.5 s over a long neural sequence; here we use the short-hand notation [i] for the
pattern

0 · · · 0︸ ︷︷ ︸
i−1

1.

The three horizontal lines represent the thresholds for αth = 10−6, 10−7, and
10−8, respectively. As expected, the thresholds vary with the structure of w.
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If the number of occurrences exceeds the threshold at some position, we claim
that the pattern occurrence is statistically significant in that window. This
observation can be used as a starting point for the interpretation of neural
signals, although there is still a huge interpretive gap between the patterns of
spike trains and their meaning in a real nervous system. In passing we observe
that one would obtain quite different threshold values if the constraints were
ignored.

3.8. Exercises

3.1 Enumerate the (d, k) sequences that start with 00 and end with 11.

3.2 Enumerate the (1, 4) sequences that do not contain the pattern w = 001.

3.3 Enumerate the (1, 4) sequences with at least one occurrence of w = 01
and no occurrences of w = 001.

3.4 Establish the limit laws for P (On(D) = r) when nP (w) = O(1) and for
nP (w)→ 0. Follow the derivations in Section 2.5.4 of Chapter 2.

3.5 In this chapter we studied pattern matching only in (d, k) sequences.
Observe that a (d, k) sequence can be obtained as an output of an au-
tomaton. In fact, a large class of constrained sequences can be generated
by automation (see Marcus, Roth, and Siegel (1988)). Extend our anal-
ysis to such a larger class of constrained sequences.

3.6 Estimate the average numbers of occurrences of w1 = 001 and w2 = 0001
in a (1, 6) sequence.

3.7 Establish the central limit theorem and the large deviations for non-
restricted (d, k) sequences as described in (3.45).

3.8 Using (3.46)–(3.50) establish the central limit theorem and the large
deviations for pattern occurrences over a binary alphabet.

3.9 Extend our analysis to Markov sources.

3.10 Consider the following constrained pattern matching problem. LetW =
010011. Analyze the number of occurrences of w = 0101 in binary
sequences of length n that do not contain W .

Bibliographical notes

Constrained pattern matching, under the name constrained coding, is usually
discussed in the context of information theory; see for example Marcus et al.
(1988). Constrained pattern matching has been discussed in only a few publica-
tions; see Moision, Orlitsky, and Siegel (2001). Our presentation in this chapter
is based on the paper by Choi and Szpankowski (2011).
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In fact, (d, k) sequences have been analyzed in information theory since Shan-
non, with some recent contributions: Dembo and Kontoyiannis (2002), Kolesnik
and Krachkovsky (1991), Marcus et al. (1988), Zehavi andWolf (1988). It should
be added that pattern matching in constrained sequences can in principle be an-
alyzed by various versions of generalized pattern matching, as will be discussed
in Chapter 4. See also Bender and Kochman (1993), Flajolet, Szpankowski,
and Vallée (2006) and Nicodème, Salvy, and Flajolet (1999).

It should be pointed out that the number of pattern occurrences may dif-
fer significantly from the normal distribution, if the text is generated by some
rational languages, as shown in Banderier, Bodini, Ponty, and Bouzid (2012).

The saddle point method is discussed in many books, e.g., Flajolet and
Sedgewick (2009), Olver (1974) and Szpankowski (2001).



CHAPTER 4

Generalized String Matching

In this chapter we consider generalized pattern matching, in which a set of
patterns (rather than a single pattern) is given. We assume here that the pattern

is a pair of sets of words (W0,W), where W =
⋃d
i=1Wi consists of the sets

Wi ⊂ Ami (i.e., all words in Wi have a fixed length mi). The set W0 is called
the forbidden set. For W0 = ∅ one is interested in the number of pattern
occurrences On(W), defined as the number of patterns from W occurring in
a text Xn

1 generated by a (random) source. Another parameter of interest is
the number of positions in Xn

1 where a pattern from W appears (clearly, several
patterns may occur at the same positions but words from Wi must occur in

different locations); this quantity we denote as Πn. If we define Π
(i)
n as the

number of positions where a word from Wi occurs, then

On(W) = Π(1)
n + · · ·+Π(d)

n .
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Notice that at any given position of the text and for a given i only one word
from Wi can occur.

For W0 6= ∅ one studies the number of occurrences On(W) under the condi-

tion that On(W0) := Π
(0)
n = 0, that is, there is no occurrence of a pattern from

W0 in the text Xn
1 . This could be called constrained pattern matching since

one restricts the text to those strings that do not contain strings from W0. A
simple version of constrained pattern matching was discussed in Chapter 3 (see
also Exercises 3.3, 3.6, and 3.10).

In this chapter we first present an analysis of generalized pattern match-
ing with W0 = ∅ and d = 1, which we call the reduced pattern set (i.e., no
pattern is a substring of another pattern). This is followed by a detailed anal-
ysis of (nonreduced) generalized pattern matching. We describe two methods
of analysis. First, for general pattern matching (i.e., with a nonreduced set),
we apply the de Bruijn’s automaton and spectral analysis of matrices to obtain
the central and local limit laws as well as the large deviation results. Then, we
present a novel language approach to nonreduced generalized pattern matching
and derive the multivariate generating functions describing pattern occurrences
recently proposed by Bassino et al. (2012).

Throughout this chapter we assume that the text is generated by a (nonde-
generate) memoryless source (B), as defined in Chapter 1.

4.1. String matching over a reduced set

We analyze here a special case of generalized pattern matching with W0 = ∅
and d = 1. For this case we shall write W1 := W = {w1, . . . , wK}, where wi
(1 ≤ i ≤ K) are given patterns with fixed length |wi| = m. We shall generalize
the results from Chapter 2 for exact pattern matching, but here we omit most
proofs since we will present more general results with proofs in the next section.

As before, let T≥1 be a language of words containing at least one occurrence
from the set W and, for any nonnegative integer r, let Tr be the language of
words containing exactly r occurrences from W . In order to characterize Tr we
introduce some additional languages for any 1 ≤ i, j ≤ K:

• Mij = {v : wiv ∈ T2 and wj occurs at the right-hand end of v};

• Ri, the set of words containing only one occurrence of wi, located at the
right-hand end;

• Ui = {u : wiu ∈ T1}, a set of words u such that the only occurrence of
wi ∈ W wiu is at the left-hand end.
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We also need to generalize the autocorrelation set and the autocorrelation
polynomial to the case where there is a set of patterns. For any given two strings
w and u, let

Sw,u = {umk+1 : wmm−k+1 = uk1}
be the correlation set. Notice that Sw,u 6= Su,w. The set of positions k satisfying
uk1 = wmm−k+1 is denoted as P(w, u). If w = xv and u = vy for some words x,
y v, then y ∈ Sw,u and |v| ∈ P(w, u). The correlation polynomial Sw,u(z) of w
and u is the associated generating function of Sw,u, that is,

Sw,u(z) =
∑

k∈P(w,u)

P (umk+1)z
m−k.

In particular, for wi, wj ∈ W we define Si,j := Swi,wj . The correlation matrix is
then denoted as S(z) = {Swiwj (z)}i,j=1,K .

Example 4.1.1. Consider a DNA sequence over the alphabet A = {A,C,
G, T } generated by a memoryless source with P (A) = 1/5, P (C) = 3/10,
P (G) = 3/10 and P (T ) = 1/5. Let w1 = ATT and w2 = TAT . Then the
correlation matrix S(z) is

S(z) =

(
1 z2

25
z
5 1 + z2

25

)

as is easy to see.

In order to analyze the number of occurrencesOn(W) and its generating func-
tions we first generalize the language relationships presented in Theorem 2.2.3
of Chapter 2. Observe that

Tr =
∑

1≤i,j≤K
RiMr−1

ij Uj ,

T≥1 =
∑

r≥1

∑

1≤i,j≤K
RiMr−1

ij Uj ;

here
∑

denotes the disjoint union of sets. As in Theorem 2.2.5 of Chapter 2,
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one finds the following relationships between the languages just introduced
⋃

k≥1

Mk
i,j = A∗ · wj + Sij − δijε, 1 ≤ i, j ≤ K, (4.1)

Ui · A =
⋃

j

Mij + Ui − ε, 1 ≤ i ≤ K, (4.2)

A · Rj − (Rj − wj) =
⋃

i

wiMij , 1 ≤ j ≤ K, (4.3)

T0 · wj = Rj +
⋃

i

Ri(Sij − ε), 1 ≤ i, j ≤ K (4.4)

where δij is 1 when i = j and zero otherwise.
Let us now analyze On(W) in a probabilistic framework when the text is gen-

erated by a memoryless source. Then the above language relationships trans-
late directly into generating functions. However, before we proceed, we will
adopt the following notation. Lower-case letters are reserved for vectors, and
these are assumed to be column vectors (e.g., xt = (x1, . . . , xK)) except for
vectors of generating functions, which we denote by upper-case letters (e.g.,
Ut(z) = (U1(z), . . . , UK(z)), where Ui(z) is the generating function of the lan-
guage Uwi). In the above, the upper index t denotes the transpose. We shall use
upper-case letters for matrices (e.g., S(z) = {Swiwj (z)}i,j=1,K). In particular,
we write I for the identity matrix, and 1t = (1, . . . , 1) for a vector of 1s.

Now we are ready to present exact formulas for the generating functions
Nr(z) =

∑
n≥0 P (On(W) = r)zn and N(z, x) =

∑
k≥0Nr(z)x

r. The following
theorem is a direct consequence of our definitions and language relationships.

Theorem 4.1.2. Let W = {w1, . . . , wK} be a given set of reduced patterns
each of fixed length m (thus no pattern in W is a subpattern of another pattern
in W) and let X be a random text of length n produced by a memoryless source.
The generating functions Nr(z) and N(z, x) can be computed as follows:

Nr(z) = Rt(z)Mr−1(z)U(z), (4.5)

N(z, x) = Rt(z)x(I− xM(z))−1,U(z) (4.6)

where, writing wt = (P (w1), . . . , P (wK)) and 1t = (1, 1, . . . , 1), we have

M(z) = (D(z) + (z − 1)I)D(z)−1, (4.7)

(I−M(z))−1 = S(z) +
zm

1− z1 · w
t, (4.8)

U(z) =
1

1− z (I−M(z)) · 1, (4.9)

Rt(z) =
zm

1− zw
t · (I−M(z)), (4.10)
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and
D(z) = (1− z)S(z) + zm1 · wt.

Using these results and following in the footsteps of our analysis in Chapter 2
of exact pattern matching, we arrive at the following.

Theorem 4.1.3. Let a textX be generated by a memoryless source with P (wi) >
0 for i = 1, . . . ,K and P (W) =

∑
wi∈W P (wi) = wt · 1.

(i) The following hold:

E[On(W)] = (n−m+ 1)P (W),

Var([n(W)] = (n−m+ 1)
(
P (W) + P 2(W)− 2mP 2(W) + 2wt(S(1)− I)1

)

+m(m− 1)P 2(W)− 2wtS′(1) · 1,
where S′(1) denotes the derivative of the matrix S(z) at z = 1.

(ii) Let ρW be the smallest root of multiplicity 1 of detD(z) = 0 outside the unit
circle |z| ≤ 1. There exists ρ > ρW such that, for r = O(1),

P (On(W) = r) = (−1)r+1 ar+1

r!
(n)rρ

−(n−m+r+1)
W

+

r∑

j=1

(−1)jaj
(

n

j − 1

)
ρ
−(n+j)
W +O(ρ−n),

where the ar are computable constants.

(iii) Define r = ⌊E[On] + ξ
√
Var[On]⌋ for a fixed ξ. Then

lim
n→∞

P (On(w) ≤ E[On] + ξ
√
Var[On]) =

1√
2π

∫ ξ

−∞
e−t

2/2dt. (4.11)

(iv) Let r = (1 + δ)E[On] with δ 6= 0, and let a = (1 + δ)P (W). Define τ(t) to
be the root of

det(I− etM(eτ )) = 0

and define ωa and σa to be given by

−τ ′(ωa) = −a, −τ ′′(ωa) = σ2
a.

Then, for integer r,

P (On(W) = r) ∼ 1

σa
√
2π(n−m+ 1)

e−(n−m+1)I(a)+θa,

where I(a) = aωa + τ(ωa) and θa is a computable constant (see Exercise 4.3).
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We sketch here only the derivation for part (iii) since in the next section we
provide more general results with rigorous proofs. Our starting point is

N(z, x) = Rt(z)x(I− xM(z))−1U(z),

shown in Theorem 4.1.2 to hold for complex |z| < 1 and |x| < 1. We may
proceed in two different ways.

Method A: Determinant approach. Observe that

(I− xM(z))−1 =
B(z, x)

det(I− xM(z))

where B(z, x) is a complex matrix. Set

Q(z, x) := det(I− xM(z)),

and let z0 := ρ(x) be the smallest root of

Q(z, x) = det(I− xM(z)) = 0.

Observe that ρ(1) = 1 by (4.8).
For our central limit result, we restrict our interest to ρ(x) in the vicinity of

x = 1. Such a root exists and is unique since for real z the matrix M(z) has all
positive coefficients. The Perron–Frobenius theorem implies that all other roots
ρi(x) are of smaller modulus. Finally, one can analytically continue ρ(x) to a
complex neighborhood of x. Thus Cauchy’s formula yields, for some A < 1,

Nn(x) := [zn]N(z, x) =
1

2πi

∮
Rt(z)B(z, x)U(z)

Q(z, x)

dz

zn+1

= C(x)ρ−n(x)(1 +O(An)),

where C(x) = −Rt(ρ(x))B(ρ(x), x)U(ρ(x))ρ−1(x)/Q′(ρ(x), x). As in the proof
of Theorem 2.5.3, we recognize a quasi-power form for Nn(x), and this leads
directly (e.g., by an application of the Levy continuity theorem or Goncharev’s
theorem) to the central limit result presented in (4.11).

Method B: Eigenvalue approach. We apply now the Perron–Frobenius theorem
for positive matrices together with a matrix spectral representation to obtain
even more precise asymptotics. Our starting point is the following formula

[I− xM(z)]−1 =

∞∑

k=0

xkMk(z). (4.12)
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Now observe that M(z) for real z, say t, is a positive matrix since each element
Mij(t) is the generating function of the language Mij and, for any v ∈ Mij

we have P (v) > 0 for memoryless sources. Let λ1(t), λ2(t), . . . , λK(t) be the
eigenvalues of M(t). By the Perron–Frobenius result we know that λ1(t) is
simple real, and that λ1(t) > |λi(t)| for i ≥ 2. (To facilitate further derivations
we will also assume that the λi(x) are simple, but this assumption will not have
any significant impact on our asymptotics as we shall see below.) Let li and
ri, i = 1, . . . ,K be the left and right eigenvectors corresponding to eigenvalues
λ1(t), λ2(t), . . . , λK(t), respectively. We set 〈l1, r1〉 = 1, where 〈x,y〉 is the scalar
product of the vectors x and y. Since ri is orthogonal to the left eigenvector rj
for j 6= i, we can write, for any vector x,

x = 〈l1,x〉r1 +
K∑

i=2

〈li,x〉ri.

This yields

M(t)x = 〈l1,x〉λ1(t)r1 +
K∑

i=2

〈li,x〉λi(t)ri

since M(t)ri = λi(t)ri. But Mk(t) has eigenvalues λk1(t), λ
k
2(t), . . . , λ

k
K(t); thus,

dropping even our assumption that the eigenvalues λ2, . . . , λK are simple, we
arrive at

Mk(t)x = 〈l1,x〉λk1(t)r1 +
K′∑

i=2

qi(k)〈li,x〉λki (t)ri, (4.13)

where the qi(k) are polynomials in k (qi(k) ≡ 1 when the eigenvalues λ2, . . . , λK
are simple). Finally, we observe that we can analytically continue λ1(t) to the
complex plane owing to the separation of λ1(t) from the other eigenvalues leading
to λ1(z).

Now applying (4.13) to (4.12) and using it in the formula for N(z, x) derived
in Theorem 4.1.2 we obtain (for simple λi(t))

N(z, x) = Rt(z)x[I− xM(z)]−1U(z)

= xRt(z)

( ∞∑

k=0

xkλk1(z)〈l1(z),U(z)〉r1(z)

+

K′∑

i=2

xkλki (z)〈li(z),U(z)〉ri(z)




=
xC1(z)

1− xλ1(z)
+

K′∑

i=2

xCi(z)

1− xλi(z)
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for some polynomials Ci(z). This representation enables us to apply the Cauchy
formula, yielding, as before, for A < 1 and a polynomial B(x),

Nn(x) := [zn]N(z, x) = B(x)ρ−n(x)(1 +O(An)),

where ρ(x) is the smallest root of 1−xλ(z) = 0, which coincides with the smallest
root of det(I − xM(x)) = 0. In the above A < 1 since λ1(z) dominates all the
other eigenvalues. In the next section we return to this method and discuss it
in more depth.

4.2. Generalized string matching via automata

In this section we deal with a general pattern matching problem where the words
in W are of all different lengths, that is, W =

⋃d
i=1Wi such that Wi is a subset

of Ami with all mi different. For the present we keep W0 = ∅ (i.e., there are no
forbidden words) but we will consider the caseW0 6= ∅ at the end of the section.
We present here a powerful method based on finite automata, i.e., the de Bruijn
graph. This approach is very versatile but unfortunately is not as insightful as
the combinatorial approach discussed so far.

Our goal is to derive the probability generating function Nn(x) = E[xOn(W)]
for the number of occurrences in the text of patterns from the set W . We
start by building an automaton that scans the text X1X2 · · ·Xn and recog-
nizes occurrences of patterns from W . As a matter of fact, our automaton
corresponds to the de Bruijn graph, which we describe in what follows. Let
M = max{m1, . . . ,md} − 1 and B = AM . The de Bruijn automaton is built
over the state space B. Let b ∈ B and a ∈ A. Then the transition from state b
resulting from the scanning of symbol a of the text is to b̂ ∈ B such that

b̂ = b2b3 · · · bMa;

that is, the leftmost symbol of b is erased and symbol a is appended at the right.
We shall denote such a transition as ba 7→ b̂ or ba ∈ Ab̂, since the first symbol
of b has been deleted owing to the scanning of symbol a. When scanning a text
of length n −M one constructs an associated path of length n −M in the de
Bruijn automaton that begins at a state formed by the first M symbols of the
text, that is, b = X1X2 · · ·XM . In addition, we denote the edges of the graph
by the transition symbol a.

Example 4.2.1. Let W = {ab, aab, aba}. Then M = 2; the corresponding de
Bruijn graph is presented in Figure 4.1.
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aa

ab

ba

bba

b

a

b

b

a

b

a

Figure 4.1. The de Bruijn graph for W = {ab, aab, aba}.

To record the number of pattern occurrences we equip the automaton with a
counter ∆(b, a). When a transition occurs, we increment ∆(b, a) by the number
of occurrences of patterns from W in the text ba. Since all occurrences of
patterns from W ending with a are contained in text of the form ba, we realize
that

∆(b, a) = OM+1(W , ba)−OM (W , b),

where Ok(W , u) is the number of pattern occurrences in a text u of length k.
Having built such an automaton, we construct an |A|M×|A|M transition matrix
T(x) as a function of a complex variable x such that

[T(x)]b,b̂ := P (a)x∆(b,a)[[ ba ∈ Ab̂ ]]
= P (a)xOM+1(W,ba)−OM (W,b)[[ b̂ = b2b3 · · · bMa ]],

(4.14)

where Iverson’s bracket convention is used:

[[B]] =

{
1 if the property B holds,
0 otherwise.

Example 4.2.2. Let us consider the same set of words as in Example 4.2.1,
that is, W = {ab, aab, aba}. The transition matrix T(x) is shown below:

T(x) =

aa ab ba bb

aa
ab
ba
bb




P (a) P (b)x 0 0
0 0 P (a)x2 P (b)

P (a) P (b) 0 0
0 0 P (a) P (b)



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Next, we extend the above construction to scan a text of length k ≥M . By
the combinatorial properties of matrix products, the entry of index b, b̂ of the
matrix product Tk(x) accumulates all terms corresponding to starting in state b

and ending in state b̂ and records the total number of occurrences of patternsW
found upon scanning the last k letters of the text. Therefore,

[
Tk(x)

]
b,b̂

=
∑

v∈Ak

P (v)xOM+k(W,bv)−OM (W,b). (4.15)

Now define a vector x(x) indexed by b as

[x(x)]b = P (b)xOM (W,b).

Then, the summation of all the entries of the row vector x(x)tTk(x) is achieved
by means of the vector 1 = (1, . . . , 1), so that the quantity x(x)tTk(x)1 rep-
resents the probability generating function of Ok+M (W) taken over all texts of
length M + k; this is seen that in fact

E[xOn(W)] =
∑

v

P (v)xOn(W,v).

Now setting n =M + k we can prove the following theorem.

Theorem 4.2.3. Consider a general pattern W = (W1, . . . ,Wd) with M =
max{m1, . . . ,md} − 1. Let T(x) be the transition matrix defined as

[T(x)]b,b̂ := P (a)xOM+1(W,ba)−OM (W,b)[[ b̂ = b2b3 · · · bMa ]],

where b, b̂ ∈ AM and a ∈ A. Then

Nn(x) = E[xOn(W)] = bt(x)Tn(x)1 (4.16)

where bt(x) = xt(x)T−M (x). Also,

N(z, x) =
∑

n≥0

Nn(x)z
n = bt(x)(I− xT(x))−11 (4.17)

for |z| < 1.

Let us now return for a moment to the reduced pattern case discussed in the
previous section and compare the expression (4.17) given here with expression
(4.6) of Theorem 4.1.2, which we repeat below:

N(z, x) = Rt(z)x(I− xM(z))−1U(z).
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Although there is a striking resemblance of these formulas they are actually
quite different. In (4.6) M(z) is a matrix representing generating functions of
languagesMij , while T(x) is a function of x and is the transition matrix of the
associated de Bruijn graph. Nevertheless, the eigenvalue method discussed in
the first section of this chapter can be directly applied to derive the limit laws
of On(W) for a general set of patterns W . We shall discuss it next.

To study the asymptotics of On(W) we need to estimate the growth of T n(x),
which is governed by the growth of the largest eigenvalue as we have already seen
in the previous sections. Here, however, the situation is a little more complicated
since the matrix T(x) is irreducible but not necessary primitive. To be more
precise, T(x) is irreducible if its associated de Bruijn graph is strongly connected,
while for the primitivity of T(x) we require that the greatest common divisor of
the cycle weights of the de Bruijn graph is equal to 1.

Let us first verify irreducibility of T(x). As is easy to check, the matrix is

irreducible since for any g ≥ M and b, b̂ ∈ AM there are two words w, v ∈ Ag
such that bw = vb̂ (e.g., for g = M one can take w = b̂ and v = b). Thus
Tg(x) > 0 for x > 0 which is sufficient for irreducibility.

Let us now have a closer look at the primitivity of T(x). We start with a

precise definition. Let ψ(b, b̂) := ∆(ba) where ba 7→ b̂ is the counter value for a

transition b to b̂. Let C be a cycle in the associated de Bruijn graph. Define the
total weight of the cycle C as

ψ(C) =
∑

b,b̂∈C

ψ(b, b̂).

Finally, we set ψW = gcd(ψ(C) : C is a cycle). If ψW = 1 then we say the T(x)
is primitive.

Example 4.2.1 (continued). Consider again the matrix T(x) and its associ-
ated graph shown in Figure 4.1. There are six cycles with respective weights
0, 3, 2, 0, 0, 1; therefore ψW = 1 and T(x) is primitive. Consider now another
matrix

T(x) =

(
P (a) P (b)x4

P (a)x2 P (b)x3

)
.

This time there are three cycles with weights 0, 6, and 3, and ψW = 3. The
matrix is not primitive. Observe that the characteristic polynomial λ(x) of this
matrix is a polynomial in x3.

Observe that the diagonal elements of Tk(x) (i.e., its trace) are polynomials
in xℓ if and only if ℓ divides ψW ; therefore, the characteristic polynomial det(zI−
T(x)) of T(x) is a polynomial in uψW . Indeed, it is known that for any matrix
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A

det(I−A) = exp


∑

k≥0

−Tr[Ak]

k




where Tr[A] is the trace of A.
The asymptotic behavior of the generating function Nn(x) = E[xOn(W)], and

hence On(W), depends on the growth of Tn(x). The next lemma summarizes
some useful properties of T(x) and its eigenvalues. For a matrix T(x) of dimen-
sion |A|M × |A|M we denote by λj(x), for j = 1, . . . , R = |AM |, its eigenvalues
and we assume that |λ1(x)| ≥ |λ2(x)| ≥ · · · ≥ |λR(x)|. To simplify the notation,
we often drop the index of the largest eigenvalue, writing λ(x) := λ1(x). Observe
that ̺(x) = |λ(x)| is known as the spectral radius and is given by

̺(x) = lim
n→∞

‖ T n(x) ‖1/n

where ‖ · ‖ is any matrix norm.

Lemma 4.2.4. Let GM (W) and T(x) denote, respectively, the de Bruijn graph
and its associated matrix defined in (4.14), for a general pattern W. Assume
P (W) > 0.

(i) For x > 0 the matrix T(x) has a unique dominant eigenvalue λ(x) (> λj(x)
for j = 2, . . . , |A|M ) that is strictly positive and a dominant eigenvector r(x)
whose entries are all strictly positive. Furthermore, there exists a complex neigh-
borhood of the real positive axis on which the mappings u→ λ(x) and u→ r(x)
are well defined and analytic.

(ii) Define Λ(s) := logλ(es) for complex s. For real s the function s → Λ(s) is
strictly increasing and strictly convex. In addition,

Λ(0) = 1, Λ′(0) = P (W) > 0, Λ′′(0) := σ2(W) > 0.

(iii) For any θ ∈ (0, 2π) and t real ̺(teiθ) ≤ ̺(t).
(iv) For any θ ∈ (0, 2π), if ψW = 1 then for t real ̺(teiθ) < ̺(t); otherwise
ψW = d > 1 and ̺(teiθ) = ̺(t) if and only if θ = 2kπ/d.

Proof. We first prove (i). Take x > 0 real and positive. Then the matrix T(x) has
positive entries, and for any exponent g ≥M the gth power of T(x) has strictly
positive entries, as shown above (see the irreducibility of T(x)). Therefore, by
the Perron–Frobenius theorem there exists an eigenvalue λ(x) that dominates
strictly all the others. Moreover, it is simple and strictly positive. In other
words, one has

λ(x) := λ1(x) > |λ2(x)| ≥ |λ3(x)| ≥ · · · .
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Furthermore, the corresponding eigenvector r(x) has all its components strictly
positive. Since the dominant eigenvalue is separate from the other eigenvalues,
by perturbation theory there exists a complex neighborhood of the positive real
axis where the functions x → λ(x) and x → r(x) are well-defined and ana-
lytic. Moreover, λ(x) is an algebraic function since it satisfies the characteristic
equation det(λI− T(x)) = 0.

We now prove part (ii). The increasing property for λ(x) (and thus for Λ(s))
is a consequence of the fact that if A and B are nonnegative irreducible matrices
such that Ai,j ≥ Bi,j for all (i, j), then the spectral radius of A is larger than
the spectral radius of B.

For the convexity of Λ(s) it is sufficient to prove that, for u, v > 0,

λ(
√
uv) ≤

√
λ(u)

√
λ(v).

Since eigenvectors are defined up to a constant, one can always choose eigenvec-
tors r(

√
uv), r(u), and r(v) such that

max
i

ri(
√
uv)√

ri(u) ri(v)
= 1.

Suppose that this maximum is attained at some index i. We denote by Pij the
coefficient at u in T(u), that is, Pij = [uψ][T(u)]ij . By the Cauchy-Schwarz
inequality we have

λ(
√
uv)ri(

√
uv) =

∑

j

Pij (
√
uv)ψ(i,j) rj(

√
uv)

≤
∑

j

Pij(
√
uv)ψ(i,j)

√
rj(u) rj(v)

≤


∑

j

Pij u
ψ(i,j) rj(u)




1/2 
∑

j

Pij v
ψ(i,j) rj(v)




1/2

=
√
λ(u)

√
λ(v)

√
ri(u) ri(v),

which implies the convexity of Λ(s). To show that Λ(s) is strictly convex, we
argue as follows: Observe that for u = 1 the matrix T(u) is stochastic, hence
λ(1) = 1 and Λ(0) = 0. As we shall see below, the mean and the variance of
On(W) are asymptotically equal to nΛ′(0) and nΛ′′(0), respectively. From the
formulation of the lemma, we conclude that Λ′(0) = P (W) > 0 and Λ′′(0) =
σ2(W) > 0. Therefore, Λ′(s) and Λ′′(s) cannot be always zero and (since they
are analytic) they cannot be zero on any interval. This implies that Λ(s) is
strictly increasing and strictly convex.
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We now establish part (iii). For |x| = 1, and t real and positive, consider
two matrices T(t) and T(xt). From (i) we know that for T(t) there exists
a dominant strictly positive eigenvalue λ := λ(t) and a dominant eigenvector
r := r(t) whose entries rj are all strictly positive. Consider an eigenvalue ν of
T(xt) and its corresponding eigenvector s := s(x). Denote by vj the ratio sj/rj .
One can always choose r and s such that max1≤j≤R |vj | = 1. Suppose that this
maximum is attained for some index i. Then

|νsi| =

∣∣∣∣∣∣

∑

j

Pij (xt)
ψ(i,j) sj

∣∣∣∣∣∣
≤
∑

j

Pij t
ψ(i,j) rj = λri. (4.18)

We conclude that |ν| ≤ λ, and part (iii) is proven.

Now we deal with part (iv). Suppose now that the equality |ν| = λ holds.
Then, the inequalities in (4.18) become equalities. First, for all indices ℓ such
that Pi,ℓ 6= 0, we deduce that |sℓ| = rℓ and vℓ has modulus 1. For these indices ℓ,
we have the same equalities in (4.18) as for the index i. Finally, the transitivity
of the de Bruijn graph entails that each complex vj is of modulus 1. The converse
of the triangular inequality shows that for every edge (i, j) ∈ GM (W) we have

uψ(i,j)vj =
ν

λ
vi,

and for any cycle C of length L we conclude that

(ν
λ

)L
= uψ(C).

However, for any pattern W there exists a cycle C of length 1 with weight
ψ(C) = 0, as is easy to see. This proves that ν = λ and that uψ(C) = 1 for any
cycle C. If ψW = gcd(ψ(C), C cycle) = 1, then u = 1 and ̺(teiθ) < ̺(t) for
θ ∈ (0, 2π).

Suppose now that ψW = d > 1. Then the characteristic polynomial and the
dominant eigenvalue λ(v) are functions of vd. The lemma is proved.

Lemma 4.2.4 provides the main technical support to prove the forthcoming
results in particular, to establish the asymptotic behavior of Tn(x) for large n.
Indeed, our starting point is (4.17), to which we apply the spectral decomposition
in (4.13) to conclude that

N(z, x) =
c(x)

1− zλ(x) +
∑

i≥2

ci(x)

(1 − zλi(x))αi
,
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where αi ≥ 1 are integers. In the above, λ(x) is the dominant eigenvalue while
|λi(x)| < λ(x) are the other eigenvalues and ci(x) are polynomials. The numer-
ator of the first term is the expression c(x) = bt(x)〈l(x),1〉r(x), where l(x) and
r(x) are the left and the right dominant eigenvectors and bt(x) was defined after
(4.16). Then Cauchy’s coefficient formula implies that

Nn(x) = c(u)λn(x)(1 +O(An)) (4.19)

for some A < 1. Equivalently, the moment generating function E[esOn(W)] of
On(W) is given by the following uniform approximation in a neighborhood of
s = 0:

E[esOn(W)] = d(s)λn(es)(1 +O(An)) = d(s) exp (nΛ(s)) (1 +O(An)) (4.20)

where d(s) = c(es) and Λ(s) = logλ(es).
There is another, more general, derivation of (4.19). Observe that the spec-

tral decomposition of T(x) when x lies in a sufficiently small complex neighbor-
hood of any compact subinterval of (0,+∞) is of the form

T(x) = λ(x)Q(x) + R(x) (4.21)

where Q(x) is the projection onto the dominant eigensubspace and R(x) is a
matrix whose spectral radius equals |λ2(x)|. Therefore,

Tn(x) = λn(x)Q(x) +Rn(x)

leads to the estimate (4.19). The next result follows immediately from (4.20).

Theorem 4.2.5. Let W = (W0,W1, . . . ,Wd) be a generalized pattern, with
W0 = ∅, generated by a memoryless source. For large n

E[On(W)] = nΛ′(0) +O(1) = nP (W) +O(1), (4.22)

Var[On(W)] = nΛ′′(0) +O(1) = nσ2(W) +O(1), (4.23)

where Λ(s) = logλ(es) and λ(u) is the largest eigenvalue of T(u). Furthermore,

P (On(W) = 0) = Cλn(0)(1 +O(An)),

where C > 0 is a constant and A < 1.

Now we establish limit laws, starting with the central limit law and the
corresponding local limit law.
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Theorem 4.2.6. Under the same assumption as for Theorem 4.2.5, the fol-
lowing holds:

sup
ξ∈B

∣∣∣∣∣P
(
On(W)− nP (W)

σ(W)
√
n

≤ ξ
)
− 1√

2π

∫ ξ

−∞
e−t

2/2 dt

∣∣∣∣∣ = O

(
1√
n

)
, (4.24)

where B is a bounded real interval.

Proof. The uniform asymptotic expansion (4.20) of a sequence of moment gener-
ating functions is known as a quasi-powers approximation. Then an application
of the classical Levy continuity theorem leads to the Gaussian limit law. An
application of the Berry–Esseen inequality (see Lemma 1.2.3 of Chapter 1) or
Hwang’s power law (see Theorem 1.2.4 of Chapter 1) provides the speed of con-
vergence, which is O(1/

√
n). This proves the theorem.

Finally, we deal with large deviations.

Theorem 4.2.7. Under the same assumption as for Theorem 4.2.5, let ωa be
a solution of

ωλ′(ω) = aλ(ω) (4.25)

for some a 6= P (W), where λ(x) is the largest eigenvalue of T(x). Define the
large deviation rate

I(a) = a logωa − logλ(ωa). (4.26)

Then there exists a constant C > 0 such that I(a) > 0 for a 6= P (W) and

lim
n→∞

1

n
logP (On(W) ≤ an) = −I(x) if 0 < x < P (W) (4.27)

lim
n→∞

1

n
logP (On(W) ≥ an) = −I(x) if P (W) < x < C. (4.28)

Proof. We now establish (4.27). The variable On(W) by definition has at most
linear growth, and so there exists a constant C such that On(W) ≤ Cn+O(1).
Let 0 < x < P (W). Cauchy’s coefficient formula provides the probability

P (On(W) ≤ k = na) =
1

2iπ

∫

|x|=r

Nn(x)

xk
dx

x(1 − x) .

For ease of exposition, we first discuss the case of a primitive pattern. We
recall that a pattern is primitive if ψW = gcd(ψ(C), C is a cycle) = 1. The
strict domination property expressed in Lemma 4.2.4(iv) for primitive patterns
implies that the above integrand is strictly maximal at the intersection of the
circle |x| = r and the positive real axis. Near this axis, where the contribution of
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the integrand is concentrated, the following uniform approximation holds, with
k = na:

Nn(x)

xna
= exp (n (logλ(x) − a log x)) (1 + o(1)) . (4.29)

The saddle point equation is then obtained by canceling the first derivative,
yielding

F (ω) :=
ωλ′(ω)

λ(ω)
= a, (4.30)

and this equation coincides with (4.25). Note that the function F is exactly the
derivative of Λ(s) at the point s := logω. Since Λ(s) is strictly convex, the left-
hand side is an increasing function of its argument, as stated in Lemma 4.2.4(ii).
Also, we know from this lemma that F (0) = 0, F (1) = P (W), while we set
F (∞) = C. Thus, for any real a in (0, C), equation (4.30) always admits a
unique positive solution, which we denote by ω ≡ ωa. Moreover, for a 6= P (W),
one has ωa 6= 1. Since the function

f(x) = − log
λ(x)

xa
(4.31)

(see (4.25)) admits a strict maximum at x = ωa, this maximum I(a) is strictly
positive. Finally, the usual saddle point approximation, as given in Table 3.1,
applies and one finds that

P

(
On(W)

n
≤ a

)
=

(
λ(ωa)

ωaa

)n
Θ(n), (4.32)

where Θ(n) is of order n−1/2. To see the latter, define f(x) as in (4.31). Then
(4.29) becomes

Nn(x)

xna
= exp (−nf(x)) (1 + o(1)) .

By a Taylor expansion around the saddle point ωa we have

f(x) = f(ωa) +
1

2
(x− ωa)2f ′′(ωa) +O((x − ωa)3f ′′′(x′)),

where f ′′(ωa) > 0 and

exp(−nf(ωa)) =
(
λ(ωa)

ωaa

)n

is the first factor in (4.32). Furthermore

Θ(n) :=

∫
exp

(
−1

2
(x− ωa)2f ′′(ωa)

)
dx =

√
2π

nf ′′(ωa)
,
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as expected.
In summary, the large deviation rate is

I(a) = − log
λ(ωa)

ωaa
with

ωaλ
′(ωa)

λ(ωa)
= a

as given in the theorem.
In the general case, when the pattern is not primitive, the strict inequality

of Lemma 4.2.4(iv) is not satisfied, and several saddle points may be present
on the circle |x| = r, which would lead to some oscillation. We must, in this
case, use the weaker inequality of Lemma 4.2.4(iii), namely, ̺(teiθ) ≤ ̺(t),
which replaces the strict inequality. However, the factor (1 − x)−1 present in
the integrand of (4.29) attains its maximum modulus for |t| = r solely at t = r.
Thus, the contribution of possible saddle points can affect only a fraction of the
contribution from t = r. Consequently, (4.27) and (4.26) continue to be valid.
A similar reasoning provides the right-hand tail estimate, with I(a) still given
by (4.26). This completes the proof of (4.27).

We complete this analysis with a local limit law.

Theorem 4.2.8. If T(u) is primitive then

sup
ξ∈B

∣∣∣∣∣P
(
On = nP (W) + ξσ(W)

√
n
)
− 1

σ(W)
√
n

eξ
2/2

√
2π

∣∣∣∣∣ = o

(
1√
n

)
(4.33)

where B is a bounded real interval. Furthermore, under the above additional
assumption, one can find constants σa and θa such that

P (On(W) = aE[On)] ∼
1

σa
√
2πn

, e−nI(a)+θa (4.34)

where I(a) is defined in (4.26) above.

Proof Stronger “regularity conditions” are needed in order to obtain local limit
estimates. Roughly, one wants to exclude the possibility that the discrete distri-
bution is of a lattice type, supported by a nontrivial sublattice of integers. (For
instance, we need to exclude the possibility that On(W) is always odd or of the
parity of n, and so on.) Observe first that the positivity and irreducibility of
the matrix T(u) is not enough, as shown in Example 4.2.1.

By Lemma 4.2.4 one can estimate the probability distribution of On(W) by
the saddle point method in the case when W is primitive. Again, one starts
from Cauchy’s coefficient integral,

P (On(W) = k) =
1

2iπ

∫

|x|=1

Nn(x)
dx

xk+1
, (4.35)
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where k is of the form k = nP (W) + ξσ(W)
√
n. Property (iv) of Lemma 4.2.4

grants us precisely the fact that any closed arc of the unit circle not containing
x = 1 brings an exponentially negligible contribution. A standard application of
the saddle point technique, given in Table 3.1, then completes the proof of the
local limit law of Theorem 4.2.8. The precise large deviation results follow from
the local limit result and an application of the method of shift discussed in the
proof of Theorem 2.5.4.

Finally, consider a general pattern drawn from the setW = (W0,W1, . . . ,Wd)
with nonempty forbidden set W0. In this case we study the number of occur-
rences On(W|W0 = 0) of patterns W1, . . . ,Wd under the condition that there is
no occurrence in the text of any pattern from W0.

Fortunately, we can recover almost all the results from our previous analysis
after redefining the matrix T(x) and its de Bruijn graph. We now change (4.14)
to

[T(x)]b,b̂ := P (a)x∆(b,a)[[ ba ∈ Ab̂ and ba 6⊂ W0]], (4.36)

where ba ⊂ W0 means that any subword of ba (i.e., part of the word ba) belongs
to W0. In other words we are forcing the matrix T(x) to be zero at any position
that leads to a word containing patterns from W0, that is, we are eliminating
from the de Bruijn graph any transition that contains a forbidden word. Having
constructed the matrix T(x), we can repeat all the previous results; however, it
is much harder to find explicit formulas even for the mean and the variance (see
Exercise 4.5).

4.3. Generalized string matching via a language approach

In this section we again study the nonreduced set of patterns W =
⋃d
i=1Wi

with W0 = ∅; however, here we will often write explicitly W = {w1, . . . , ws} for
s =

∑d
i=1mi patterns in W . Our goal is to find the generating function for the

number of occurrences, but now focusing more on the multivariate generating
function of the vector O(W , v) = (O(w1, v), . . . , O(ws, v)), where v is a word
representing the text and O(v, wi) counts the number of pattern wi occurrences
in v. We have already used this notation in the last section. More precisely, we
introduce the multivariate generating function

F (z,x) =
∑

v∈A∗

π(v)z|v|
s∏

i=1

x
O(wi,v)
i , (4.37)

where π(v) is a weight function for v. This generalizes our approach from the
previous sections. Indeed, if we set π(v) = P (v) then the multivariate generating
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function F (z,x) becomes the probability generating function

N(z,x) =
∑

v∈A∗

z|v|E[xO(W,v)],

where we use the short-hand notation xj =
∏s
i=1 x

jr
i . Furthermore, if we set

π(v) = 1 then F (z,x) becomes the enumerative generating function.
In this section we follow Bassino et al. (2012) who proposed a novel approach

via languages that directly extends our analyses from previous chapters.

4.3.1. Symbolic inclusion–exclusion principle

We first explain a way of counting pattern occurrences based on the inclusion–
exclusion principle. In Chapter 2 we constructed the language Tr, whose words
each contain exactly r copies of words from W . When W is nonreduced such a
construction is quite complicated, as seen in the last section. Here we present a
new approach that directly generalizes the language approach of Chapter 2 and
Section 4.1. We shall construct a language Q that contains some occurrences
fromW and we shall allow the over-counting of some patterns. We then use the
symbolic inclusion–exclusion principle to remedy this situation.

We illustrate our ideas with a few examples.

Example 4.3.1. Let us first consider a single pattern w = aaa and let the text
be represented by a single word v = aaaa. Observe that w may occur in the
following three situations: [aaa]a, a[aaa] and [aa[a]aa], where we indicate the
pattern occurrence by [aaa]. Observe that in the third case, two occurrences of
w = aaa overlap. Well, clearly this last case captures all we need but it is much
easier to describe the three cases together. For this we introduce informally a
language, called a cluster C, that describes the situation in which several pattern
occurrences overlap, one after another, without any gap between patterns (e.g.,
[aa[a]aa] is a cluster). Then the three situations can be described by the following
language:

Q = {CA,AC, C}
where A is the alphabet. The generating function of Q with π(v) = 1 is

Q(z, x) = z4(1 + x+ x+ x2),

where x counts the occurrences and z measures the length of the text. Clearly,
this is not the enumerative generating function, which in this case is F (z, x) =
z4x2. But we observe that F (z, x) = Q(z, x− 1). Here we have taken advantage
of the symbolic inclusion–exclusion principle, which we explain next.
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As mentioned above, the main technical tool behind this new idea is the
symbolic inclusion–exclusion principle. Let Q be a language in which some
patterns may occur (we call them marked) while others are unmarked. The
point to observe is that this language Q is easy to construct. The language
T that leads to the generating function F (z, x) is much harder to construct,
and for a general pattern W too complex; in that language we count pattern
occurrences only once, while in Q we may use a “marked” pattern or not. The
latter is reflected in the generating function by the replacement of x by 1 + x
(i.e., we set it to 1 if a pattern is unmarked and to x if it is marked). In
other words, the symbolic inclusion–exclusion principle reads (see Flajolet and
Sedgewick (2009))

Q(z, x) = F (z, x+ 1), (4.38)

or F (z, x) = Q(z, x− 1).

Example 4.3.2. Let us apply the inclusion–exclusion principle that we have
just learned to rediscover the probability generating function (2.26) from Chap-
ter 2, which counts the number of occurrences of the only pattern w in the set
W = {w} for a memoryless source. In that case we have

Q = Seq(A) · Seq (w · Seq(S \ ε) · Seq(A)) ,

where we recall that S is the autocorrelation set. The expression w ·Seq (S \ ε)
describes the structure of a cluster of overlapping occurrences. This specification
can be translated to the present context using general principles (Seq(L) 7→
(1− L(z, v))−1 for instance), and yields the bivariate generating function

Q(z, x) =
∑

v∈A∗

∑

marked w in v

π(v)z|v|x# marked occurrences

=
1

1− zπ(A)
1

1− π(w)xz|w| 1
1−x(S(z)−1)

1
1−zπ(A)

=
1

1− zπ(A)− xπ(w)z|w|

1−x(S(z)−1)

.

Then, by the symbolic inclusion–exclusion principle, we find directly that

F (z, x) =
∑

v∈A∗

π(v)z|v|xO(v,w) = Q(z, x− 1).

Setting π(w) = P (w) we recover (2.26).
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4.3.2. Multivariate generating function

In this section derive the multivariate generating function for a non-reduced set
of patterns W = {w1, . . . , ws}:

F (z,x) =
∑

v∈A∗

π(v)z|v|xO(W,v)

from which we recover F (x) = [zn]F (z,x). In particular, if the weight π(v)
is equal to the probability P (v) then F (x) becomes the probability generating
function

Nn(x) = E
[
xO(W,v)

]
= [zn]F (z,x).

We first construct a set Q containing marked pattern occurrences from W
and then apply the symbolic inclusion–exclusion principle to recover the set Tr
of r pattern occurrences. We illustrate our approach on a simple example.

Example 4.3.3. Let W = {aaa, aba} and let the text be v = aaaaba. We
recall that a cluster C is a consecutive text that is “covered” by patterns from
W ; that is, any two consecutive symbols in a cluster belong to W . For example,
v = [a[aa][a]ba] is a cluster. Clearly, there are only two occurrences of w1 = aaa
and one occurrence of w2 = aba. We will see that N(z, x1, x2) = z6x21x2 and we
can construct it through the inclusion–exclusion principle.

Therefore, we first build a set Q with some (marked) occurrences ofW . This
is rather easy, if we know how to construct a cluster C. Granted this and, in
symbolic calculus, writing A for a symbol from the alphabet and C for a cluster,
we have

Q = {AAAAAA, CAAA, ACAA, AAAC, CC, AC, CCAA, C},

which translates into the generating function

Q(z, x1, x2) = z6(1 + x1 + x1 + x2 + x1x2 + x1x2 + x21 + x21x2).

Then the inclusion–exclusion “miracle” produces

F (z, x1, x2) = Q(z, x1 − 1, x2 − 1) = z6x21x2

as required.

We will follow the above approach to construct the multivariate generating
function F (z,x) from the generating function Q(z,x) of a simpler language Q in
which (by over-counting) we mark certain pattern occurrences and ignore others.
We need to define more formally a cluster and its generating function.
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We call a word v a clustering word if any two consecutive positions in v are
covered by a word from W = {w1, . . . , ws}. Position i in the word v is covered
by a word w if w = vjj−|v|+1 for some j ∈ {|w|, . . . , |v|} and j − |w|+ 1 ≤ i ≤ j.
The language of all clustering words for a given set W is denoted KW . Then a
cluster C formed from a clustering word v ∈ KW is a set

C = {Pw : w ∈ W }

containing sets Pw of occurrence positions covering v, each set corresponding
to a particular word w from W . Thus, a cluster is a subset of the occurrence
positions in the clustering words. Moreover, every two consecutive positions i
and i + 1 in v are covered by at least one occurrence of some w ∈ W . More
formally,

∀i ∈ {1, . . . , |v|−1} ∃w ∈ W , ∃ p ∈ Pw such that p−|w|+1 ≤ i < i+1 ≤ p.

The set of clusters with respect to the clustering words built over W is denoted
LW . Furthermore, LW (v) is the subset of LW corresponding to the clustering-
word v ∈ KW . For a cluster C = {Pw : w ∈ W} we also define v(C), the
corresponding (unique) clustering word, and |C|w, the number of marked occur-
rences of the word w in the cluster; thus

|C|w = |Pw|.

Example 4.3.4. Let W = {baba, ab} and suppose that we have a clustering
word v = abababa, so that v ∈ KW . Then

LW (v) = {{Pab = {2, 4, 6},Pbaba = {5, 7}} , {Pab = {2, 6},Pbaba = {5, 7}} ,
{Pab = {2, 4},Pbaba = {5, 7}} , {Pab = {2},Pbaba = {5, 7}}}

as is easy to verify.

With this notation, we can define the generating function of clusters ξ(z, t)
as follows:

ξ(z, t) =
∑

v∈KW

∑

C∈LW (v)

z|v|π(v)t
|C|w1

1 . . . t
|C|ws
s , (4.39)

where we recall that |C|w is the number of pattern w occurrences in the cluster
C.

Now we can describe a language Q consisting of all text words v with some
(marked) patterns W . Clearly

Q = SEQ(A+ C)
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since vQ can be decomposed into symbols from A or from the cluster C, as
shown in Example 4.3.3. The generating function of this language is

Q(z,x) =
1

1−A(z)− ξ(z,x) .

Then, by the symbolic inclusion–exclusion principle we finally arrive at our main
result of this subsection, namely the generating function for the word counts,

F (z,x) =
1

1−A(z)− ξ(z,x− 1)
(4.40)

where 1 = (1, . . . , 1).
This is the starting point for the extraction of the moments and limiting

distributions of On(W) provided that we can find an expression for the cluster
generating function ξ(z,x), which we will do next.

4.3.3. Generating function of a cluster

Thus, in order to complete our analysis we need to derive the generating function
of a cluster for W . For a single word W = {w}, the generating function of a
cluster was presented in Jacquet and Szpankowski (1994), but for a nonreduced
set W we need a major extension. We shall again follow the derivation from
Bassino et al. (2012).

In the nonreduced case a word wi may occur within another word from W .
In order to generate the clusters properly we introduce the notion of the right
extension of a pair of words (h1, h2). This notion is similar to the correlation
set of two words h1 and h2 defined in Section 4.1 but differs in two important
aspects: (i) overlapping is not allowed to occur at the beginning of h1; and (ii)
the extension cannot be an empty word, that is, some symbols must be added
to the right of h1. More formally we define it as follows.

Definition 4.3.5 (Right extension set). The right extension set of a pair of
words (h1, h2) is given by

Eh1,h2 = {e : there exists e′ ∈ A+ such that h1e = e′h2 with 0 < |e| < |h2|}.

For a set of words W = {w1, . . . , ws} we define the right extension matrix as

E =
(
Ewi,wj

)
1≤i,j≤s .

Note that when h1 and h2 have no factor relation (i.e., one word is not a
substring of another word) the right extension set Eh1,h2 is the correlation set of
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h1 to h2. Furthermore, when h1 = h2 the set Eh1,h2 is the autocorrelation set
S − ε of h1 (the empty word does not belong to Eh1,h2).

We now illustrate the right extension set and matrices with a few examples.

Example 4.3.6. (i) For W = (ab, aba), we have E =

(
∅ ∅
b ba

)
.

(ii) For W = (a3 = aaa, a7 = aaaaaaa), we have

E =

(
a+ aa a5 + a6

a+ aa a+ a2 + a3 + a4 + a5 + a6

)
.

(iii) For W = (aa, ab, ba, baaab), we have E =




a b ∅ ∅
∅ ∅ a aaab
a b ∅ ∅
∅ ∅ a aaab


.

Having this in mind, we now introduce the right extension graph (see Figure
4.2), in analogy to the de Bruijn graph of the previous section.

Definition 4.3.7 (Right extension graph). Let W = {w1, . . . , ws}; the right
extension graph GW = (V,E) of the set of words W is the directed labeled
graph such that:

(i) the set of vertices is V = {ε} ∪ W ;

(ii) the set of edges is

E = {ε w→ w, w ∈ W} ∪ {w y→ w′, w, w′ ∈ W and y ∈ E(w,w′)}.

In order to translate this combinatorial description of clusters into generating
functions, we need to introduce two quantities, namely a vector w◦ and a matrix
C. Basically, when a word wm is a factor of a word wi it may be marked or
remain unmarked during the marking process; the latter induces a term (1+tm),
where tm is indeterminate, in the associated multivariate generating function.

Definition 4.3.8 (Inclusion–exclusion formal marking). Letw = (w1, . . . , ws)
be a vector of s words. Then the formal marking of w, denoted byw◦, is a vector
with its ith coordinate element equal to

w◦
i = π(wi)z

|wi|
∏

m 6=i
(1 + tm)|wi|m ,
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Figure 4.2. Graph GW for W = {aa, ab, ba, baaab}. We
remark that several paths may correspond to the same label-
ing. For instance the word baaab corresponds to different paths

ε
baaab
→ baaab, and ε

ba
→ ba

a
→ aa

a
→ aa

b
→ ab.

where |wi|m is the number of occurrences of the wordwm in the wordwi. The for-
mal marking of the matrix of right extension sets E is the matrix C = {Cij}si,j=1,
where

Ci,j =
∑

e∈Ei,j

π(e)z|e|
∏

m 6=j
(1 + tm)min(|wie|m−|wi|m,|wj |m). (4.41)

Example 4.3.9. The above definitions are illustrated in Figure 4.2 for W =
{aa, ab, ba, baaab}. Here

E =




a b ∅ ∅
∅ ∅ a aaab
a b ∅ ∅
∅ ∅ a aaab


 ,

and

C =




zπ(a) zπ(b) 0 0
0 0 zπ(a) z4π(aaab)(1 + tba)(1 + taa)

2(1 + tab)
zπ(a) zπ(b) 0 0
0 0 zπ(a) z4π(aaab)(1 + tba)(1 + taa)

2(1 + tab)


 .

In the above definition, there is a need for the min operator since when
considering the right extension matrix we are only counting factor occurrences
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that begin and finish within the last occurrence considered (wj in the definition)
and also finish inside the extension; on the contrary, when analyzing a single
word w we consider all factor occurrences, and we note this particular case by
the symbol ◦ in superscript.

Example 4.3.6 (continued). We now develop Example 4.3.6 further by taking
π(a) = π(b) = 1.

(i) For W = (ab, aba), we have C =

(
0 0
z z2(1 + t1)

)
.

(ii) For W = (a3 = aaa, a7 = aaaaaaa), the matrix C is given by

(
z + z2 (1 + t1)

5(z5 + z6)
z + z2 (1 + t1)z + (1 + t1)

2z2 + (1 + t1)
3z3 + (1 + t1)

4z4 + (1 + t1)
5(z5 + z6)

)

as is easy to see. Here the crucial point is to determine which factor oc-
currences lie within the last occurrence (hence the min operator in (4.41))
and finish within the extension.

(iii) For W = (aa, ab, ba, baaab) (see Figure 4.2) we have

C =




z z 0 0
0 0 z z4(1 + t1)

2(1 + t2)(1 + t3)
z z 0 0
0 0 z z4(1 + t1)

2(1 + t2)(1 + t3)


 .

With the notation as above we are ready to present our main result of this
section, that is, the generating function for clusters.

Theorem 4.3.10. The generating function ξ(z, t) for the clusters built over
W = {w1, . . . , ws} is given by

ξ(z, t) = w◦∆(t) · (I− C∆(t))
−1 · 1, (4.42)

where w = (w1, . . . , ws), t = (t1, . . . , ts), and ∆(t) is an s × s diagonal matrix
with entries t1, . . . , ts.

Proof. The matrix C is a formal expression of the transition matrix of the
graph GW where the vertex ε and its corresponding edges have been removed.
Some occurrences of the word wi (for each i ∈ {1, . . . , n}) are marked with the
formal variables ti in the labels of GW . More precisely, a word occurrence wi
obtained when visiting a vertex wi is marked by the formal variable ti, and
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appears in the calculus through the diagonal matrix ∆(t) in (4.42); in contrast,
a factor occurrence can be marked or not (this does not change the path in
the graph), hence providing a term of the form

∏
m 6=i(tm + 1)k where k is the

number of possible new occurrences. The first transition from ε to any w ∈ W
is handled similarly. So the paths with k + 1 transitions in GW starting from ε
have generating function

w◦∆(t) · (C∆(t))
k · 1.

Finally we use the quasi-inverse notation
∑∞

j=0 (C∆(t))
j
= (I− C∆(t))

−1
to

complete the proof.

We consider two examples.

Example 4.3.11. For W = {w}, we have

ξ(z, t) =
tw◦

1− tC(z) =
tπ(w)z|w|

1− t(S(z)− 1)
, (4.43)

where S(z) is the autocorrelation polynomial.
Now let W = {w1, w2}. We can compute explicitly ξ(z, t1, t2) by Cramer’s

rule:

ξ(z, t1, t2) =
t1w

◦
1 + t2w

◦
2 − t1t2 (w◦

2 [C2,2 − C1,2] + w◦
2 [C1,1 − C2,1])

1− t2C2,2 − t1C1,1 + t1t2(C1,1C2,2 − C2,1C1,2)
, (4.44)

and this expression is computable from the right extension matrix of {w1, w2}.

Example 4.3.12. Let W = (a3, a7). Recall that the right extension matrix E
(see Example 4.3.6(ii)) is:

E =

(
a+ a2 a5 + a6

a+ a2 a+ a2 + a3 + a4 + a5 + a6

)
.

If we take π(w) = 1 for all words w (the unweighted “enumerative” model where
each word has weight 1), we have w◦ = (z3, (1 + t1)

5z7), and

C1,1 =z + z2, C1,2 = (1 + t1)
5(z5 + z6), C2,1 = z + z2,

C2,2 =(1 + t1)z + (1 + t1)
2z2 + (1 + t1)

3z3 + (1 + t1)
4z4 + (1 + t1)

5(z5 + z6).

By substituting these values in (4.44), the generating function ξ(z, t1, t2) can be
easily computed.
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Finally, we observe that when the setW is reduced, that is, when no word of
W is a factor of another, the clusters are uniquely defined by a path in the graph
GW . So w◦ and C do not depend on any of the variables ti. Hence, in (4.42),
the variables ti appear only inside ∆(t). This constitutes another formulation
of the result of Goulden and Jackson (1983).

4.3.4. Moments and covariance

In this section we return to the word count On(W) and again compute the
moments as well as the covariance matrix for a memoryless source. Thus we
define

π(W) =
∑

w∈W
P (w).

When considering the total number of occurrences from W we simply set all
xi = x in the cluster generating function. We shall write

Ξ(z, x) := ξ(z, x, . . . , x).

Then (4.40) becomes

N(z, x) =
1

1− z − Ξ(z, x− 1)

with Ξ(z, 0) = 0 since N(z, 1) = 1/(1 − z). Setting Ξx(z) =
∂
∂xΞ(z, x)

∣∣
x=0

and

Ξxx(z) =
∂2

∂x2Ξ(z, x)
∣∣∣
x=0

and using basic algebra, we have

∑

n≥0

E[On]z
n =

∂

∂x
N(z, x)

∣∣∣∣
x=1

=
Ξx(z)

(1− z)2

∑

n≥0

E[O2
n]z

n =
∂2

∂x2
N(z, x)

∣∣∣∣
x=1

+ ∂
∂xN(z, x)

∣∣
x=1

=
2Ξx(z)

2

(1 − z)3 +
Ξxx(z) + Ξx(z)

(1− z)2 .

It is easy to see that Ξx(z) =
∑
w∈W P (w)z|w| (for the case of clusters with one

and only one marked occurrence). The expression for Ξxx(z) takes into account
that some words of W are factors of others:

Ξxx(z) =
∑

u,v∈W


2P (u)|u|vz|u| +

∑

e∈Eu,v

2P (ue)z|ue|


 ,
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with the convention that |u|u = 1.
In summary, using the above and the Cauchy residue theorem we arrive at

E[On] =
∑

w∈W
P (w)(n− |w|+ 1)

1

n
Var[On] =

∑

w∈W
P (w)−

∑

u,v∈W
P (u)P (v)(|u|+ |v| − 1)

+
∑

u,v∈W
2P (u)P (Eu,v) +

∑

u,v∈W
2P (u)|u|v + o(1).

If W = {w} then

lim
n→∞

1

n
Var[On] = P (w) + 2P (w)P (Ew,w)− (2|w| − 1)P (w)2,

as already given in Theorem 2.4.1.
Finally, we will compute the covariance matrix for words co-occurrence. We

prove the following result.

Theorem 4.3.13. The normalized asymptotic correlation coefficient of occur-
rences for two patterns Wi and Wj satisfies

Cov(W1,W2) =
∑

u∈Wi
v∈Wj

(P (u)P (Eu,v) + P (v)P (Ev,u)− (|u|+ |v| − 1)P (u)P (v))

(4.45)

+ P (Wi ∩Wj) +
∑

u∈Wi
v∈Wj

(|u|vP (u) + |v|uP (v)) + o(1),

with the convention that |u|u = 1.

Proof. Let U and V be two sets of words. We first decompose the set U ∪ V as
a direct sum:

U ∪ V = (U \ V) ∪ (V \ U) ∪ (U ∩ V).
In order to ease the notation, we will index the variables in the generating
function ξ(z,x) by words, i.e., the variable xu corresponds to the word u. Then
we consider the generating function of clusters for the three disjoint sets U ′ =
U \ V , V ′ = V \ U , and W = U ∩ V , where x = (xu)u∈U∪V with respective
variables x1, x2, and x3:

Ξ(z, x1, x2, x3) = ξ(z,x)|xu = x1 for u ∈ U \ V
xu = x2 for u ∈ V \ U
xu = x3 for u ∈ U ∩ V

, (4.46)
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that is, we simply substitute the variables x1, x2 and x3 for the words appearing
in each of the three sets.

LetN(z, x, y) be the corresponding generating function counting occurrences.
We have, by (4.40), since occurrences in U ∩ V are marked twice

N(z, x, y) =
1

1− z − Ξ(z, x− 1, y − 1, xy − 1)
. (4.47)

By construction, since N(z, 1, 1) = 1/1− z, we have

Ξ(z, 0, 0, 0) = 0.

To simplify the notation, we set

Ξi(z) =
∂
∂ti

Ξ(z, x1, x2, x3)
∣∣∣
(x1,x2,x3)=(0,0,0)

for i = 1, 2, 3,

Ξij(z) =
∂2

∂xi∂xj
Ξ(z, x1, x2, x3)

∣∣∣
(x1,x2,x3)=(0,0,0)

for i, j ∈ {1, 2, 3}.

Denoting Xn and Yn, respectively, as the number of occurrences in U and V , we
obtain by (4.47)

∑

n≥0

E[Xn]z
n = ( ∂∂xN(z, x, y)

∣∣
x=y=1

=
1

(1− z)2 (Ξ1(z) + Ξ3(z))

∑

n≥0

E[Yn]z
n = ( ∂∂yN(z, x, y)

∣∣∣
x=y=1

=
1

(1− z)2 (Ξ2(z) + Ξ3(z)) ,

which yields

E[Xn] =
∑

u∈U
(n− |u|+ 1)P (u), E[Yn] =

∑

u∈V
(n− |u|+ 1)P (u).

Thus we also have
∑

n≥0

E[XnYn]z
n = ∂2

∂x∂yN(z, x, y)
∣∣∣
x=y=1

= 2
(Ξ1(z) + Ξ3(z))(Ξ2(z) + Ξ3(z))

(1− z)3

+
Ξ12(z) + Ξ13(z) + Ξ23(z) + Ξ33(z) + Ξ3(z)

(1− z)2

= 2
Ξ1(z)Ξ2(z)

(1− z)3
+

Ξ12(z)

(1− z)2
+ 2

Ξ3(z)
2

(1− z)3
+

Ξ33(z) + Ξ3(z)

(1− z)2

+ 2
Ξ3(z)(Ξ1(z) + Ξ2(z))

(1− z)3
+

Ξ13(z) + Ξ23(z)

(1− z)2
.
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A Taylor expansion at z = 1 gives for i = 1, 2, 3

Ξi(z) = Ξi(1)− (1− z)Ξ′
i(1) + o(1 − z)

which leads to

E[XnYn] = (n+ 1)(n+ 2) (Ξ1(1) + Ξ3(1)) (Ξ2(1) + Ξ3(1))

+ (n+ 1) [(Ξ′
1(1) + Ξ′

3(1)) (Ξ2(1) + Ξ3(1))

+ (Ξ1(1) + Ξ3(1)) (Ξ
′
2(1) + Ξ′

3(1))

+Ξ12(1) + Ξ13(1) + Ξ23(1) + Ξ33(1) + Ξ3(1)] + o(n).

Observe that

Ξ1(1) + Ξ3(1) =
∑

u∈U
P (u),

Ξ13(1) =
∑

u∈U\V

∑

v∈V∩U
(P (u)|u|v + P (u)P (Eu,v) + P (v)|v|u + P (v)π(Ev,u)) .

In summary, after some computations we find that

1

n
Cov[Xn, Yn] =

∑

u∈U

∑

v∈V
(P (u)P (Eu,v) + P (v)P (Ev,u)

−(|u|+ |v| − 1)P (u)π(v))

+ P (U ∩ V) +
∑

u∈U

∑

v∈V
(|u|vP (u) + |v|uP (v)) + o(1).

Substituting U and V respectively by Wi and Wj leads to (4.45).

The limiting distribution of On(W) could be derived using the Perron–
Frobenius characterization. Extension to the multivariate case, that is, the
multivariate central limit theorem for On(W) = (On(w1), . . . , On(ws)) is possi-
ble; however, the computation is quite troublesome because of the need to avoid
degenerate cases. Details can be found in Bender and Kochman (1993) and
Bassino et al. (2012).

4.4. Exercises

4.1 Extend the analysis of Chapter 4 to multisets W , that is, to the case
where a word wi may occur several times in W .

4.2 Prove the language relationships (4.1)–(4.4).

4.3 Derive an explicit formula for the constant θa in Theorem 4.1.3(iv).
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4.4 With the notation of Section 4.2 build the de Bruijn graph for W =
{aba, bb, abab, bab, bba} and then construct the matrix T(x). Finally, de-
rive the mean and the variance of On(W) in this case; see Theorem 4.2.5.

4.5 Find explicit formulas for the values of the mean E[On(W)] and the
variance Var[On(W)] for the generalized pattern matching discussed in
Section 4.2 in the cases where W0 = ∅ and W0 6= ∅.

4.6 Using the Berry–Esseen inequality, verify the error term O(1/
√
n) in

Theorem 4.2.6.

4.7 Derive explicit formulas for the constants σa and θa in (4.34) to be found
in Theorem 4.2.8.

4.8 Using the Berry–Esseen inequality carry out detailed derivations to es-
tablish the error term in Theorem 4.2.6.

4.9 Enumerate the (d, k) sequences over a non binary alphabet (i.e., gener-
alize the analysis of Section 3.1).

4.10 With the notation of Section 4.3.4 verify the following two identities:

Ξx(z) =
∑

w∈W
P (w)z|w|,

Ξxx(z) =
∑

u,v∈W
(2P (u)|u|vz|u| +

∑

e∈Eu,v

2P (ue)z|ue|).
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CHAPTER 5

Subsequence String Matching

As explained at the start of Chapter 4, in the generalized string matching prob-
lem, given a patternW one searches for some or all occurrences ofW as a block
of consecutive symbols in a text. Here we concentrate on subsequence string
matching. In this case, we are searching for a given pattern W = w1w2 · · ·wm
in the text X = x1x2 · · ·xn as a subsequence, that is, we are looking for indices
1 ≤ i1 < i2 < · · · < im ≤ n such that xi1 = w1, xi2 = w2, . . ., xim = wm. We
also say that the word W is “hidden” in the text; thus we call this the hidden
pattern problem. For example, date occurs as a subsequence in the text hidden
pattern, in fact four times but not even once as a string of consecutive symbols.

More specifically, we allow the possibility of imposing an additional set of
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constraints D on the indices i1, i2, . . . , im to record a valid subsequence occur-
rence. For a given set of integers dj (dj ≥ 1, possibly dj =∞), one should have
(ij+1 − ij) ≤ dj . More formally, the hidden pattern specification is determined
by a pair (W ,D) whereW = w1 · · ·wm is a word of length m and the constraint
D = (d1, . . . , dm−1) satisfies 1 ≤ di ≤ ∞ for all 1 ≤ i ≤ m.

The case when all dj are infinite is called the (fully) unconstrained problem.
When all dj are finite, we speak of the (fully) constrained problem. In particular,
the case where all dj equal 1 reduces to the exact string matching problem.
Furthermore, observe that when all dj < ∞ (the case of a fully constrained
problem), the problem can be treated as generalized string matching, discussed
in Chapter 4. In this case the general pattern W is a set consisting of all words
satisfying a constraint D. However, when even one dj is infinite the techniques
discussed so far are not well suited to handle the situation. Therefore, in this
chapter we develop new methods that facilitate such analysis.

5.1. Problem formulation

If an m-tuple I = (i1, i2, . . . , im), 1 ≤ i1 < i2 < · · · < im, satisfies the con-
straint D with ij+1− ij ≤ dj then it is called a position tuple. Let Pn(D) be the
set of all positions subject to the separation constraint D, and furthermore satis-
fying im ≤ n. Also let P(D) = ⋃n Pn(D). An occurrence of the pattern W sub-
ject to the constraintD is a pair (I,X) formed by a position I = (i1, i2, . . . , im) of
Pn(D) and a text X = x1x2 · · ·xn for which xi1 = w1, xi2 = w2, . . . , xim = wm.

Example 5.1.1. If # represents a don’t-care symbol and its subscript denotes
a strict upper bound on the length of the associated gap, a typical pattern may
look like this

ab#2r#ac#a#d#4a#br#a (5.1)

where # equals #∞ and #1 is omitted; that is, ab should occur first contiguously,
followed by r with a gap of less than two symbols, followed anywhere later in
the text by ac, etc.

Observe that an occurrence of a pattern can be viewed as a text in which
the positions at which the pattern occurs have been distinguished in some way.
The number Ω of occurrences of a pattern W in the text X as a subsequence
subject to the constraint D is then a sum of characteristic variables:

Ω(X) =
∑

I∈P|X|(D)

ZI(X), (5.2)
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where
ZI(X) := [[W occurs at position I in X]].

When the text X is of length n, we often write Ωn := Ω(X).
In order to proceed we need to introduce the important notion of blocks

and aggregates. In the general case we assume that the subset F of indices
j for which dj is finite (dj < ∞) has cardinality m − b with 1 ≤ b ≤ m.
The two extreme values of b, namely, b = m and b = 1, describe the (fully)
unconstrained and the (fully) constrained problem, respectively. Thus, the sub-
set U of indices j for which dj is unbounded (dj = ∞) has cardinality b − 1.
It then separates the pattern W into b independent subpatterns called blocks
and denoted by W1,W2, . . . ,Wb. All the possible dj “inside” any Wr are fi-
nite and form a subconstraint Dr, so that a general hidden pattern specification
(W ,D) is equivalently described as a b-tuple of fully constrained hidden patterns
((W1,D1), (W2,D2), . . . , (Wb,Db)).
Example 5.1.1 (continued). Consider again

ab#2r#ac#a#d#4a#br#a,

in which one has b = 6, the six blocks being

W1 =a#1b#2r, W2 = a#1c, W3= a, W4= d#4a, W5=b#1r, W6= a.

In the same way, an occurrence position I = (i1, i2, . . . , im) of W subject to
the constraint D gives rise to b suboccurrences, I [1], I [2], . . . , I [b], the rth term
I [r] representing an occurrence of Wr subject to constraint Dr. The rth block
B[r] is the closed segment whose end points are the extremal elements of I [r] and
the aggregate of position I, denoted by α(I), is the collection of these b blocks.

Example 5.1.2. Consider the pattern from Example 5.1.1, and assume the
occurrence position tuple is

I = (6, 7, 9, 18, 19, 22, 30, 33, 50, 51, 60).

This satisfies the constraint D and gives rise to six subpositions,

I[1]︷ ︸︸ ︷
(6, 7, 9),

I[2]︷ ︸︸ ︷
(18, 19),

I[3]︷︸︸︷
(22),

I[4]︷ ︸︸ ︷
(30, 33),

I[5]︷ ︸︸ ︷
(50, 51),

I[6]︷︸︸︷
(60) ;

accordingly, the resulting aggregate α(I),

B[1]

︷︸︸︷
[6, 9],

B[2]

︷ ︸︸ ︷
[18, 19],

B[3]

︷︸︸︷
[22] ,

B[4]

︷ ︸︸ ︷
[30, 33],

B[5]

︷ ︸︸ ︷
[50, 51],

B[6]

︷︸︸︷
[60] ,

has six blocks.
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5.2. Mean and variance analysis

Hereafter, we will assume that the word W is given and that the text X is
generated by a (nondegenerate) memoryless source. The first moment of the
number of pattern occurrences Ω(X) is easily obtained by describing the collec-
tion of such occurrences in terms of formal languages, as discussed in Chapter 4.
We adopt this approach here, and build languages satisfying certain properties.
When analyzing occurrences we weight these languages by text probabilities,
and this leads to the corresponding generating functions.

Let us start by building a language that allows us to compute the expected
number of subsequence occurrence and its variance. We consider the collection
of position–text pairs

O := {(I,X); I ∈ P|X|(D)},

the size of an element (I,X) being by definition the length n of the text X . The
weight of an element (I,X) of O is taken to be equal to ZI(X)P (X), where
P (X) is the probability of generation of the text. In this way O can also be
regarded as the collection of all pattern occurrences weighted by the probability
of the text. The corresponding generating function of O equipped with this
weight is

O(z) =
∑

(I,X)∈O
ZI(X)P (X) z|X| =

∑

X


 ∑

I∈P|X|(D)

ZI(X)


 P (X)z|X|,

where the inner sum is exactly Ω(X) as defined in (5.2). Thus

O(z) =
∑

X

Ω(X)P (X) z|X| =
∑

n

E[Ωn]z
n. (5.3)

As a consequence, one has [zn]O(z) = E[Ωn], so that O(z) serves as the gener-
ating function of the sequence of expectations E(Ωn).

However, each pattern occurrence can be viewed as a “context”, with an
initial string, then the first letter of the pattern, then a separating string, then
the second letter, etc. The collection O is therefore described combinatorially
by

O = A⋆×{w1}×A<d1 ×{w2}×A<d2 × . . .×{wm−1}×A<dm−1 ×{wm}×A⋆.
(5.4)

Here, for d < ∞, A<d denotes the collection of all words of length strictly less
than d, i.e., A<d :=

⋃
i<dAi, whereas for d = ∞ we write A<∞ := A⋆ =
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⋃
i<∞Ai. The generating functions associated with A<d and A<∞ are

A<d(z) = 1+z+z2+· · ·+zd−1 =
1− zd
1− z , A<∞(z) = 1+z+z2+· · · = 1

1− z .

Thus, the description (5.4) of occurrences automatically translates, for memo-
ryless sources, into

O(z) ≡
∑

n≥0

E[Ωn] z
n =

(
1

1− z

)b+1
(

m∏

i=1

pwiz

)(
∏

i∈F

1− zdi
1− z

)
, (5.5)

where F is the set of indices i for which di <∞. One finally obtains

E[Ωn] = [zn]O(z) =
nb

b!

(
∏

i∈F
di

)
P (W)

(
1 +O

(
1

n

))
, (5.6)

and a complete asymptotic expansion could easily be obtained.
For the analysis of the variance and especially of the higher moments, it is

essential to work with a centered random variable Ξ defined, for each n, as

Ξn = Ωn −E[Ωn] =
∑

I∈Pn(D)

YI , (5.7)

where YI = ZI − E[ZI ] = ZI − P (W). The second moment of the centered
variable Ξ equals the variance of Ωn and, with the centered variables defined by
(5.7), one has

E[Ξ2
n] =

∑

I,J∈Pn(D)

E[YIYJ ]. (5.8)

From this last equation, we can see that we need to analyze pairs of positions
(I,X), (J,X) = (I, J,X) relative to a common text X . We denote by O2 this
set, that is,

O2 = {(I, J,X); I, J ∈ P|X|(D)},
and we weight each element (I, J,X) by YI(X)YJ (X)P (X). The corresponding
generating function, which enumerates pairs of occurrences, is

O2(z) =
∑

(I,J,X)∈O2

YI(X)YJ (X)P (X) z|X|

=
∑

X


 ∑

I,J∈P|X|(D)

YI(X)YJ(X)


 P (X)z|X|
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and, with (5.8), we obtain

O2(z) =
∑

n≥0

∑

I,J∈Pn(D)

E[YIYJ ] z
n =

∑

n≥0

E[Ξ2
n] z

n.

The process entirely parallels the derivation of (5.3) and one has [zn]O2(z) =
E[Ξ2

n], so that O2(z) serves as the generating function (in the usual sense) of
the sequence of moments E[Ξ2

n].
In order to characterize the language O2 we need a better understanding of

the properties of the pair (I, J). There are two kinds of pair (I, J), depend-
ing on whether I and J intersect or not. When I and J do not intersect, the
corresponding random variables YI and YJ are independent (for a memoryless
source), and the corresponding covariance Cov[YIYJ ] reduces to 0. As a conse-
quence, one may restrict attention to pairs of occurrences (I, J) that intersect
at one place at least. Suppose that there exist two occurrences of a pattern W
at positions I and J which intersect at ℓ distinct places. We then denote by
WI∩J the subpattern of W that occurs at the position I ∩ J and by P (WI∩J)
the probability of this subpattern. Observe that

E[ZIZJ ] =
P 2(W)

P (WI∩J)
[[W agrees on I ∩ J ]]

where [[W agree on I ∩ J ]] is 1 if the pattern W at positions I is the same as at
positions J and is 0 if this is not the case. Thus

E[YIYJ ] = E[ZIZJ ]−E[ZI ]E[ZJ ] = P 2(W)

(
[[W agrees on I ∩ J ]]

P (WI∩J)
− 1

)

= P 2(W)e(I, J) (5.9)

where the correlation number e(I, J) is defined as

e(I, J) =
[[W agrees on I ∩ J ]]

P (WI∩J)
− 1. (5.10)

One may remark that this relation remains true even if the pair (I, J) does not
intersect, since, in this case, one has P (WI∩J) = P (ε) = 1.

The asymptotic behavior of the variance is driven by the amount of overlap
of the blocks involved in I and J rather than simply by the cardinality of I ∩ J .
In order to formalize this, define first the (joint) aggregate α(I, J) to be the
system of blocks obtained by merging together all intersecting blocks of the
two aggregates α(I) and α(J). The number of blocks β(I, J) of α(I, J) plays
a fundamental rôle here, since it measures the degree of freedom of the pairs;
we also call β(I, J) the degree of pair (I, J). Figure 5.1 illustrates this notion
graphically.



5.2. Mean and variance analysis 115

-� -� -� -�

Figure 5.1. A pair of position tuples I, J with b = 6 blocks each and their
joint aggregates; the number of degrees of freedom is here β(I, J) = 4.

Example 5.2.1. Consider a pattern W = a#3b#4r # a#4c composed of

two blocks, indicated by the boxes. The text aarbarbccaracc contains several
valid occurrences of W including two at positions I = (2, 4, 6, 10, 13) and J =
(5, 7, 11, 12, 13). The individual aggregates are α(I) = {[2, 6], [10, 13]}, α(J) =
{[5, 11], [12, 13]} so that the joint aggregates are α(I, J) = [2, 13] and β(I, J) = 1.
The pair (I, J) has exactly degree 1.

When I and J intersect there exists at least one block of α(I) that intersects
a block of α(J), so that the degree β(I, J) is at most equal to 2b− 1. Next, we
partition O2 according to the value of β(I, J)

O[p]
2 := {(I, J,X) ∈ O2 : β(I, J) = 2b− p}

for the collection of groups (I, J,X) of occurrences for which the degree of free-
dom equals 2b − p. From the preceding discussion, only p ≥ 1 needs to be
considered and so

O2(z) = O
[1]
2 (z) +O

[2]
2 (z) +O

[3]
2 (z) + · · · +O

[2b]
2 (z).

As we will see next, asymptotically it is only the first term of this sum that
matters.

In order to conclude the discussion, we need the notion of full pairs: a pair
(I, J) of Pq(D) × Pq(D) is full if the joint aggregate α(I, J) completely covers
the interval [1, q]; see Figure 5.2. (Clearly, the possible values of length q are
finite since q is at most equal to 2ℓ, where ℓ is the length of the constraint D.)

-� -� -� -�

Figure 5.2. A full pair of position tuples (I, J) with b = 6 blocks each.
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Example 5.2.2. Consider again the pattern W = a#3b#4r#a#4c. The text
aarbarbccaracc also contains two other occurrences of W , at positions I ′ =
(1, 4, 6, 12, 13) and J ′ = (5, 7, 11, 12, 14). Now, I ′ and J ′ intersect, and the aggre-
gates are α(I ′) = {[1, 6], [12, 13]}, α(J ′) = {[5, 11], [12, 14]}, so that α(I ′, J ′) =
{[1, 11], [12, 14]}. We have here an example of a full pair of occurrences, with
the number of blocks β(I ′, J ′) equal to 2.

There is a fundamental translation invariance due to the independence of
symbols in the memoryless model that entails a combinatorial isomorphism (rep-
resented by ∼=)

O[p]
2
∼= (A⋆)2b−p+1 × B[p]

2 ,

where B[p]
2 is the subset of O2 formed with full pairs (I, J) such that β(I, J)

equals 2b− p. In essence, the gaps can be all grouped together (in number they

are 2b−p+1, which is translated by (A⋆)2b−p+1
), while what remains constitutes

a full occurrence. The generating function of O[p]
2 is accordingly

O
[p]
2 (z) =

(
1

1− z

)2b−p+1

B
[p]
2 (z)

where B
[p]
2 (z) is the generating function of the collection B[p]

2 . From our earlier
discussion, it must be a polynomial. Now, an easy dominant pole analysis entails

that [zn]O
[p]
2 = O(n2b−p). This proves that the dominant contribution to the

variance is given by [zn]O
[1]
2 , which is of order O(n2b−1).

The variance E[Ξ2
n] involves the constant B

[1]
2 (1) that is the total weight of

the collection B[1]
2 . Recall that this collection is formed of intersecting full pairs

of occurrences of degree 2b − 1. The polynomial B
[1]
2 (z) is itself the generat-

ing function of the collection B[1]
2 , and it is conceptually an extension of the

autocorrelation polynomial introduced in Chapter 2. We shall return to both
polynomials in the next section.

We summarize our findings in the following theorem.

Theorem 5.2.3. Consider a general constraint D with a number of blocks b
and m = O(1). The mean and the variance of the number of occurrences Ωn of
a pattern W subject to the constraint D satisfy

E[Ωn] =
P (W)

b!

( ∏

j : dj<∞
dj

)
nb
(
1 +O(n−1)

)
,

Var[Ωn] = σ2(W)n2b−1
(
1 +O(n−1)

)
,
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where the variance coefficient σ2(W) involves an autocorrelation coefficient κ(W):

σ2(W) =
P 2(W)

(2b− 1)!
κ2(W) with κ2(W) :=

∑

(I,J)∈B[1]
2

e(I, J). (5.11)

The set B[1]
2 is the collection of all pairs of position tuples (I, J) that satisfy three

conditions: (i) they are full; (ii) they are intersecting; (iii) there is a single pair
(r, s) with 1 ≤ r, s ≤ b for which the rth block B[r] of α(I) and the sth block C [s]

of α(J) intersect.

The computation of the autocorrelation coefficient κ(W) reduces to b2 com-
putations of correlations κ(Wr,Ws) relative to pairs (Wr,Ws) of blocks. Note
that each correlation of the form κ(Wr,Ws) involves a totally constrained prob-
lem and is discussed below. Let D(D) :=∏i: di<∞ di. Then one has

κ2(W) = D2(D)
∑

1≤r,s≤b

1

D(Dr)D(Ds)

(
r + s− 2

r − 1

)(
2b− r − s
b− r

)
κ(Wr,Ws),

(5.12)
where κ(Wr,Ws) is the sum of the e(I, J) in (5.11) taken over all full intersecting
pairs (I, J) formed with a position tuple I of blockWr and subject to constraint
Dr, and a position tuple J of blockWs, subject to constraint Ds. Let us explain
formula (5.12) in words: for a pair (I, J) of the set B[1]

2 , there is a single pair
(r, s) of indices with 1 ≤ r, s ≤ b for which the rth block B[r] of α(I) and the
sth block C [s] of α(J) intersect. So, there exist r + s − 2 blocks before the
block α(B[r], C [s]) and 2b − r − s blocks after it. We thus have three different
degrees of freedom: (i) the relative order of the blocks B[i](i < r) and the blocks
C [j](j < s), and similarly the relative order of the blocks B[i](i > r) and the
blocks C [j](j > s); (ii) the lengths of the blocks (there are Dj possible lengths
for the jth block); (iii) finally, the relative positions of the blocks B[r] and C [s].

In particular, in the unconstrained case, the parameter b equals m and each
block Wr is reduced to a symbol, wr . Then the correlation coefficient κ2(W) is
given by

κ2(W) :=
∑

1≤r,s≤m

(
r + s− 2

r − 1

)(
2m− r − s
m− r

)
[[wr = ws]]

(
1

P (wr)
− 1

)
. (5.13)

In words, once one fixes the position of the intersection, called the pivot, then
amongst the r + s − 2 symbols smaller than the pivot one assigns freely r − 1
symbols to the first occurrence and the remaining s − 1 symbols to the second
occurrence. One proceeds similarly for the 2m− r − s symbols larger than the
pivot.
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5.3. Autocorrelation polynomial revisited

Finally, we compare the autocorrelation coefficient κ(W) with the autocorrela-
tion polynomial Sw(z) introduced in Chapter 2 in the context of exact string
matching. Let w = w1w2 · · ·wm be a string of length m; all the symbols of
w must occur at consecutive places, so that a valid position I is an interval
of length m. We recall that the autocorrelation set P(w) ⊂ [1,m] involves all
indices k such that the prefix wk1 coincides with the suffix wmm−k+1. Here, an
index k ∈ P(w) relates to a intersecting pair of positions (I, J) and one has
wk1 = wI∩J .

Recall that the autocorrelation polynomial Sw(z) is defined in (2.5) of Chap-
ter 2 by

Sw(z) =
∑

k∈Pw

P (wmk+1)z
m−k = P (w)

∑

k∈P(w)

1

P (wk1 )
zm−k.

Let us also define
Cw(z) =

∑

k∈P(w)

zm−k.

Since the polynomial B
[1]
2 (z) of the language B[1]

2 involves the coefficients e(I, J)
defined in (5.10), it can be written as a function of the two autocorrelation
polynomials Aw and Cw, as follows:

B
[1]
2 (z) = P (w)zm (Aw(z)− P (w)Cw(z)) . (5.14)

Put simply, the variance coefficient of the hidden pattern problem extends the
classical autocorrelation quantities associated with strings.

5.4. Central limit laws

Our goal now is to prove that a sequence Ωn appropriately centered and scaled
tends to the normal distribution. We consider the following standardized random
variable Ξ̃n which is defined for each n by

Ξ̃n :=
Ξn

nb−1/2
=

Ωn −E[Ωn]

nb−1/2
, (5.15)

where b is the number of blocks of the constraint D. We shall show that Ξ̃n
behaves asymptotically as a normal variable with mean 0 and standard devia-
tion σ. By the classical moment convergence theorem, this is established once
all moments of Ξ̃n are known to converge to the appropriate moments of the
standard normal distribution.
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We remind the reader that if G is a standard normal variable (i.e., a Gaus-
sian distributed variable with mean 0 and standard deviation 1) then, for any
integral s ≥ 0,

E[G2s] = 1 · 3 · · · (2s− 1), E[G2s+1] = 0. (5.16)

We shall accordingly distinguish two cases based on the parity of r, r = 2s and
r = 2s+ 1, and prove that

E[Ξ2s+1
n ] = o(n(2s+1)(b−1/2)), E[Ξ2s

n ] ∼ σ2s (1 · 3 · · · (2s− 1))n2sb−s,
(5.17)

which implies the Gaussian convergence of Ξ̃n.

Theorem 5.4.1. The random variable Ωn over a random text of length n gen-
erated by a memoryless source asymptotically obeys a central limit law in the
sense that its distribution is asymptotically normal. That is, for all x = O(1),
one has

lim
n→∞

P

(
Ωn −E[Ωn]√

Var[Ωn]
≤ x

)
=

1√
2π

∫ x

−∞
e−t

2/2 dt. (5.18)

Proof. The proof below is combinatorial; it basically reduces to grouping and
enumerating adequately the various combinations of indices in the sum that
expresses E[Ξrn]. Recall that Pn(D) is formed from all the sets of positions in
[1, n] subject to the constraint D and set P(D) := ⋃n Pn(D). Then, distributing
the terms in Ξr yields

E[Ξrn] =
∑

(I1,...,Ir)∈Pr
n(D)

E[YI1 · · ·YIr ]; (5.19)

YI was defined after (5.7). An r-tuple of sets (I1, . . . , Ir) in Pr(D) is said to be
friendly if each Ik intersects at least one other Iℓ, with ℓ 6= k and we let Q(r)(D)
be the set of all friendly collections in Pr(D). For Pr, Q(r), and their derivatives
below, we add the subscript n each time the situation is particularized to texts
of length n. If (I1, . . . , Ir) does not lie in Q(r)(D) then

E[YI1 · · ·YIr ] = 0,

since at least one YI is independent of the other factors in the product and the
YI are centered: E[YI ]0. One can thus restrict attention to friendly families and
obtain the basic formula

E[Ξrn] =
∑

(I1,...,Ir)∈Q(r)
n (D)

E[YI1 · · ·YIr ], (5.20)
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where the sum involves fewer terms than in (5.19). From here we proceed in
two stages, dealing separately with the odd and even moments. First, we re-
strict attention to friendly families that give rise to the dominant contribution

and introduce a suitable subfamily Q(r)
⋆ ⊂ Q(r) that neglects the moments of

odd order, which are small. Next, the family Q(r)
⋆ for even order r involves a

symmetry and it suffices to consider another smaller subfamily Q(r)
⋆⋆ ⊂ Q(r)

⋆ ,
that corresponds to a “standard” form of position tuple intersection; this last
reduction gives rise to precisely the even Gaussian moments.
Odd moments. Given (I1, . . . , Ir) ∈ Q(r), the aggregate α(I1, I2, . . . , Ir) is
defined as the aggregation of α(I1) ∪ · · · ∪ α(Ir). Next, the number of blocks
of (I1, . . . , Ir) is the number of blocks of the aggregate α(I1, . . . , Ir); if p is the
total number of intersecting blocks of the aggregate α(I1, . . . , Ir), the aggregate
α(I1, I2, . . . Ir) has rb−p blocks. As previously, we say that the family (I1, . . . , Ir)

of Q(r)
q is full if the aggregate α(I1, I2, . . . Ir) completely covers the interval

[1, q]. In this case, the length of the aggregate is at most rd(m − 1) + 1, and
the generating function of full families is a polynomial Pr(z) of degree at most
rd(m− 1) + 1 with d = maxj∈F dj , where we recall that the set of indices j for
which dj <∞ is denoted by F . Then, the generating function of those families
of Q(r) whose block number equals k is of the form

(
1

1− z

)k+1

Pr(z),

whose block number equals k is O(nk). This observation proves that the dom-
inant contribution to (5.20) arises from friendly families with a maximal block
number. It is clear that the minimum number of intersecting blocks of any ele-
ment of Q(r) equals ⌈r/2⌉, since it coincides exactly with the minimum number
of edges of a graph with r vertices which contains no isolated vertex. Thus the
maximum block number of a friendly family equals rb − ⌈r/2⌉. In view of this
fact and the remarks above regarding cardinalities, we immediately have

E
[
Ξ2s+1
n

]
= O

(
n(2s+1)b−s−1

)
= o

(
n(2s+1)(b−1/2)

)

which establishes the limit form of odd moments in (5.17).
Even Moments. We are thus left with estimating the even moments. The
dominant term relates to friendly families of Q(2s) with an intersecting block

number equal to s, whose set we denote by Q(2s)
⋆ . In such a family, each subset

Ik intersects one and only one other subset Iℓ. Furthermore, if the blocks of

α(Ih) are denoted by B
[u]
h , 1 ≤ u ≤ b, there exists only one block B

[uk]
k of α(Ik)

and only one block B
[uℓ]
ℓ of α(Iℓ) that contain the points of Ik ∩ Iℓ. This defines
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an involution τ such that τ(k) = ℓ and τ(ℓ) = k for all pairs of indices (ℓ, k) for
which Ik and Iℓ intersect. Furthermore, given the symmetry relation

E[YI1 · · ·YI2s ] = E[YIρ(1) · · ·YIρ(2s) ]

it suffices to restrict attention to the friendly families of Q(2s)
⋆ for which the

involution τ is the standard one with cycles (1, 2), (3, 4), etc.; for such “standard”

families whose set is denoted by Q(2s)
⋆⋆ , the pairs that intersect are thus (I1, I2),

. . . , (I2s−1, I2s). Since the set K2s of involutions of 2s elements has cardinality
K2s = 1 · 3 · 5 · · · (2s− 1), the equality

∑

Q(2s)
⋆n

E[YI1 · · ·YI2s ] = K2s

∑

Q(2s)
⋆⋆n

E[YI1 · · ·YI2s ], (5.21)

entails that we can work now solely with standard families.
The class of position tuples relative to standard families is A⋆×(A⋆)2sb−s−1×

B[s]
2s × A⋆; this class involves the collection B[s]

2s of all full friendly 2s-tuples of

position tuples with their numbers of blocks equal to s. Since B[s]
2s is exactly

a shuffle of s copies of B[1]
2 (as introduced in the study of the variance), the

associated generating function is

(
1

1− z

)2sb−s+1

(2sb− s)!
(
B

[1]
2 (z)

(2b− 1)!

)s
,

where B
[1]
2 (z) is the autocorrelation polynomial already introduced (see (5.14)).

Upon taking coefficients, we obtain the estimate

∑

Q(2s)
⋆⋆n

E[YI1 · · ·YI2s ] ∼ n(2b−1)sσ2s. (5.22)

In view of the formulas (5.19)–(5.22) above, this yields the estimate of the even
moments and leads to the second relation in (5.17). This completes the proof of
Theorem 5.4.1.

The even Gaussian moments eventually come out as the number of involu-
tions, which corresponds to a fundamental asymptotic symmetry present in the
problem. In this perspective the specialization of the proof to the fully uncon-
strained case is reminiscent of the derivation of the usual central limit theorem
(dealing with sums of independent variables) by moment methods.
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5.5. Limit laws for fully constrained pattern

In this section, we strengthen our results for a fully constrained pattern, in which
all gaps dj are finite. We set D =

∏
j dj . Observe that in this case we can reduce

the subsequence problem to a generalized string matching problem in which the
generalized patternW consists of all words that satisfy (W ,D). Thus our results
of Chapter 4 apply, in particular Theorems 4.2.6 and 4.2.8. This leads to the
following result.

Theorem 5.5.1. Consider a fully constrained pattern with the mean and vari-
ance found in Theorem 5.2.3 for the case b = 1 and m = O(1).

(i) The random variable Ωn satisfies a central limit law with speed of convergence
1/
√
n:

sup
x

∣∣∣∣P
(
Ωn −DP (W)n

σ(W)
√
n

≤ x
)
− 1√

2π

∫ x

−∞
e−t

2/2 dt

∣∣∣∣ = O

(
1√
n

)
. (5.23)

(ii) Large deviations from the mean value have an exponentially small probability:
there exist a constant η > 0 and a nonnegative function I(x) defined throughout
(0, η) such that I(x) > 0 for x 6= DP (W) and





lim
n→∞

1

n
logP

(
Ωn
n
≤ x

)
= −I(x) if 0 < x < DP (W),

lim
n→∞

1

n
logP

(
Ωn
n
≥ x

)
= −I(x) if DP (W) < x < η

, (5.24)

except for at most a finite number of exceptional values of x. More precisely,

I(x) = − log
λ(ζ)

ζx
with ζ ≡ ζ(x) defined by

ζλ′(ζ)

λ(ζ)
= x (5.25)

where λ(x) is the largest eigenvalue of the matrix T(x) of the associated de
Bruijn graph constructed for W = {v : v = w1u1w2 · · ·wm−1um−1wm, where
ui ∈ Adi−1, 1 ≤ i ≤ m− 1} (see Section 4.2).

(iii) For primitive patterns a local limit law holds:

sup
k

∣∣∣∣∣P (Ωn = k)− 1

σ(W)
√
n

ex(k)
2/2

√
2π

∣∣∣∣∣ = o

(
1√
n

)
, (5.26)

where

x(k) =
k −DP (W)n

σ(W)
√
n

for n→∞.
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Example 5.5.2. Subsequence pattern matching finds a myriad of applications,
including in biology and computer security. In intrusion detection within the
context of computer security, if one wants to detect “suspicious” activities (e.g.,
signatures viewed as subsequences in an audit file), it is important to set up a
threshold in order to avoid false alarms. This problem can be rephrased as one
of finding a threshold α0 = α0(W ;n, β) such that

P (Ωn > α0) ≤ β,

for small given β (say β = 10−5). Based on the frequencies of letters and the
assumption that a memoryless model is (at least roughly) relevant, one can esti-
mate the mean value and variance. The Gaussian limits given by Theorems 5.4.1
and 4.2.6 then reduce the problem to solving an approximate system, which in
the (fully) constrained case reads

α0 = nP (W) + x0σ(W)
√
n, β =

1√
2π

∫ ∞

x0

e−t
2/2 dt.

This system admits the approximate solution

α0 ≈ nP (W) + σ(W)
√

2n log(1/β), (5.27)

for small β. If intrusions are rare events then one needs to apply a large devia-
tions approach. We do not discuss this here, and the reader is referred to Janson
(2004).

5.6. Generalized subsequence problem

In the generalized subsequence problem the pattern is a sequence W = (W1, . . . ,
Wd), where each Wi is a set of strings (i.e., a language). We say that the
generalized pattern W occurs in a text X if X contains W as a subsequence
(w1, . . . , wd), where wi ∈ Wi. An occurrence of the pattern in X is a sequence

(u0, w1, u1, . . . , wd, ud)

such that X = u0w1u1 · · ·wdud, where ui ∈ A∗. We shall study the associated
language L, which can be described as

L = A∗ ×W1 ×A∗ ×Wd ×A∗. (5.28)

More precisely, an occurrence of W is a sequence of d disjoint intervals I =
(I1, I2, . . . , Id) such that Ij := [i1j , i

2
j ], where 1 ≤ i1j ≤ i2j ≤ n is a portion of
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text Xn
1 where wj ∈ Wj occurs. We denote by Pn := Pn(W) the set of all valid

occurrences I. The number of occurrences Ωn of W in the text X of size n is
then

Ωn =
∑

I∈Pn(L)

ZI , (5.29)

where ZI(X) := [[W occurs at position I in X ]].
In passing, we observe that the generalized subsequence problem is the most

general pattern matching considered so far. It contains exact string matching
(see Chapter 2), generalized string matching (see Chapter 4), and subsequence
pattern matching as discussed in this chapter. In this section we present an
analysis of the first two moments of Ωn for the generalized subsequence pattern
matching problem in the case of the dynamic sources discussed in Chapter 1.

We start with a brief description of the methodology of the generating op-
erators used in the analysis of dynamic sources. We recall from Chapter 1 that
the generating operator Gw is defined by Gw[f ](t) := |h′w(t)|f ◦ hw(t) for a den-

sity function f and a word w. In particular, (1.2) states that P (w)
∫ 1

0 f(t)dt =∫ 1

0
Gw[f ](t)dt for any function f(t), which implies that P (w) is an eigenvalue

of the operator Gw. Furthermore, the generating operator for wu is Gwu =
Gu ◦ Gw, where w and u are words (see (1.3)) and ◦ is the composition of
operators.

Consider now a language B ⊂ A∗. Its generating operator B(z) is then
defined as

B(z) :=
∑

w∈B
z|w| Gw.

We observe that the ordinary generating function B(z) of the language B is
related to the generating operators. Indeed,

B(z) :=
∑

w∈B
z|w|P (w) =

∑

w∈B
z|w|

∫ 1

0

Gw[f ](t)dt =

∫ 1

0

B(z)[f ](t)dt. (5.30)

If B(z) is well defined at z = 1 then B(1) is called the normalized operator of
B. In particular, using (1.1) we obtain

P (B) =
∑

w∈B
P (w) =

∫ 1

0

B(1)dt.

Furthermore, the operator

G :=
∑

a∈A
Ga, (5.31)
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is the normalized operator of the alphabet A and plays a fundamental role in
the analysis.

From the product formula (1.3) for generating operators Gw we conclude
that unions and Cartesian products of languages translate into sums and com-
positions of the associated operators. For instance, the operator associated with
A⋆ is

(I − zG)−1 :=
∑

i≥0

ziGi,

where Gi = G ◦Gi−1.
In order to proceed, we must restrict our attention to a class of dynamic

sources, called decomposable, that satisfy two properties: (i) there exist a unique
positive dominant eigenvalue λ and a dominant eigenvector denoted as ϕ (which
is unique under the normalization

∫
ϕ(t)dt = 1); (ii) there is a spectral gap

between the dominant eigenvalue and other eigenvalues. These properties entail
the separation of the operator G into two parts (see also (4.21)):

G = λP+N (5.32)

such that the operator P is the projection relating to the dominant eigenvalue
λ while N is the operator relating to the remainder of the spectrum (see Chap-
ter 4). Furthermore, it is easy to see that (see Exercise 5.12)

P ◦P = P, (5.33)

P ◦N = N ◦P = 0. (5.34)

The last property implies that for any i ≥ 1 (see also (4.13)),

Gi = λiP+Ni. (5.35)

In particular, for the density operator G the dominant eigenvalue λ =
P (A) = 1 and ϕ is the unique stationary distribution. The function 1 is the left
eigenvector. Then, using (5.35), we arrive at

(I − zG)−1 =
1

1− zP+R(z), (5.36)

where
R(z) := (I − zN)−1 −P =

∑

k≥0

zk(Gk −P). (5.37)

Observe that the first term in (5.36) has a pole at z = 1 and, owing to the
spectral gap, the operator N has spectral radius ν < λ = 1. Furthermore, the
operator R(z) is analytic in |z| < 1/ν and, again thanks to the existence of the
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spectral gap, the series R(1) is of geometric type. We shall point out below that
the speed of convergence of R(z) is closely related to the decay of the correlation
between two consecutive symbols. Finally, we list some additional properties of
the operators just introduced (see Exercise 5.12) that are true for any function
g(t) defined between 0 and 1:

N[ϕ] = 0, P[g](t) = ϕ(t)

∫ 1

0

g(t′)dt′ (5.38)

∫ 1

0

P[g](t)dt =

∫ 1

0

g(t)dt,

∫ 1

0

N[g](t)dt = 0, (5.39)

where ϕ is the stationary density.
The theory built so far allows us, among other things, to define precisely the

correlation between languages in terms of generating operators. From now on we
restrict our analysis to so-called nondense languages B for which the associated
generating operator B(z) is analytic in a disk |z| > 1. First, observe that for a
nondense language B the normalized generating operator B satisfies

∫ 1

0

P ◦B ◦P[g](t) = P (B)
(∫ 1

0

g(t)dt

)
. (5.40)

Let us now define the correlation coefficient between two languages, say B
with generating operator B and C with generating operator C. Two types of
correlations may occur between such languages. If B and C do not overlap then
B may precede C or follow C. We define the correlation coefficient c(B, C) (and
in an analogous way c(C,B)) by

P (B)P (C)c(B, C) :=
∑

k≥0

[
P (B ×Ak × C)− P (B)P (C)

]

=

∫ 1

0

C ◦R(1) ◦B[ϕ](t). (5.41)

To see that (5.41) holds we observe, using (5.32)–(5.40), that

∫ 1

0

C ◦R(1) ◦B[ϕ](t)dt =

∫ 1

0

C ◦


∑

k≥0

(Gk −P)


 ◦B[ϕ](t)dt

=
∑

k≥0

(∫ 1

0

C ◦Gk ◦B[ϕ](t)dt −
∫ 1

0

C ◦P ◦B[ϕ](t)

)

=
∑

k≥0

(
P (B ×Ak × B)− P (B)P (C)

)
.
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We say that B and C overlap if there exist words b, u, and c such that u 6= ε
and (bu, uc) ∈ (B×C)∪(C×B). We denote by B ↑ C the set of words overlapping
the words from B and C. The correlation coefficient of the overlapping languages
B and C is defined as

d(B, C) := P (B ↑ C)
P (B)P (C) . (5.42)

Finally, the total correlation coefficient γ(B, C) between B and C is defined as

γ(B, C) = c(B, C) + c(C,B) + d(B, C). (5.43)

Thus

P (B)P (C)γ(B, C) = P (B ↑ C)
+
∑

k≥0

[
P (B ×Ak × C) + P (C × Ak × B)− 2P (B)P (C)

]
.

We shall need the coefficients γ, c, and d in the analysis of the generalized
subsequence problem for dynamic sources.

We will now derive the mean and variance of the number of occurrences
Ωn(W) of a generalized pattern as a subsequence, for a dynamic source. Here is
a sketch of the forthcoming proof.

• We first describe the generating operators of the language L defined in
(5.28), that is,

L = A∗ ×W1 ×A∗ · · ·Wd ×A∗.

It will turn out that the quasi-inverse operator (I − zG)−1 is involved in
such a generating operator.
• We then decompose the operator with the help of (5.36). We obtain a term
related to (1− z)−1P that gives the main contribution to the asymptotics,
and another term coming from the operator R(z).
• We then compute the generating function of L using (5.30).
• Finally, we extract the asymptotic behavior from the generating function.

The main finding of this section is summarized in the next theorem.

Theorem 5.6.1. Consider a decomposable dynamical source endowed with the
stationary density ϕ and let W = (W1,W2, . . . ,Wd) be a generalized nondense
pattern.
(i) The expectation E(Ωn) of the number of occurrences of the generalized pattern
W in a text of length n satisfies asymptotically

E(Ωn(W)) =

(
n+ d

d

)
P (W) +

(
n+ d− 1

d− 1

)
P (W) [C(W)− T (W)] +O(nd−2),
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where

T (W) =

d∑

i=1

∑

w∈Wi

|w|P (w)
P (Wi)

(5.44)

is the average text length, and the correlation coefficient C(W) is the sum of
the correlations c(Wi−1,Wi) between the languages Wi and Wi+1, as defined by
(5.41).
(ii) The variance of Ωn is asymptotically equal to

Var[Ωn(W)] = σ2(W) n2d−1
(
1 +O(n−1)

)
, (5.45)

where

σ2(W) = P 2(W)

[
d− 2T (W)

d!(d− 1)!
+

γ(W)

(2d− 1)!

]

and the total correlation coefficient γ(W) can be computed from

γ(W) :=
∑

1≤i,j≤d

(
i+ j − 2

i− 1

)(
2d− i− j
d− i

)
γ(Wi,Wj),

where γ(Wi,Wi+1) is defined in (5.43).

Proof. We prove only part (i), leaving the proof of part (ii) as Exercise 5.13. We
shall start with the language L defined in (5.28). Its generating operator is

L(z) = (I − zG)−1 ◦ Ld(z) ◦ (I − zG)−1 ◦ · · · ◦ L1(z) ◦ (I − zG)−1. (5.46)

After applying the transformation (5.35) and using (5.36), we obtain an operator

M1(z) =

(
1

1− z

)d+1

P ◦ Ld(z) ◦P ◦ · · · ◦P ◦ L1(z) ◦P

that has a pole of order d + 1 at z = 1. Near z = 1, each operator Li(z) is
analytic and admits an expansion

Li(z) = Li + (z − 1)L′
i(1) +O(z − 1)2.

Therefore, the leading term of the expansion is
(

1

1− z

)d+1

P ◦ Lr ◦P ◦ · · · ◦P ◦ L1 ◦P. (5.47)

The term second in importance is actually a sum of d terms, each obtained by
replacing the operator Li(z) by its derivative L′

i(1) at z = 1. The corresponding
generating function M1(z) satisfies, near z = 1,

M1(z) =

(
1

1− z

)d+1

P (W)−
(

1

1− z

)d
P (W)T (W)+O

(
1

1− z

)d−1

, (5.48)
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where the average text length T (W) was defined in (5.44).
After applying (5.35) to L(z), we obtain an operator M2(z) that has a pole

of order d at z = 1. This operator is a sum of d+1 terms, each term containing
an occurrence of the operator R(z) between two generating operators, those of
the languages Wi−1 and Wi. The corresponding generating function M2(z) has
also a pole of order d at z = 1 and satisfies, near z = 1,

M2(z) =

(
1

1− z

)d
P (W)

d∑

i=2

c(Wi−1,Wi) +O

(
1

1− z

)d−1

.

The correlation coefficient c(B, C) of B and C was defined in (5.41). To complete
the proof we need only to extract the coefficients of P (z)/(1− z)d, as discussed
in previous sections.

5.7. Exercises

5.1 Find an explicit formula for the generating function B
[p]
2 (z) of the col-

lection B[p]
2 .

5.2 Design a dynamic programming algorithm to compute the correlation
algorithm κ2(W) presented in (5.12).

5.3 Establish the rate of convergence for the Gaussian law from Theo-
rem 5.4.1.

5.4 For the fully unconstrained subsequence problem, establish the large
deviation results (see Janson (2004)).

5.5 Prove (5.14).

5.6 Show that
E[Ωn logΩn]−E[Ωn] logE[Ω] = O(nb−1)

for large n and m = O(1).

5.7 Provide a detailed proof of Theorem 5.5.1.

5.8 A pattern W = {w1, . . . , wd} consists of a set of patterns wi. The pat-
ternW is said to occur as a subsequence in a text if any of the wi occurs
as a subsequence. Analyze for a memoryless source this generalization
of subsequence pattern matching.

5.9 Let w be a pattern. Set a window size W with |w| ≤ W ≤ n. Consider
windowed subsequence pattern matching, in which w must appear as
a subsequence within the window W . Analyze the number of windows
that have at least one occurrence of w as a subsequence within a window
(see Gwadera, Atallah, and Szpankowski (2003)).
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5.10 In this exercise we find a different representation for Ωn, namely as a
product of random matrices. The reader is asked to prove the following
result.

Proposition 5.7.1. Consider a binary alphabet A = {0, 1}. Let ma-
trices T (a) be defined for a ∈ A by

T (a) : Ti,i(a) = 1, Ti+1,i(a) = [[wi = a ]], Ti,j(a) = 0 (i 6∈ {j − 1, j}).

The random variable Ωn is then

Ωn = (0, . . . , 0, 1)Bn (1, 0, . . . , 0)
t

where Bn is a random product of n matrices, each factor in the product
being chosen as T (0) or T (1) with probabilities p or 1− p, respectively.

5.11 Establish the following formula for the multivariate generating function
Fn(z) = E[zΩn ] of Ωn. Let A = {0, 1} and the R0, R1 be two polynomial
substitutions on z = (z0, z1, . . . , zm), defined by

Ra : u0 7→ z0, zj 7→ zj−1z
[[wj=a ]]
j

for a ∈ A. The probability generating function Fn(z) = E[zΩn ] satisfies
the recursion

Fn+1(z) = pR0[Fn(z)] + (1 − p)R1[Fn(z)], F0(z) = u0.

5.12 Prove the generating operator identities (5.32)–(5.35) and (5.38)–(5.40).

5.13 Prove the second part of Theorem 5.6.1, that is, derive the formula (5.45)
for the variance of Ωn(W).

5.14 Does the central limit theorem hold for the generalized subsequence
problem discussed in Section 5.6? What about large deviations?

5.15 We now consider the unconstrained subsequence problem (i.e., the gaps
dj between symbols are infinite); however, now we will assume that the
pattern length m grows linearly with n. More precisely, we assume that
m = θn for 0 < θ < 1. Clearly, we still have

E[Ωn(w)] =

(
n

m

)
P (w).

For typical patterns w, that is, when P (w) ∼ 2−mH(p) where H(p) =
−p log p− (1− p) log(1 − p) is the entropy, prove that

E[Ωn(w)] ∼ 2n(H(θ)−θH(p)).
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5.16 For the problem discussed in Exercise 5.15, establish that

Var[Ωn(w)] =

m∑

k=1

(
n

2m− k

)
P 2(w)κ2(w) (5.49)

where k = |I ∩ J | and

κ2(w) =
∑

1 ≤ r1 < · · · rk ≤ m

1 ≤ s1 < · · · sk ≤ m

(
r1 + s1 − 2

r1 − 1

)(
r2 − r1 + s2 − s1 − 2

r2 − r1 − 1

)

×
(
2m− rk − sk

m− rk

)
· ·

k∏

i=1

[[wri = wsi ]]

(
1

P (wr1 · · ·wrk)
− 1

)

and where positions ri and si are “common”, i.e., in I and J they
overlap.

5.17 We are again in the same setting as in Exercise 5.15, that is, m = θn.
In Exercise 5.16 we computed the variance. However, it is very difficult
to obtain its asymptotics. To build up our intuition, assume now that
the pattern w = 0m consists of m zeros. Clearly when Xn is composed
of k 1s and n− k 0s, then obviously Ωn(0

m) =
(
n−k
m

)
and therefore

P

(
Ωn(0

m) =

(
n− k
m

))
=

(
n

k

)
pk(1 − p)n−k.

Prove that

1

n
logE[Ω2

n(0
m)] ∼ 2(q + θp− δ)H(θ/(q + θp− δ)) +H((1− θ)p+ δ)

+((1− θ)p+ δ) log p+ (q + θp− δ) log q,

where q = 1− p and

δ =
q −

√
q2 + 4θ(1− θ)pq

2
.

Note that
Var[Ωn(0

m)] ∼ E[Ω2
n(0

m)] ∼ 2nβ(θ,p)

for large n.
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Part II

APPLICATIONS





CHAPTER 6

Algorithms and Data Structures

The second part of the book, which begins with this chapter, is tuned towards the
applications of pattern matching to data structures and algorithms on strings.
In particular, we study digital trees such as tries and digital search trees, suffix
trees, the Lempel–Ziv’77 and Lempel–Ziv’78 data compression algorithms, and
string complexity (i.e., how many distinct words there are in a string).

In the present chapter we take a break from analysis and describe some pop-
ular data structures on strings. We will present simple constructions of digital



136 Chapter 6. Algorithms and Data Structures

trees known as tries and digital search trees and will analyze these structures in
the chapters to come.

6.1. Tries

A trie or prefix tree, is an ordered tree data structure. Its purpose is to store
keys, usually represented by strings, known in this context as records. Tries
were proposed by de la Briandais (1959) and Fredkin (1960), who introduced
the name; it is derived from retrieval. Tries belong to a large class of digital
trees that store strings in one form or another. In this chapter, besides tries we
also consider two other digital trees, namely suffix trees and digital search trees.

A trie – like every recursive data structure – consists of a root and |A|
subtrees, where A is an alphabet; each of the subtrees is also a trie. Tries store
strings or records in leaves while their internal nodes act as routing nodes to the
leaves. The edges to the subtrees are usually labeled by the symbols from A.
To insert a new string into an existing trie, one follows a path dictated by the
symbols of the new string until an empty terminal node is found (i.e., no other
string shares the same prefix), in which the string is stored. Observe that we
either store the whole string or just the suffix that is left after the path to the
leaf. When drawing a trie, we sometimes will represent leaves as square nodes
to distinguish them from branching nodes.

We now present some pseudo-codes that build tries over a set

W = {w1, · · · , wn}
of strings wi = wi1w

i
2 . . . written over the alphabet A. Some comments are in

order. A tree, denoted as T , should be understood as the pointer to the root
of a trie. In fact, for any x ∈ A, we denote by T .x a pointer to the subtree of
T corresponding to the symbol x ∈ A. Furthermore, we denote by record(T ) a
string stored in a node pointed by T . Observe that for internal (routing) nodes
record(T ) = nil while for terminal nodes record(T ) is nonempty.

We will use the constructor method to build a tree containing a string w in
the root and having all its |A| subtrees empty. The pseudo-code achieving it is
presented below.

procedure Trie(w)
T ← Trie()
record(T )← w
for each a ∈ A
do T .a← nil

return (T )
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Now we construct a trie by first inserting a word w ∈ W . Below we give
a code containing the procedure Read(w), which extracts and returns the first
symbol of w when w 6= nil or returns nil when w = nil.

procedure InsertTrie(w, T )
if T = nil then return (Trie(w))
if record(T ) = nil

then

{
x← Read(w)
T .x = Insert(w, T .x)

else





w2← record(T )
y ← Read(w2)
record(T )← nil
T .y ← Trie(w2)
x← Read(w)
T .x← InsertTrie(w, T .x)

return (T )

Finally, we complete the trie construction in the pseudo-code below.

procedure BuildTrie(W)
T ← nil
if W = ∅ then return (T )
for each w ∈ W
do T ← InsertTrie(W , T )

return (T )

To retrieve all strings stored in a trie T we follow the paths to all leaves and
read the strings, as presented below.

procedure ExtractTrie(T )
if T = nil then return (∅)
if record(T ) 6= nil then return ({record(T )})
rw ← ∅
for each x ∈ A

do




W ← ExtractTrie(T .x)
for each w ∈ W
do rw ← rw + {xw}

return (rw)
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We notice that the path to a string in a trie is the shortest prefix of the
original string that is not a prefix of another string stored in the trie. We also
notice that the trie does not depend on the order of insertion of the strings.

Example 6.1.1. Let W = {abaa, abba, babb, aabb, abbb}. Figure 6.1 shows the
corresponding trie.

Figure 6.1. A trie built over W = {abaa, abba, babb, aabb, abbb}.

There is a variation of tries, called b-tries, where the leaves may contain up
to b strings. The basic trie corresponds to b = 1. In the general case the field
record of a node is a set of no more than b records. This leads to a variation of
the pseudo-code, as shown below.
procedure InsertTrie(w, T )
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if T = nil then return (Trie(w))
if record(T ) = nil

then

{
x← Read(w)
T .x = InsertTrie(w, T .x)

else





aw2← record(T )
aw2← aw2 + {w}
if |aw2| ≤ b then T ← Trie(aw2)

else





record(T )← nil
for each w2 ∈ aw2
do

{
y ← Read(w2)
T .y ← InsertTrie(w2, T .y)

return (T )

Example 6.1.2. In Figure 6.2 we present an example of a 2-trie constructed
from the strings: abaa, abba, babb, aabb, abbb.

Figure 6.2. A 2-trie built from W = {abaa, abba, babb, aabb, abbb}.

The case b = 0 is special since for it all records are nil. In other words,
strings are stored as paths to the leaves. We shall call such a trie a noncompact
trie or a prefix tree. However, we will not deal with such tries in this book. The
pseudo-code for insertion in a 0-trie is presented below.
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procedure InsertTrie(w, T )
if T = nil then T ← Trie(nil)
x← Read(w)while x 6= $
do T .x← InsertTrie(w, T .x)
T .$← Trie(nil)
return (T )

Example 6.1.3. Let W = {abaa, abba, babb, aabb, abbb}. Figure 6.3 shows the
0-trie built from W .

Figure 6.3. A 0-trie or spaghetti trie.

In the discussion so far, we have assumed that no string in a trie is a prefix
of another string. This is the case when the strings are potentially infinite. In
order to consider finite strings we introduce an extra symbol, say $, at the end
of all strings. This new symbol is different from any symbol of A and indicates
that the string terminates. In this case the trie is a (|A|+ 1)-tree. The subtree
that corresponds to the symbol $ always has its record equal to nil.

6.2. Suffix trees

The suffix tree of a word w is simply a trie built over successive suffixes of w,
where w can be unbounded in length. In other words, the (infinite) suffix tree
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Figure 6.4. Suffix tree for w = a6.

built over n suffixes is a trie over the setW = {w1w2 · · · , w2w3 · · · , . . . , wn · · · }.
A finite suffix tree is built over successive finite suffixes of w$, that is, over the
set W$ = {w1 · · ·wn$, . . . , wn$}, where we use the special terminal character $
to create finite length suffixes. We will work mostly with infinite suffix trees and
for brevity will refer to them just as suffix trees.

The pseudo-codes to construct suffix trees resemble those for tries. In par-
ticular, we have:

procedure BuildSuffixTree(w)
T ← nil
if w = nil then return (T )
while w 6= nil

do

{
x← Read(w)
T ← InsertTrie(w, T )

return (T )

The original string is easy to recover from such a trie, since it is the longest
string it contains. However, one can construct a more economical version of
the suffix tree by storing in the leaves the rank of the suffix in the original
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string instead of the whole sequence of the suffix (or its remaining part). By the
“rank” we mean the position of the first symbol of the suffix in w. Therefore in
a suffix tree the field record is replaced by the field rank (which is set at −1 in
the internal nodes). The conversion code is as follows, where n is the length of
original text:

procedure ConvertSuffixTree(n, T )
if T = nil then return (nil)
if record(T ) 6= nil

then

{
rank(T )← n− |record(T )|
return (T )

rank(T )← −1
for each a ∈ A
do

{
T .a← ConvertSuffixTree(n− 1, T .a)

return (T )

Example 6.2.1. Figure 6.4 shows the suffix tree built over the string w =
aaaaaa = a6$ while Figure 6.5 shows the suffix tree for w = abaabb$.

The reconstruction of the original text is easy. For this it suffices to extract
for each suffix its rank and its path to its leaf. The following procedure returns
an array S, where S[i] is the path to the leaf of the ith suffix.

procedure ExtractArraySuffix(T )
R← ExtractSetSuffix(T )
for each (w, i) ∈ R
do S[i]← w

return (S)

Figure 6.5. Suffix tree for w = abaabb.



6.3. Lempel–Ziv’77 scheme 143

procedure ExtractSetSuffix(T )
if T = nil then return (∅)
if rank(T ) 6= −1 then return (nil, rank(T ))
S ← ∅
for each a ∈ A+ {$}

do




Sa← ExtractSetSuffix(T .a)
for each (w, i) ∈ Sa
do S ← S + {(aw, i)}

return (S)

In the next section we present one of many possible applications of suffix
trees, namely an application to code words for the Lempel–Ziv’77 data com-
pression algorithm.

We will return to suffix trees in Chapter 8, where we present an analysis of
their depth and show to what extent they resemble tries.

6.3. Lempel–Ziv’77 scheme

We now briefly discuss one of the most popular data compression algorithms
designed in 1977 by Ziv and Lempel and known as the Lempel–Ziv’77 algorithm
or LZ’77. The Lempel–Ziv algorithm partitions or parses a sequence into phrases
that are similar in some sense. Depending on how such a parsing is encoded we
have different versions of the algorithm. However, the basic idea is to find
the longest prefix of a yet uncompressed sequence that occurs in an already
compressed sequence. For this task, the associated suffix tree is very useful, as
we shall see below.

More specifically, let us assume that the first n symbols of the sequence
Xn

1 = X1, . . . , Xn is given to the encoder and the decoder. This initial string is
sometimes called the database string or training sequence. Then we search for
the longest prefix Xn+ℓ

n+1 of X∞
n+1 which has a copy in Xn

1 , that is, the largest

integer ℓ such that Xn+ℓ
n+1 = Xm+ℓ−1

m for some prescribed range of m and ℓ. We
denote this largest integer ℓ as Dn. Depending on the ranges for m and ℓ, we
can have different versions of the LZ’77 scheme.

The code built for LZ’77 consists of a sequence of triple (m, ℓ, char), where
char is the symbol Xm+ℓ, m is a pointer to a position in the string, and ℓ is the
length of the repeated substring occurring at position m. Since the pointer to m
needs log2 n bits, the length ℓ can be coded in O(logDn) bits and char requires
log |A| bits, we conclude that the code length is equal to log2 n + O(logDn) +
log2 |A| bits.
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S2 S4S1 S3
Figure 6.6. Suffix tree built from the first four suffixes of X =
1010010001 · · · ; thus S1 = X10

1 = 1010010001, S2 = X10
2 = 010010001,

S3 = X10
3 == 10010001 and S4 = X10

4 == 010001.

The heart of all versions of the Lempel–Ziv scheme is the algorithm that
finds the longest prefix of length Dn that occurs in a database string of length
n. It turns out that the suffix tree discussed in the previous section can be
used efficiently to find such a prefix. Indeed, let us consider a sequence X =
1010010001 · · · , and assume that X4

1 is the database string. The suffix tree built
overX4

1 is shown in Figure 6.6. Let us now look forD4, that is, the longest prefix
of X∞

5 that occurs in the database X4
1 . In the growing database implementation

it is X8
5 since this is equal to X5

2 . We can see this by inserting the fifth suffix
of X into the suffix tree from Figure 6.6, which leads to the suffix tree shown in
Figure 6.7. In these two figures we denote the leaves by squares to distinguish
them from the internal nodes.

6.4. Digital search tree

The digital search tree (DST) is another digital tree structure. Unlike in a trie,
the records in a DST are stored in all the nodes. The root contains either the
first record or an empty record, depending on the application. As with tries, to
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S1  = 1010010001 S4  = 0010001
S2  =   010010001 S5  =   010001
S3  =     10010001

S4

S1 S3

S2 S5

Figure 6.7. Suffix tree built from the first five suffixes S1, . . . , S5 of
X = 1010010001 . . . where S5 = 010001.

recover stored records we read the DST from the root to all nodes, concatenating
the sequence of symbols along paths and the records stored in nodes.

Let us assume that we insert into a digital tree n records w1, . . . , wn, where
each record is a string (perhaps infinite) over the alphabet A. More precisely,
the root usually contains the first string although in some applications the root
may contain an empty string. The next string occupies the ath child of the root
if its first symbol is a ∈ A. The remaining strings are stored in available nodes
which are directly attached to already existing nodes in the tree. The search for
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an existing node in the tree follows the prefix structure of a string, as for tries.
That is, if the next symbol in a string is a ∈ A then we move to the subtree
corresponding to a. This is illustrated in the next example.

Example 6.4.1. Let W = {abb, babb, aabb, abbb}. Figure 6.8 shows the DST
built over W .

Figure 6.8. A digital search tree over W = {abb, babb, aabb, abbb}.

The pseudo-code that builds a digital tree is very similar to that for tries,
so we list below just the three procedures: DST(w), InsertDST(w, T ), and
BuildDST(W).
procedure DST(w)
T ← DST()
record(T )← w
for each a ∈ A
do T .a← nil

return (T )

procedure InsertDST(w, T )
if T = nil then return (DST(w))
x← Read(w)
T .x← InsertDST(w, T .x)
return (T )

procedure BuildDST(W)
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T ← nil
if W = ∅ then return (T )
for each w ∈ W
do T ← InsertDST(W , T )

return (T )

A few comments are in order. Notice that the shape, or structure, of a DST
depends on the order of string insertion. However, a particular DST shape can
be obtained via several insertion orders. For this it suffices that the partial order
of strings starting with the same symbol is not modified. The enumeration of
such trees is an interesting problem. In particular, for the enumeration of DST
trees with a given total path, the reader is referred to Seroussi (2006a) (see also
Knessl and Szpankowski (2005) and Seroussi (2006b)).

The recovery of a set of strings is very similar to the extraction from a trie,
with the addition that one must also extract the records in the internal nodes:

procedure ExtractDST(T )
if T = nil then return (∅)
S ← record(T )
for each a ∈ A

do




Sa← ExtractDST(T .a)
for each w ∈ Sa
do S ← S + {aw}

return (S)

6.5. Parsing trees and Lempel–Ziv’78 algorithm

A digital search tree has an equivalent suffix tree image, which is sometimes
called the parsing tree and is used in variable-to-fixed compression algorithms.
However, unlike suffix trees, parsing trees do not necessarily contain all suffixes
of the original text. To understand this better, we need to say a few words about
variable-to-fixed codes.

A variable-to-fixed-length encoder partitions the source string over the al-
phabet A into a sequence of variable-length phrases. Each phrase belongs to a
given dictionary of source strings. A uniquely parsable dictionary is represented
by a complete parsing tree, i.e., a tree in which every internal node has exactly
|A| children nodes. The dictionary entries correspond to the leaves of the asso-
ciated parsing tree. The encoder maps each parsed string into the fixed-length
binary code word corresponding to its dictionary entry. There are several well-
known variable-to-fixed algorithms. Here we concentrate on the Lempel–Ziv’78
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scheme, which we describe next.
Let us first consider the parsing process. The idea is to partition a sequence,

say w, into variable phrases, each of which is a path from the root to a leaf in
the associated parsing tree. This parsing tree is a digital search tree. At the
beginning the associated DST contains the nil string in the root. The first suffix
is then inserted into the tree. The path to its leaf is the prefix of w and forms the
first phrase. The next suffix of w to be inserted is the suffix that starts just after
the phrase created in the insertion of the first suffix. This process is repeated
until the text is exhausted or the tree contains the required number of suffixes
or leaves, corresponding to the code words or entries in the code dictionary.

Let us first present the pseudo-codes constructing a parsing tree.

procedure BuildParsingTree(m,w)
T ← DST(nil)
k← 0
while k < m

do

{
k ← k + 1
(w, T )← InsertPhrase(w, T )

return (T )

procedure InsertPhrase(w, T )
if T = nil then return (w,DST(w))
x← Read(w)
(w, T .x)← InsertPhrase(w, T .x)
return (w, T )

As with a suffix tree, it is more convenient to replace the strings that are
stored in the nodes by their rank. The corresponding change in the above code
is rather trivial, since it consists of carrying the integer k into the argument of
InsertPhrase(). Below we give a version of the code which is not recursive.
procedure BuildPhraseTree(w,m)
Tm ← DST(0)
k← 1
while k ≤ m

do





x← Read(w)
T ′ ← Tm
while T ′.x 6= nil

do

{
T ′ ← T ′.x
x← Read(w)

T ′.x← DST(k)
k ← k + 1

return (Tm)
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where we use the following constructor

procedure DST(k)
T ← DST()
rank(T )← k
for each a ∈ A
do T .a← nil

return (T )

Example 6.5.1. The infinite sequence w = a∞ = aaaaa · · · is parsed into
increasing sequences ()(a)(a2)(a3) · · · , etc. The tree given by BuildDST(w, 3)
is shown in Figure 6.9.

Figure 6.9. Digital search tree for an infinite sequence limited to the first
three phrases (m = 3).

Now we are ready to describe the Lempel–Ziv’78 compression algorithm. In
general, it is a dictionary-based scheme, which partitions a sequence into phrases
(sometimes called blocks) of variable size such that a new phrase is the shortest
substring that has not appeared previously as a phrase. Every such phrase is
encoded by a tuple made of a pointer and a symbol from A. The pointer is the
index of the longest prefix which appeared before as a phrase, and the symbol
one must append to this prefix in order to make the new phrase. Thus the LZ’78
code consists of a sequence of (pointer, symbol) tuples. To be more specific,
let us continue with Example 6.5.1. We now replace each phrase by the pair
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(pointer,symbol), where the pointer is the rank number of the parent phrase
in the associated tree and the symbol is the extra symbol added to the parent
phrase to create the current phrase. In our example, we obtain

(0a)(1a)(2a) · · · .

This is in fact the Lempel–Ziv’78 partition of a∞. Observe that knowledge of
this last sequence is equivalent to knowledge of the tree and is therefore sufficient
to reconstruct the original text.

The previous code can be adapted to a finite sequence w as shown below. To
make this rigorous we have to assume that the text w ends with an extra symbol
$ never occurring before in the text. To each node in T (w) there corresponds a
phrase in the parsing algorithm. Let L(w) be the path length of T (w), that is,
the sum of paths to all the nodes in the tree. We find that L(w) = |w|.
procedure BuildDST(w)
T ← Tree(0)
k← 1
while w 6= nil

do





x← Read(w)
T ′ ← T
while T ′.x 6= nil&w 6= nil

do

{
T ′ ← T ′.x
x← Read(w)

if T ′.x = nil
then T ′.x← Tree(k)
else T ′.$← Tree(k)

k ← k + 1
return (T )

Example 6.5.2. Let w = abaababbabbbabaaab$. The corresponding parsing
tree in the Lempel–Ziv’78 scheme is presented in Figure 6.10. The phrase se-
quence is the following:

()(a)(b)(aa)(ba)(bb)(ab)(bba)(baa)(ab).

Replacing each phrase by the pointer and the extra symbol leads to

(0a)(0b)(1a)(2a)(2b)(1b)(5a)(4a)(6$)

which is the Lempel–Ziv’78 code for w.
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Figure 6.10. Digital search tree for the finite sequence w =
abaababbabbbabaaab.

Observe that knowledge of the tree T (w) without the node sequence order
is not sufficient to recover the original text w. But knowledge of T (w) together
with the rank number will reconstruct the original text w, as shown below:

procedure ReBuild(T )
for i← 1 to |T |
do wt[i]← nil

wt← Retrieve(T , wt,nil)
return (wt)

procedure Retrieve(T , wt, w)
wt[rank(T )]← w
for each a ∈ A
do

{
if T .a 6= nil then wt← Retrieve(T .a, wt, wa)

if T .$ 6= nil then wt[rank(T .$)]← w
return (wt)

To summarize, we present one more example that will help us to understand
universal types.
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Figure 6.11. The digital search tree for abaababbabbaabbaab which is the
same as in Figure 6.10 for abaababbabbbabaaab.

Example 6.5.3. Consider the sequence abaababbabbbabaab, which partitions
into

(a)(b)(aa)(ba)(bb)(ab)(bba)(baa).

The associated digital tree is presented in Figure 6.10. Now consider another
string abaababbabbaabba that is parsed into

(a)(b)(aa)(ba)(bb)(baa)(bba)

and the associated digital tree is presented in Figure 6.11. But both figures are
the same! In fact, both sequences parse into the same set of phrases, even if
these parsings are different. Notice that phrase number 7 and phrase number 8
are inverted. We say that both strings belong to the same universal types, as
discussed in the example below.

In this last example we show that different sequences may lead to the same
digital search tree. We say that such sequences belong to the same universal
type, as discussed in depth in Seroussi (2006a).

Example 6.5.4. Figure 6.12 shows two different Lempel–Ziv’78 trees, (a) and
(b), each corresponding to the same set of phrases. In Figure 6.12(a) sequences
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Figure 6.12. Two universal types and the corresponding trees

.

01001011 and 10101100 lead to the following set of phrases {0, 1, 00, 10, 11}. In
Figure 6.12(b) the set of phrases is {0, 1, 00, 01, 11}.

Bibliographical notes

The algorithmic aspects of pattern matching have been presented in numerous
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one by Blumer et al. (1985) are variations on Weiner (1973). Note that these
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are offline because they process the text in the reverse order from right to left.
An online algorithm by Ukkonen (1995) also achieves linear time. Farach (1997)
proposed an optimal construction for large alphabets.
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dak (1969) and Tunstall (1967). The reader is referred to Drmota, Reznik, and
Szpankowski (2010) and Savari and Gallager (1997) for in-depth analyses of the
Tunstall and Khodak algorithms.



CHAPTER 7

Digital Trees

Digital trees are fundamental data structures on words. Among them tries and
digital search trees stand out because they have a myriad of applications. Ow-
ing to their simplicity and efficiency, tries have found widespread use in diverse
applications ranging from document taxonomy to IP address lookup, from data
compression to dynamic hashing, from partial-match queries to speech recogni-
tion, from leader election algorithms to distributed hashing tables.

Tries are prototype data structures useful for many indexing and retrieval
purposes. We described their construction in detail in Chapter 6, so here we only
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briefly review some facts. Tries were first proposed by de la Briandais (1959) for
information processing. Fredkin (1960) suggested the current name, part of the
word retrieval. Tries are trees whose nodes are vectors of characters or digits;
they are a natural choice of data structure when the input records involve the
notion of alphabets or digits. Given a sequence of n words over the alphabet
A = {a1, . . . , a|A|}, |A| ≥ 2, we construct a trie as follows. If n = 0 then the
trie is empty. If n = 1 then a single external node holding the word is allocated.
If n ≥ 1 then the trie consists of a root (i.e., internal) node directing words to
|A| subtrees according to the first symbol of each word, and words directed to
the same subtree are themselves tries. The internal nodes in tries are branching
nodes, used merely to direct records to each subtrie; the record strings are all
stored in external nodes, which are leaves of such tries. In Figure 6.1 a binary
trie built over five records is shown.

Digital search trees were discussed in Section 6.4. In a digital search tree
(DST) record strings are directly stored in nodes. For a binary alphabet A =
{0, 1}, the root contains the first string (or an empty string) and the next string
occupies the right or the left child of the root depending on whether its first
symbol is 0 or 1. The remaining strings are stored in nodes which are directly
attached to already existing nodes in the tree. The search for an available node
follows the prefix structure of a new string. Sometimes external nodes are added
to such constructed trees, as was shown in Figure 6.8. These external nodes are
positions where the next inserted string may end up.

In this chapter, we analyze various digital tree shape parameters (e.g., depth,
path length, profile) in a probabilistic framework. As throughout this book,
we assume that the n words that are stored (strings, sequences, records) are
generated by memoryless or Markov sources. We mostly study digital trees
built over a binary alphabet A = {0, 1} and denote by p = P (0) the probability
of generating a zero; we also write q = 1 − p. However, all results presented in
this chapter can be quite easily generalized to a general alphabet A.

7.1. Digital tree shape parameters

We now define some shape parameters of a digital tree. Throughout we assume
that n strings (records) are inserted into a tree. To simplify our presentation we
will focus on tries, but our definitions work also for digital search trees.

For a trie built from n strings (see Figure 7.1) we define:

• the depth Dn(i) to the ith (external) node as the path length from the
root to the ith node or, equivalently, the level of the ith node;

• the typical depth Dn as the path length to a randomly selected node, that
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Figure 7.1. A trie built over n = 7 record strings, 00 · · · , 011 · · · ,
0100 · · · , 01010 · · · , 01011 · · · , 1010 · · · , and 1011 · · · .

is,

P (Dn = k) =
1

n

n∑

i=1

P (Dn(i) = k);

• the depth of insertion Dn(n+1) as the depth of the new, (n+1)th, string
inserted into a trie built from n strings;

• the path length Ln as the sum of the depths to all (external) nodes, that
is,

Ln =

n∑

i=1

Dn(i);

• the height Hn as the longest path, that is,

Hn = max
1≤i≤n

{Dn(i)};

• the fillup level Fn as the last level containing all internal nodes, that is,

Fn = max
ℓ≥0
{# internal nodes at level k = |A|ℓ};
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• the shortest path Rn as the length of the shortest path from the root to
an external node, that is,

Rn = min
1≤i≤n

{Dn(i)};

• the size Sn as the number of (internal) nodes in the tree;

• the internal profile In,k as the number of internal nodes at level k (see
Figure 7.2);

• the external profile Bn,k as the number of external nodes at level k (see
Figure 7.2).

There are relationships between these parameters. For example, all param-
eters can be expressed in terms of the external and internal profiles. Indeed,

Ln =
∑

j

jIn,j ,

Hn = max{j : Bn,j > 0},
Rn = min{j : Bn,j > 0},
Fn = max{j : In,j = 2j},
Sn =

∑

j

In,j .

We also have the following relationship between the typical depth Dn and the
average external profile E[Bn,k]:

P (Dn = k) =
E[Bn,k]

n
. (7.1)

The reader is asked in Exercise 7.1 to provide a simple argument to prove equa-
tion (7.1).

Another parameter, the multiplicity parameter Mn, is of interest, especially
for the suffix trees to be discussed in Chapter 8. To define Mn, let us first
introduce a useful notion, that of the alignment Cij , the length of the longest
common prefix of the ith and jth strings. Observe that we have the following
relationships:

Dn(i) = max
1≤j≤n

{Cij , j 6= i}+ 1, (7.2)

Hn = max
i6=j
{Cij}+ 1. (7.3)
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Figure 7.2. A trie of n = 5 record strings; the rectangles holding the
records are external nodes and the circles represent internal nodes.

Then the multiplicity parameter Mn is defined as

Mn = #{j : Cj,n+1 + 1 = Dn(n+ 1), 1 ≤ j ≤ n} (7.4)

where we recall that Dn(n+ 1) = maxj Cj,n+1 + 1 is the depth of insertion. In
other words, Mn is the number of strings that have the longest common prefix
with the (n+ 1)th (inserted) string. In terms of the underlying trie, built from
the first n strings, the multiplicity parameterMn is the size of the subtree rooted
at the branching point of the (new) insertion of the (n+ 1)th string.

7.2. Moments

In this section we focus on evaluating the moments (mostly the mean and vari-
ance) of some shape parameters of tries and digital trees. We do our analysis for
binary alphabets but all results can be extended easily to an arbitrary alphabet.

7.2.1. Average path length in a trie by Rice’s method

Let us consider a trie built over n strings generated by a binary memoryless
source with p the probability of generating a zero and q = 1 − p. We first
deal with the average depth E[Dn] and the average path length E[Ln]. Clearly,
E[Ln] = nE[Dn], thus we need to evaluate only one of these parameters. It
turns out that the average path length is easier to derive.

Let ln = E[Ln] in a binary trie. It should be easy to see that ln satisfies the
following recurrence for n ≥ 2:

ln = n+

n∑

k=0

(
n

k

)
pkqn−k(lk + ln−k) (7.5)
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with l0 = l1 = 0. Indeed, n strings at the root are split into left and right
subtrees according to whether the first symbol of these strings is 0 or 1. The
probability that k out of n strings starts with 0 is binomially distributed, i.e., it
is equal to (

n

k

)
pkqn−k.

Finally, the subtrees are tries of sizes k and n− k, respectively.
The above recurrence falls into a general recurrence of the following form

xn = an +

n∑

k=0

(
n

k

)
pkqn−k(xk + xn−k), n ≥ 2 (7.6)

with x0 = x1 = 0 and an a given sequence (in our case an = n). We can solve
(7.6) using an exponential generating function, defined as

X(z) =
∑

n≥0

xn
zn

n!
.

We also define the Poisson transform as X̃(z) = X(z)e−z. Then, after multi-
plying by zn/n! and using the convolution formula, we arrive at the following

functional equation for X̃(z):

X̃(z) = Ã(z) + X̃(zp) + X̃(zq)− a0e−z − a1ze−z (7.7)

where Ã(z) = A(z)e−z = e−z
∑∞

n=0 anz
n/n!. Since x̃n = n![zn]X̃(z),1 the

quantities x̃n and xn are related by

xn =

n∑

k=0

(
n

k

)
x̃k. (7.8)

To solve (7.5) we need to introduce the binomial inverse relations, defined
as

ân =

n∑

k=0

(
n

k

)
(−1)kak, an =

n∑

k=0

(
n

k

)
(−1)kâk (7.9)

which follow immediately from the exponential functional relations

Â(z) = A(−z)ez, A(z) = Â(−z)ez

1See (1.32) for the meaning of the notation [zn]X̃(z).
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or the simple combinatorial relation2

[[n = k]] =

n∑

j=0

(−1)j+k
(
n

j

)(
j

k

)
.

For example, in Exercise 7.2 we ask the reader to prove, for nonnegative r, that

an =

(
n

r

)
, ân = (−1)rδn,r

where δn,r = 1 if n = r and zero otherwise.

After comparing the coefficients of X̃(z) at zn in (7.7) we can solve the
recurrence (7.5). We give the solution in the following simple lemma.

Lemma 7.2.1. The recurrence (7.6) has the following solution

xn =

n∑

k=2

(−1)k
(
n

k

)
âk + ka1 − a0
1− pk − qk , (7.10)

where n![zn]Ã(z) = ãn := (−1)nân. Furthermore,

x̂n =
âk + ka1 − a0
1− pk − qk (7.11)

for all n.

Proof. Comparing the coefficients at zk of (7.7) we find

x̃k =
ãk − (−1)ka0 − a1(−1)k−1k

1− pk − qk .

Noting that ãk = (−1)kâk and using (7.8) completes the proof.

In view of this, we can also derive an exact expression for the average path
length, namely

ln =

n∑

k=2

(−1)k
(
n

k

)
k

1− pk − qk (7.12)

for n ≥ 2. We should point out that (7.12) has the form of an alternating sum.
This suggests that the asymptotics of ln may require sophisticated analytic tools.
This turns out to be the case, as we shall see next.

2Recall that [[a = b]] = 1 if and only if a = b.
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In order to find an asymptotic expansion of ln, we appeal to the so-called
Rice method. Let us consider a general alternating sum of the form

Sn[f ] :=
n∑

k=m

(−1)k
(
n

k

)
fk

for some fixed m and any function f that enjoys a valid analytic continuation
to a complex plane.

Theorem 7.2.2 (Rice’s formula). Let f(s) be an analytic continuation of f(k) =
fk that contains the half line [m,∞). Then

Sn[f ] :=

n∑

k=m

(−1)k
(
n

k

)
fk =

(−1)n
2πi

∫

C[m,n]

f(z)
n!

z(z − 1) · · · (z − n)dz

= − 1

2πi

∫

C[m,n]

B(n+ 1,−z)f(z)dz, (7.13)

where C[m,n] is a positively oriented curve that encircles [m,n] and does not
include any of the integers 0, 1, . . . ,m−1 and where B(x, y) = Γ(x)Γ(y)/Γ(x+y)
is the beta function.

Proof. This requires a direct application of the residue calculus after noting that
the poles within C of the integrand are at k = m,m+ 1, . . . , n and that

Res

[
n!

z(z − 1) · · · (z − n)f(z); z = k

]
= (−1)n−k

(
n

k

)
f(k).

This completes the proof.

Another representation of Sn[f ] is sometimes easier to handle computation-
ally. (It was called by Knuth (1998) the gamma method.) In this case, however,
we need to restrict f to polynomial growth, that is, f(s) = O(|s|k) for some k
as s → ∞. In fact, when evaluating the integral in the Rice method, we must
usually impose some growth condition on f over large circles. The proof uses a
simple residue theorem argument, as above, and is left to the reader to perform
in Exercise 7.4.

Theorem 7.2.3 (Szpankowski, 1988). Let f(z) be of polynomial growth at in-
finity and let it be analytic to the left of the vertical line (12−m−i∞, 12−m+i∞).
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Then

Sn[f ] =
1

2πi

∫ 1
2−m+i∞

1
2−m−i∞

f(−s)B(n+ 1, s)dz (7.14)

=
1

2πi

∫ 1
2−m+i∞

1
2−m−i∞

f(−s)n−sΓ(s)

(
1− s(s+ 1)

2n
(7.15)

+
s(1 + s)

24n2
(3(1 + s)2 + s− 1) +O(n−3)

)
ds, ℜ(s) > 0,

where as before B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta function.

We now note that (7.12) falls into the Rice method paradigm. If we apply
Theorem 7.2.3 to (7.12), that translates into

ln =
1

2πi

∫ − 3
2+i∞

− 3
2−i∞

−sB(n+ 1, s)

1− p−s − q−s n
−sds

= −1 +O(1/n)

2πi

∫ − 3
2+i∞

− 3
2−i∞

Γ(s+ 1)

1− p−s − q−sn
−sds, (7.16)

where the integration is along the vertical line (− 3
2−i∞,− 3

2+i∞) in the complex
plane. In what follows, we ignore the error term, which is of order O(1/n).

We can apply a standard approach, sometimes called the “closing-the-box
method”, to estimate the integral (7.16). We consider the rectangle R shown in
Figure 7.3. To simplify our notation, set

X∗(s) =
Γ(s+ 1)

1− p−s − q−s .

Then the integral of X∗(s)n−s along R can be divided into four parts as follows:

lim
A→∞

∫

R
= lim

A→∞

(∫ c+iA

c−iA
+

∫ M+iA

c+iA

+

∫ M−iA

M+iA

+

∫ c−iA

M−iA

)

where c = 3/2. We are interested in the first integral since the second and
the fourth integrals contribute O(e−αA) for some α > 0, owing to the small-
ness property of the gamma function presented in (1.42) of Chapter 1. The
contribution of the third integral is computed as follows. For any M > 0,

∣∣∣∣∣

∫ M−i∞

M+i∞
X∗(s)n−sds

∣∣∣∣∣ =
∣∣∣∣
∫ −∞

+∞
X∗(M + it)n−M−itdt

∣∣∣∣

≤ |n−M |
∫ −∞

+∞
|X∗(M + it)|dt = O(n−M ),
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-

6

−2 −1 0 ℜ

ℑ

M + iA

M − iA
c− iA

c + iA

6
-

?�

c

c

c

c

c

c

c

Figure 7.3. The integration contour (the circles represent the zeroes of
p−s + q−s = 1.

since the integral in the last line exists owing to the properties of the gamma
function. Now, by the Cauchy residue theorem, we find for any M > 0

1

2πi

∫ c+i∞

c−i∞
X∗(s)n−sds = −

∑

sk∈Z
Res[X∗(s)n−s, s = sk] +O(n−M ), (7.17)

where the sk are singularities of the function X∗(s)n−s. The minus sign is a
consequence of the clockwise orientation of the contour R.

In order to evaluate the residues of (7.17) we must examine the locations of
the zeros of the characteristic equation 1 − p−s − q−s = 0, that is, we need to
study the properties of the set Z = {s ∈ C : p−s + q−s = 1}. We can prove the
following lemma:

Lemma 7.2.4 (Jacquet, 1989; Schachinger, 1993). Suppose that 0 < p < q <
1 with p+ q = 1, and let

Z = {s ∈ C : p−s + q−s = 1}.

Then
(i) All s ∈ Z satisfy

−1 ≤ ℜ(s) ≤ σ0,
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where σ0 is a real positive solution of 1 + q−s = p−s. Furthermore, for every
integer k there uniquely exists sk ∈ Z with

(2k − 1)π

log(1/p)
< ℑ(sk) <

(2k + 1)π

log(1/p)

and consequently Z = {sk : k ∈ Z}.
(ii) If log q/ log p is irrational then s0 = −1 and ℜ(sk) > −1 for all k 6= 0.

(iii) If log q/ log p = r/d is rational, where gcd(r, d) = 1 for integers r, d > 0, then
ℜ(sk) = −1 if and only if k ≡ 0 mod d. In particular ℜ(s1), . . . ,ℜ(sd−1) > −1
and

sk = sk mod d +
2(k − k mod d)πi

log p
, (7.18)

that is, all s ∈ Z are uniquely determined by s0 = −1 and by s1, s2, . . . , sd−1,
and their imaginary parts constitute an arithmetic progression. Furthermore,
there exists δ > 0 such that all remaining solutions sk satisfy ℜ(sk) ≤ s0− δ for
k 6= 0.

Proof. We first prove part (i). If p < q and σ = ℜ(s) < −1, then we have
|p−s + q−s| ≤ p−σ + q−σ < p + q = 1. Next, there uniquely exists σ0 > 0 with
1 + q−σ0 = p−σ0 , and we have 1 + q−σ > p−σ if and only if σ < σ0. Now if
p−s + q−s = 1, then 1 + q−ℜ(s) ≥ |1 − q−s| = |p−s| = p−ℜ(s). Consequently
ℜ(s) ≤ σ0.

Let Bk denote the set

Bk = {s ∈ C : −2 ≤ ℜ(s) ≤ σ0 + 1, (2k − 1)π/ log p ≤ ℑ(s) ≤ (2k + 1)π/ log p}.

We will show that Bk contains exactly one point of Z for each k. First, the
function f(s) = p−s − 1 has exactly one zero, at s̃k = (2kπi)/ log p ∈ Bk. We
shall show that |q−s| < |p−s − 1| on the boundary of Bk. Thus, by Rouche’s
theorem3 (cf. Henrici (1997)) the function g(s) = p−s− 1+ q−s also has exactly
one zero in Bk as required. We now prove that |q−s| < |p−s − 1| to complete
the proof of part (i). If ℑ(s) = (2k ± 1)π/ log p, then p−s − 1 = −p−ℜ(s) − 1.
Next, observe that p < q implies that for all real σ we have q−σ < 1 + p−σ.
Consequently, |q−s| = q−ℜ(s) < 1 + p−ℜ(s) = |1 − p−s|. If ℜ(s) = −2, then
it follows from p2 + q2 < 1 that |q−s| = q2 < 1 − p2 ≤ |1 − p−s|. Finally, if
ℜ(s) = σ0 + 1 then we have q−σ0−1 + 1 < p−σ0−1 and, thus, |q−s| = q−σ0−1 <

3Recall that Rouche’s theorem states that if f(z) = g(z)+h(z) and h(z) are analytic inside
and on a contour C and are such that |g(z)| < |h(z)| then h(z) and f(z) = g(z) + h(z) have
the same number of zeros inside C.
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p−σ0−1 − 1 = |1 − p−s|. This completes the proof that |q−s| < |p−s − 1| on the
boundary of Bk.

For part (ii), suppose that s = −1 + it for some t 6= 0 and p−s + q−s =
pe−it log p + qe−it log q = 1. Of course, this is only possible if there exist (non-
zero) integers d̃, r̃ with t log p = 2πd̃ and t log q = 2πr̃. This implies that
log p/ log q = d̃/r̃ is rational. Conversely, if log p/ log q is irrational, then it
follows that all s ∈ Z with s 6= −1 satisfy ℜ(s) > −1.

Finally, for part (iii), suppose that log p/ log q = d/r is rational, where we
assume that d and r are coprime positive integers. It is immediately clear that
all s of the form s = −1 + 2ℓπid/ logp, where ℓ is an arbitrary integer, are
contained in Z. This means that

sℓd = −1 + 2ℓπid/ log p = s0 + 2ℓπid/ log p.

Similarly we get
sℓd+j = sj + 2πiℓd/ log p

for j = 1, 2, . . . , d−1. It remains to show that ℜ(sj) > −1 for j = 1, 2, . . . , d−1.
From the proof of (ii) it follows that every s ∈ Z with ℜ(s) = −1 has imaginary
part ℑ(s) = 2πd̃/ log p, where d̃ is an integer with log p/ log q = d̃/r̃. Thus, d̃ is
an integer multiple of d, that is, d̃ = ℓd and consequently s = sℓd.

Remark 7.2.5. The above lemma plays a role in many places in this book.
Therefore, we will generalize it to any alphabet A. For this we must first define
rationally related numbers.

Definition 7.2.6. We say that the members of the set {log pa}a∈A are ratio-
nally related if there exists a positive real number L such that the log pa are
integer multiples of L, that is, log pa = −naL, na ∈ Z>0, (a ∈ A). Equiva-
lently this means that all the ratios (log pa)/(log pb) are rational. Without loss
of generality we can assume that L is as large as possible which implies that
gcd(na, a ∈ A) = 1. Similarly, we say that the members of {log pa}a∈A are
irrationally related if they are not rationally related.

In this general case, the characteristic equation is
∑

a∈A
p−sa = 1. (7.19)

Its roots sk satisfy the above lemma with some alteration, mostly for the ratio-
nally related case. To be more precise, let log pa = Lna for some real L and
integers na for a ∈ A. Then (7.19) can be written as

∑

a∈A
zna = 1, z = e−Ls. (7.20)
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Let K = maxa{na}. Hence, we can say that (7.20) is a polynomial of degree K,
and by the fundamental theorem of algebra we know that it has K roots, which
we denote as z0, z1, . . . , zK−1. Notice that the corresponding roots sj are given
by

sj =
−1
L

log zj (7.21)

for j = 0, 1, . . . ,K − 1. In particular, s0 = −1 corresponds to z0 = eL. In fact,
all the roots sk of the characteristic equation (7.19) can be written as (somewhat
abusing the notation)

sk = sj +
2πik

L
, k ∈ Z,

for any integer k and j = 0, . . . ,K − 1 with sj given by (7.21).

Now, we are in a position to complete our asymptotic expansion of the aver-
age path length ln = E[Ln]. In order to compute the residues we shall use the
following expansions for w = s− s0 (in our case s0 = −1):

Γ(s+ 1) =
1

s+ 1
− γ + O(s+ 1), (7.22)

n−s = n− n logn(s+ 1) +O((s + 1)2), (7.23)

1

1− p−s − q−s = − 1

h

1

s+ 1
+

h2
2h2

+O(s+ 1), (7.24)

where h = −p ln p−q ln q, h2 = p ln2 p+q ln2 q, and γ = 0.577215 . . . is the Euler
constant.

Theorem 7.2.7. Consider a binary trie built over n strings generated by a
memoryless source.
(i) If log p/ log q is irrational then

E[Ln] =
n

h
log2 n+

n

h

(
γ +

h2
2h

)
+ o(n),

where we recall that h = −p log2 p − q log2 q is the source entropy rate, h2 =
p log22 p+ q log22 q, and γ = 0.577 . . . is Euler’s constant.
(ii) If log p/ log q = d/r is rational with gcd(r, d) = 1, where r, d ∈ Z, then

E[Ln] =
n

h
log2 n+

n

h

(
γ +

h2
2h
− Φ0(logn)

)
+

d∑

j=1

n−si 1

h(si)
Φi(logn)

+O(log n) (7.25)

=
n

h
log2 n+

n

h

(
γ +

h2
2h
− Φ0(logn)

)
+O(n1−ε), (7.26)
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with ℜ(si) > −1 for i = 1, . . . d− 1 as in Lemma 7.2.4(iii);

h(si) = −p−si log p− q−si log q

and

Φ0(x) =
∑

k 6=0

Γ

(
2kπk

L

)
exp

(
−2kπk

L
x

)
, (7.27)

Φi(x) =
∑

k 6=0

Γ

(
1 + si +

2kπk

L

)
exp

(
−2kπk

L
x

)
(7.28)

are continuous periodic functions with period 1, mean zero, a small amplitude,
and L = log p/d.

Proof. The proof follows directly from (7.17), computing the residues at sk.
Notice that s0 = −1 is a double pole, leading to the main term of E[Ln], while sk
for k 6= 0 contributes to the periodic functions Φi(x) for each si, i = 0, . . . , d. The
main periodic function Φ0(x) is the residue at sk = s0+2πik/L and contributes
nΦ0(logn) while the other zeros sk = si + 2πik/L, i 6= 0, lead to n−siΦi(logn)
and contribute O(n1−ε) for some ε > 0.

Remark 7.2.8. Theorem 7.2.7 extends, as stated, to a general alphabet A
with

h = −
∑

a∈A
pa log pa, h2 =

∑

a∈A
pa log

2 pa, h(si) = −
∑

a∈A
p−sia log pa.

In this case, we need to use a general L as in Definition 7.2.6.

7.2.2. Average size of a trie

In this subsection we apply the methodology just learned to estimate the average
size of a trie, that is, the average number of internal nodes in a trie generated
by a memoryless model.

Let Sn be the size and define sn = E[Sn]. Then sn satisfies the following
recurrence for n ≥ 2

sn = 1 +

n∑

k=0

(
n

k

)
pkqn−k(sk + sn),
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with s0 = s1 = 0. This falls under the general recurrence (7.6) and can be solved
using Lemma 7.2.1. We find that

sn =

n∑

k=2

(−1)k
(
n

k

)
k − 1

1− pk − qk .

Applying Theorem 7.2.3 we arrive at

sn = −(1 +O(1/n))

∫ − 3
2+i∞

− 3
2−i∞

Γ(s)(s+ 1)

1− p−s − q−sn
−sds.

We next follow in the footsteps of our analysis from the last subsection. Since
the characteristic equation 1 − p−s − q−s is the same as in the analysis of the
path length, the roots sk satisfy Lemma 7.2.4. In particular, s0 = −1. However,
unlike in the path length case, s0 is a single pole owing to the factor s+1. Also,
we need the expansion

Γ(s) = − 1

s+ 1
+ 1− γ +O(s+ 1)

together with (7.23) and (7.24).
We have the following result.

Theorem 7.2.9. Consider a trie built over n strings generated by a memory-
less source over a finite alphabet A.
(i) If log p1, . . . , log p|A| are irrationally related, then

E[Sn] =
n

h
+ o(n),

where h is the entropy rate defined in (7.29).
(ii) If log p1, . . . , log p|A| are rationally related then

E[Sn] =
n

h
(1 + Φ0(logn)) +O(n1−ε) (7.29)

for any ε > 0, where Φ0(x) is defined in (7.27) of Theorem 7.2.7.

7.2.3. Average depth in a DST by Rice’s method

We now consider a digital search tree, as defined in Chapter 6. An example
of a binary digital tree is shown in Figure 6.8. In this section we use the Rice
method to estimate the mean and variance of the typical depth, that is, the
path length from the root to a randomly selected node. The reader is referred
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to Section 9.3.1 of Chapter 9 for an extension of this analysis to moments of the
path length.

Let In,k denote the number of internal nodes at level k in a digital tree built
over n binary strings generated by a memoryless source. To derive a recurrence
on the typical depth Dn we observe as in Section 7.1 that

P (Dn = k) =
E[In,k]

n
. (7.30)

We shall work initially with the average profile and so we define the gener-
ating function Bn(u) =

∑∞
k=0 E[In,k]u

k, which satisfies for a binary DST the
recurrence

Bn+1(u) = 1 + u

n∑

j=0

(
n

j

)
pjqn−j(Bj(u) +Bn−j(u)) (7.31)

with B0(u) = 0. This recurrence arises naturally in our setting when we consider
the left and the right subtrees of the root, and note that j strings will go to the
left subtree with probability (

m

j

)
pjqm−j .

To solve (7.31), let us multiply both sides by zn/n! to arrive at

B′
z(z, u) = ez + uB(pz, u)eqz + uB(qz, u)epz,

where

B(z, u) =

∞∑

n=0

Bn(u)
zn

n!

and B′
z(z, u) is the derivative of B(z, u) with respect to z. We now multiply

this functional equation by e−z and introduce the Poisson transform B̃(z, u) =
B(z, u)e−z. This leads to a new functional equation, namely

B̃′(z, u) + B̃(z, u) = 1 + u(B̃(zp, u) + B̃(zq, u)).

Now comparing the coefficients at zn one finds that

B̃n+1(u) = δm,0 − B̃n(u)(1 − upn − uqn),

where δ0,m is the Kronecker symbol. It now suffices to note that

Bn(u) =

m∑

k=0

(
n

k

)
B̃k(u)
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to finally obtain

Bn(u) = n− (1− u)
n∑

k=2

(−1)k
(
n

k

)
Qk−2(u) (7.32)

where

Qk(u) =

k+1∏

j=2

(1− upj − uqj), Q0(u) = 1. (7.33)

Using our analysis from subsection 7.2.1, we present in Theorem 7.2.10 be-
low our findings for the mean and the variance of the depth in a DST. In Re-
mark 7.2.11 we re-prove the theorem using the Rice method.

Theorem 7.2.10 (Kirschenhofer & Prodinger, 1988; Szpankowski, 1991). The
average depth E[Dn] in a binary digital search tree attains the following asymp-
totics as n→∞;

E[Dn] =
1

h

(
log n+ γ − 1 +

h2
2h
− η +∆1(logn)

)
+O

(
logn

n

)
, (7.34)

where, as we recall, h is the entropy, h2 = p log2 p+ q log2 q, γ = 0.577 . . . is the
Euler constant, and

η =

∞∑

k=1

pk+1 log p+ qk+1 log q

1− pk+1 − qk+1
. (7.35)

When log p/ log q is irrational we have

lim
x→∞

∆1(x) = 0,

while if log p/ log q = d/r for some integers d, r, then ∆1(x) = ∆0(x) + ∆̃(x) is

a periodic function with a small amplitude such that limx→∞ ∆̃(x) = 0 and

∆0(x) =

∞∑

k 6=0

Γ

(
−1 + 2πikd

log p

)
exp

(
−2πikd

log p
log x

)
. (7.36)

The variance of Dn satisfies

Var[Dn] =
h2 − h2
h3

logn+A+∆2(logn) +O

(
log2 n

n

)
, (7.37)
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where A is a constant (see Exercise 7.5) and ∆2(x) is a fluctuating function
with a small amplitude. In the symmetric case (p = q), the coefficient at logn
becomes zero and

Var[Dn] =
1

12
+

1

log2 2
· π

2

6
− η − β +∆(log2 n)− [∆2]0 +O

(
log2 n

n

)
(7.38)

where

η =

∞∑

j=1

1

2j − 1
, β =

∞∑

j=1

1

(2j − 1)2
,

the function ∆2(x) is continuous with period 1 and mean zero, and the term
[∆2]0 < 10−10 is the mean of ∆2(x).

Proof. We present only a sketch of the proof using the approach of Theorem 7.2.3.
It suffices to derive the asymptotics of the average path length ln := nE[Dn]
and the second factorial moment of the path length,

l2n := nE[Dn(Dn − 1)].

But ln = B′
n(1) and l

2
n = B′′

n(1) where B′
n(1) and B′′

n(1) are the first and the
second derivatives of Bn(u) at u = 1. Note that

Var[Dn] =
l
2
n

n
+
ln
n
−
(
ln
n

)2

.

We should point out here that the variance of the path length Var[Ln] requires
a quite different analysis, which is summarized in Theorem 9.3.1 of Chapter 9.

Using (7.32), after some algebra we arrive at the following two recurrences
for all n ≥ 0

ln+1 = n+

n∑

k=0

(
n

k

)
pkqn−k(lk + ln−k), (7.39)

l
2
n+1 = 2(ln+1 − n) +

(
n

k

)
pkqn−k(l2k + l

2
n−k) (7.40)

with l0 = l
2
0 = 0. The recurrence (7.39) resembles (7.31). Therefore, its solution

is

ln =

n∑

k=2

(−1)k
(
n

k

)
Qk−2, (7.41)

where

Qk = Qk(1) =
k+1∏

j=2

(1− pj − qj).
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This is an alternating sum with a kernel Qk of polynomial growth, so either
Rice’s method in Theorem 7.2.2 or Theorem 7.2.3 can be used. We use the
latter method first, and then in Remark 7.2.11 following this proof we outline
Rice’s approach. We need the analytic continuation of Qk, but this is easy.
Define

Q(s) =
P (0)

P (s)
,

where P (s) =
∏∞
j=2(1 − ps+j − qs+j). Then Qk = Q(s)|s=k and, by Theo-

rem 7.2.3, we have

ln =
1 +O(1/n)

2πi

∫ − 3
2+i∞

− 3
2−i∞

Γ(s)n−sQ(−s− 2)ds (7.42)

= −
∑

sk,j

Res(Γ(s)n−sQ(−s− 2), s = sk,j),

where the sk,j are roots of

pj−2−s + qj−2−s = 1 (7.43)

for integers k. To consider all singularities we must also take into account the
singularities of the gamma function at s = 0 and s = −1 together with the
roots of (7.43). In particular, s0,2 = −1 and s0,3 = 0. An easy extension of
Lemma 7.2.4 applies to (7.43). The main contribution comes from s0,2 = −1.
We use the expansions (7.22)–(7.24) together with

Q(−s− 2) =
P (0)

P (−s− 2)
=

1

1− p−s − q−s
P (0)

P (−s− 1)
.

To find an expansion for P (0)/P (−s−1) we use a simple result for the products
of functions. Namely, if

F (z) =
∏

j

1

1− fj(z)

for differentiable functions fj(z) then Taylor’s expansion at z = z0 is

F (z) = F (z0)


1 +

∑

j

f ′
j(z0)

1− fj(z0)
(z − z0) +O((z − z0)2)


 . (7.44)

Thus Q(−s− 2) has the following Laurent expansion:

Q(−s− 2) = − 1

h

1

s+ 1
+
η

h
+

h2
2h2

+ (s+ 1)
ηh2
2h2

+O((s+ 1)2). (7.45)
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Finally, extracting the coefficient at (s+ 1)−1, we establish the leading term of
the asymptotics without ∆1(x) as in the analysis of the path length of a trie.
To obtain ∆1(x) and, in particular, ∆0(x) we must consider the roots at sk,2
for k 6= 0. Using Lemma 7.2.4 we finally prove (7.34). The double pole at s = 0
contributes an O(log n) term.

The asymptotics of l
2
n can be obtained in a similar manner but algebra is

more involved. We need to find the binomial inverse to ln. Solution (7.41)

implies that l̂n = Qn−2. With this in mind we obtain directly

l2n = −2
n∑

k=2

(
n

k

)
(−1)kQk−2Tk−2,

where

Tn =

n+1∑

i=2

pi + qi

1− pi − qi .

We need an analytic continuation of Tn. A “mechanical” derivation works here
upon observing that

Tn+1 = Tn +
pn+2 + qn+2

1− pn+2 − qn+2
.

Replacing n by z we obtain

T (s) = T (s+ 1)− ps+2 + qs+2

1− p+2 − qs+2
,

for which after some iterations we find

T (s) = T (∞)−
∞∑

i=2

ps+i + qs+i

1− ps+i − qs+i .

Setting s = 0 in the above, knowing that T (0) = 0 we finally arrive at

T (s) = η −
∞∑

i=2

ps+i + qs+i

1− ps+i − qs+i ,

where η was defined in (7.35). The above derivation can easily be made rigorous
by observing that all series involved do converge for ℜ(z) > −2.
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Remark 7.2.11. Now we re-prove Theorem 7.2.10 using Rice’s method from
Theorem 7.2.2. We have

ln = − 1

2πi

∫

C[2,n]

B(n+ 1,−z)Q(z − 2)dz

with the same notation as before. Now we expand the contour of integration to
a larger curve C that includes all singularities of the integral and excludes [2, n].
Then

ln =
∑

zk,j

Res[B(n+ 1,−z)Q(z − 2); z = zk,j ],

where the zk,j are the roots of

pz+j + qz+j = 1.

Notice that for log p/ log q = d/r, where d and r are integers in the rational
case, zk,j = 3 − j + 2πid/ log p for j ≥ 2. The main contribution to the sum
comes from the roots z0,2 = 1 and z0,3 = 0. In particular, we need the following
Laurent expansions:

B(n+ 1,−z) = n

z − 1
+ n(H̄n+1 − 1) +O(z),

Q(z − 2) =
1

1− pz − qz
P (0)

P (z − 1)
,

where H̄n =
∑n

i=1 1/i is the harmonic sum. For the last term we then use (7.44).
This leads to findings in Theorem 7.2.10.

Remark 7.2.12. It is easy to extend our result to any finite alphabet. In
particular, a more detailed asymptotic analysis leads to

E[Ln] = nE[Dn] =
n

h

(
logn+

h2
2h

+ γ − 1− η +∆1(logm)

)
(7.46)

+
1

h

(
logm+

h2
2h

+ γ − η −
∑

a∈A
log pa −

1

2

)
,

where

η = −
∑

k≥2

∑
a∈A p

k
a log pa

1−∑a∈A p
k
a

and h and h2 are defined in (7.29).
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In passing we point out that Var[Ln] is much harder to analyze. We will
discuss it in Section 9.3.1 of Chapter 9 where, in Theorem 9.3.1, we present
detailed results concerning the mean and the variance of Ln and in Theorem 9.3.3
we establish the central limit theorem for the path length Ln of a digital search
tree. These results for DST presented in Section 9.3 are proved using refined
analytic depoissonization and Mellin transform.

7.2.4. Multiplicity parameter by Mellin transform

In this section we continue analyzing the moments of shape parameters; however,
we now use new techniques such as analytic depoissonization and the Mellin
transform to establish our results. Both techniques are carefully explained in the
recent books by Szpankowski (2001) and Flajolet and Sedgewick (2009) but, for
the reader’s convenience, we summarize the basic properties of depoissonization
and the Mellin transform in Tables 7.1 and 7.2.

We also deal here with a new parameter, namely the multiplicity parameter
Mn defined in Section 7.1. Actually, we can interpret Mn in a different way.
Consider a randomized selection algorithm that has n initial participants and a
moderator. At the outset, n participants and one moderator are present. Each
has a biased coin with a probability p of showing a head when flipped; as always
q = 1 − p. At each stage of the selection process the moderator flips its coin
once; the participants remain for subsequent rounds if and only if their result
agrees with the moderator’s result. Note that all participants are eliminated
in finitely many rounds with probability 1. We let Mn denote the number
of participants remaining in the last nontrivial round (i.e., the final round in
which some participants still remain). This, as it turns out, is the same as the
multiplicity parameter defined in Section 7.1 since the game can be viewed in
terms of a trie. Indeed, consider a trie built from strings of 0s and 1s drawn
from an i.i.d. source. We restrict attention to the situation where n such strings
have already been inserted into a trie. When the (n+1)th string is inserted into
the trie, Mn denotes the size of the subtree that starts at the branching point
of this new insertion.

Our goal is to evaluate the mean and the variance of Mn. However, instead
we will compute all the factorial moments of Mn, that is,

E[M
j
n] = E[Mn(Mn − 1) · · · (Mn − j + 1)].

We define the exponential generating function

Wj(z) =
∑

n≥0

E[(Mn)
j ]
zn

n!
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and its Poisson transform as W̃j(z) = Wj(z)e
−z. To find a functional equation

for Wj(z) observe that for any function f on tries we have

E[f(Mn)] = pn(qf(n) + pE[f(Mn)]) + qn(pf(n) + qE[f(Mn)])

+

n−1∑

k=1

(
n

k

)
pkqn−k (pE[f(Mk)] + qE[f(Mn−k)]) . (7.47)

Thus, in particular,

E[(Mn)
j ] = pn(qnj + pE[(Mn)

j ]) + qn(pnj + qE[(Mn)
j ])

+

n−1∑

k=1

(
n

k

)
pkqn−k(pE[(Mk)

j ] + qE[(Mn−k)
j ]). (7.48)

We derive an asymptotic solution as n → ∞ for these recurrence relations
using poissonization, the Mellin transform, and depoissonization. The idea is
to replace a fixed-size population model (i.e., a model in which the number n
of initial participants or string is fixed) by a poissonized model, in which the
number of strings/participants is a Poisson random variable with mean n. This
is affectionately referred to as “poissonizing” the problem. So, we let the number
of strings be N , a random variable that has a Poisson distribution and mean
n (i.e., P (N = j) = e−nnj/j! ∀j ≥ 0). We apply a Poisson transform to the
exponential generating function Wj(z), which yields

W̃j(z) =
∑

n≥0

E[(Mn)
j ]
zn

n!
e−z

where in general z is complex. From (7.48) we conclude that

W̃j(z) = q(pz)je−qz + p(qz)je−pz + pW̃j(pz) + qW̃j(qz). (7.49)

In order to solve (7.49) we apply a Mellin transform, defined for a real function
on (0,∞) by

M[f(x); s] = f∗(s) =

∫ ∞

0

f(x)xs−1 dx.

We give the properties of the Mellin transform in Table 7.1.
We next determine the fundamental strip of W̃j(x) as defined in property

(M2) of Table 7.1, that is, we determine where the Mellin transform W̃ ∗
j (s) of

W̃j(x) exists. We therefore need to understand the behavior of W̃j(x) for x→ 0
and x→∞. Observe that

W̃j(x) = q(px)je−qx + p(qx)je−px + pW̃j(px) + qW̃j(qx)
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= q(px)j
∑

k≥0

(−qx)k
k!

+ p(qx)j
∑

k≥0

(−px)k
k!

+p
∑

n≥0

E[(Mn)
j ]
(px)n

n!

∑

k≥0

(−px)k
k!

+q
∑

n≥0

E[(Mn)
j ]
(qx)n

n!

∑

k≥0

(−qx)k
k!

→ q(px)j + p(qx)j + pE[(Mj)
j ]
(px)j

j!
+ qE[(Mj)

j ]
(qx)j

j!
= O(xj) as x→ 0.

We expect that W̃j(x) = O(1) = O(x0) as x→∞. So, by property (M2) of

Table 7.1, the Mellin transform W̃ ∗
j (s) of W̃j(x) exists for ℜ(s) ∈ (−j, 0), which

is the fundamental strip. Furthermore,

M(e−x; s) =

∫ ∞

0

e−xx−s dx = Γ(s).

Using property (M3) of Table 7.1, we can solve (7.49) in terms of the Mellin
transform, arriving at

W̃ ∗
j (s) =

Γ(s+ j)
(
pjq−s−j+1 + qjp−s−j+1

)

(1− p−s+1 − q−s+1)
. (7.54)

From Table 7.1 we note that the Mellin transform is a special case of the
Fourier transform. So, there is an inverse Mellin transform, given in property
(M4). Since W̃j is continuous on (0,∞),

W̃j(x) =
1

2πi

∫ − 1
2+i∞

− 1
2−i∞

W̃ ∗
j (s)x

−s ds (7.55)

since c = −1/2 is in the fundamental strip of W̃j(x) ∀j ≥ 1. This is true for real
x; however, we can analytically continue it to complex z around the positive real
axis.

We now restrict attention to the case where log p/ log q is rational. Thus
we can write log p/ log q = d/r for some relatively prime r, d ∈ Z. Then, by

Lemma 7.2.4 we know that the set of dominating poles of W̃ ∗
j (s)x

−s is exactly

sk =
2kdπi

ln p
k ∈ Z.
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Table 7.1. Main properties of the Mellin transform.

(M1) Direct and inverse Mellin transforms. Let c belong to the fundamental
strip defined below. Then, for a real function f(x) defined on (0,∞),

f∗(s) :=M(f(x); s) =

∫ ∞

0

f(x)xs−1dx ⇐⇒ f(x) =
1

2πi

∫ c+i∞

c−i∞
f∗(s)x−sds.

(7.50)
(M2) Fundamental strip. The Mellin transform of f(x) exists in the funda-
mental strip ℜ(s) ∈ (−α,−β), where

f(x) = O(xα), x→ 0 f(x) = O(xβ) x→∞

for β < α.
(M3) Harmonic sum property. By linearity and the scale ruleM(f(ax); s) =
a−sM(f(x); s), we have

f(x) =
∑

k≥0

λkg(µkx) ⇐⇒ f∗(s) = g∗(s)
∑

k≥0

λkµ
−s
k . (7.51)

(M4a) Asymptotics of f(x) and singularities of f∗(s) for x→ 0.

f(x) =
∑

k

ckx
ξ(log x)k+O(xM ) ⇐⇒ f∗(s) ≍

∑

k

ck
(−1)kk!

(s+ ξ)k+1
. (7.52)

(i) Direct mapping. Assume that as x→ 0+ function f(x) admits the asymptotic
expansion (7.52) for some −M < −α and k > 0. Then, for ℜ(s) ∈ (−M,−β),
the transform f∗(s) satisfies the singular expansion (7.52).
(ii) Converse mapping. Assume that f∗(s) = O(|s|−r) with r > 1, as |s| → ∞
and that f∗(s) admits the singular expansion (7.52) for ℜ(s) ∈ (−M,−β). Then
f(x) satisfies the asymptotic expansion (7.52) at x→ 0+.
(M4b) Asymptotics of f(x) and singularities of f∗(s) for x → ∞. Corre-
sponding to (M4a) we have an asymptotic property for x→∞, namely

f(x) = −
∑

k

(−1)k dk
k!
xξ(log x)k+O(x−M ) ⇐⇒ f∗(s) ≍

∑

k

dk
(s+ ξ)k+1

,

(7.53)
for β ≤ ℜ(s) < M .
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In addition we will have nondominating poles sk,j = sj + 2πkid/ logp with
ℜ(sj) > 0 (j = 1, . . . , d − 1) that contribute O(x−ε), hence we ignore these
singularities from now on.

We observe that W̃ ∗
j (s)x

−s has simple poles at each sk. The integral (7.55)
can be evaluated in exactly the same manner as in Section 7.2.1 by the closing-
the-box method. This leads to

W̃j(x) = −
∑

k∈Z

Res[W̃ ∗
j (s)x

−s; sk] +O(x−ε) (7.56)

where the term O(x−ε) comes from the nondominating poles. We are now left
with evaluating the residues.

We claim that

W̃j(x) = Γ(j)
q(p/q)j + p(q/p)j

h
+

1

h
δj(log1/p x) +O(x−ε), (7.57)

where
δj(t) =

∑

k 6=0

e2krπitΓ(sk + j)
(
pjq−sk−j+1 + qjp−sk−j+1

)
.

To prove the claim, we first observe that, if k ∈ Z, then

Res[W̃ ∗
j (s)x

−s; sk] = x−skRes[W̃ ∗
j (s); sk]

= −e
2kdπi log x/ log pΓ(sk + j)

(
pjq−sk−j+1 + qjp−sk−j+1

)

h

Then (7.57) follows immediately from (7.56).
Finally, we need to depoissonize our results. Recall that, in the original

problem statement, n is a large fixed integer. Most of our analysis has utilized a
model where n is a Poisson random variable. Therefore, to obtain results about
the problem as originally stated, it is necessary to depoissonize our results.
Observe that (7.57) is a solution to the poissonized version of the problem.
We utilize the depoissonization techniques shown in Table 7.2; in particular,
Theorem 7.2.13. By (7.57) it follows that

|W̃j(z)| =
∣∣∣∣Γ(j)

q(p/q)j + p(q/p)j

h
+

1

h
δj(log1/p z) +O(z−M )

∣∣∣∣

≤
∣∣∣∣Γ(j)

q(p/q)j + p(q/p)j

h

∣∣∣∣+
1

h

∣∣∣δj(log1/p z)
∣∣∣+O(|z|−M )

= O(1), since |δj | is uniformly bounded on C.

Therefore, there exist real-valued constants cM , cj,M , zM , zj,M such that

|W̃j(z)| ≤ cj,M |z|0 ∀z ∈ Sπ/4 = {z : |arg(z)| ≤ π/4} with |z| ≥ zj,M .
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Table 7.2. Main properties of analytic depoissonization.

Let gn be a sequence of n. Define the Poisson transform as G̃(z) =
∑

n≥0 gn
zn

n! e
−z.

Theorem 7.2.13. Assume that in a linear cone Sθ = {z : | arg(z)| ≤ θ} (θ <
π/2) the following two conditions hold simultaneously.
(I) For z ∈ Sθ and some real B,R > 0, β

|z| > R ⇒ |G̃(z)| ≤ B|z|β. (7.58)

(O) For z /∈ Sθ and A,α < 1: |z| > R ⇒ |G̃(z)ez| ≤ A exp(α|z|). Then,
for large n,

gn = G̃(n) +O(nβ−1). (7.59)

To extend to distributions we investigate double-index sequences gn,k (e.g,

gn,k = P{Xn = k}). Define G̃(z, u) =
∑∞
n=0

zn

n! e
−z∑∞

k=0 gn,ku
k; G̃k(z) =∑∞

n=1 gn,k
zn

n! e
−z.

Theorem 7.2.14 (Jacquet and Szpankowski, 1998). Let G̃k(z) be a sequence of
Poisson transforms of gn,k. Let the following two conditions hold:
(I) For z ∈ Sθ and a slowly varying function Ψ(x),

|z| > R ⇒ |G̃n(z)| ≤ Bnβ |Ψ(n)|. (7.60)

(O) For z outside the linear cone Sθ, |z| = n ⇒ |G̃n(z)ez| ≤ nγ exp(n−Anα).
Then for large n

gn,n = G̃n(n) +O(nβ−1Ψ(n)) . (7.61)

Define the Poisson mean X̃(z) = G̃′
u(z, 1) and Ṽ (z) = G̃′′

u(z, 1)+ X̃(z)−
(
X̃(z)

)2
.

Theorem 7.2.15. Let X̃(z) = O(zβΨ(z)) and Ṽ (z) = O(zβΨ(z)) in a linear
cone Sθ and appropriate conditions (O) outside the cone be satisfied. Then

E[Xn] = X̃(n)− 1

2
nX̃〈2〉(n) +O(nβ−2Ψ(n)), (7.62)

Var[Xn] = Ṽ (n)− n[X̃ ′(n)]2 +O(nβ−1Ψ(n)). (7.63)
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So condition (I) of Theorem 7.2.13 in Table 7.2 is satisfied. In Section 7.2.5
below we verify condition (O) of the same theorem using a technique known as
increasing domains that will find further applications in this book.

In summary, we prove the following final result.

Theorem 7.2.16. Let sk = 2kdπi
ln p ∀k ∈ Z, where ln p

ln q = d
r for some relatively

prime r, d ∈ Z (recall that we are interested in the situation where ln p
ln q is ratio-

nal). Then

E[(Mn)
j ] = Γ(j)

q(p/q)j + p(q/p)j

h
+

1

h
δj(log1/p n) +O(n−1)

where
δj(t) =

∑

k 6=0

e2kdπitΓ(sk + j)
(
pjq−sk−j+1 + qjp−sk−j+1

)

and Γ is the Euler gamma function.

Note that δj is a periodic function that has small magnitude and exhibits
fluctuations. For instance, when p = 1/2 then

1/ ln 2|δj(t)| ≤
1

ln 2

∑

k 6=0

∣∣∣∣Γ
(
j − 2kiπ

ln 2

)∣∣∣∣ .

The approximate values of

1

ln 2

∑

k 6=0

∣∣∣∣Γ
(
j − 2kiπ

ln 2

)∣∣∣∣

are given in Table 7.3 for the first 10 values of j.
We note that if ln p/ ln q is irrational then δj(x) → 0 as x →∞. So δj does

not exhibit fluctuations when ln p/ ln q is irrational.

Remark 7.2.17. Recently Gaither and Ward (2013) extended the above re-
sults to an arbitrary alphabet. In particular, it is easy to establish that for any
finite alphabet A we have

E[(Mn)
j ] = Γ(j)

∑
a∈A pa((1− pa)/pa)j

h
+

1

h
δj(log1/p n) + o(1). (7.64)

If the members of {log pa}a∈A are rationally related then the error term o(1)
can be improved to O(n−ε), and we have

δj(t) =
∑

k∈∈Z\{0}
e2ktπi/LΓ(sk + j)

∑

a∈A
(1− pi)jp−sk−j+1

i

with L as defined in Remark 7.2.5.
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j 1
ln(2)

∑
k 6=0

∣∣∣Γ
(
j − 2kiπ

ln(2)

)∣∣∣

1 1.4260× 10−5

2 1.3005× 10−4

3 1.2072× 10−3

4 1.1527× 10−2

5 1.1421× 10−1

6 1.1823× 100

7 1.2853× 101

8 1.4721× 102

9 1.7798× 103

10 2.2737× 104

Table 7.3. The oscillating function δj(x) for p = 1/2.

7.2.5. Increasing domains

In order to verify conditions (I) and (O) of the depoissonization given in Table 7.2

we often need to prove some inequalities for a function, say W̃j(z), defined over
the whole complex plane by a functional equation, such as (7.49). We accomplish
this by using induction over so-called increasing domains, which we discuss next.

Let us define, for integers m = 0, 1, . . . and a constant λ such that 0 <
max{p, q} ≤ λ−1 < 1, Dm a sequence of increasing domains (see Figure 7.4),
where

Dm = {z : ξδ ≤ |z| ≤ ξλm+1}
for some constant ξ > 0 and δ ≤ min{p, q}. Observe that

z ∈ Dm+1 −Dm ⇒ pz, qz ∈ Dm . (7.65)

The property (7.65) is crucial for applying mathematical induction over m in

order to establish appropriate bounds on G̃(z) over the whole complex plane.

Let us illustrate how to use this property for W̃j(z) satisfying (7.49). In fact,
we will check condition (O), that is, prove that outside the cone Sθ there exists

α < 1 such that |W̃j(z)| < eα|z|.
Now assume that z /∈ Sθ. We first observe that |ez| = eℜ(z) ≤ eα|z|, where

α ≥ cos θ ≥ cos(arg(z)). Induction over the increasing domains can be applied
as before, however, this time we consider Dm = Dm ∩ Sθ, where Sθ is the
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D0 D1 D2

Sθ

θ

ξ ξλ ξλ2 ξλ3

Figure 7.4. The linear cone Sθ and the increasing domains Dm.

complementary set to Sθ. Noting that

ℜ(z) = |z| cos(arg(z)) ≤ |z| cos θ ≤ α|z|

we always can find α > cos(θ) such that the following inequalities are simulta-
neously satisfied

|(pz)jepz| ≤ 1

2
eα|z|, |(qz)jeqz| ≤ 1

2
eα|z|

|epz| ≤ 1

2
epα|z|, |eqz | ≤ 1

2
eqα|z|.

Then by (7.49)

|W̃j(z)e
z| ≤ q|(pz)je−pz|+ p|(qz)je−qz |+ p|W̃j(pz)e

pzeqz |+ q|W̃j(qz)e
qzepz|

≤ 1

2
qeα|z| +

1

2
peα|z| + peα|zp||ezq|+ qeα|qz||ezp| ≤ eα|z|,

which proves our claim.
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7.3. Limiting distributions

In this section we use analytic tools to establish the limiting distributions of the
depth in tries and digital search trees as well as the asymptotic distribution of
the multiplicity parameter.

7.3.1. Depth in a trie

We derive here the limiting distribution of the depth DT
n in a trie. We use the

index T to distinguish it from the depth in a suffix tree, which we shall discuss
in the next chapter. We recall that DT

n represents the typical depth in a trie
built from n independently generated strings. We consider a general finite size
alphabet A. We define the probability generating function as

DT
n (u) = E[uD

T
n ]

for u complex. We first prove the following asymptotic expression for DT
n (u).

To derive it we use the pattern matching approach from Chapter 2 (see also
Section 8.1). Let w be a given word. Then

P (Dn < k) =
∑

w∈Ak

P (w)(1 − P (w))n−1, n ≥ 1. (7.66)

Indeed, for a given i consider the depth DT (i) to the ith external node. The
condition DT

n (i) < k holds if there is a word w ∈ Ak such that the prefix of the
ith string is equal to w and no other prefixes of n − 1 strings are equal to w.
Clearly, the typical depth DT and the depth of the ith node DT (i) are equally
distributed. Thus we have

DT
n (u) =

1− u
u

∑

w∈A∗

u|w|P (w)(1 − P (w))n−1, n ≥ 1 (7.67)

by noticing that
∑

k≥1

P (DT
n < k)uk =

uE[uD
T
n ]

1− u .

This allows us to prove the following useful lemma.

Lemma 7.3.1. Assume that a trie is built from n strings over a finite alphabet
A generated by a memoryless source that is biased (i.e., not all symbol probabil-
ities are equal). Then, there exists ε > 0 such that

DT
n (u) =

(1− u)
h(u)

n−s0(u)(Γ(s0(u)) + P (log n, u)) +O(nε),
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where h(u) = −∑a∈A p
1−s0(u)
a log pa, s0(u) is the unique real solution of

u
∑

a∈A
p1−s0(u)a = 1, (7.68)

and P (logn, u) is a periodic function, with small amplitude in the case when
log p1, . . . , log p|A| are rationally related; otherwise, P (log n, u) converges to zero
when n→∞.

To prove this lemma we need an extension of Lemma 7.2.4 concerning the
roots of a characteristic functional equation like (7.68). We formulate it for the
binary case.

Lemma 7.3.2. Suppose that 0 < p1 < p2 < 1 with p1 + p2 = 1 and that u is a
real number with |u− 1| ≤ δ for some 0 < δ < 1. Let

Z(u) = {s ∈ C : p1−s1 + p1−s2 = 1/u}.

Then
(i) All s ∈ Z(u) satisfy

s0(u) ≤ ℜ(s) ≤ σ0(u),
where s0(u) < 1 is the (unique) real solution of p1−s1 +p1−s2 = 1/u and σ0(u) > 1
is the (unique) real solution of 1/u+p1−s2 = p1−s1 . Furthermore, for every integer
k there uniquely exists sk(u) ∈ Z(u) such that

(2k − 1)π/ log(1/p1) < ℑ(sk(u)) < (2k + 1)π/ log(1/p1)

and consequently Z(u) = {sk(u) : k ∈ Z(u)}.
(ii) If log p2/ log p1 is irrational, then ℜ(sk(u)) > ℜ(s0(u)) for all k 6= 0.
(iii) If log p2/ log p1 = r/d is rational, where gcd(r, d) = 1 for integers r, d > 0,
then we have ℜ(sk(u)) = ℜ(s0(u)) if and only if k ≡ 0 mod d. In particular
ℜ(s1(u)), . . . ,ℜ(sd−1(u)) > ℜ(s0(u)) and

sk(u) = sk mod d(u) +
2(k − k mod d)πi

log p1
,

that is, all s ∈ Z(u) are uniquely determined by s0(u) and s1(u), s2(u), . . . , sd−1(u),
and their imaginary parts constitute an arithmetic progression.

One interesting consequence is that in the irrational case we have

min
|u−1|≤δ

(ℜ(sk(u))−ℜ(s0(u))) > 0 (7.69)
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for all k 6= 0. This is due to the fact that sk(u) varies continuously in u.

Proof. Now we are in a position to prove Lemma 7.3.1. As in Section 7.2.4, we
apply the Mellin transform. Let

T ∗(s, u) =

∫ ∞

0

xs−1 u

1− uD
T
x (u)dx

be the Mellin transform with respect to n of DT
n (u), see (7.67). Then

T ∗(s, u) =
∑

w∈A∗

u|w| P (w)

1− P (w) (− log(1− P (w)))−sΓ(s)

for ℜ(s) > 0 since

M((1− P (w))n; s) = Γ(s)(− log(1− P (w)))−s.

For s bounded, (− log(1−P (w)))−s = P (w)−s(1+O(sP (w))); thus we conclude
that

T ∗(s, u) = Γ(s)

(
u
∑
a∈A p

1−s
a

1− u∑a∈A p
1−s
a

+ g(s, u)

)
,

where

g(s, u) = O

(
|u|s∑a∈A p

2−ℜ(s)
a

1− |u|∑a∈A p
2−ℜ(s)
a

)
.

Let s0(u) be the unique real root of the characteristic equation (7.68). The
other roots are denoted as sk(u) for integer k 6= 0, as presented in Lemma 7.3.2.
Notice that by (7.69) we have, for all k,

ℜ(sk(u)) ≥ s0(u), (7.70)

and the inequality is strict for the irrational case. Using the inverse Mellin
transform, as given in (M1) and (M4) of Table 7.1, we find that

DT
n =

1− u
2iπu

∫ +i∞

−i∞
T ∗(s, u)n−sds.

We now consider |u| < δ−1 for δ < 1. Then there exists ε such that for ℜ(s) ≤ ε
the function g(s, u) has no singularity. Moving the integration path to the left
of ℜ(s) = ε and applying the residue theorem, we find the following estimate

DT
n (u) = (1−u)Γ(s0(u))

h(u)
n−s0(u)+(1−u)

∑

k

Γ(sk(u))

hk(u)
n−sk(u)+O(n−ε), (7.71)
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with h(u) = −∑a∈A p
1−s0(u)
a log pa and hk(u) = −

∑
a∈A p

1−sk(u)
a log pa. When

the log pa are rationally related, by Lemma 7.3.2 the roots sk(u) have the same
real part as s0(u) and are equally spaced on the line ℜ(s) = ℜ(s0(u)). In this
case their contribution to (7.71) is

n−s0(u)
∑

k 6=0

Γ(sk(u))

hk(u)
exp(−(sk(u)− s0(u)) logn).

When the log pa are irrationally related, this contribution is negligible when com-
pared to ns0(u); this follows from (7.70) which in this case reads as ℜ(sk(u)) >
s0(u).

In order to establish the central limit theorem (CLT) for the depth, it suffices
to observe that, for t→ 0,

s0(e
t) = −c1t−

c2
2
t2 +O(t3), (7.72)

where c1 = 1/h and c2 = (h2− h2)/h3; that is basically the Taylor expansion of
s0(u) around u = 1.

We now consider the asymmetric case, that is, the case when the pa are not
all equal, corresponding to a biased memoryless source. From the expression for
DT
n (u) we can find immediately the first and the second moments via the first

and the second derivatives of DT
n (u) at u = 1 with the appropriate asymptotic

expansion in c1 logn and in c2 log n. In fact we obtained this in Theorem 7.2.1
using Rice’s method. In order to find the limiting normal distribution we use
Lemma 7.3.1 to find that

e−tc1 logn/
√
c2 log nDT

n

(
et/

√
c2 logn

)
→ et

2/2

since

n−s0(u) = exp

(
c1t
√
log n/c2 +

t2

2
+O(1/

√
logn)

)
,

(1− et)Γ(s0(e
t))

h(s0(et))
=
−t
h

−1
c1t

+O(t2) = 1 +O(t2), t→ 0.

By Levy’s continuity theorem, we conclude the following result.

Theorem 7.3.3. Under the assumptions of Lemma 7.3.1

DT
n − c1 logn√
c2 logn

→ N(0, 1)
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where

c1 =
1

h
, c2 =

h2 − h2
h3

,

and N(0, 1) is the standard normal distribution. Here, h = −∑V
i=1 pi log pi and

h2 =
∑V

i=1 pi log
2 pi.

Remark 7.3.4. For the symmetric case (i.e., all pa = 1/|A|), there is no nor-
mal limiting distribution since c2 = 0 and therefore the variance is O(1). To find
the limiting distribution, if it exists, we return to (7.66). For now let V = |A|.
Then from (7.66) we find that

P (Dn < k) = (1− V −k)n−1.

Next, we find an asymptotic distribution around

k = ⌊logV n⌋+m = logV n− 〈logV n〉+m

for some integer m, where 〈x〉 = x− ⌊x⌋ is the fractional part of x. We obtain

P (Dn < ⌊logV n⌋+m) = (1 + O(1/n)) exp
(
−V −m+〈logV n〉

)
.

Owing to the factor 〈logV n〉 there is no limiting distribution. However, we can
say, replacing V by |A|, that

lim inf
n→∞

P (Dn < ⌊log|A| n⌋+m) = exp
(
−|A|−m

)
, (7.73)

lim sup
n→∞

P (Dn < ⌊log|A| n⌋+m) = exp
(
−|A|−m+1

)
, (7.74)

for any integer m. Furthermore, from the above or using the same approach as
in Section 7.2.3 we can precisely estimate the variance:

Var[Dn] =
π2

6 log2 V
+

1

12
+ P2(logn) +O(n−ε), (7.75)

where P2(logn) is a periodic function with small amplitude.

7.3.2. Depth in a digital search tree

In this section we use a different approach, namely the Rice method, to establish
the limiting distribution of the depth in a digital search tree (DST). We prove
the following result.
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Theorem 7.3.5 (Louchard and Szpankowski, 1995). For a biased binary mem-
oryless source (p 6= q), the limiting distribution of Dn is normal, that is,

Dn − E[Dn]√
Var[Dn]

→ N(0, 1), (7.76)

where E[Dn] and Var[Dn] are given by (7.34) and (7.37) of Theorem 7.2.10,
respectively. Furthermore, the moments of Dn converge to the appropriate mo-
ments of the normal distribution. More generally, for any complex ϑ,

e−ϑc1 lognE[eϑDn/
√
c2 logn] = e

ϑ2

2

(
1 +O

(
1√
logn

))
, (7.77)

where c1 = 1/h and c2 = (h2 − h2)/h3.

Proof. We shall work with the probability generating function for the depth,
Dn(u), which is equal to Bn(u)/n where B(u) was defined in Section 7.2.3.
Then by (7.32) we have

Dn(u) = 1− 1− u
n

n∑

k=2

(−1)k
(
n

k

)
Qk−2(u), (7.78)

where we recall that

Qk(u) =

k+1∏

j=2

(1− upj − uqj).

Let µn = E[Dn] and σ
2
n = Var[Dn]. Theorem 7.2.10 implies that

µn = c1 logn+O(1),

σ2
n = c2 logn+O(1),

where c1 = 1/h and c2 = (h2 − h2)/h3. Again we use Goncharov’s theorem to
establish the normal distribution of Dn by showing that

lim
n→∞

e−ϑµn/σnDn(e
ϑ/σn) = eϑ

2/2, (7.79)

where ϑ is a complex number. By Levy’s continuity theorem, this will establish
both the limiting distribution and the convergence in moments for Dn.

We now derive the asymptotics for the probability generating function Dn(u)
around u = 1. We will assume that u = ev and, since σn = O(

√
logn), we define

v = ϑ/σn → 0. Note that 1 −Dn(u), given by (7.78), has the form of an alter-
nating sum. We now apply the Rice method or, more precisely, Theorem 7.2.3.
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To do so, however, we need an analytical continuation of Qk(u) defined in (7.33).
Denote this as Q(u, s) and observe that

Q(u, s) =
P (u, 0)

P (u, s)
=
Q∞(u)

P (u, s)
, (7.80)

where P (u, s) =
∏∞
j=2(1− ups+j − uqs+j). Using Theorem 7.2.3 we arrive at

1−Dn(u) =
1− u
n2πi

∫ −3/2+i∞

−3/2−i∞
Γ(s)n−sQ(u,−s− 2)ds+ en, (7.81)

where

en = O(1/n2)

∫ −3/2+i∞

−3/2−i∞
Γ(s)n−ssQ(u,−s− 2)ds = O(1/n),

as we shall soon see. As usual, we evaluate the integral in (7.81) by the residue
theorem. We compute the residues to the right of the line of integration in (7.81).
The gamma function has its singularities at s−1 = −1 and s0 = 0, and in addition
we have an infinite number of zeros sk,j(v) (j = 2, 3, . . ., k = 0 ± 1,±2, . . .) of
P (ev,−s − 2), the denominator of Q(ev,−s − 2), where we have substituted
u = ev. More precisely, the sk,j(v) are the zeros of

p−s−2+j + q−s−2+j = e−v . (7.82)

The dominating contribution to the asymptotics comes from s0,j(v) and s1.
Indeed, the contributions of the first two singularities at s−1 and s0 are, respec-
tively, (1−u)Q(u,−1) = 1 and (1−u)Q(u,−2)/n = O(1/n). We now concentrate
on the contribution from s0,j(v). In this case, one can solve equation (7.82) to
derive an asymptotic expansion as follows (see also (7.72)):

s0,j(v) = j − 3− v

h
+

1

2

(
1

h
− h2
h3

)
v2 +O(v3), (7.83)

for integer j ≥ 2 and v → 0. We also note that ℑ(sk,j(v)) 6= 0 for k 6= 0.
Now let

Rjk(v) = Res[(1− evp−s−2+j + evq−s−2+j)−1; s = sk,j(v)],

g(s) = Γ(s)Q(u,−s− 1).

In what follows, we use the expansion

Q(u,−s− 2) =
1

1− u(p−s + q−s)

Q∞(u)

P (u,−s− 1)

= −w
−1

h
− θ

h
+

h2
2h2

+ w
θh2
2h2

+O(w2),
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where w = s− s0,j(v). Then

−Dn(e
v) = R2

0(v)g(s0,2(v))(1 − ev)n−1n−s0,2(v)

+

∞∑

j=3

Rj0(v)g(s0,j(v))(1 − ev)n−1n−s0,j(v) (7.84)

+

∞∑

k=−∞

k 6=0

∞∑

j=2

Rjk(v)g(sk,j(v))(1 − ev)n−1n−sk,j(v) +O(1).

We consider the above three terms separately:

(a) j = 2 and k = 0. Set v = ϑ/σn = ϑ/
√
c2 logn. Then by (7.83)

n−s0,2(v) = n exp

(
ϑ

h

√
logn

c2
+
ϑ2

2

)
.

In addition, the following hold:

R2
0(v) = −1/h+O(v),

g(s0,2(v)) = −h/v +O(1),

and finally 1− e−v = v +O(1). Therefore, we obtain

e−ϑµn/σnR2
0(v)g(s0,2(v))(1 − e−v)m−s0,2(v)−1 → −eϑ2/2. (7.85)

(b) j ≥ 3 and k = 0. In this case we can repeat the analysis from case (a) to
get

e−ϑµn/σnR2
0(v)g(s0,2(v))(1 − e−v)n−s0,2(v)−1 → O(n2−jeϑ

2/2), (7.86)

so this term is an order of magnitude smaller than the first term in (7.84).

(c) k 6= 0. Fix j = 2. Observe that

∞∑

k=−∞

k 6=0

R2
k(v)g(sk,2(v))(1 − ev)n−1n−sk,2(v) = O(vn−1−ℜ(sk,2(v))) .

By the same argument as in Lemma 7.3.2 we conclude that ℜ(sk,j) ≥
j − 3 +O(v). If ℜ(sk,j) > j − 3 +O(v) then the term O(vm−1−ℜ(sk,2(v)))
is negligible compared with O(n2−j). Otherwise, that is, for sk,j such
that ℜ(sk,j) = j − 3 + O(v), we observe that the error term is O(vnj−2).
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Actually, we can do better using the following observation (the reader is
asked to prove it in Exercise 7.9):

ℜ(sk,2(v)) ≥ s0,2(ℜ(v)).

Then the sum becomes

∞∑

k=−∞

k 6=0

R2
k(v)g(sk,2(v))(1 − ev)n−1n−sk,2(v)

= n−1−ℜ(s0,2(v))O(vnℜ(s0,2(v))−s0,2(ℜ(v))) = n−1−ℜ(s0,2(v))O(vn−βv2),

for some β. Finally, consider general j ≥ 3. As in case (b), we note that
n−sk,j(v) contributes O(n2−j), so this term is negligible. All other roots
(in the rational case) with ℜ(sk,j(v)) > s0,j(v) (see Lemma 7.3.2(iii))
contribute negligible terms.

Putting everything together we note that as v = O(1/
√
n)→ 0 for n→∞,

e−ϑµn/σnDn(e
ϑ/σn) = eϑ

2/2(1 +O(vn−βv2 ) +O(1/n))→ eϑ
2/2, (7.87)

which proves the theorem.

7.3.3. Asymptotic distribution of the multiplicity parameter

Finally, we analyze the “asymptotic distribution” of the multiplicity parameter
Mn using the depoissonization technique. We say asymptotic distribution rather
than limiting distribution since, as we shall see, Mn does not in fact have a
limiting distribution.

In this section we prove the following main result.

Theorem 7.3.6. Let sk = 2kdπi
ln p ∀k ∈ Z, where ln p

ln q = d
r for some relatively

prime r, s ∈ Z. Then

E[uMn ] = −q ln (1− pu) + p ln (1− qu)
h

+
1

h
δ(log1/p n, u) +O(nε) (7.88)

where

δ(t, u) =
∑

k 6=0

e2kdπitΓ(sk)
(
q(1 − pu)−sk + p(1 − qu)−sk − p−sk+1 − q−sk+1

)
.
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It follows immediately that

E[uMn ] =
∞∑

j=1


p

jq + qjp

jh
+

1

h

∑

k 6=0

e2kdπi log1/p nΓ(sk)(p
jq + qjp)(sk)

j

j!


+O(n−ε)

(7.89)

where we recall that zj = z(z + 1) · · · (z + j − 1), and

P (Mn = j) =
pjq + qjp

jh
++

1

h

∑

k 6=0

e2kdπi log1/p nΓ(sk)(p
jq + qjp)(sk)

j

j!
+O(n−ε),

(7.90)
that is, the nonfluctuating part of P (Mn = j) represents the logarithmic series
distribution shown in Figure 7.5. When log p/ log q is irrational, the fluctuating
part converges to zero as t→∞.

Proof. We shall follow our analysis from Section 7.2.4. We define the exponential
generating function

G(z, u) =
∑

n≥0

E[uMn ]
zn

n!

for complex u ∈ C, which, by (7.47), satisfies

E[uMn ] = pn(qun + pE[uMn ]) + qn(pun + qE[uMn ]) (7.91)

+

n−1∑

k=1

(
n

k

)
pkqn−k(pE[uMk ] + qE[uMn−k ]).

As in Section 7.2.4, the Poisson transform G̃(z, u) = G(z, u)e−z of G(z, u) sat-
isfies

G̃(z, u) = qe(pu−1)z+ pe(qu−1)z− pe−pz− qe−qz+ pG̃(pz, u)+ qG̃(qz, u). (7.92)

Using properties of the Mellin transform, as summarized in Table 7.1, we con-
clude that the Mellin transform G∗(s, u) of G̃(z, u) exists in ℜ(s) ∈ (−1, 0) and
that

G∗(s, u) =
Γ(s)

(
q(1− pu)−s + p(1− qu)−s − p−s+1 − q−s+1

)

(1− p−s+1 − q−s+1)
.

Now, we are in a position to find the inverse Mellin transform for z →∞ on a
cone around the real axis (see property (M4) in Table 7.1) and then depoissonize,
as described in Table 7.2 (see Theorem 7.2.14). We claim, that for any ε > 0,

G̃(z, u) = −q ln (1− pu) + p ln (1− qu)
h

− 1 +
1

h
δ(log1/p z, u) +O(x−ε), (7.93)
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where

δ(t, u) =
∑

k 6=0

e2kdπitΓ(sk)
(
q(1 − pu)−sk + p(1 − qu)−sk − p−sk+1 − q−sk+1

)
.

Formally, we will derive it first for z real and then by analytic continuation
extend to a cone around the real axis. Indeed, as before we first conclude that

G̃(z, u) =
∑

k∈Z

−Res[G∗(s, u)z−s; sk] +O(z−M ). (7.94)

If k 6= 0 then

Res[G∗(s, u)z−s; sk] = z−skRes[G∗(s, u); sk] = exp
(
2kdπi log1/p z

)

×Γ(sk)
(
q(1− pu)−sk + p(1− qu)−sk − p−sk+1 − q−sk+1

)

p−sk+1 ln p+ q−sk+1 ln q
.

Now we compute Res[G∗(s, u)z−s; z0]. We first observe that

Γ(s)
(
q(1 − pu)−s + p(1− qu)−s − p−s+1 − q−s+1

)

= (s−1 +O(1)) (−q ln (1− pu)s− p ln (1− qu)s+ p ln (p)s

+q ln (q)s+O(s2)
)

= −q ln (1− pu)− p ln (1− qu) + p ln p+ q ln q +O(s).

It follows that

Res[G∗(s, u)z−s; s0] = z−s0Res[G∗(s, u); s0] =
q ln (1− pu) + p ln (1− qu)

h
+1.

Combining these results, the claim given in (7.93) now follows from (7.94). Fi-
nally, Theorem 7.2.14 allows us to depoissonize (7.94). To see that (7.89) follows
from (7.88), consider the following. From (7.88), we have

E[uMn ] = −q ln (1− pu) + p ln (1− qu)
h

+
1

h
δ(log1/p n, u) +O(n−ε). (7.95)

Observe that

−q ln (1− pu) + p ln (1− qu)
h

=

∞∑

j=1

(
pjq + qjp

jh

)
uj.

Also note that

δ(log1/p n, u) =
∑

k 6=0

e2krπi log1/p nΓ(sk) (q(1− pu)−sk + p(1− qu)−sk)
p−sk+1 ln p+ q−sk+1 ln q



196 Chapter 7. Digital Trees

0

0.2

0.4

0.6

0.8

2 3 4 5 6 7 8

x

Figure 7.5. The logarithmic series distribution.

+
∑

k 6=0

e2krπi log1/p nΓ(sk)
(
−p−sk+1 − q−sk+1

)

p−sk+1 ln p+ q−sk+1 ln q

=

∞∑

j=1

∑

k 6=0

e2krπi log1/p nΓ(sk)(p
jq + qjp)(sk)

j

j!

since psk = qsk = 1. Then we apply these observations to (7.95) to conclude
that (7.89) holds. Finally, we observe that (7.90) is an immediate corollary of
(7.89).

As mentioned above, the nonfluctuating part of the Mn distribution (7.90) is
known as the logarithmic series distribution and has mean 1/h. It is presented
in Figure 7.5.

Remark 7.3.7. It is easy to extend this analysis to a finite alphabet A. In
particular, for the rational case

P (Mn = j) =
∑

a∈A

qjapa
jh

+
1

h

∑

k∈Z\{0}

e2kπi logn/LΓ(sk)(sj)
j
∑

b∈A q
j
bpb

j!
+O(n−ε),
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where qa = 1− pa and with L as defined in Remark 7.2.5. In the irrational case
the last two terms are o(1).

7.4. Average profile of tries

In this section of the chapter, we shall focus on establishing the asymptotic
properties of the average profile of a trie. Recall that we introduced two profiles
for a trie: the external profile Bn,k and the internal profile In,k, defined respec-
tively as the numbers of external and internal nodes at level k; see Figure 7.2.
Hereafter, we mostly discuss the average µn,k = E[Bn,k] of the external profile.

Let Bkn(u) = E[uBn,k ] be the probability generating function for the external
profile Bn,k. It is easy to see that it satisfies the following recurrence for n ≥ 2:

Bkn(u) =

n∑

i=0

(
n

i

)
piqn−iBk−1

i (u)Bk−1
n−i (u)

with B0
n = 1 for n 6= 1 and B0

1 = u. Then the average external profile

µn,k = E(Bn,k) =
d

du
Bkn(u) |u=1

becomes

µn,k =
∑

0≤j≤n

(
n

j

)
pjqn−j(µj,k−1 + µn−j,k−1), (7.96)

for n ≥ 2 and k ≥ 1 with initial values µn,0 = 0 for all n 6= 1 and 1 for n = 1.
Furthermore, µ0,k = 0, k ≥ 0, and

µn,k =

{
0 if k ≥ 1,
1 if k = 0.

We use poissonization and depoissonization and the Mellin transform (see
Tables 7.1 and 7.2) to find the asymptotics of µn,k for a wide range of n and k,
mostly for k = Θ(logn). Our starting point is an exact formula for the Poisson
transform

M̃k(z) :=
∑

n≥0

µn,k
zn

n!
e−z

of µn,k; we also write Mk(z) = M̃k(z)e
z for the exponential generating function

of µn,k.
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Lemma 7.4.1. The Poisson generating function M̃k(z) satisfies the following
integral representation for k ≥ 1 and ℜ(z) > 0

M̃k(z) =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sΓ(s+ 1)g(s)

(
p−s + q−s

)k
ds, (7.97)

where g(s) := 1 − 1/(p−s + q−s). When ρ > −2 the integral is absolutely con-
vergent for ℜ(z) > 0.

Proof. We consider the recurrence (7.96) with initial conditions µn,k = δn,1δk,0
when either n ≤ 1 and k ≥ 0 or k = 0 and n ≥ 0. Note that

µn,1 = n
(
pqn−1 + qpn−1

)
(n ≥ 2).

By (7.96) it follows that

Mk(z) = eqzMk−1(pz) + epzMk−1(qz) (k ≥ 2),

with M1(z) = z(peqz + qepz − 1). Thus M̃k(z) satisfies

M̃k(z) = M̃k−1(pz) + M̃k−1(qz), (7.98)

and using property (M3) of Table 7.1, the Mellin transform M∗
k (s) of M̃k(z), is

given by, for k > 1,
M∗
k (s) =M∗

k−1(p
−s + q−s).

Iterating it and noting that

M∗
1 (s) = Γ(s+ 1)(p−s + q−s − 1)

we prove (7.97).
To justify the absolute convergence of the integral, we apply the Stirling

formula for the gamma function (with complex parameter)

Γ(s+ 1) =
√
2πs

(s
e

)s (
1 +O

(
|s|−1

))
,

uniformly as |s| → ∞ and | arg s| ≤ π − ε, which implies that

|Γ(ρ+ it)| = Θ(|t|ρ−1/2e−π|t|/2), (7.99)

uniformly for |t| → ∞ and ρ = o(|t|2/3). The integrand in (7.97) is analytic for
ℜ(s) > −2 and bounded above by

z−ρ−itΓ(ρ+ 1 + it)g(ρ+ it)
(
p−ρ−it + q−ρ−it

)k

= O
(
|z|−ρ|t|ρ+1/2e−π|t|/2+arg(z)t(p−ρ + q−ρ)k

)
,
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for large |t|. This completes the proof of the lemma.

Observe that we have another integral representation for µn,k, namely

µn,k =
1

2πi

∫

(ρ)

Γ(n+ 1)Γ(s+ 1)

Γ(n+ 1 + s)
g(s)

(
p−s + q−s

)k
ds ρ > −2, (7.100)

where (ρ) denotes the vertical line of integration (ρ− i∞, ρ+∞). This follows
from

µn,k =
n!

2πi

∫
z−n−1ezM̃k(z)dz (7.101)

=
n!

2πi

∫
z−n−1ez

(
1

2πi

∫
z−sΓ(s+ 1)g(s)

(
p−s + q−s

)k
ds

)
dz

=
n!

2πi

∫
Γ(s+ 1)g(s)

(
p−s + q−s

)k
(

1

2πi

∫
z−n−1−sezdz

)
ds

=
n!

2πi

∫
Γ(s+ 1)

Γ(n+ s+ 1)
g(s)

(
p−s + q−s

)k
ds.

The depoissonization results given in Table 7.2 allow us to show that µn,k ∼
M̃k(n). So, we will mostly work with M̃k(n). Before we present our main result
and its proof, we discuss the ideas behind our derivation.

In what follows, we mostly concentrate on analyzing the average profile for
k = α logn. For this range, observe that (7.97) gives us

M̃k(n) =
1

2πi

∫ ρ+i∞

ρ−i∞
g(s)Γ(s+ 1)n−s(p−s + q−s)kds

=
1

2πi

∫ c+i∞

c−i∞
g(s)Γ(s+ 1) exp(h(s)logn)ds, k = αlog n

where g(s) = p−s + q−s − 1 (note that g(0) = g(−1) = 0). In the above,

h(s) = α log(p−s + q−s)− s

for k = α logn. Actually, we should write αn,k for α but for now we simplify it
to just α. For k = Θ(logn), the function under the integral grows with n. Thus
the saddle point method, summarized in Table 3.1, can be used. The saddle
point ρ occurs where h′(ρ) = 0, and it is easy to show that

(
p

q

)−ρ
=
α log(1/p)− 1

1− α log(1/q)
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and notice that for r = p/q > 1 we have ritj = 1 for tj = 2πj/ log r, j ∈ Z,
which indicates an infinite number of saddle points along the line ℜ(s) = ρ.
Throughout we assume that p > q, hence r > 1 and thus

ρ =
−1
log r

log

(
α log q−1 − 1

1− α log p−1

)
,

1

log q−1
< α <

1

log p−1
. (7.102)

Furthermore, ∣∣p−ρ−it + q−ρ−it
∣∣ = p−ρ + q−ρ.

Therefore, there are indeed infinitely many saddle points ρ+itj for tj = 2πj/ log r,
j ∈ Z on the vertical line ℜ(s) = ρ that contribute to the leading term of the
asymptotic expression.

Let us now make some additional observations. The real saddle point ρ will
move along the whole real line from ∞ to −∞ as α varies from log(1/q) to
log(1/p). More precisely, ρ→∞ as

α ↓ 1/ log q−1 =: α1,

and ρ→ −∞ when
α ↑ 1/ log p−1.

When ρ → ∞ we need to consider the gamma function Γ(s) in the expression
for the saddle point. Also, when ρ moves from∞ to −∞, that is, when α moves
from log(1/q) to log(1/p), the saddle point ρ coalesces with the poles of Γ(s+1)
at s = −2,−3, . . . The pole at s = −2 is dominant and occurs at

α2 :=
p2 + q2

p2 log(1/p) + q2 log(1/q)
.

In fact, the average profile undergoes a “phase transition” around α = α2. We
describe this precisely in the next theorem.

Theorem 7.4.2. Consider a trie built over a binary memoryless source with
p > q := 1− p. If k satisfies

α1 (logn− log log logn+ ωn) ≤ k ≤ α2(log n− ωn
√
logn), (7.103)

where α1 = 1/ log(1/q) and ωn is an arbitrarily slowly growing function, then

µn,k = G1

(
ρ; logp/q p

kn
) n−ρ (p−ρ + q−ρ)

k

√
2πβ2(ρ)k

(
1 +O

(
1

k(p/q)ρ
+

1

k(ρ+ 2)2

))
,

(7.104)
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Figure 7.6. The fluctuating part of the periodic function G1(x) for p =
0.55, 0.65, . . . , 0.95.

where ρ = ρ(n, k) > −2 is chosen to satisfy the saddle-point equation

d

dρ

(
ρρe−ρn−ρ(p−ρ + q−ρ)k

)
= 0 if ρ ≥ 1;

d

dρ

(
n−ρ(p−ρ + q−ρ)k

)
= 0 if ρ ≤ 1.

(7.105)

For ρ < 1 we have

ρ =
1

log(p/q)
log

(
logn− k log(1/p)
k log(1/q)− logn

)
. (7.106)

Furthermore,

β2(ρ) :=
p−ρq−ρ log(p/q)2

(p−ρ + q−ρ)2
, (7.107)

G1(ρ;x) =
∑

j∈Z

g(ρ+ itj)Γ(ρ+ 1 + itj)e
−2jπix (tj := 2jπ/ log(p/q))

where g(s) = 1− 1/(p−s + q−s), and G1(ρ, x) is a 1-periodic function shown in
Figure 7.6.

Proof. In order to estimate (7.100) asymptotically we apply the saddle point
methods twice: first to find the inverse Mellin transform and then to depois-
sonize. Observe first that by depoissonization

µn,k =
n!

2πi

∫
|z|=n

| arg(z)|≤θ0

z−n−1ezM̃k(z)dz +O
(
e−cn

1/5

M̃k(n)
)
, (7.108)

where the O-term is justified by applying the following estimate for Mk(z)

|Mk(re
iθ)| ≤Mk(r)e

−crθ2 r > 0; |θ| ≤ π, (7.109)
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Figure 7.7. Location of the saddle points on the line ρ+ itj .

for all k = k(n) ≥ 1 and some constant c > 0. We only need to evaluate M̃k(n)
and obtain precise local expansions for M̃k(ne

iθ) when |θ| ≤ θ0. To estimate
the first integral of (7.108), we first focus on estimating M̃k(n) and then extend
the same approach to derive the asymptotics of M̃k(ne

iθ). This suffices to prove
that µn,k ∼ M̃k(n).

In order to evaluate M̃k(n) by the inverse Mellin transform, we first move
the line of integration of (7.97) to ℜ(s) = ρ, so that

M̃k(n) =
1

2π

∫ ∞

−∞
Jk(n; ρ+ it)dt, (7.110)

where ρ > −2 is the saddle point chosen according to (7.105), and we use the
abbreviation

Jk(n; s) := n−sΓ(s+ 1)g(s)(p−s + q−s)k.

We now show that the integral (7.110) is small for |t| ≥ √logn, and then assess
the main contribution of the saddle points falling in the range |t| ≤ √logn. This
is illustrated in Figure 7.7.

Assume, from now on, that ρ is chosen as in (7.105). We show that for
|t| ≥ √logn the integral in (7.110) is asymptotically negligible. For ease of



7.4. Average profile of tries 203

notation, we write here Ln = logn. Since ρ > −2 satisfies (7.106), we have, by
(7.99),

1

2π

∫

|t|≥
√
Ln

Jk(n; ρ+ it)dt = O

(
n−ρ(p−ρ + q−ρ)k

∫ ∞

√
Ln

|Γ(ρ+ 1 + it)|dt
)

= O

(
n−ρ(p−ρ + q−ρ)k

∫ ∞

√
Ln

tρ+1/2e−πt/2dt

)

= O
(
Lρ/2+1/4
n e−π

√
Ln/2n−ρ(p−ρ + q−ρ)k

)
.

However, on the one hand,

ρ ≤ 1

log(p/q)

(
log log n− logωn + log

log(p/q)

log(1/q)
+ o(1)

)
, (7.111)

implying in particular that ρ = O(log logn). On the other hand, ρ ≥ −2 +

ωnL
−1/2
n , so that n−ρ(p−ρ + q−ρ)k = O(n2), and thus we obtain

Lρ/2+1/4
n e−π

√
Ln/2 = O

(
e−π

√
Ln/2+O(log logn2)

)
= O

(
Γ(ρ+ 2)e−

√
Ln

)
,

for large enough n. The last O-term holds uniformly for ρ ≥ −2 + ωnL
−1/2
n . In

summary, the integral for |t| > √logn is exponentially negligible.
Now, we consider |t| ≤ √logn. Let j0 be the largest integer j for which

2jπ

log(p/q)
≤
√
Ln.

Then we can split the integral over
∫
|t|≤

√
Ln

as follows:

∫

|t|≤
√
Ln

Jk(n; ρ+ it)dt =
∑

|j|<j0

∫

|t−tj |≤π/ log(p/q)
Jk(n; ρ+ it)dt

+

∫

tj0≤|t|≤
√
Ln

Jk(n; ρ+ it)dt.

The last integral is bounded above by

O
(
Γ(ρ+ 2)n−ρ(p−ρ + q−ρ)ke−

√
Ln

)
,

by the same argument as that used above. It remains to evaluate the integrals

Tj :=
1

2π

∫

|t−tj|≤π/ log(p/q)
Jk(n; ρ+ it)dt,
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for |j| < j0.
We derive first a uniform bound for |p−ρ−it + q−ρ−it|. By the elementary

inequalities and √
1− x ≤ 1− x

2
(x ∈ [0, 1]),

we have

|p−ρ−it + q−ρ−it| =
(
p−ρ + q−ρ

)
√
1− 2p−ρq−ρ

(p−ρ + q−ρ)2
(1− cos (t log(p/q)))

≤
(
p−ρ + q−ρ

)(
1− p−ρq−ρ

(p−ρ + q−ρ)2
(1− cos ((t− tj) log(p/q)))

)

≤
(
p−ρ + q−ρ

)(
1− 2p−ρq−ρ

π2(p−ρ + q−ρ)2
(t− tj)2 log(p/q)2

)

≤
(
p−ρ + q−ρ

)
e−c0(t−tj)

2

, (7.112)

uniformly for |t− tj | ≤ π/ log(p/q), where

c0 = c0(ρ) :=
2p−ρq−ρ log(p/q)2

π2(p−ρ + q−ρ)2
=

2

π2
β2(ρ).

We now set

v0 :=

{
k−2/5 if − 2 < ρ ≤ 1;

(c0k)
−2/5 if ρ ≥ 1,

and split the integration range into two parts: |t− tj | ≤ v0 and v0 < |t− tj | ≤
π/ log(p/q), as shown in Figure 7.7. (We assume that k is sufficiently large that
v0 < π/ log(p/q).)

Consider first the case −2 < ρ ≤ 1. From the inequality (7.112), it follows
that

T ′′
j :=

1

2π

∫

v0≤|t−tj |≤π/ log(p/q)
Jk(n; ρ+ it)dt (7.113)

= O

(
|Γ(ρ+ 2 + itj)|n−ρ (p−ρ + q−ρ

)k
∫ ∞

k−2/5

e−c0kv
2

dv

)

= O

(
n−ρ (p−ρ + q−ρ

)k
k−3/5e−c0k

1/5 ×
{
|Γ(ρ+ 1 + itj)| if j 6= 0,
1, if j = 0,

)
,

for each |j| ≤ j0.
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When ρ ≥ 1 and k satisfies (7.103), we have

T ′′
j = O

(
|Γ(ρ+ 1 + itj)|n−ρ (p−ρ + q−ρ

)k
∫ ∞

(c0k)−2/5

e−c0kv
2

dv

)

= O
(
|Γ(ρ+ 1+ itj)|n−ρ (p−ρ + q−ρ

)k
(c0k)

−3/5e−(c0k)
1/5
)
,

for |j| ≤ j0.
It remains to evaluate the integrals Tj for t in the range |t− tj | ≤ v0. Note

that by our choice of tj ,

p−ρ−itj + q−ρ−itj = p−itj
(
p−ρ + q−ρ

)
= q−itj

(
p−ρ + q−ρ

)
,

so that

p−ρ−it + q−ρ−it

p−ρ−itj + q−ρ−itj
= 1 +

∑

ℓ≥1

iℓ(t− tj)ℓ
ℓ!

p−ρ−itj log(1/p)ℓ + q−ρ−itj log(1/q)ℓ

p−ρ−itj + q−ρ−itj

= 1 +
∑

ℓ≥1

iℓ(t− tj)ℓ
ℓ!

p−ρ log(1/p)ℓ + q−ρ log(1/q)ℓ

p−ρ + q−ρ
.

It follows that

log
(
p−ρ−it + q−ρ−it

)
= log

(
p−ρ−itj + q−ρ−itj

)
+
∑

ℓ≥1

βℓ(ρ)

ℓ!
iℓ(t− tj)ℓ,

where, in particular,

β1(ρ) =
p−ρ log(1/p) + q−ρ log(1/q)

p−ρ + q−ρ
.

The remaining manipulation is then straightforward using the saddle point
method. We use the local expansions

(
p−ρ−it + q−ρ−it

p−ρ−itj + q−ρ−itj

)k
= exp


k

∑

1≤ℓ≤3

βℓ(ρ)

ℓ!
iℓ(t− tj)ℓ +O(k|β4(ρ)||t− tj |4)


 ,

and

Γ(ρ+1+it)g(ρ+it) =





C0 + C1i(t− tj) +O

(
(t− tj)2
(ρ+ 2)2

)
, −2 < ρ ≤ 1;

Γ(ρ+ 1 + itj)e
(log ρ)i(t−tj) (1 + C2i(t− tj)

+O(|C2|3|t− tj |2)
)
(g(ρ+ itj)

+g′(ρ+ itj)i(t− tj) + O
(
|t− tj |2

))
, if ρ ≥ 1,
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where

C0 := Γ(ρ+ 1 + itj)g(ρ+ itj);
C1 := g(ρ+ itj)Γ(ρ+ 1 + itj)ψ(ρ+ 1 + itj) + g′(ρ+ itj)Γ(ρ+ 1 + itj),

with ψ(s) = Γ′(s)/Γ(s) the logarithmic derivative of the gamma function, and

C2 := ψ(ρ+ 1 + itj)− log ρ (ρ ≥ 1).

Here C0 and C1 are defined to take their limiting values when ρ = −1 and j = 0,
namely,

C0 := p log(1/p) + q log(1/q),

C1 := − 2p−1
2

(
p log(p)2 − q log(q)2

)
− C0γ − 2pq log(p) log(q).

Note that ψ(ρ+ 1 + itj)− log ρ = O(log(1 + |tj |)). It follows that for |j| < j0

Tj =
g(ρ+ itj)√
2πβ2(ρ)k

Γ(ρ+ 1 + itj)n
−ρ−itj (p−ρ + q−ρ

)k
p−iktj

×
(
1 +O

(
1

kβ2(ρ)
+

1

k(ρ+ 2)2

))
.

Summing over together the various |j| < j0 and collecting all estimates, we
obtain

M̃k(n) =
n−ρ (p−ρ + q−ρ)

k

√
2πβ2(ρ)k

∑

|j|<j0

g(ρ+ itj)Γ(ρ+ 1 + itj)(p
kn)−itj

×
(
1 +O

(
1

k(p/q)ρ
+

1

k(ρ+ 2)2

))
.

Finally, to complete the depoissonization and to estimate the integral in
(7.108), we need a more precise expansion for M̃k(ne

iθ) for small θ. The above
proof by the saddle-point method can be easily extended mutatis mutandis to
M̃k(z) for complex values of z lying in the right half-plane since we can write
(7.98) as follows:

M̃k(ne
iθ) =

1

2πi

∫

(ρ)

n−se−iθsΓ(s+ 1)g(s)
(
p−s + q−s

)k
ds,

where ρ > −2 and |θ| ≤ π/2− ε. The result is

M̃k(ne
iθ) =

(p−σ + q−σ)k√
2πβ2(ρ)k

∑

|j|<j0

g(σ + itj)Γ(σ + 1 + itj)(ne
iθ)−ρ−itjp−iktj

×
(
1 +O

(
1

k(p/q)ρ
+

1

k(ρ+ 2)2

))
, (7.114)
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uniformly for |θ| ≤ π/2− ε and k lying in the range (7.103). This completes the
proof of (7.104).

Before we continue discussing the asymptotic behavior of the average profile,
let us mention here an interesting consequence of Theorem 7.4.2. Theorem 7.3.3
gave the CLT theorem for the depth Dn of a trie. Is there a corresponding local
limit theorem (LLT) for this depth? Surprisingly, the answer is no, as the result
just proved shows. Indeed, recall that the distribution of the depth Dn is given
by P (Dn = k) = µn,k/n. Observe that for

k =
1

h
(log n+ x

√
h−1β2(−1) logn),

that is, for α = 1/h, where h is the entropy rate, ρ = 1 and (7.104) becomes

µn,k =

√
hG1

(
−1; logp/q pkn

)

log(p/q)
√
2πpq

n√
logn

e−x
2/2

(
1 +O

(
1 + |x|3√

logn

))
, (7.115)

uniformly for x = o(logn1/6). Thus

P (Dn = k) = G1

(
−1; logp/q pkn

) e−x
2/2

√
2πVar[Dn]

(
1 +O

(
1 + |x|3√

logn

))
, (7.116)

uniformly for x = o(logn1/6), where

Var[Dn] ∼ (h2 − h2)/h3 logn,

as in Theorem 7.3.3. The appearance of the unusual periodic function G1 means
that Dn satisfying the central limit theorem but not a local limit theorem (of
the usual form).

Let us now move to other ranges of k = Θ(logn). What happens to µn,k
when α > α2? The answer is provided in the next theorem.

Theorem 7.4.3. If

k ≥ α2

(
logn+ ωn

√
α2β2(−2) logn

)
, (7.117)

where β2 is defined in (7.107), then

µn,k = 2pqn2(p2 + q2)k−1
(
1 +O

(
ω−1
n e−ω

2
n/2+O(ω3

n/
√
logn)

))
, (7.118)

uniformly for 1≪ ωn = o(
√
log n).
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Proof. To prove (7.118), we move the line of integration of the integral in (7.97)
(this is allowable by the absolute convergence of the integral) to ℜ(s) = ρ, where

ρ := −2− ωn√
α2β2(−2) logn

.

Thus M̃k(ne
iθ) equals the residue of the integrand at s = −2 (the dominant

term in (7.118)) plus the value of the integral along ℜ(s) = ρ:

M̃k(ne
iθ) = |g(−2)|n2e2iθ(p2 + q2)k +

1

2π

∫ ∞

−∞
Jk(ne

iθ; ρ+ it)dt,

where |g(−1)| = 2pq/(p2 + q2). We need only estimate the last integral. By the
same analysis as that used for T ′′

j (see (7.113)) and the inequality (7.112), we
have

1

2π



∫

|t|≤π/ log(p/q)
+
∑

|j|≥1

∫

|t−tj |≤π/ log(p/q)


 Jk(ne

iθ; ρ+ it)dt

= O

(
|Γ(ρ+ 1)|n−ρ (p−ρ + q−ρ

)k
∫

|t|≤π/ log(p/q)
e−c0kt

2

dt

)

+O


n−ρ (p−ρ + q−ρ

)k ∑

|j|≥1

∣∣∣∣Γ
(
ρ+ 1 +

2|j| − 1

log(p/q)
πi

)∣∣∣∣

e(2|j|+1)π|θ|/ log(p/q)
∫

|t−tj|≤π/ log(p/q)
e−c0k(t−tj)

2

dt

)

= O

(
k−1/2

|ρ+ 2| n
−ρ (p−ρ + q−ρ

)k
)

= O
(
ω−1
n n−ρ (p−ρ + q−ρ

)k)
,

where we have used (7.99) to bound the sum

∑

|j|≥1

∣∣∣∣Γ
(
ρ+ 1 +

2|j| − 1

log(p/q)
πi

)∣∣∣∣ e
(2|j|+1)π|θ|/ log(p/q)

= O


∑

|j|≥1

(2|j| − 1)ρ+1/2 exp

(
−π

2(2|j| − 1)

2 log(p/q)
+

(2|j|+ 1)π|θ|
log(p/q)

)


= O(1),

uniformly for |θ| ≤ π/2− ε.
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By our choice of ρ and by straightforward expansion, we have

ω−1
n n−ρ (p−ρ + q−ρ)

k

n2 (p2 + q2)k
= O

(
ω−1
n e− logn(ρ+2)+ k

α2
(ρ+2)+ k

2 β2(−2)(ρ+2)2+O(k|ρ+2|3)
)

= O
(
ω−1
n e−ω

2
n/2+O(ω3

n/
√
log n)

)
.

Thus

M̃k(ne
iθ) = |g(−2)|(neiθ)2(p2 + q2)k

(
1 +O

(
ω−1
n e−ω

2
n/2+O(ω3

n/
√
logn)

))
,

(7.119)

uniformly for |θ| ≤ π/2−ε. Substituting this into (7.108), we deduce the desired
result (7.118).

Finally, let us say a word about the behavior of µn,k for k < α1 logn or, more
precisely, for 1 ≤ k ≤ α1(logn − log log logn+ O(1)). Because the proof of the
following theorem is elementary, in Exercise 7.10 we ask the reader to provide
the missing details.

Theorem 7.4.4. Define

km := α1

(
logn− log log logn+ log

(
p

q
− 1

)
+m log

p

q

)
m ≥ 0,

(7.120)

Sn,k,j :=

(
k

j

)
pjqk−jn

(
1− pjqk−j

)n−1
0 ≤ j ≤ k.

For convenience, set k−1 = 0. Assume that m ≥ 0. If

km−1 +
α1ωn

log logn
≤ k ≤ km −

α1ωn
log logn

, (7.121)

then

µn,k = Sn,k,m
(
1 +O((m+ 1)e−ωn)

)
. (7.122)

If k = km + α1x/ log logn, where x = o(
√
log logn), then

µn,k = Sn,k,m

(
1 +

pα1e
x

q(m+ 1)

)(
1 +O

(
x2 log logn−1 + (m+ 1) logn−(1−q/p)

))

(7.123)

for large n.

This completes our discussion of the average profile. The reader may consult
Park, Hwang, Nicodeme, and Szpankowski (2009) to find further results such
as the variance, limiting distribution, and internal profile for tries (see also the
exercises below).
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7.5. Exercises

7.1 Establish (7.1) for tries and digital search trees.

7.2 Prove the following pair of binomial inverse relations:

an =

(
n

r

)
, ân = (−1)rδn,r

for any nonnegative integer 0 ≤ r ≤ n.
7.3 Consider the following system of two-dimensional recurrences:

b(n+ 1, 0) = n+

n∑

k=0

(
n

k

)
pkqn−k (b(k, 0) + b(n− k, k)) , for n ≥ 2,

and

b(n, d) = n+
n∑

k=0

(
n

k

)
pkqn−k (b(k, d− 1) + b(n− k, k + d− 1))

for n ≥ 2, d ≥ 1. Observe that for d =∞ this gives

b(n,∞) =

n∑

ℓ=2

(−1)ℓ
(
n

ℓ

)
ℓ

1− pℓ − qℓ ,

which is exactly our recurrence (7.5) for the average external path (so
that b(n,∞) = ln = E[Ln]) for which we gave the solution in Theo-
rem 7.2.7. Therefore, set

b̃(n, d) = b(n,∞)− b(n, d)

and prove the following result (see Choi, Knessl, and Szpankowski (2012)).

Theorem 7.5.1. For n→ ∞ and d = O(1) the difference b(n,∞)−
b(n, d) = b̃(n, d) is of order O(log2 n) for n→∞. More precisely

b̃(n, d) =
1

2h log(1/p)
log2 n− d

h
logn

+

[
1

2h
− 1

h log p

(
γ + 1 +

h2
2h

+Ψ(logp n)

)]
logn+O(1),

where Ψ(·) is the periodic function

Ψ(x) =
∞∑

k=−∞,k 6=0

(
1 +

2kπid

log p

)
Γ

(
−2kπid

log p

)
e2kπirx
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and log p/ log q = d/r is rational. If log p/ log q is irrational, the term
involving Ψ is absent.

7.4 Prove Theorem 7.2.3 (see Szpankowski (1988a, 2001)).

7.5 Compute the constant A in (7.37) of Theorem 7.2.10.

7.6 Prove (7.75), which holds for a symmetric trie.

7.7 Establish the asymptotics of the variance of the path length, Var[Ln],
for tries and digital search trees (see Kirschenhofer, Prodinger, and Sz-
pankowski (1989b, 1989a, 1994), Jacquet and Szpankowski (1995)).

7.8 Derive asymptotic expression for the variance of the size, Var[Sn], in
tries (see Régnier and Jacquet (1989)).

7.9 Let sj,k (j = 1, 2, . . . and k = 0,±1, . . .) be a solution of (7.82). Prove
that

ℜ(sk,2(v)) ≥ s0,2(ℜ(v))
(cf. see Jacquet and Régnier (1986)).

7.10 Prove Theorem 7.4.4 (see Park et al. (2009)).

7.11 Prove the following theorem concerning the variance σ2
n,k = Var[Bn,k]

(see Park et al. (2009)). Below we use the same notation as in Sec-
tion 7.4.

Theorem 7.5.2. (i) If 1 ≤ k ≤ α1(1 + o(1)) logn, then

σ2
n,k ∼ µn,k. (7.124)

(ii) If α1(logn− log log logn+ ωn) ≤ k ≤ α2(logn− ωn
√
logn), then

σ2
n,k = G2

(
ρ; logp/q p

kn
) n−ρ (p−ρ + q−ρ)

k

√
2πβ2(ρ)k

(7.125)

×
(
1 +O

(
1

k(p/q)ρ
+

1

k(ρ+ 2)2

))
,

where ρ = ρ(n, k) > −2 is given by (7.105) and

G2(ρ;x) =
∑

j∈Z

h(ρ+ itj)Γ(ρ+ 1 + itj)e
−2jπix tj := 2jπ/ log(p/q).

(iii) If k ≥ α2(1 − o(1)) logn then

σ2
n,k ∼ 2µn,k. (7.126)

7.12 Using Theorem 7.5.2 from the previous exercise, prove, for the following
limiting distributions for the external profile.
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Theorem 7.5.3. (i) If σn,k →∞ then

Bn,k − µn,k
σn,k

d−→ N (0, 1), (7.127)

where N (0, 1) denotes a standard normal random variable and
d−→ stands

for convergence in distribution.
(ii) If σn,k = Θ(1) then

P (Bn,k = 2m) =
λm0
m!

e−λ0 + o(1),

P (Bn,k = 2m+ 1) = o(1),
(7.128)

uniformly for finite m ≥ 0, where λ0 := pqn2(p2 + q2)k−1.

7.13 In this exercise we ask the reader to extend our results obtained for the
external profile Bn,k to the internal profile In,k. In particular, define

α0 :=
2

log(1/p) + log(1/q)
.

We now list asymptotic approximations of E[In,k] for various ranges of
k, and ask the reader to establish them.
(a) The asymptotics of E[In,k] when 1 ≤ k ≤ α1(1 + o(1)) log n:

E[In,k] = 2k −E[Bn,k](1 + o(1)), (7.129)

uniformly in k.
(b) The asymptotics of E[In,k] when α1(logn− log log logn+ωn) ≤ k ≤
α0(logn− ωn

√
log n):

E[In,k] = 2k −G3

(
ρ; logp/q p

kn
) n−ρ (p−ρ + q−ρ)

k

√
2πβ2(ρ)k

×
(
1 +O

(
1

k(p/q)ρ
+

1

kρ2

))
,

where ρ = ρ(n, k) > 0 satisfies the saddle point equation (7.105), β2(ρ)
is the same as in (7.107) and

G3(ρ;x) =
∑

j∈Z

(ρ+ 1 + itj)Γ(ρ+ itj)e
−2jπix

where tj := 2jπ/(log(p/q)).
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(c) The asymptotics of E[In,k] when k = α0(log n+ o(log n2/3)):

k = α0(log n+ ξ
√
α0β2(0) logn),

where
α0β2(0) = 2(log(1/p) + log(1/q))/ log(p/q)2

and
ξ = o(log n1/6),

and then

E[In,k] = 2kΦ(−ξ)
(
1 +O

(
1 + |ξ|3√
logn

))
,

uniformly in ξ, where Φ(x) denotes the standard normal distribution
function.
(d) The asymptotics ofE[In,k] when α0(logn+ωn

√
log n) ≤ k ≤ α2(log n−

ωn
√
logn):

E[In,k] = G3

(
ρ; logp/q p

kn
) n−ρ (p−ρ + q−ρ)

k

√
2πβ2(ρ)k(

1 +O

(
1

k(p/q)ρ
+

1

k(ρ+ 2)2

))
,

with ρ, β2(ρ) and G3 as defined above.
(e) The asymptotics of E[In,k] when k = α2(log n+ o(logn2/3)): In this
case, we write

k = α0(logn+ ξ
√
α2β2(−2) logn),

and then we have

E(In,k) =
1

2
Φ(ξ)n2(p2 + q2)k

(
1 +O

(
1 + |ξ|3√
logn

))
,

uniformly for ξ = o(log n1/6).
(f) The asymptotics of E[In,k] when k ≥ α2(log n+ ωn

√
logn):

E[In,k] =
1

2
n2(p2 + q2)k

(
1 +O

(
ω−1
n e−ω

2
n/2+O(ω3

n logn−1/2)
))

as n→∞.
The reader should consult Park et al. (2009).
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7.14 In Section 7.1 we expressed the height Hn, the shortest path Rn, and
the fillup level Fn in terms of the internal and external profile. Using
the results of Section 7.4 and the above exercises, prove the following
corollaries.

Corollary 7.5.4. (Height of a trie). Let Hn := max{k : Bn,k > 0}
be the height of a random trie. Then

Hn

logn
→ 1

log(p2 + q2)−1

in probability.

Corollary 7.5.5. (Shortest path length of tries). Define

k̂ :=




α1

(
logn− log log logn− logm0 +m0 log(p/q)−

log log logn

m0 log logn

)
,

α1(logn− log logn),

depending whether p 6= q or not, respectively, where m0 := ⌈1/(p/q− 1)⌉
and

kS :=

{
⌈k̂⌉ if p 6= q,

⌊k̂⌋ if p = q.

If p 6= q then

Rn =

{
kS if 〈k̂〉 log logn→∞,
kS or kS − 1 if 〈k̂〉 log logn = O(1),

with high probability; we recall that 〈x〉 is the fractional part of x. If
p = q = 1/2, then

Rn =

{
kS + 1, if 〈k̂〉 logn→∞,
kS or kS + 1, if 〈k̂〉 logn = O(1),

with high probability.

Corollary 7.5.6. (Fillup level of a trie) If p 6= q then

Fn =

{
kS − 1 if 〈k̂〉 log logn→∞,
kS − 2 or kS − 1 if 〈k̂〉 log logn = O(1),

with high probability; if p = q = 1/2 then

Fn =

{
kS if 〈k̂〉 logn→∞,
kS or kS − 1 if 〈k̂〉 logn = O(1).
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7.15 For p = q = 1/2 we have α0 = α1 = α2 = 1/ log 2, hence the internal
and external profiles become particularly simple. Derive these results.

7.16 Extend the profile results presented in Section 7.4 to a general finite
alphabet.

7.17 In a b-trie the external node is allowed to store up to b strings. The
regular trie corresponds to b = 1. Extend the results of this chapter to
b-tries.

7.18 Extend the analyses of this chapter to Markov sources. In particular,
prove the CLT for the depths in a trie and in a digital search tree built
over n independent strings generated by a Markov source.
More precisely, define P = {pij}Vi,j=1 to be a positive transition matrix
for the underlying stationary Markov sources with the stationary dis-
tribution π = (π1, . . . , πV ). Define a new matrix P(s) = {p−sij }Vi,j=1 for
some complex s with principal left eigenvector π(s) and principal right
eigenvector ψ(s) associated with the largest eigenvalue λ(s), as follows:

π(s)P(s) = λ(s)π(s),

P(s)ψ(s) = λ(s)ψ(s),

where π(s)ψ(s) = 1. In particular, observe that

λ̇(−1) = h = −
V∑

i=1

πi

V∑

j=1

pij log pij ,

where h is the entropy rate of the underlying Markov process. Prove
the following result.

Theorem 7.5.7 (Jacquet, Szpankowski, and Tang, 2001). Let a dig-
ital search tree be built from n strings generated independently by a
Markov stationary source with transition probabilities P = {pij}Vi,j=1

that are positive. Then

E[Dm] =
1

λ̇(−1)

(
logn+ γ − 1 + λ̇(−1) + λ̈(−1)

2λ̇2(−1)

−ϑ− πψ̇(−1) + δ1(logn)
)
+O

(
logn

m

)
,

Var[Dn] =
λ̈(−1)− λ̇2(−1)

λ̇3(−1)
logn+O(1),
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where λ̇(−1) and λ̈(−1) are the first and second derivatives of λ(s) at
s = −1. Here ϑ = πẋ(−2) where

ẋ(−2) :=
∞∑

i=1

(
Q

−1(−2) · · ·Q−1(−i)(Q−1(s))′|s=−i−1Q
−1(−i− 2) · · ·

)
K,

K =

( ∞∏

i=0

Q−1(−2− i)
)−1

ψ.

Here ψ = (1, . . . , 1) and Q(s) = I − P(s). The function δ1(x) is a
fluctuating function with a small amplitude when

log pij + log p1i − ln p1j
ln p11

∈ Q, i, j = 1, 2, . . . , V,

where Q is the set of rational numbers. If the above does not hold, then
limx→∞ δ1(x) = 0.

For details see Jacquet, Szpankowski, and Tang (2001).
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CHAPTER 8

Suffix Trees and Lempel–Ziv’77

In this chapter we discuss a (compact) suffix tree (also known as a suffix trie) and
the Lempel–Ziv’77 (LZ’77) data compression scheme. Suffix trees are the most
popular type of data structure on words while LZ’77 is one of the fundamental
data compression schemes. We discussed both the suffix tree and the LZ’77
algorithm in some depth in Chapter 6 so here we only briefly review the basic
facts.

A suffix trie is a trie built from the suffixes of a single string. In Figure 8.1 we
show the suffix trie (tree) built from the first four suffixes of X = 0101101110.
More precisely, when building a trie from the first n infinite suffixesX∞

1 , X∞
2 , . . .,



220 Chapter 8. Suffix Trees and Lempel–Ziv’77

S2 S4S1 S3
Figure 8.1. Suffix tree built from the first five suffixes of X =
0101101110, i.e. 0101101110, 101101110, 01101110, 1101110.

X∞
n of X , as shown in Figures 8.1 and 8.2, we call it an infinite suffix tree or

simply a suffix tree. We also consider a finite version, called a finite suffix tree,
built from the finite suffixes Xn

1 , . . .X
n
n of X ; however, in this case we would

need to append the suffixes with a special symbol not belonging to the alphabet.
In this chapter we mostly deal with infinite suffix trees, which is what we mean
here when we say “suffix trees”. We will leave the analysis of finite suffix trees
to Section 8.1.2, the remarks, and chapter exercises.

Thus, we present here the probabilistic behavior of suffix trees when the
input string X is potentially of infinite length and is generated by a probabilistic
source. We will concentrate on a memoryless source over a finite alphabet A.
Extensions to Markov sources are possible as presented in Fayolle and Ward
(2005), but we will not consider them in this chapter.

We will also discuss here, the Lempel–Ziv’77 algorithm presented in Chap-
ter 6. We recall that it partitions a sequence into phrases. The basic idea is
to find the longest prefix of an as yet unprocessed (uncompressed) sequence
that occurs in the already processed (compressed) sequence. Let us assume
that the first n symbols Xn

1 are given to the encoder and the decoder. In the
standard Lempel–Ziv’77 scheme, the next phrase is the longest prefix as yet un-
compressed) Xn+ℓ

n+1 of X∞
n+1 that is repeated in Xn

1 . If we denote the length of
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S4S1 S3 S2 S5

S1 = 0 1 0 1 1 0 1 1 1 0S2 = 1 0 1 1 0 1 1 1 0S3 = 0 1 1 0 1 1 1 0 S4 = 1 1 0 1 1 1 0S5 = 1 0 1 1 1 0

Figure 8.2. Suffix tree built from the first five suffixes of X =
0101101110, i.e. 0101101110, 101101110, 01101110, 1101110, 101110.

this next phrase by Dn(n+1), then this length corresponds to the largest ℓ such
that Xn+ℓ

n+1 = Xm+ℓ−1
m for some prescribed range of m and ℓ. We have chosen to

denote the length of this phrase by Dn(n+1) because it is the depth of insertion
in a suffix tree built from the first n suffixes; it is why we are discussing suffix
trees and LZ’77 in the same chapter. For example, from Figure 8.2 we can find
the fifth phrase of X = 0101101110 (i.e. the path to S5), which is 10111.
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8.1. Random tries resemble suffix trees

In this section we discuss the typical depth Dn in a suffix tree built from the
first n suffixes of a string generated by a memoryless source. We first redefine
the depth Dn in terms of the number of occurrences of a given pattern and its
generating function. This will allow us to take advantage of many results on
pattern occurrences presented in Chapter 2.

Let i be an arbitrary integer smaller than or equal to n. We define Dn(i) to
be the largest value of k ≤ n such that X i+k−1

i occurs in at least two positions
before n in the text X . We recall from Chapter 2 that On(w) is the number of
times that pattern w occurs in a text Xn

1 . Therefore, Dn(i) can be characterized
as On+k−1(X

i+k−1
i ) ≥ 2, where we explicitly note that any occurrence ofX i+k−1

i

must occur before the position n + k − 1. Clearly On+k−1(X
i+k−1
i ) ≥ 1 since

X i+k−1
i is already counted as a factor of Xn+k−1

1 . Our goal is to determine the
probabilistic behavior of a “typical” Dn(i), that is, we define Dn to be equal
to Dn(i) when i is randomly and uniformly selected between 1 and n. More
precisely,

P (Dn = ℓ) =
1

n

n∑

i=1

P (Dn(i) = ℓ)

for any 1 ≤ ℓ ≤ n.
We hasten to observe that the quantity Dn is also the depth of a randomly

selected suffix in a suffix tree. Observe that in a suffix tree the path from the root
to node i (representing the ith suffix) is the shortest suffix that distinguishes it
from all other suffixes. The quantity Dn(i) defined above represents the depth
of the suffix i in the associated suffix trie, while Dn is the typical depth, that is,
the depth of a randomly selected terminal node in the suffix tree.

Let k be an integer greater than or equal to 1 (the case k = 0 is trivial). Let
w ∈ Ak be an arbitrary word of size k. Observe that

P (Dn(i) ≥ k and X i+k−1
i = w) = P (On+k−1(w) ≥ 2 and X i+k−1

i = w).

Furthermore, if On+k−1(w) = r then there are exactly r positions i ≤ n such
that X i+k−1

i = w; hence

n∑

i=1

P (On+k−1(w) = r and X i+k−1
i = w) = rP (On+k−1(w) = r).

Recall from Chapter 2 that

Nn(u) = E[uOn(w)] =
∑

r≥0

P (On(w) = r)ur
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is the probability generating function for On(w). We shall sometimes write
Nn,w(u) to underline the fact that the pattern w is given. From the above
considerations we conclude that

P (Dn ≥ k) =
1

n

n∑

i=1

P (Dn(i) ≥ k)

=
∑

w∈Ak

1

n

n∑

i=1

P (Dn(i) ≥ k and X i+k−1
i = w)

=
∑

w∈Ak

1

n

n∑

i=1

∑

r≥2

P (On+k−1(w) = r and X i+k−1
i = w)

=
1

n

∑

w∈Ak

∑

r≥2

rP (On+k−1(w) = r).

However,

∑

r≥2

rP (On+k−1(w) = r) =
∑

r≥0

rP (On+k−1(w) = r)−N ′
n+k−1,w(0),

where N ′
n,w(0) = P (On(w) = 1) denotes the derivative of Nn,w(u) = E[uOn(w)]

at u = 0. Since
∑

r≥0 rP (On+k−1(w) = r) is equal to the average number of

occurrences of the word w inside Xn+k−1
1 , it is also equal to nP (w). Thus

P (Dn ≥ k) =
∑

w∈Ak

(
P (w)− 1

n
N ′
n+k−1,w(0)

)

= 1− 1

n

∑

w∈Ak

N ′
n+k−1,w(0). (8.1)

Now let Dn(u) = E[uDn ] =
∑

k P (Dn = k)uk be the probability generating
function for Dn. Then (8.1) implies that, we include the specific but trivial case
of |w| = 0,

Dn(u) =
1

n

(1− u)
u

∑

w∈A∗

u|w|N ′
n+max{0,|w|−1},w(0),

where we have used again the fact that

∑

k≥0

P (Dn ≥ k)uk =
uE[uDn ]− 1

u− 1
.
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Then the bivariate generating function D(z, u) =
∑

n nDn(u)z
n (notice the

unusual definition of D(z, u), containing the factor n) becomes

D(z, u) =
1− u
u

∑

w∈A∗

u|w|

z(|w|−1)+

∂

∂u
Nw(z, 0), (8.2)

where a+ = max{0, a}, and

Nw(z, u) =
∞∑

n=0

Nn,w(u)z
n =

∞∑

n=0

∞∑

r=0

P (On(w) = r)znur.

In Chapter 2 we worked with
∑∞

n=0

∑∞
r=1 P (On(w) = r)znur (notice that

the second sum starts at r = 1) and in (2.21) we provided an explicit formula.
Adding the term

∑

n≥0

P (On(w) = 0)zn =: N0(z) =
Sw(z)

Dw(z)

found in (2.26), we obtain

Nw(z, u) =
z|w|P (w)

D2
w(z)

u

1− uMw(z)
+
Sw(z)

Dw(z)
,

where Mw(z) is defined in (2.22) and Dw(z) = (1 − z)Sw(z) + z|w|P (w), found
in (2.25) with Sw(z) being the autocorrelation polynomial for w presented in
Section 2.2. Since

∂

∂u
Nw(z, u) |u=0 = z|w| P (w)

D2
w(z)

, (8.3)

we finally arrive at the following lemma which is the starting point of our sub-
sequent analysis.

Lemma 8.1.1. The bivariate generating function D(z, u) for |u| < 1 and |z| ≤
1 is given by

D(z, u) =
1− u
u

∑

w∈A∗

u|w|z
P (w)

D2
w(z)

, (8.4)

with
Dw(z) = (1 − z)Sw(z) + z|w|P (w),

where Sw(z) is the autocorrelation polynomial for w.
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Let DT
n be the typical depth in a trie built from n independent infinite strings

generated by the memoryless source. We studied tries in Chapter 7. We denote

by DT
n (u) = E[uD

T
n ] the probability generating function for DT

n . We next state
a very important fact establishing the asymptotic equivalence of random suffix
trees and independent tries. We will prove it in Section 8.1.1.

Theorem 8.1.2. Consider a suffix tree built from the n suffixes of an infinite
string generated by a memoryless source over alphabet A. There exist ε > 0 and
ρ > 1 such that, for all |u| ≤ ρ,

Dn(u)−DT
n (u) = O(n−ε) (8.5)

for sufficiently large n.

Let us stop here and ponder the importance of the above result. It basically
says that the distribution of the depth in a suffix tree is asymptotically the same
as the distribution of the depth in a trie built from n i.i.d. strings. Thus random
suffix trees resemble random tries. In fact, the assumption of a memoryless
source is not a restriction since the above statement can be extended to Markov
sources, as proved in Fayolle and Ward (2005).

Using this finding and results for tries proved in Chapter 7 we can formulate
the following more explicit characterization of suffix trees.

Theorem 8.1.3. Let h = −∑a∈A pa log pa be the entropy rate of a source,

and h2 =
∑

a∈A pa log
2 pa. Then we have the following

(i) For a biased memoryless source (i.e., pa 6= pb for some a 6= b ∈ A2) there
exists for ε > 0

E[Dn] =
1

h
logn+

γ

h
+
h2
h2

+Φ0(logn) +O(n−ε), (8.6)

Var[Dn] =
h2 − h2
h3

logn+O(1) (8.7)

where Φ0(·) defined in (7.27) is a periodic function with small amplitude in the
case when the log pa are rationally related; otherwise it converges to zero.

Furthermore, (Dn−E[Dn])/Var[Dn] is asymptotically normal with mean zero
and variance 1, for fixed x ∈ R we have

lim
n→∞

P{Dn ≤ E(Dn) + x
√
Var(Dn)} =

1√
2π

∫ x

−∞
e−t

2/2dt,

and, for all integer m,

lim
n→∞

E

[
Dn −E(Dn)√

VarDn

]m
=

{
0 when m is odd

m!
2m/2(m/2)!

when m is even.
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(ii) For an unbiased source (i.e., ∀a ∈ A pa = 1/|A|), we have h2 = h2,
which implies that Var[Dn] = O(1) or, more precisely, for some ε > 0 (see
Remark 7.3.4),

Var[Dn] =
π2

6 log2 |A|
+

1

12
+ Φ2(log n) +O(n−ε),

where Φ2(logn) is a periodic function with small amplitude. The limiting dis-
tribution of Dn does not exist, but one finds (7.73)–(7.74) or in another form

lim
n→∞

sup
x

∣∣P (Dn ≤ x)− exp(−n|A|−x)
∣∣ = 0,

for any real x.

Theorem 8.1.3 tells us that the typical depth is normally distributed, with
average depth asymptotically equal to h−1 logn and variance Θ(logn) for a
biased memoryless source. In the unbiased case, the variance is O(1) and the
(asymptotic) distribution is of the extreme distribution type. Interestingly, as
said above and proved below, the depth in a suffix tree (built over one string
sequence generated by a memoryless source) is asymptotically equivalent to the
depth in a trie built over n independently generated strings. Thus suffix trees
resemble tries! Actually, this is not so surprising if one notes that n suffixes
of X typically overlap only on O(log n) positions. Thus considering O(n/ logn)
suffixes instead of n suffixes, we are dealing with O(n/ logn) almost independent
strings that create a trie resembling probabilistically the original suffix tree.

8.1.1. Proof of Theorem 8.1.2

The proof of Theorem 8.1.2 hinges on establishing the asymptotic equivalence be-
tween Dn and the typical depth DT

n in a trie built from n independent sequences.
We analyzed the typical depth DT

n of tries in Section 7.3.1. In particular, we
found the following representation.

Lemma 8.1.4. For all n ≥ 1,

DT
n (u) =

1− u
u

∑

w∈A∗

u|w|P (w)(1 − P (w))n−1,

DT (z, u) =
1− u
u

∑

w∈A∗

u|w| zP (w)

(1− z + P (w)z)2

for all |u| ≤ 1 and |z| < 1.
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Proof. From (7.66) we know that

P (DT
n (i) < k) =

∑

w∈Ak

P (w)(1 − P (w))n−1, n ≥ 1.

Indeed, DT
n (i) < k if there is a word w ∈ Ak such the prefix of the ith string is

equal to w and no other text prefix is equal to w. The rest is trivial.

Our goal now is to prove that Dn(u) and D
T
n (u) are asymptotically close as

n → ∞. This requires several preparatory steps, outlined below, that will lead
to

DT
n (u)−Dn(u) = (1− u)O(n−ε), (8.8)

for some ε > 0 and all |u| < β for β > 1. Consequently,

|P (Dn ≤ k)− P (DT
n ≤ k)| = O(n−εβ−k) (8.9)

for all positive integers k. Indeed, from Cauchy’s theorem we have

P (Dn ≤ k)− P (DT
n ≤ k) =

1

2πi(1− u)

∫

|u|=β

DT
n (u)−Dn(u)

uk+1
du,

which immediately leads to (8.9). In conclusion, in Theorem 7.3.3 we proved
that DT

n is asymptotically normal; hence we expect Dn to be normal, as stated
in Theorem 8.1.3, provided that we can prove Theorem 8.1.2, which we take up
next.

We start with a lemma indicating that for most words w the autocorrelation
polynomial Sw(z) is close to 1 for some nonnegative z. This lemma is partic-
ularly crucial to our analysis shedding light on the analytical properties of the
autocorrelation polynomial.

We need some definitions. We recall that P(w), for w ∈ Ak, is the au-
tocorrelation set, that is, the set of positions i such that wi1 = wkk−i+1. No-

tice that we always have k ∈ P(w). We denote by P(w) the symmetric set:
P(w) = {j, k − j + 1 ∈ P(w)}. Notice that 1 ∈ P(w). We fix an arbitrary inte-
ger m greater than 1, say m = 2; and denote by Bk the subset of Ak consisting
of the words w ∈ Ak such that min{P(w)− {1}} > k/m.

Lemma 8.1.5. Let p = maxa∈A{pa} and let m ≥ 1. There exists θ > 1 such
that for all ρ > 1, the following hold:

∀w ∈ Bk, ∀ρ > 1 : Sw(ρ) ≤ 1 + (ρδ1)
kθ (8.10)

and ∑

w∈Ak−Bk

P (w) ≤ θδk2 (8.11)

with δ1 = p1/m and δ2 = p1−1/m.
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Proof. To simplify the notation, let Pk be the probability measure on Ak such
that for any boolean expression A(w), Pk(A(w)) =

∑
w∈Ak [[A(w) = true]]P (w).

Thus we need to prove that Pk(w /∈ Bk) ≤ θδk2 .
Let i be an integer greater than 1 such that 1 + i ∈ P(w), that is, such that

wk−i1 = wk1+i. It is easy to see that

Pk(1 + i ∈ P(w)) =
(
∑

a∈A
p⌊k/i⌋+1
a

)r (∑

a∈A
p⌊k/i⌋a

)i−r
, (8.12)

where r = k−⌊k/i⌋i, the remainder of the division of k by i. The reader is asked
in Exercise 8.2 to prove (8.12), but it is easy to understand. Consider i ≤ k/2
such that the first k − i symbols exactly coincide with the last k − i symbols.
This can only happen if the word w is periodic with period of length i. This
observation leads to (8.12). Therefore,

Pk(1 + i ∈ P(w)) ≤
(
∑

a∈A
pap

⌊k/i⌋
)r (∑

a∈A
pap

⌊k/i)⌋−1

)i−r

≤ pr⌊k/i⌋p(i−r)⌊k/i⌋+r−i = pk−i.

Thus

Pk(w /∈ Bk) = Pk

(
min(P(w) − {1}) < k

m

)

≤
∑

i≤k/m
Pk(i+ 1 ∈ P(w)) ≤ pk−k/m

1− p .

Now, assume that w ∈ Bk, that is, min(P(w)− {1}) > k/m; then

Sw(ρ)− 1 ≤
∑

i>k−k/m
ρk−ipk−i ≤ ρk p

k/m

1− p

for all ρ > 1. Equations (8.10) and (8.11) will be satisfied if we select θ =
(1− p)−1.

Notice that: (i) by making m large enough we can have δ2 arbitrarily close
to p while δ1 gets closer to 1; (ii) by choosing ρ such that ρδ1 < 1 we can make
Sw(ρ) arbitrarily close to 1 for large k.

In the next lemma we show that D(z, u) can be analytically continued above
the unit disk, that is, for |u| > 1.
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Lemma 8.1.6. Let |z| < 1; the generating function D(z, u) is defined for all
|u| < min{δ−1

1 , δ−1
2 }.

Proof. From Lemma 8.1.1 we know that

D(z, u) =
1− u
u

∑

w∈A∗

u|w| P (w)z

Dw(z)2
,

with Dw(z) = (1 − z)Sw(z) + z|w|P (w). Define

D1(z, u) =
1− u
u

∑

w∈A+

u|w| P (w)z

Dw(z)2
,

where A+ = A∗ − {ε}, that is, the set of all nonempty words. For all w ∈ A+

and z such that |z| < 1,

∣∣∣∣
zP (w)

Dw(z)2

∣∣∣∣ =
∣∣∣∣∣

∞∑

n=0

P (On+|w|−1(w) = 1)zn

∣∣∣∣∣

≤
∞∑

n=0

nP (w)|z|n =
zP (w)

(1− |z|)2 .

Hence
1

|Dw(z)|2
≤ 1

(1 − |z|)2 .

Let |u| ≤ 1 and |z| < 1. Consider the following identity:

∑

w∈A+

u|w| P (w)z

(1− z)2 =
zu

(1− u)(1− z)2 .

Thus, when |z| ≤ 1,

D1(z, u)−
z

(1− z)2 =
1− u
u

∑

w∈A+

u|w|P (w)z

(
1

D2
w(z)

− 1

(1− z)2
)

=
(u− 1)

u

∑

w∈A+

u|w|P (w)
z (Dw(z)− (1− z)) (Dw(z) + (1− z))

D2
w(z)(1− z)2

.

Now we observe that Sw(z) − 1 is a polynomial with positive coefficients and
that

|Sw(z)| ≤
∑

i≥0

pi|z|i ≤ 1

1− |z|p ≤
1

1− p
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when |z| ≤ 1; thus

|Dw(z)| ≤ (|1 − z|) 1

1− p + pk ≤ B

for some B > 0. Therefore

∣∣∣∣D1(z, u)−
z

(1− z)2
∣∣∣∣ ≤

|1− u|
|u|(1− |z|)4B

∞∑

k=0

uk
∑

w∈Ak

P (w)f(w, z)

with
f(w, z) = |Dw(z)− (1− z)|.

We already know that maxw∈A∗{f(w, z)} ≤ B + 2. We now consider

∑

w∈Ak

P (w)f(w, z).

Let w ∈ Bk. From Lemma 8.1.5 we know that

Sw(1) ≤ 1 + δk1θ.

Since Sw(z)− 1 is a polynomial with positive coefficients:

Sw(1)− 1 ≤ δk1θ ⇒ ∀|z| ≤ 1 : |Sw(z)− 1| ≤ δk1θ.

Therefore, since P (w) ≤ pk ≤ δk1 we have

f(w, z) ≤ |1− z|δk1θ + P (w) = O(δk1 ) .

Consequently, ∑

w∈Bk

P (w)f(w, z) ≤ (|1− z|+B)δk1θ.

Finally, we consider w ∈ Ak −Bk. Since f(w, z) ≤ B +2, from Lemma 8.1.5
we find that ∑

w∈Ak−Bk

P (w)f(w, z) ≤ (B + 2)θδk2 .

In summary,
∞∑

k=0

uk
∑

w∈Ak

P (w)f(w, z)

converges for all |u| < min{δ−1
1 , δ−1

2 }, as required.
We need two other technical lemmas.
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Lemma 8.1.7. There exists K, a constant ρ′ > 1 and α > 0 such that, for all
w with |w| ≥ K, we have

|Sw(z)| ≥ α
for |z| ≤ ρ′ with pρ′ < 1.

Proof. Let ℓ be an integer and ρ′ > 1 be such that pρ′ + (pρ′)ℓ < 1. Let k > ℓ
and let w be such that |w| = k. Let 1 + i = min(P(w)− {1}). If i ≥ ℓ then, for
all z such that |z| ≤ ρ′, we have

|Sw(z)| ≥ 1−
j=k∑

j=ℓ

(pρ′)j ≥ 1− (pρ′)ℓ

1− pρ′ .

We now consider the case i < ℓ. Let q = ⌊k/i⌋ and r = k − iq (thus r < i). As
in the proof of lemma 8.1.5 we have w = wqiwr, wi, and wr being respectively,
the prefixes of lengths i and r of the word w. Notice that wr is also a prefix of
wi.

Since 1+ i = min{P(w)−{1}}, there are no other elements in P(w) between
position 1 and position 1 + i and consequently no other positions, other than
1 plus multiples of i, between 1 and 1 + (q − 1)i. Since the positions between
(q− 1)i and k correspond to the positions of P(wiwr) translated by (q− 1)i− 1
we have the identity

Sw(z) =

j=q−1∑

j=0

(P (wi)z
i)j + (P (wi)z

i)q−1(Swiwr (z)− 1)

=
1− (P (wi)z

i)q

1− P (wi)zi
+ (P (wi)z

i)q−1(Swiwr(z)− 1),

where Swiwr (z) is the autocorrelation polynomial of wiwr. Since |Swiwr (z)−1| ≤
pρ′/(1− pρ′), this implies that

|Sw(z)| ≥
1− (pρ′)qi

1 + (pρ′)i
− (pρ′)i(q−1)+1

1− pρ′ .

Since (pρ′)ℓ < 1− pρ′ we have

|Sw(z)| ≥
1− (pρ′)qi

1 + (pρ′)i
− (pρ′)(q−1)i+1

(pρ′)ℓ

≥ 1− (pρ′)qi − (pρ′)(q−1)i+1−ℓ(1 + (pρ′)i)

1 + (pρ′)i

≥ 1− 3(pρ′)(q−1)i+1−ℓ

1 + (pρ′)i
≥ 1− 3(pρ′)(q−1)i+1−ℓ

1 + pρ′
.
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Let j be an integer such that 3(pρ′)jℓ < 1 and choose K = (j + 3)ℓ. Since
qi > k − i ≥ k − ℓ, thus for k > K, we have (q − 1)i+ 1− ℓ > k − 3ℓ and

|Sw(z)| ≥
1− 3(pρ′)jℓ

1 + pρ′
> 0;

taking α = (1− (pρ′)− 3(pρ′)jℓ)(1 + pρ′) completes the proof.

Lemma 8.1.8. There exists an integer K ′ such that for |w| ≥ K ′ there is only
one root of Dw(z) in the disk |z| ≤ ρ′ for ρ′ > 1.

Proof. Let K1 be such that (pρ′)K1 < (ρ′ − 1)α holds for α and ρ′ as in
Lemma 8.1.7. Write K ′ = max{K,K1}, where K is defined above. Note also
that the above inequality implies that for all w such that |w| > K ′ we have
P (w)(ρ′)|w| < (ρ′−1)α. Hence, for |w| > K ′ we have |P (w)z|w|| < |(z−1)Sw(z)|
on the circle |z| = ρ′ > 1. Therefore, by Rouché’s theorem the polynomialDw(z)
has the same number of roots as (1− z)Sw(z) in the disk |z| ≤ ρ′. But the poly-
nomial (1− z)Sw(z) has only a single root in this disk, since by Lemma 8.1.7 we
have |Sw(z)| > 0 in |z| ≤ ρ′.

We have just established that there exists a smallest root of Dw(z) = 0,
which we denote as Aw. Let Cw and Dw be the first and the second derivatives
of Dw(z) at z = Aw, respectively. Using bootstrapping, one easily obtains the
following expansions:

Aw = 1 +
1

Sw(1)
P (w) +O(P (w)2), (8.13)

Cw = −Sw(1) +
(
k − 2S′

w(1)

Sw(1)

)
P (w) +O(P (w)2), (8.14)

Ew = −2S′
w(1) +

(
k(k − 1)− 3S′′

w(1)

Sw(1)

)
P (w) +O(P (w)2), (8.15)

where S′
w(1) and S

′′
w(1) respectively denote the first and the second derivatives

of Sw(z) at z = 1. Note that Aw ≥ 1 + P (w) since S(1) ≤ 1.
Finally, we are ready to compare Dn(u) with DT

n (u) in order to conclude
that they do not differ too much as n → ∞. Let us define two new generating
functions Qn(u) and Q(z, u) that represent the difference between Dn(u) and
DT
n (u):

Qn(u) =
u

1− u
(
Dn(u)−DT

n (u)
)
,

and

Q(z, u) =

∞∑

n=0

nQn(u)z
n =

u

1− u
(
D(z, u)−DT (z, u)

)
.
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Thus

Q(z, u) =
∑

w∈A∗

u|w|P (w)z

(
1

Dw(z)2
− 1

(1− z + P (w)z)2

)
.

It is not difficult to establish the asymptotics of Qn(u) by appealing to Cauchy’s
theorem. This is done in the following lemma.

Lemma 8.1.9. Let δ = max{δ1, δ2}. For all 1 < ρ ≤ ρ′ and for all u such that
u ≤ (δρ)−1, the following evaluation holds:

Qn(u) =
1

n
fn(u),

where
fn(u) =

∑

w∈A∗

fn(w, u)

with

fn(w, u) = u|w|P (w)

(
A−n
w

(
n

C2
wAw

+
Ew
C3
w

)
− n(1− P (w))n−1

)

+In(w, ρ, u) (8.16)

for large n with
∑

w∈A∗ |In(w, ρ, u)| = O(ρ−n).

Proof. By Cauchy’s formula

fn(u) =
1

2iπ

∮
Q(z, u)

dz

zn+1
,

where the integration is along a contour contained in the unit disk that encircles
the origin. Let w be such that |w| ≥ K ′, where K ′ was defined in Lemma 8.1.8.
From the proof of Lemma 8.1.8 we conclude that Dw(z) and 1− z+P (w)z have
only one root in |z| ≤ ρ for some ρ > 1. Now we enlarge the integration contour
to a circle of radius ρ that contains the dominant singularities. Then, applying
Cauchy’s residue theorem we obtain

fn(w, u) =
1

2iπ

∮
u|w|P (w)

dz

zn

(
1

Dw(z)2
− 1

(1− z + P (w)z)2

)

= u|w|P (w)

(
A−n
w

u

(
n+ 1− |w|
C2
wAw

+
Ew
C3
w

)
− n(1 − P (w))n−1

)

+In(w, ρ, u),
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where

In(w, ρ, u) =
P (w)

2iπ

∫

|z|=ρ
u|w| dz

zn

(
1

Dw(z)2
− 1

(1 − z + P (w)z)2

)
.

To bound In(w, ρ, u) contribution we argue in exactly the same manner as in
the proof of Lemma 8.1.6. We fix an integer k and consider

∑
w∈Ak |In(w, ρ, u)|.

For w ∈ Ak let

In(w, ρ) =

∣∣∣∣∣
1

2iπ

∫

|z|=ρ

dz

zn

(
1

Dw(z)2
− 1

(1 − z + P (w)z)2

)∣∣∣∣∣ . (8.17)

We have
|In(w, ρ, u)| = |u|kP (w)In(w, ρ).

Our goal now is to show that

∑

w∈Ak

|In(w, ρ, u)| = O((ρδ|u|)kρ−n),

so that the sum of the In(w, ρ, u) converges for |u| ≤ (ρδ)−1 and decays expo-
nentially with integer n. Selecting ρδ < 1 will terminate the proof.

By Lemma 8.1.7 we know that

In(w, ρ) ≤ ρ−n
(

ρ

(ρ− 1)2α2
+

ρ

(ρ− 1)2

)
,

thus by Lemma 8.1.5 we have for all w ∈ Ak − Bk
∑

w∈Ak−Bk

P (w)In(w, ρ) = O(δk2ρ
−n).

Furthermore,

In(w, ρ) =

∣∣∣∣∣
1

2iπ

∫

|z|=ρ

dz

zn
(Dw(z)− (1− z) + P (w)z) (Dw(z) + 1− z − P (w)z)

Dw(z)2(1− z + P (w)z)2

∣∣∣∣∣ .

Let w ∈ Bk. We know from Lemma 8.1.6 that

|Dw(z)− (1− z) + P (w)| ≤ |ρ− 1|θ(δ1ρ)k + P (w)ρk = O((δ1ρ)
k)

and thus, for w ∈ Bk, we conclude that In(w, ρ) = O((δ1ρ)
kρ−n). This leads to

∑

w∈Ak

In(w, ρ, u) = O((δρu)kρ−n)
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for δ = max{δ1, δ2} and consequently, for |u| < (δρ)−1,

∑

w∈A∗

In(w, ρ, u) = O

(
1

1− ρδ|u|ρ
−n
)
,

which concludes the proof.

In the next lemma we show that Qn(u)→ 0 as n→∞.

Lemma 8.1.10. Let δ = max{δ1, δ2}. For all β such that 1 < β < δ−1, there
exists ε > 0 such that Qn(u) = (1 − u)O(n−ε) uniformly for |u| ≤ β.

Proof. Our starting point is the asymptotic expansion (8.16). Using the expan-
sion (8.15) for Ew and Lemma 8.1.5 we can show easily that

∑

w∈A∗

u|w|P (w)A−n
w

Ew
C3
w

= O(1).

Therefore, by Lemma 8.1.9 we arrive at

Qn(u) =
∑

w∈A∗

u|w|P (w)

(
A−n−1
w

C2
w

− (1− P (w))n−1

)
+O(1/n).

Now let fw(x) be a function defined for real x by

fw(x) =
A−x−1
w

C2
w

− (1 − P (w))x−1. (8.18)

It turns out that ∑

w∈A∗

u|w|fw(x)P (w) <∞.

To be convinced of this it suffices to notice that by (8.13) this function is uni-
formly bounded on all x ≥ 0 and w ∈ A∗ by some fmax, and therefore

∑

k

∑

Ak−Bk

u|w|fw(x)P (w) =
∑

k

O(ukδk) <∞

when |u| < β. When w ∈ Bk, since Sw(1)− 1 and S′(w) are both O(P (w)) we
have

fw(x) = (1 + P (w))−xO
(
kP (w) + xP (w)2

)
.

Noticing that

(1 + P (w))xxP (w) = µxe−µx
P (w)

log(1 + P (w))
= O(1)
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with µ = log(1 + P (w)), we get

∑

k

∑

w∈Bk

ukxP (w)3(1 + P (w))−xP (w) = O

(
1

1− p|u|

)
.

We also have
∑
k kP (w)

2 ≤ 1/(1− p|u|)2 . In view of this, we conclude that

∑

w∈A∗

u|w|P (w)fw(x) <∞

is absolutely convergent for all x ≥ 0 and u such that |u| ≤ β. The function
fw(x) decreases exponentially for x→∞, and therefore its Mellin transform

f∗
w(s) =

∫ ∞

0

fw(x)x
s−1dx

exists for ℜ(s) > 0 since fw(0) 6= 0 (see Table 7.1 for the properties of the Mellin
transform). However, for our analysis we need a larger strip of convergence.
Therefore, we introduce a modified function,

f̄w(x) = fw(x) − fw(0)e−x,

which also decreases exponentially for x → +∞ but is O(x) for x → 0. For
this function the Mellin transform f̄∗

w(s) is well defined for ℜ(s) > −1. In this
region, again using the properties of the Mellin transform from Table 7.1, we
obtain

f̄∗
w(s) = Γ(s)

(
A−1
w

(logAw)
−s − 1

C2
w

− (− log(1− P (w)))−s − 1

1− P (w)

)
.

Let g∗(s, u) be the Mellin transform of the series
∑
w∈A∗ u|w|P (w)f̄w(x) which

exists at least in the strip (−1, 0). Formally, we have

g∗(s, u) =
∑

w∈A∗

u|w|P (w)f̄∗
w(s).

It turns out that this Mellin transform exists in ℜ(s) ∈ (−1, c) for some c > 0,
as the next lemma – which we prove below – states.

Lemma 8.1.11. The function g∗(s, u) is analytic in ℜ(s) ∈ (−1, c) for some
c > 0.
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Assuming that Lemma 8.1.11 is granted, we have

Qn(u) =
1

2iπ

∫ ε+i∞

ε−i∞
g∗(s, u)n−sds+O(1/n) +

∑

w∈A∗

u|w|P (w)fw(0)e
−n,

for some ε ∈ (0, c). Notice that the last term of the above expression con-
tributes O(e−n) for |u| < β and can be safely ignored. Furthermore, a simple
majorization under the integral gives the evaluation Qn(u) = O(n−ε) since by
Lemma 8.1.11 g∗(s, u) is analytic for ℜ(s) ∈ (0, c). This completes the proof
provided that we can establish Lemma 8.1.11.

Let us now finalize our analysis by providing a proof of Lemma 8.1.11. We
will establish the absolute convergence of g∗(s, u) for all s such that ℜ(s) ∈
(−1, c) and |u| ≤ β. Let us define

h(s, u) =
g∗(s, u)

Γ(s)
.

We set h(s, u) = h1(s, u) + h2(s, u) where

h1(s, u) =
1

Γ(s)

∑

w∈B|w|

u|w|P (w)f̄∗
w(s),

h2(s, u) =
1

Γ(s)

∑

w 6∈B|w|

u|w|P (w)f̄∗
w(s).

We first prove that h2(s, u) is well defined for ℜ(s) > −1 and |u| < β for all
w /∈ B|w|. Then we deal with the harder problem of establishing the existence
of h1(s, u).

Let k be an integer and let w /∈ Bk. Notice that

1

Γ(s)
f̄∗
w(s) = A−1

w

(logAw)
−s − 1

C2
w

− (− log(1 − P (w)))−s − 1

1− P (w)

is uniformly bounded for all complex values of s such that ℜ(s) > 0. However
for w ∈ Bk we also know that

∑

w∈Ak−Bk

P (w) = O(δk2 ),

thus

h2(s, u) = O

(
1

1− δ2|u|

)
.
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This implies that h(s, u) is defined for all s, such that ℜ(s) ≥ 0, provided that
|u| ≤ β. But f∗

w(0) = 0, hence the pole at s = 0 of Γ(s) is canceled by the zero
in the numerator and h2(s, u) is defined for ℜ(s) > −1.

The case w ∈ Bk needs more attention but leads to similar derivations as
before. Note that for any fixed s we have the following:

(logAw)
−s =

(
P (w)

1 + Sw(1)

)−s
(1 +O(P (w)))−s,

(− log(1− P (w)))−s = P (w)−s(1 +O(P (w)))−s.

One must be careful with the manipulation of the “big oh” terms when the
exponents are complex numbers. In particular, we have, for any given quantity
µ > 0,

∣∣e−µs − 1
∣∣ = |(e−µℜ(s) − 1) cos (µℑ(s)) |

+1− cos (µℑ(s)) + | sin (µℑ(s)) |e−µℜ(s).

Thus e−µs − 1 = 1 + O(|s|ε) as long as ℜ(s) and µ are bounded quantities. So
for ℜ(s) bounded we have (replacing µ by log(1+O(P (w))) in both expressions)

(1 +O(P (w)))−s = 1 +O(|s|P (w)).

From this estimate we derive

(logAw)
−s − 1

A
2−|w|
w C2

w

− (− log(1− P (w)))−s − 1

1− P (w)
= P (w)−s ((Sw(1))

s(1 +O(|s|P (w))) − (1 +O(|s|P (w))) +O(|w|P (w))).

From the assumption that w ∈ Bk we know by Lemma 8.1.5 that Sw(1) =
1 +O(δk2 ), and therefore

(Sw(1))
s = 1 +O(|s|δk1 ).

Since P (w) = O(δk1 ),

(logAw)
−s − 1

A
2−|w|
w C2

w

− (− log(1− P (w)))−s − 1

1− P (w) = O(|s|δk1 ).

We have |P (w)−s| = P (w)−ℜ(s), hence

h2(s, u) =

∞∑

k=0

|u|kO(|s|δk1 )
∑

w∈Bk

P (w)1−ℜ(s).
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Since ∑

w∈Bk

P (w)1−ℜ(s) ≤
∑

a∈A
p1−ℜ(s)
a ,

the sum converges for (
∑

a∈A
p1−ℜ(s)
a

)
|u|δ1 < 1,

which is the case if |u| ≤ β < δ1 for c such that

∑

a∈A
p1−ca < βδ1.

(Notice that
∑

a∈A p
1−ℜ(s)
a → 1 when ℜ(s) → 0.) As before, the pole of Γ(s)

at s = 0 cancels out since f∗(0) = 0 and therefore h2(0, u) = 0. In summary,
g∗(s, u) does not show any singularities in the strip ℜ(s) ∈ (−1, c); it is well
defined there.

Since
fn(w, 1) = P (On(w) = 1)− nP (w)(1 − P (w))n−1

as a consequence of our proof, we conclude with the following corollary regarding
the probability P (On(w) = 1). We will use it in Chapter 10.

Corollary 8.1.12. Let k be an integer and let w ∈ Ak. For all ε > 0

P (On(w) = 1) = nP (w)(1−P (w))n−1+O(n1−εP (w)1−εδk1 )+fw(0)e
−n (8.19)

when w ∈ Bk, where fw(x) was defined in (8.18). Furthermore, when w /∈ Bk,

P (On(w) = 1) = nP (w)(1 − P (w))n−1 +O(n1−εP (w)1−ε) + fw(0)e
−n (8.20)

where
∑
w∈A∗ |fw(0)| <∞.

8.1.2. Suffix trees and finite suffix trees are equivalent

We now investigate the typical depth of a finite suffix tree. Recall that by a
finite suffix tree we mean a suffix tree built from the first n suffixes of a finite
string Xn

1 $ where $ /∈ A is a special symbol. As before, by suffix tree we mean
a tree built from the first n suffixes of the infinite string X∞

1 .
We leave as Exercise 8.6 the proof that the probability generating function

DFS
n (u) for the typical depth in a finite suffix tree satisfies

P (DFS
n ≥ k) = 1

n

∑

w∈Ak

(n+ 1− |w|)+P (w) −N ′
n,w(0), (8.21)
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where we use the notation a+ = max{0, a}. From (2.27) we observe that

∑

r

rP (On(w) = r) = (n+ 1− |w|)P (w);

thus any occurrence of w must fit into the first n + 1 − |w| positions in Xn
1 .

Therefore

DFS
n (u) =

1

n

1− u
u

(
∆n(u) +

∑

w∈A∗

u|w|N ′
n,w(0)

)
,

with

∆n(u) =
∑

k≥0

(n− (n+ 1− k)+)uk =
2u− 1− un+2

(1− u)2 ;

however, the exact form of ∆n(u) is irrelevant. In view of this we have

DFS(z, u) =
1− u
u

(
∆(z, u) +

∑

w∈A∗

∂

∂u
Nw(z, 0)

)
,

where
∆(z, u) =

∑

n

∆n(u)z
n

and again its exact form is not important. Finally, by borrowing the formula for
Nw(z, u) from Chapter 2 or just using (8.3), we have

DFS(z, u) =
1− u
u

(
∆(z, u) +

∑

w∈A∗

(zu)|w| P (w)

D2
w(z)

)
.

Our goal is to prove the following theorem which establishes the equivalence
of finite suffix trees and tries built from independent strings.

Theorem 8.1.13. There is an ε > 0 for |u| ≤ β with β > 1 such that

DFS
n (u)−DT

n (u) = O(n−ε)

for large n.

We will prove the theorem in two steps. In the first step we prove that a
random finite suffix tree resembles a random finite trie, defined below. That is,
we prove the following:

DFS
n (u)−DFT

n (u) = O(n−ε)
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where DFT
n (u) is the generating function defined by

DFT (z, u) =
∑

n

nDFT
n (u) =

1− u
u

(
∆(z, u) +

∑

w∈A∗

(zu)|w| P (w)

(1− z + P (w)z)2

)
.

From the above we may also conclude that

DFT
n (u) =

1

n

1− u
u

(
∆n(u) +

∑

w∈A
P (w)(n − |w|+ 1)+(1− P (w))n−|w|

)
.

The quantity DFT
n (u) is the probability generating function for the typical

depth in a tree structure that we tentatively call a thinning trie. In a thinning
trie we delete one string at each level of the tree. In other words, one string
is stored at the root (level 0) and the remaining n − 1 strings are dispatched
into the subtrees. At level 1 we again delete one string at random while the
remaining n− 2 strings are dispatched into the subsubtrees, and so forth. Thus
at level n (if attained) no more strings remain. This mimics a finite suffix tree
quite well since the nth suffix remains at the root, thanks to the special final
symbol $. The (n− 1)th suffix is stored at level 1, and so forth. A finite suffix
tree cannot reach level n though this is still possible for suffix trees with infinite
suffixes.

Unfortunately, the thinning trie does not have a recursive definition. (Re-
cently Choi et al. (2012) analyzed a similar trie, called (d, n)-trie.) Thus we
cannot use the nice recurrences that we used in Chapter 7. However, we still
can prove that a thinning trie resembles a regular trie.

Lemma 8.1.14. There exists ε > 0 such that, for |u| ≤ β,

DFT
n (u)−DT

n (u) = O(n−ε)

for large n.

Proof. Let

DFT
n (u)−DT

n (u) =
1

n

1− u
u

QTn (u).

We basically need to prove that the quantity

QTn (u) = −
∑

w∈Ak

u|w|P (w)
[
n
(
(1 − P (w))n−1 − 1

)

−(n− |w| + 1)+
(
(1− P (w))n−|w| − 1

)]
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is O(n1−ε) for |u| ≤ β. We have the upper bound
∣∣QTn (u)

∣∣ ≤ |fn(u)|+ |gn(u)|
where

fn(u) =
∑

w∈Ak

u|w|P (w)n
(
(1− P (w))n−1 − 1

)
= n

∑

w∈Ak

u|w|fw(n− 1)

with fw(x) = P (w)(((1 − P (w))x − 1), and

gn(u) =
∑

|w|≤n
u|w|P (w)(n + 1− |w|)+

(
(1− P (w))n−|w| − 1

)
.

We already know, via the use of the Mellin transform, that fn(u) = O(n1−ε) for
ε and β such that β

∑
a∈A p

1+ε
a < 1.

We can rewrite gn(u) as follows:

gn(u) =
∑

|w|≤n
u|w|P (w)n

(
(1 − P (w))n−1 − 1

)
(1− P (w))1−|w|

+
∑

|w|≤n
n
(
(1− P (w))n−1 − 1

)

−
∑

|w|≤n
(|w| − 1)u|w|P (w)

(
(1− P (w))n−1 − 1

)
(1− P (w))1−|w|

−
∑

|w|≤n
(|w| − 1)

(
(1− P (w))n−1 − 1

)
. (8.22)

Since (1 − P (w))1−|w| = O(1) it turns out that all the right-hand side terms
are of order O(fn(|u|)) (see Exercise 8.7)) which in turn is of order O(n1−ε), as
required.

Now we are in a position to prove Theorem 8.1.13. we need to show that
DFS
n (u)−DFT

n (u) = O(n−ε), which we do in what follows. Let

DFS
n (u)−DFT

n (u) =
1

n

1− u
u

QFn (u).

By the Cauchy formula,

QFn (u) =
1

2iπ

∮
QF (z, u)

dz

zn+1
,

where

QF (z, u) =
∑

w∈A∗

(uz)|w|P (w)

(
1

D2
w(z)

− 1

(1− z + P (w)z)2

)
.
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This quantity is similar to Q(z, u) from the previous section. However, in
QF (z, u) the factor u|w|z is now replaced by (zu)|w|. The proof proceeds in the
same way as for Q(z, u). The function QF (z, u) has the same poles as Q(z, u)
at z = Aw and z = (1− P (w)) for w ∈ A∗. Define

fFn (w, ρ, u) =

∣∣∣∣∣
1

2iπ

∫

|z|=ρ

dz

zn−|w|

(
1

Dw(z)2
− 1

(1− z + P (w)z)2

)∣∣∣∣∣ .

It is easy to show that

fFn (w, ρ, u) ≤ ρ|w|fn(w, ρ, u),

where fn(w, ρ, u) is defined in (8.17) in the previous section. Thus (as the reader
is asked to prove in Exercise 8.8)

∑

w∈A∗

P (w)fFn (w, ρ, u) = O

(
ρ−n

1− ρ2δ|u|

)
. (8.23)

Finally, we estimate the residues over the poles of QF (z, u). We need to deal
with the following sum over w ∈ A∗:

u|w|P (w)

[
A

|w|−n
w

u

(
n+ 1− |w|
C2
wAw

+
Ew
C3
w

)
− n(1− P (w))n−1+|w|

]
.

However,

A|w|−n
w = A−n

w (1 +O(|w|P (w)))
(1− P (w))n−1+|w| = (1− P (w))n−1(1 +O(|w|P (w))).

Thus the above sum is fundamentally equivalent to

u|w|P (w)

(
A−n
w

u

[
n+ 1− |w|
C2
wAw

+
Ew
C3
w

)
− n(1− P (w))n−1

]

which we know to be O(n1−ε). This completes the proof.

8.2. Size of suffix tree

We now extend our analysis to other parameters of suffix trees. Our method-
ology applies without major modifications to the evaluation of the average size
of a suffix tree. We define the size of the tree as the number of internal nodes.
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However, we should point out that our methodology works for the average size
of a suffix, and we do not yet know how to extend it to the variance and limiting
distribution; these are still open problems. Regarding the variance of a suffix
tree, one can derive a generating function that counts the occurrences of two dis-
tinct words but, so far, attempts to make it suitable for an asymptotic expansion
of the variance have not been successful. It is conjectured that the error term
between a suffix tree and the corresponding independent trie becomes larger
than the order of the variance (which is O(n) for the tries) when the alphabet
size is small.

We denote by sn = E[Sn] the average size Sn of a suffix tree built from n
suffixes. It is easy to verify that

sn =
∑

w∈A∗

P (On+|w|−1(w) ≥ 2), (8.24)

since any two occurrences of a word w within the first n+ |w|−1 symbols of Xn
1

create an internal node. We denote by s(z) the generating function
∑∞
n=1 snz

n.
The following is easy to derive.

Theorem 8.2.1. The generating function S(z) for the average size of a suffix
tree is

s(z) = −
∑

w∈A∗

zP (w)

(
1

D2
w(z)

− 1

(1− z)Dw(z)

)
. (8.25)

Proof. The proof is actually quite easy using our results from Section 2.3. First
note that

s(z) =
∑

w∈A∗

∞∑

n=0

(
1− P (On+|w|−1 = 0)− P (On+|w|−1 = 1)

)
zn.

From Theorem 2.3.2 we can see that

∞∑

n=0

P (On+|w|−1 = 0)zn =
z1−|w|Sw(z)

Dw(z)
,

∞∑

n=0

P (On+|w|−1 = 1)zn =
zP (w)

D2
w(z)

.

This leads to (8.24).

The size of tries built from independent strings was discussed in Section 7.2.9.
In particular, in Theorem 7.2.9 we gave the average size for tries. Here, we re-
derive the generating function for the average size sn of a trie in a way that is
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more suitable for our analysis. Noting that

sn =
∑

w∈A∗

[
1− (1− P (w))n − nP (w)(1 − P (w))n−1

]
,

we obtain

sT (z) = −
∑

w∈A∗

zP (w)

(
1

(1− z + P (w))2
− 1

(1− z)(1− z + P (w))

)
. (8.26)

In this section, using Theorem 7.2.9 we will prove the following main result.

Theorem 8.2.2. There exists ε > 0 such that the following expansion holds:

sn − sTn = O(n1−ε)

for large n. Furthermore,

sn =
n

h
(1 + Φ0(log n)) +O(n1−ε)

where Φ0(logn) is a periodic function with small amplitude if the log pa, a ∈ A
are rationally related; otherwise Φ0(logn) converges to zero.

Proof. The proof proceeds as the proof for the depth in a suffix tree. We split
sT (z)− s(z) into two parts, as follows:

sT (z)− s(z) =
∑

w∈A∗

zP (w)

(
1

D2
w(z)

− 1

(1− z + P (w))2

)

−
∑

w∈A∗

zP (w)

1− z

(
1

Dw(z)
− 1

1− z + P (w)z

)
.

Using the same approach as in Section 8.1, we set

sTn − sn = fn(1)− dn, (8.27)

where fn(1) =
∑

w∈A∗ fn(w, 1) was studied earlier, and

dn =
∑

w∈A∗

dn(w)

with

dn(w) = P (On(w) > 0)− 1 + (1 − P (w))n

=
1

2iπ

∮
P (w)z

1− z
dz

zn+1

(
1

Dw(z)
− 1

1− z + P (w)z

)
.
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We have

dn(w) =

(
A−n
w P (w)

(1−Aw)Cw
− (1− P (w))n

)
+ Jn(w, ρ) (8.28)

with

Jn(w, ρ) =
1

2iπ

∮

|z|=ρ

P (w)z

1− z
dz

zn+1

(
1

Dw(z)
− 1

1− z + P (w)z

)
.

We already know that it is O(n1−ε).
The term dn in (8.27) is more intricate since in its present form it is not even

clear that the sum of the dn converges.
We first analyze the sum

∑
w∈A∗ Jn(w) which is easier. We notice that when

w ∈ Ak − Bk the function P (w)(1/Dw(z) − (1 − z + P (w))−1) is O(P (w)δk2 )
when |z| = ρ. Thus ∑

w∈Ak−Bk

Jn(w) = O(δk2 ).

Furthermore
∑

w∈Bk

P (w)(1/Dw(z)− (1− z + P (w))−1) = O(δk1 ).

Therefore the sum of the integrals that make up the Jn(w, ρ) is finite andO(ρ
−n).

To handle the factors involving the Aw we need to extend the expansion of
the root Aw, writing

Aw = 1 +
P (w)

Sw(1)
+ P 2(w)

( |w|
S2
w(1)

− S′
w(1)

S3
w(1)

)
+O(P 3(w)). (8.29)

Therefore

P (w)A−n
w

(1− Aw)Cw
− (1 − P (w))n = n(1− P (w))nO

(
P (w)S′

w(1) + P 2(w)
)
.

The series
∑
w∈A∗ P 2(w) converges. Let us study the series

∑
w∈A∗ P (w)S′

w(1).
Since S′

w(1) ≤ |w|(Sw(1)− 1), the convergence of this series holds as long as we
can prove that ∑

w∈A∗

P (w)(Sw(1)− 1) <∞.

Let k = |w| and first assume that w ∈ Bk. We know that Sw − 1 = O(δk1 ) and
thus we have for the corresponding partial series,

∑

w∈B|w|

P (w)(Sw(1)− 1) = O


∑

k≥0

δk1


 .
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Let us assume now that w /∈ Bk; since Sw(1) = O(1) and
∑

w/∈Bk
P (w) = O(δk2 ),

we have this partial series

∑

w/∈B|w|

P (w)(Sw(1)− 1) = O


∑

k≥0

δk2


 .

Now, to prove that dn = O(n1−ε) we split up the sum dn =
∑

w∈A∗ dw(n),
where

dw(x) =
AwP (w)

(1−Aw)Cw
− (1− P (w))x. (8.30)

As before, we apply a Mellin transform (see Table 7.1). The Mellin transform of
dw(x) exists in the strip (0,∞) but we cannot extend it further since dw(0) 6= 0.
However, it can be analytically extended for ℜ(s) < 0 as long as we avoid the
poles of Γ(s) on the nonpositive integers. Since we want to extract an order
x1−ε for

∑
w∈A∗ dw(x) we must use the same trick as in Section 8.1; namely we

define
d̄w(x) = dw(x) − dw(0)e−x,

for which the Mellin transform exists for ℜ(s) ∈ (−1,∞). We now notice that∑
w∈A∗ d̄w(n) − dn tends to zero exponentially fast. The Mellin transform of

d̄w(x), namely Jw(s)Γ(s), satisfies

Jw(s) =
((logAw)

−s − 1)P (w)

(1−Aw)Cw
+ 1− (− log(1− P (w)))−s.

We split Jw(s) as follows:

j1(s) =
∑

w∈B|w|

Jw(s), j2(s) =
∑

w/∈B|w|

Jw(s).

Since Jw(s) = P (w)−sO(|s|P (w)), we immediately find that

j2(s) =
∑

k≥0

O(δk2 )

for ℜ(s) < 0, and therefore it has no singularity for ℜ(s) ∈ (−1, 0).
Regarding j1(s), we consider w ∈ Bk and refer to (8.29) for Aw. Since

Sw(1) = O(δk1 ) and S
′
w(1) = O(kδk1 ), we find that

Jw(s) = O(|s|kδk1 )P (w)1−s
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and therefore j2(s) =
∑
w∈B|w|

Jw(s) converges as long as

(
∑

a∈A
p1−ℜ(s)
a

)
δ1 < 1.

Thus for ℜ(s) < −1 + c with the same value of c > 0 as in the proof of The-
orem 8.1.2. Therefore, Jw(s) is defined for ℜ(s) ∈ (−1,−1 + c), and hence
dn = O(n1−c). This concludes the proof of Theorem 8.2.2.

As a consequence of our proof, we can deduce the following corollary regard-
ing the probability P (On(w) ≥ 1). We will use it in Chapter 10.

Corollary 8.2.3. Let k be an integer and let w ∈ Ak. For all ε > 0 and
w ∈ Bk, we have

P (On(w) ≥ 1) = 1− (1− P (w))n +O(n1−εP (w)1−εδk1 ) + dw(0)e
−n, (8.31)

where dw(x) was defined in (8.30). Furthermore, for w /∈ Bk,

P (On(w) ≥ 1) = nP (w)(1 − P (w))n−1 +O(n1−εP (w)1−ε) + dw(0)e
−n, (8.32)

where
∑

w∈A∗ |dw(0)| <∞.

8.3. Lempel–Ziv’77

We study here the number of longest matches using the Lempel–Ziv’77 scheme.
Recall that in LZ’77 we find the longest prefix of, say, X∞

n+1, that has a copy
in Xn

1 ; this was discussed in Chapter 6. More precisely, let w be the longest
prefix of X∞

n+1 that is also a prefix of X∞
i for some i with 1 ≤ i ≤ n, that

is, X
i+|w|−1
i = X

n+|w|
n+1 for i ≤ n. The number of such i is denoted Mn, the

multiplicity matching parameter. More formally,

Mn = #{1 ≤ i ≤ n | X∞
i has w as a prefix} . (8.33)

In other words,Mn is the number of suffixes from among the first n suffixes which
agree maximally with the (n + 1)th suffix X∞

n+1, where we measure the degree
of agreement between two suffixes by the length of their longest shared prefix.
We shall see that the number Mn coincides with the multiplicity parameter (of
the associated suffix tree) defined in Chapter 7.

As in Chapter 6, the longest match in LZ’77 (the phrase length) can be found
by building the associated suffix tree. We note that in the framework of a suffix
tree, Mn is precisely the number of suffixes in the subtree rooted at the node at
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Figure 8.3. This suffix tree has multiple matching parameter M4 = 2
after the insertion of suffix S5.

which the (n + 1)th suffix X∞
n+1 is inserted, that is, the size of such a subtree.

This is illustrated in Figure 8.3.
Our goal is to understand the probabilistic behavior of the variable Mn. We

will derive the asymptotic distribution P (Mn = j) for large n. We can accom-
plish this by finding the probability generating function E[uMn ] and extracting
its asymptotic behavior for large n. We will follow the methodology established
in Section 8.1.

The main result is presented for a general finite alphabet A with pa > 0 and
qa = 1−pa for any a ∈ A. Recall also from Definition 7.2.6 that the log pa, a ∈ A,
are rationally related if there exists a real L such that log pa = naL for an integer
na (i.e., log pa/ log pb = na/nb is rational for any pair a, b ∈ A). Otherwise, we
say that the log pa are irrationally related. We also define p = maxa∈A{pa} and
q = maxa∈A{qa}. Our main result is presented next.

Theorem 8.3.1. For |u| ≤ min{p−1/2, q−1} the sequence E[uMn ] has the fol-
lowing asymptotic form:

E[uMn ] = −
∑
a∈A pa log(1− qau)

h
− 1

h
δ(log n, u) + o(1), (8.34)

where δ(logn, u) converges to zero as n → ∞ when the log pa, a ∈ A, are
irrationally related, while when they are rationally related the o(1) estimate can
be improved to O(n−ε) for some ε > 0, and the function δ(t, u) has the form

δ(t, u) =
∑

k 6=0

e2kπit/LΓ(sk)
∑

a∈A
pa(1− qau)−sk − p−sk+1

a ,
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where sk = 2πik/L with L defined for the rational case as the common real
factor of the log pa.
It follows immediately that in the rationally related case,

P (Mn = j) =
1

h

∑

a∈A

qjapa
j
− 1

h

∑

k 6=0

−e
2kπi logn/LΓ(sk)(sj)

j
∑

a∈A q
j
apa

j!
+O(n−ε),

(8.35)
while for the irrational case

P (Mn = j) =
∑

a∈A

qjapa
jh

+ o(1), (8.36)

for large n.

The rest of this section is devoted to the proof of Theorem 8.3.1. However,
to simplify our presentation we describe the proof only for the binary case, with
pa = p and qa = q < p, leaving the general proof as Exercise 8.9. Our strategy
for analyzing Mn is the same as that for the depth of a suffix tree, that is, we
compare Mn with the distribution of the multiplicity parameterMT

n defined for
tries built from n independent strings. We actually analyzed this in Section 7.3.3
under the name Mn. Now we will relabel it as MT

n to distinguish it from the
multiplicity parameter of a suffix tree.

The road map of the proof follows the method of Section 8.1 with slight
variations. After deriving the bivariate generating functions for Mn and for
MT
n , denoted as M(z, u) and MT (z, u), respectively, we compute

Q(z, u) =M(z, u)−MT (z, u).

We then use Cauchy’s theorem to prove thatQn(u) := [zn]Q(z, u)→ 0 uniformly
for u ≤ p−1/2 as n→∞. Another use of Cauchy’s theorem proves that

P (Mn = k)− P (MT
n = k) = [ukzn]Q(z, u) = O(n−εb−k) (8.37)

for some ε > 0 and b > 1.
parameter Mn is asymptotically the same in suffix trees as in tries built over

independent strings. Therefore Mn also follows the logarithmic series distribu-
tion plus fluctuations, claimed for MT

n in Theorem 7.3.6.
Thus our main goal of this section is to prove the following result.

Theorem 8.3.2. There exists ε > 0 such that, for |u| < 1+ δ and some δ > 0,

|Mn(u)−MT
n (u)| = O(n−ε). (8.38)
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As a consequence, there exists b > 1 such that

P (Mn = k)− P (MT
n = k) = O(n−εb−k) (8.39)

for large n.

This together with Theorem 7.3.6 suffices to establish our main result, Theo-
rem 8.3.1.

We now start the proof of Theorem 8.3.2 by rederiving a simple formula for
the bivariate generating function MT (z, u) of the multiplicity parameter in an
independent trie over a binary alphabet A = {α, β}. We let w denote the longest
prefix common to the (n+1)th string and at least one of the other n strings. We
write β ∈ A to denote the (|w| + 1)th character of the (n + 1)th string. When
MT
n = k we conclude that exactly k strings have wα as a prefix with α 6= β and

the other n − k strings do not have w as a prefix at all. Thus the generating
function for MT

n is exactly

MT (z, u) =

∞∑

n=1

∞∑

k=1

P (MT
n = k)ukzn

=

∞∑

n=1

∞∑

k=1

∑

w∈A∗

α∈A

P (wβ)

(
n

k

)
(P (wα))k(1 − P (w))n−kukzn.

After simplifying, it follows immediately that

MT (z, u) =
∑

w∈A∗

α∈A

uP (β)P (w)

1− z(1− P (w))
zP (w)P (α)

1− z(1 + uP (w)P (α)− P (w)) . (8.40)

The same line of reasoning can be applied to derive the generating function
M(z, u) for Mn in the associated suffix tree; however, the situation is more
complicated because the occurrences of w can overlap. Consider a suffix tree
built over the first n + 1 suffixes X(1), . . . , X(n+1) of a string X (i.e., X(i) =
XiXi+1Xi+2 . . .). We let w denote the longest prefix common to both X(n+1)

and at least one X(i) for some 1 ≤ i ≤ n. As before, we write β to denote the
(|w| + 1)th character of X(n+1). When Mn = k, we conclude that exactly k
suffixes X(i) have wα as a prefix and the other n − k strings X(i) do not have
w as a prefix at all. Thus, we are interested in finding strings with exactly k
occurrences of wα and ending on the right with an occurrence of wβ and with no
other occurrences of w. This set of strings constitutes the words of a language.
In Chapter 2 we studied such languages and their generating functions. We
therefore follow the methodology developed in Chapter 2. In particular, the
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language just described (i.e., k occurrences of wα ending on the right with wβ)
can be written as

Rwα(T (α)
w α)k−1T (α)

w β, (8.41)

where

Rw = {v ∈ A∗|v contains exactly one occurrence of w, at the right hand end}
T (α)
w = {v ∈ A∗ | wαv contains exactly two occurrences of w,

located at the left and right hand ends}.

In order to understand (8.41) the reader is referred back to Theorem 2.2.3. It
follows from (8.41) that

M(z, u) =

∞∑

k=1

∑

w∈A∗

α∈A

∑

s∈Rw

P (sα)z|s|+1u

( ∑

t∈T (α)
w

P (tα)z|t|+1u

)k−1

×
∑

v∈T (α)
w

P (vβ)z|v|+1−|w|−1.

After simplifying the geometric sum, this yields

M(z, u) =
∑

w∈A∗

α∈A

uP (β)
Rw(z)

z|w|
P (α)zT

(α)
w (z)

1− P (α)zuT (α)
w (z)

(8.42)

where
Rw(z) =

∑

v∈Rw

P (v)z|v|, T (α)
w (z) =

∑

v∈T (α)
w

P (v)z|v|

are generating functions for the languages Rw and T (α)
w , respectively. From

Lemma 2.3.1 we known that Rw(z) = z|w|P (w)/Dw(z), where

Dw(z) = (1− z)Sw(z) + zmP (w)

and Sw(z) denotes the autocorrelation polynomial for w. It follows that

M(z, u) =
∑

w∈A∗

α∈A

uP (β)P (w)

Dw(z)

P (α)zT
(α)
w (z)

1− P (α)zuT (α)
w (z)

. (8.43)

In order to derive an explicit form of M(z, u), we still need to find T
(α)
w (z).

As in Chapter 2, we introduce the language

Mw = {v | wv contains exactly two occurrences of w,

located at the left and right hand ends},
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then we observe that αT (α)
w is exactly the subset of words of Mw that begin

with α. We use H(α)
w to denote this subset, i.e.,

H(α)
w =Mw ∩ (αA∗),

and thus
αT (α)

w = H(α)
w .

So (8.43) simplifies to

M(z, u) =
∑

w∈A∗

α∈A

uP (β)P (w)

Dw(z)

H
(α)
w (z)

1− uH(α)
w (z)

. (8.44)

In order to compute the generating function H
(α)
w (z) for H(α)

w we write

Mw = H(α)
w +H(β)

w ,

where H(β)
w is the subset of words from Mw that start with β (i.e., H(β)

w =
Mw ∩ (βA∗)). (Note that every word ofMw begins with either α or β, because
the empty word ε /∈ Mw.) The following useful lemma is the last necessary
ingredient to obtain an explicit formula for M(z, u) from (8.44).

Lemma 8.3.3. Let H(α)
w denote the subset of words from Mw that start with

α. Then

H(α)
w (z) =

Dwα(z)− (1− z)
Dw(z)

.

Proof. In Chapter 2 we introduced the language

Uw = {v | wv contains exactly one occurrence of w,

located at the left hand end}

while here we need a new language, namely

U (α)
w = {v | v starts with α, and wv has exactly one occurrence of wα

and no occurrences of wβ}.

We note that the set of words with no occurrences of wβ can be described as

A∗ \ Rwβ(Mwβ)
∗Uwβ

with generating function

1

1− z −
Rwβ(z)Uwβ(z)

1−Mwβ(z)
. (8.45)
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Now we will describe the set of words with no occurrences of wβ in a different
way. The set of words with no occurrences of wβ and at least one occurrence of

wα is exactly Rw(H(α)
w )∗U (α)

w , with generating function

Rw(z)U
(α)
w (z)

1−H(α)
w (z)

.

On the one hand, the set of words with no occurrences of wβ and no occurrences
of wα is exactly

Rw + (A∗ \ Rw(Mw)
∗U),

since the set of such words that end in w is exactly Rw; on the other hand, the
set of such words that do not end in w is exactly A∗ \Rw(Mw)

∗U . So the set of
words with no occurrences of wα and no occurrences of wβ has the generating
function

Rw(z)U
(α)
w (z)

1−H(α)
w (z)

+Rw(z) +
1

1− z −
Rw(z)Uw(z)

1−Mw(z)
. (8.46)

Combining (8.45) and (8.46), it follows that

1

1− z−
Rwβ(z)Uwβ(z)

1−Mwβ(z)
=
Rw(z)U

(α)
w (z)

1−H(α)
w (z)

+Rw(z)+
1

1− z−
Rw(z)Uw(z)

1−Mw(z)
. (8.47)

Now we can find the generating function for U (α)
w . For each word v ∈ U (α)

w ,

wv has exactly either one or two occurrences of w. The subset of U (α)
w of the

first type is exactly V(α)
w := Uw ∩ (αA∗), i.e., the subset of words from Uw that

start with α. The subset of U (α)
w of the second type is exactly H(α)

w . We observe
that

V(α)
w · A = (H(α)

w + V(α)
w ) \ {α} (8.48)

(see Exercise 8.10). Hence, its generating function becomes

V (α)
w (z) =

H
(α)
w (z)− P (α)z

z − 1
.

Since U (α)
w = V(α)

w +H(α)
w , it follows that

U (α)
w (z) =

H
(α)
w (z)− P (α)z

z − 1
+H(α)

w (z) =
zH

(α)
w (z)− P (α)z

z − 1
.
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From equation (8.47), we see that

1

1− z −
Rwβ(z)Uwβ(z)

1−Mwβ(z)
=
Rw(z)(zH

(α)
w (z)− P (α)z)

(1−H(α)
w (z))(z − 1)

+Rw(z) +
1

1− z −
Rw(z)Uw(z)

1−Mw(z)
.

Simplifying, and using Lemma 2.3.1 from Chapter 2,

Uw(z) =
1−Mw(z)

1− z , Uwβ(z) =
1−Mwβ(z)

1− z ,

it follows that
Rwβ(z)

Rw(z)
=

zP (β)

1−H(α)
w (z)

.

Solving for H
(α)
w (z) and then using Rw(z) = zmP (w)/Dw(z) and

Rwβ(z) =
zm+1P (w)P (β)

Dwβ(z)
,

it follows that

H(α)
w (z) =

Dw(z)−Dwβ(z)

Dw(z)
. (8.49)

Note that

Dw(z)−Dwβ(z) = (1− z)Sw(z) + zmP (w)− (1 − z)Swβ(z)− zm+1P (w)P (β)

= (1− z)(Swα(z)− 1) + zm+1P (w)P (α)

= Dwα(z)− (1− z).

Thus, (8.49) completes the proof of the lemma.

In summary, we have just proved the form for M(z, u) given in the following
theorem.

Theorem 8.3.4. Let M(z, u) :=
∑∞

n=1

∑∞
k=1 P (Mn = k)ukzn denote the bi-

variate generating function for Mn. Then

M(z, u) =
∑

w∈A∗

α∈A

uP (β)P (w)

Dw(z)

Dwα(z)− (1− z)
Dw(z)− u(Dwα(z)− (1− z)) (8.50)

for |u| < 1 and |z| < 1. Here Dw(z) = (1 − z)Sw(z) + zmP (w) with m = |w|,
and Sw(z) denotes the autocorrelation polynomial for w.
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We now start to make a comparison of M(z, u) and MT (z, u). Before we do
this we need some preliminary results, as in Section 8.1. First, we deal briefly
with the autocorrelation polynomial. In Lemma 8.1.6 we proved that, with high
probability, w has very few large nontrivial overlaps with itself. Therefore, with
high probability, all nontrivial overlaps of w with itself are small. In the next
two lemmas we summarize our knowledge about Sw(z) and Swα(z). As before,
we use ρ > 1 such that ρ

√
p < 1 (and thus ρp < 1 also). Finally, δ =

√
p.

Throughout this section we write m = |w| for the length of w.

Lemma 8.3.5. If θ = (1− pρ)−1 + 1 and α ∈ A then

∑

w∈Ak

[[max{|Sw(ρ)− 1|, |Swα(ρ)− 1|} ≤ (ρδ)kθ]]P (w) ≥ 1− δkθ, (8.51)

with the same notation as in Lemma 8.1.6.

Lemma 8.3.6. Define c = 1 − ρ√p > 0. Then there exists an integer K ≥ 1
such that, for |w| ≥ K and |z| ≤ ρ and |u| ≤ δ−1,

|Sw(z)− uSwα(z) + u| ≥ c.

Proof. The proof needs to be broken down into several cases. The only condition
for K is

(1 + δ−1)
(pρ)K/2

1− pρ ≤ c/2.

The analysis is not difficult; the reader is asked to provide details in Exer-
cise 8.11.

These two lemmas allow us to bound from below the denominator ofM(z, u),
which we need in order to analytically continue the latter. We establish this
bound in the next two lemmas.

Lemma 8.3.7. If 0 < r < 1 then there exists C > 0 and an integer K1 (both
depending on r) such that

|Dw(z)− u(Dwα(z)− (1− z))| ≥ C (8.52)

for |w| ≥ K1 and |z| ≤ r (where, as before, |u| ≤ δ−1).

Proof. Consider K and c as defined in Lemma 8.3.6; this tells us that, for all
|w| ≥ K, we have

|Sw(z)− uSwα(z) + u| ≥ c (8.53)
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for |z| ≤ ρ. So, for m =: |w| ≥ K, we have

|Dw(z)− u(Dwα(z)− (1− z))| ≥ (1− r)c− rmpm(1− δ−1rp).

Note that rmpm(1 − δ−1rp) → 0 as m → ∞. Therefore, replacing K by a
larger number K1 if necessary, we can assume without loss of generality that
rmpm(1 − δ−1rp) ≤ (1 − r)c/2. So, we define C = (1 − r)c/2, and the result
follows immediately.

Lemma 8.3.8. If 0 < r < 1, then there exists C > 0 (depending on r) such
that

|Dw(z)− u(Dwα(z)− (1− z))| ≥ C (8.54)

for |z| ≤ r (and, as before, |u| ≤ δ−1).

Proof. Consider K1 as defined in Lemma 8.3.7. Let C0 denote the quantity C
from Lemma 8.3.7. There are only finitely many values of w with |w| < K1, say
w1, . . . , wi. For each such wj , with 1 ≤ j ≤ i, we note that Dwj (z)−u(Dwjα(z)−
(1 − z)) 6= 0 for |z| ≤ r and |u| ≤ δ−1, so that there exists Cj > 0 such that
|Dwj (z)− u(Dwjα(z)− (1− z))| ≥ Cj for all |z| ≤ r and |u| ≤ δ−1. Finally, we
define C = min{C0, C1, . . . , Ci}.

Now we are in a position to prove thatM(z, u) can be analytically continued
for u values beyond the unit disk.

Theorem 8.3.9. The generating function M(z, u) can be analytically contin-
ued for |u| ≤ δ−1 and |z| < 1 with δ < 1.

Proof. Consider |z| ≤ r < 1. We proved in Lemma 8.3.8 that there exists C > 0
depending on r such that, for all |u| ≤ δ−1, we have

1

|Dw(z)− u(Dwα(z)− (1− z))| ≤
1

C
.

Setting u = 0, we also have |Dw(z)| ≥ C. Thus

|M(z, u)| ≤ P (β)δ−1

C2

∑

α∈A

∑

w∈A∗

P (w)|Dwα(z)− (1− z)|.

Now we use Lemma 8.3.5. Consider w and α with

max{|Sw(ρ)− 1|, |Swα(ρ)− 1|} ≤ (ρδ)mθ
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where, we recall, m = |w|. It follows immediately that

|Dwα(z)− (1− z)| = |(1− z)(Swα(z)− 1) + zm+1P (w)P (α)|
≤ (1 + r)(ρδ)mθ + rm+1pmp = O(sm),

where s = max{ρδ, rp}. Now consider the other values of w and α. We have

|Dwα(z)− (1− z)| = |(1− z)(Swα(z)− 1) + zm+1P (w)P (α)|

≤ (1 + r)pρ

1− pρ + rm+1pmp ≤ (1 + r)pρ

1− pρ + 1,

so we define C1 = (1 + r)pρ/(1− pρ+1) to be a value which depends only on r
(recall that r is fixed here). Thus

|M(z, u)| ≤ P (β)δ−1

C2

∑

α∈A

∑

m≥0

∑

w∈Am

|P (w)(Dwα(z)− (1 − z))|

≤ P (β)δ−1

C2

∑

α∈A

∑

m≥0

|(1 − δmθ)O(sm) + δmθC1|

≤ P (β)δ−1

C2

∑

α∈A

∑

m≥0

O(sm) = O(1),

and this completes the proof of the theorem.

In the final stage of our discussion we compare the generating functions
M(z, u) and MT (z, u), as we did in previous sections when analyzing the depth
and size of a suffix tree. Define

Q(z, u) =M(z, u)−MT (z, u). (8.55)

Using the notation from (8.40) and (8.50), if we write

MT
w,α(z, u) =

uP (β)P (w)

1− z(1− P (w))
zP (w)P (α)

1− z(1 + uP (w)P (α) − P (w)) ,

Mw,α(z, u) =
uP (β)P (w)

Dw(z)

Dwα(z)− (1 − z)
Dw(z)− u(Dwα(z)− (1− z)) , (8.56)

then
Q(z, u) =

∑

w∈A∗

α∈A

(Mw,α(z, u)−MT
w,α(z, u)). (8.57)

We also define Qn(u) = [zn]Q(z, u). We denote the contribution to Qn(u) from a

specific w and α as Q
(w,α)
n (u) = [zn](Mw,α(z, u)−MT

w,α(z, u)). Then we observe
that

Q(w,α)
n (u) =

1

2πi

∮
(Mw,α(z, u)−MT

w,α(z, u))
dz

zn+1
, (8.58)
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where the path of integration is a circle about the origin with counterclockwise
orientation. We define

Iw,α(ρ, u) =
1

2πi

∫

|z|=ρ
(Mw,α(z, u)−MT

w,α(z, u))
dz

zn+1
. (8.59)

To analyze this integral, we apply a singularity analysis. For this we need to
determine (for |u| ≤ δ−1) the zeros of Dw(z) − u(Dwα(z) − (1 − z)) and in
particular the zeros of Dw(z), extending Lemma 8.1.8. The following lemma is
easy to establish and the reader is asked to prove it in Exercise 8.12.

Lemma 8.3.10. There exists an integer K2 ≥ 1 such that, for u fixed (with
|u| ≤ δ−1) and |w| ≥ K2, there is exactly one root of Dw(z)−u(Dwα(z)−(1−z))
in the closed disk {z | |z| ≤ ρ}.

When u = 0, this lemma implies (for |w| ≥ K2) that Dw(z) has exactly one
root in the disk {z | |z| ≤ ρ}. Let Aw denote this root, and let Bw = D′

w(Aw).
Also, let Cw(u) denote the root of Dw(z) − u(Dwα(z) − (1 − z)) in the closed
disk {z | |z| ≤ ρ}. Finally, we write

Ew(u) :=

(
d

dz
(Dw(z)− u(Dwα(z)− (1− z)))

)∣∣∣∣
z=Cw

= D′
w(Cw)− u(D′

wα(Cw) + 1).

Now we can analyze the integral in (8.59). By Cauchy’s theorem, we observe
that the contribution to Qn(u) from a specific w and α is exactly, after expanding
the integral to a larger contour of radius ρ:

Q(w,α)
n (u) = Iw,α(ρ, u)− Resz=Aw

Mw,α(z, u)

zn+1
− Resz=Cw(u)

Mw,α(z, u)

zn+1

+Resz=1/(1−P (w))

MT
w,α(z, u)

zn+1

+Resz=1/(1+uP (w)P (α)−P (w))

MT
w,α(z, u)

zn+1
, (8.60)

where we write Resz0f(z) := Res[f(z); z = z0]. To simplify this expression, note
that

Resz=Aw

Mw,α(z, u)

zn+1
= −P (β)P (w)

Bw

1

An+1
w

,

Resz=Cw(u)
Mw,α(z, u)

zn+1
=
P (β)P (w)

Ew(u)

1

Cw(u)n+1
, (8.61)
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and

Resz=1/(1−P (w))

MT
w,α(z, u)

zn+1
= P (β)P (w)(1 − P (w))n,

Resz=1/(1+uP (w)P (α)−P (w))

MT
w,α(z, u)

zn+1
= −P (β)P (w)(1 + uP (w)

×P (α)− P (w))n.

It follows from (8.60) that

Q(w,α)
n (u) = Iw,α(ρ, u) +

P (β)P (w)

Bw

1

An+1
w

− P (β)P (w)

Ew(u)

1

Cw(u)n+1
(8.62)

+ P (β)P (w)(1 − P (w))n − P (β)P (w)(1 + uP (w)P (α) − P (w))n.

We next determine the contribution of the z = Aw terms of M(z, u) and the
z = 1/(1 − P (w)) terms of MT (z, u) to the difference Qn(u) = [zn](M(z, u)−
MT (z, u)).

Lemma 8.3.11. The z = Aw terms and the z = 1/(1 − P (w)) terms (for
|w| ≥ K2) altogether have only an O(n−ε) contribution to Qn(u), i.e.,

∑

|w|≥K2
α∈A

(
−Resz=Aw

Mw,α(z, u)

zn+1
+Resz=1/(1−P (w))

MT
w,α(z, u)

zn+1

)
= O(n−ε),

for some ε > 0.

Proof. We define

fw(x) =
1

Ax+1
w Bw

+ (1− P (w))x

for x real. So by (8.61) it suffices to prove that

∑

|w|≥K2
α∈A

P (β)P (w)fw(x) = O(x−ε). (8.63)

Now we proceed as in Section 8.1. Note that the left-hand side of (8.63) is
absolutely convergent for all x. Also f̄w(x) = fw(x)− fw(0)e−x is exponentially
decreasing when x → +∞ and is O(x) when x → 0 (notice that we utilize the
fw(0)e

−x term in order to make sure that f̄w(x) = O(x) when x → 0; this
provides a fundamental strip for the Mellin transform as in Section 8.1. From
Table 7.1 we conclude that the Mellin transform

f̄∗
w(s) =

∫ ∞

0

f̄w(x)x
s−1 dx
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is well defined for ℜ(s) > −1, and that

f̄∗
w(s) = Γ(s)

(
(logAw)

−s − 1

AwBw
+ (− log(1 − P (w)))−s − 1

)
.

Recall now from (8.13) and (8.14) that

Aw = 1 +
1

Sw(1)
P (w) + O(P (w)2),

Bw = −Sw(1) +
(
−2S′

w(1)

Sw(1)
+m

)
P (w) +O(P (w)2).

Hence we conclude that

(logAw)
−s =

(
P (w)

Sw(1)

)−s
(1 +O(P (w))),

(− log(1 − P (w)))−s = P (w)−s(1 +O(P (w)))

and
1

AwBw
= − 1

Sw(1)
+O(|w|P (w)).

Therefore,

f̄∗
w(s) = Γ(s)

[(
− 1

Sw(1)
+O(|w|P (w))

)(( P (w)
Sw(1)

)−s
(1 +O(P (w))) − 1

)

+P (w)−s(1 +O(P (w))) − 1
]

= Γ(s)
(
P (w)−s

(
−Sw(1)s−1 + 1 +O(|w|P (w))

)

+
1

Sw(1)
− 1 +O(|w|P (w))

)
.

We now define g∗(s) =
∑

|w|≥K2
α∈A

P (β)P (w)f̄∗
w(s) and compute

g∗(s) =
∑

α∈A
P (β)

∑

|w|≥K2

P (w)f̄∗
w(s)

=
∑

α∈A
P (β)Γ(s)

∞∑

m=K2

(
sup{q−ℜ(s), 1}δ

)m
O(1),

where the last equality is true because 1 ≥ p−ℜ(s) ≥ q−ℜ(s) when ℜ(s) is negative
and q−ℜ(s) ≥ p−ℜ(s) ≥ 1 when ℜ(s) is positive. We always have δ < 1 and
p > q. Also, there exists c > 0 such that q−cδ < 1. Therefore, g∗(s) is analytic
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in ℜ(s) ∈ (−1, c). Working in this strip, we choose ε with 0 < ε < c. Then we
have

∑

|w|≥K2
α∈A

P (β)P (w)fw(x) =
1

2πi

∫ ε+i∞

ε−i∞
g∗(s)x−s ds+

∑

|w|≥K2
α∈A

P (β)P (w)fw(0)e
−x.

Majorizing under the integral, we see that the first term is O(x−ε) since g∗(s)
is analytic in the strip ℜ(s) ∈ (−1, c) (and −1 < ε < c). The second term is
O(e−x). This completes the proof of the lemma.

Now we bound the contribution to Qn(u) from the Cw(u) terms of M(z, u)
and the z = 1/(1 + uP (w)P (α)− P (w)) terms of MT (z, u).

Lemma 8.3.12. The Cw(u) terms and the 1/(1 + uP (w)P (α) − P (w)) terms
(for |w| ≥ K2) altogether have only an O(n−ε) contribution to Qn(u), for some
ε > 0. More precisely,

∑

|w|≥K2
α∈A

(
−Resz=Cw(u)

Mw,α(z,u)
zn+1 +Resz=1/(1+uP (w)P (α)−P (w))

MT
w,α(z,u)

zn+1

)

= O(n−ε).

Proof. The proof technique is the same as that for Lemma 8.3.11 above.

Finally, we show that the Iw,α(ρ, u) terms in (8.62) have an O(n−ε) contri-
bution to Qn(u).

Lemma 8.3.13. The Iw,α(ρ, u) terms (for |w| ≥ K2) altogether have only an
O(n−ε) contribution to Qn(u), for some ε > 0. More precisely,

∑

|w|≥K2
α∈A

Iw,α(ρ, u) = O(ρ−n),

where ρ > 1.

Proof. Here we only sketch the proof. Recall that

Iw,α(ρ, u) =
1

2πi

∫

|z|=ρ
uP (β)P (w)

(
1

Dw(z)

Dwα(z)− (1− z)
Dw(z)− u(Dwα(z)− (1− z))

− 1

1− z(1− P (w))
zP (w)P (α)

1− z(1 + uP (w)P (α) − P (w))

)
dz

zn+1
.

In Lemma 8.3.10, K2 was selected to be sufficiently large that

(ρp)m(1 − δ−1ρp) ≤ (ρ− 1)c/2.



8.3. Lempel–Ziv’77 263

Thus, by setting C1 = (ρ− 1)c/2, we have

1

|Dw(z)− u(Dwα(z)− (1 − z))| ≤
1

C1

and
1

|Dw(z)|
≤ 1

C1
.

Also

1/|1− z(1− P (w))| ≤ 1/c2,

1/|1− z(1 + uP (w)P (α) − P (w))| ≤ 1/c2.

So, we obtain

|Iw,α(ρ, u)| = O(ρ−n)P (w)(Swα(ρ)− 1) +O(ρ−n)P (w)O((pρ)m).

Thus, by Lemma 8.3.5,

∑

α∈A

∑

|w|=m
|Iw,α(ρ, u)| = O(ρ−n)O((ρδ)m).

We conclude that ∑

|w|≥K2
α∈A

|Iw,α(ρ, u)| = O(ρ−n),

and the lemma follows.

Finally, we consider the contribution to Qn(u) from small words w. Basically,
we prove that for small |w| ≤ K2 the contribution to Qn(u) from those words w
is very small.

Lemma 8.3.14. The terms
∑

|w|<K2
α∈A

(Mw,α(z, u)−MT
w,α(z, u)) altogether have

only O(n−ε) contribution to Qn(u).

Proof. Let Dn denote the depth of the (n + 1)th insertion in a suffix tree.
Similarly, let DT

n denote the depth of the (n+ 1)th insertion in a trie built over
n+ 1 independent strings. Therefore,

[zn]
∑

|w|<K2
α∈A

(Mw,α(z, u)−MT
w,α(z, u))

=
∑

i<K2

n∑

k=1

(
P (Mn = k and Dn = i)− P (MT

n = k and DT
n = i)

)
uk.
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Noting that P (Mn = k and Dn = i) ≤ P (Dn = i) and that P (MT
n =

k and DT
n = i) ≤ P (DT

n = i), it follows that

[zn]
∑

|w|<K2
α∈A

|Mw,α(z, u)−MT
w,α(z, u)| ≤

∑

i<K2

n∑

k=1

(
P (Dn = i) + P (DT

n = i)
)
|u|k.

(8.64)
In Section 7.3.1 we prove that the typical depth DT

n in a trie built over n in-
dependent strings is asymptotically normal with mean h−1 logn and variance
Θ(logn). In Theorem 8.1.3 of this chapter we extended this result to suffix
trees. Therefore, we conclude that

[zn]
∑

|w|<K2
α∈A

|Mw,α(z, u)−MT
w,α(z, u)| = O(n−ε),

since K2 is a constant. This completes the proof of the lemma.

All contributions to (8.62) have now been analyzed. We are finally ready to
summarize our results. Combining the last four lemmas, we see that Qn(u) =
O(n−ε) uniformly for |u| ≤ δ−1, where δ−1 > 1. For ease of notation, we define
b = δ−1. Finally, one more application of Cauchy’s theorem yields

P (Mn = k)− P (MT
n = k) = [ukzn]Q(z, u) = [uk]Qn(u) =

1

2πi

∫

|u|=b

Qn(u)

uk+1
du,

and Qn(u) = O(n−ε) implies

|P (Mn = k)− P (MT
n = k)| ≤ 1

|2πi|2πb
O(n−ε)

bk+1
= O(n−εb−k).

Theorem 8.3.2 holds.
In summary, it follows that Mn and MT

n have asymptotically the same dis-
tribution. Theorem 7.3.6 gives the asymptotic distribution of MT

n . As a result,
Theorem 8.3.2 follows immediately, and we conclude that Mn has the logarith-
mic series distribution, i.e., for a binary alphabet,

P (Mn = j) =
pjq + qjp

jh

(plus some small fluctuations if ln p/ ln q is rational). Theorem 8.3.1 is finally
proved.
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8.4. Exercises

8.1 Extend Theorem 8.1.2 for Markov sources.

8.2 Prove (8.12) and extend it to Markov sources (see Apostolico and Sz-
pankowski (1992)).

8.3 Consider a compact suffix tree in which all unary nodes (i.e., nodes with
one child) are skipped as in a PATRICIA trie. Prove that also in this
case the depth and the average size resemble the depth and average size
of PATRICIA tries built from independent strings.

8.4 Consider a Markov source that generates a sequence X of length n over
a finite alphabet A. This sequence enters a binary symmetric channel
that alters each symbol with probability ε. The output sequence Y
represents a sequence generated by a hidden Markov process. Analyze
the depth of a suffix tree built over Y , and compare it with a suffix tree
built from X .

8.5 LetX and Y be two sequences independently generated by a memoryless
source. Build two suffix trees from X and Y . Estimate the average
number of common nodes in these two suffix trees. What would be
the difference if X and Y were generated by two different memoryless
sources?

8.6 Derive the probability distribution (8.21) of the typical depth in a finite
suffix tree, that is, prove that

P (DFS
n ≥ k) = 1

n

∑

w∈Ak

(n+ 1− |w|)+P (w) −N ′
n,w(0)

where a+ = max{0, a}.
8.7 Prove that gn(u) as defined in (8.22) is O(n1−ε).

8.8 Establish the estimate (8.23).

8.9 Prove Theorem 8.3.1 for a general alphabet. Attempt to find the limiting
distribution of the multiplicity parameter Mn for Markovian sources.

8.10 Prove (8.48).

8.11 Prove Lemma 8.3.5 (see Ward (2005) for a detailed proof.)

8.12 Prove Lemma 8.3.10.

8.13 Establish the asymptotic moments of the multiplicity parameter Mn of
a suffix tree.

8.14 Consider the number of longest phrases of the LZ’77 algorithm for such
Markov sources. In other words, consider the multiplicity parameterMn

for Markov sources. Prove that

E[Mn] ∼
1

h
,
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where h is the entropy rate of the underlying Markov source. Then find
the asymptotic distribution of Mn.
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CHAPTER 9

Lempel–Ziv’78 Compression

Algorithm

The Lempel–Ziv’78 (LZ’78) algorithm is a dictionary-based scheme that parti-
tions a sequence into phrases or blocks of variable size such that a new phrase
is the shortest substring not seen in the past as a phrase. Every such phrase is
encoded by the index of its prefix appended by a symbol; thus the LZ’78 code
contains the pairs (pointer, symbol). The LZ’78 algorithm and its pseudo-code
were discussed in Chapter 6. In Section 9.1 we provide some additional details
and introduce some measures of performance, such as the number of phrases
and the redundancy, which we will study in this chapter.
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As observed in Chapter 6, a next phrase in the LZ’78 scheme can be easily
found by building the associated parsing tree, which in this case is a digital
search tree. For example, the string 11001010001000100 of length 17 is parsed
as (1)(10)(0)(101)(00)(01)(000)(100), and this process is shown in Figure 9.1
using the digital search tree structure. The root contains the empty phrase;
to emphasize it we draw it as a square. All other phrases of the Lempel–Ziv
parsing algorithm are stored in internal nodes (represented as circles). When
a new phrase is created, the search starts at the root and proceeds down the
tree as directed by the input symbols in exactly the same manner as in digital
tree construction. The search is completed when a branch is made from an
existing tree node to a new node that has not been visited before. Then the
edge and the new node are added to the tree. The corresponding phrase is just
a concatenation of the symbols leading from the root to this node, which also
stores the phrase.

We should observe the differences between the digital search trees discussed
in Chapter 6 and that described above. For the Lempel–Ziv scheme we consider
a word of fixed length, say n, while in Chapters 6 and 7 we dealt with a fixed
number of strings, say m, resulting in a digital tree consisting of exactly m
nodes. Looking at Figure 9.1, we conclude that the number of nodes in the
associated digital tree is exactly equal to the number of phrases generated by
the Lempel–Ziv algorithm.

Figure 9.1. A digital tree representation of the Lempel–Ziv parsing of
the string 11001010001000100 into phrases (1)(10)(0)(101) · · · .
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9.1. Description of the algorithm

For the reader’s convenience we will succinctly describe the LZ’78 algorithm
again. Let a text w be generated over an alphabet A, and let T (w) be the
associated digital search tree constructed by the algorithm, as illustrated in
Figure 9.1. Each node in T (w) corresponds to a phrase in the parsing algorithm.
Let L(w) be the (total) path length in T (w), that is, the sum of all paths from
the root to all nodes (i.e., the sum of the phrases, which is also the text length).
We have L(w) = |w| if all phrases are full. If we know the order of node creation
in the tree T (w) then we can reconstruct the original text w; otherwise we
construct a string of the same universal type, as discussed in Seroussi (2006b)
(see also Knessl and Szpankowski (2005)).

The compression code C(w) is a description of T (w), node by node in order
of creation; each node is identified by a pointer to its parent node in the tree
and the symbol that labels the edge linking it to the parent node. The encoding
pseudo-code is presented below.

procedure Encoding(w)
T ← Tree(0)
C ← nilk ← 1
while w 6= nil

do





x← read(w)
T ′ ← T
while T ′.x 6= nil&w 6= nil

do

{
T ′ ← T ′.x
x← Read(w)

if T ′.x = nil
then T ′.x← Tree(k)
else T ′.$← Tree(k)

k ← k + 1
return (T )

The decoding pseudo-code is presented next. Notice how simple it is to
implement. The above procedure returns the array wt of phrases from which
the text w can be fully reconstructed. Notice that the code is self-consistent and
does not need a priori knowledge of the text length, since the length is a simple
function of the node sequence.
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procedure Decoding(C)
k← 0
wt[k]← nil
k← k + 1
extract(C, k)
while (a 6= nil)

do





parent← number(a[1])
if (a[2] = $)
then wt[k]← wt[parent]

else wt[k]← wt[parent].a[2]
k ← k + 1
extract(C, k)

return (wt)

Example 9.1.1. As an example, consider the string ababbbabbaaaba over the
alphabet A = {a, b}, which is parsed and coded as follows:

Phrase No. 1 2 3 4 5 6 7
Sequence: (a) (b) (ab) (bb) (abb) (aa) (aba)
Code: 0a 0b 1b 2b 3b 1a 3a

Observe that we need ⌈log2 7⌉ bits to code a phrase and two bits to code a
symbol, so in total for seven phrases we need 28 bits.

Now, we are in a position to discuss the performance of the LZ’78 com-
pression scheme. Its performance depends on the number of phrases, but the
ultimate goal is to minimize the compression code, and we discuss this next.
The pointer to the kth node requires at most ⌈log2 k⌉ bits, and the next sym-
bol costs ⌈log2 |A|⌉ bits. We will simply assume that the total pointer cost is
⌈log2(k)⌉+ ⌈log2 |A|⌉ bits. Figure 9.2 shows the phrase sequence of the first 100
phrases of a random binary text with pa = 0.9. It spans 973 characters.

In summary, the compressed code length is

|C(w)| =
M(w)∑

k=1

⌈log2(k)⌉+ ⌈log2(|A|)⌉, (9.1)

where M(w) is the number of full phrases needed to parse w (we shall neglect
the boundary effect of the last, usually not full, phrase). Clearly, M(w) is also
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Figure 9.2. The phrase sequence of the first 100 phrases of a binary
random text with pa = 0.9.

the number of nodes in the associated tree T (w). We conclude from (9.1) that

|C(w)| = ξ2(M(w)),

where we define

ξQ(x) = x⌈logQ(|A|)⌉ +
∑

0<k≤x
⌈logQ(k)⌉ (9.2)

for any integer Q and real x. Notice that ξQ(M(w)) is the code length in a Q-ary
alphabet. Actually, a different implementation may add O(M(w)) to the code
length without changing our asymptotic findings. To simplify, we shall assume
throughout that

|C(w)| =M(w) (log(M(w)) + log(|A|)) . (9.3)

Using a natural logarithm simply means that we are measuring the quantities
of information in nat units. In Figure 9.3 we present simulation results for the
code length vs. the number of phrases. It confirms (9.3). Thus our goal is to
understand the behavior of the number of phrases M(w) when w is generated
by a memoryless source.

9.2. Number of phrases and redundancy of LZ’78

Let n be a nonnegative integer. We denote by Mn the number of phrases M(w)
and by Cn the code length C(w) when the original text w is of fixed length n. We
shall assume throughout that the text is generated by a memoryless source over a
finite alphabet A such that the entropy rate is h = −∑a∈A pa log pa > 0, where
pa is the probability of symbol a ∈ A. We respectively define the compression
rate

ρn =
Cn
n

and the redundancy
rn = ρn − h.
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Figure 9.3. Code length as a function of the number m of phrases.

In Chapter 7 we defined h2 =
∑

a∈A pa(log pa)
2 and

η = −
∑

k≥2

∑
a∈A p

k
a log pa

1−∑a∈A p
k
a

. (9.4)

Finally, we introduce three functions over integer m:

β(m) =
h2
2h

+ γ − 1− η +∆1(logm), (9.5)

+
1

m

(
logm+

h2
2h

+ γ − η −
∑

a∈A
log pa −

1

2

)
,

v(m) =
m

h

(
h2 − h2
h2

logm+ c2 +∆2(logm)

)
, (9.6)

ℓ(m) =
m

h
(logm+ β(m)) , (9.7)

where γ = 2.718 . . . is the Euler constant, c2 is another constant, and ∆1(x) and
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∆2(x) are periodic functions when the log pa for a ∈ A are rationally related;
otherwise ∆1(x) and ∆2(x) converge to zero as x→∞. For detailed information
about these functions the reader is referred to Theorem 7.2.10 and Remark 7.2.12
of Chapter 7.

The main goal of this chapter is to characterize the probabilistic behavior
of the number of phrases Mn. We start with the following result, where we
establish the mean, the variance, and the central limit theorem for Mn. The
proof is delayed until Section 9.4.

Theorem 9.2.1. Consider the LZ’78 algorithm over a sequence of length n
generated by a memoryless source. The number of phrases Mn has mean E[Mn]
and variance Var[Mn] satisfying

E[Mn] = ℓ−1(n) + o(n1/2/ logn) (9.8)

=
nh

log ℓ−1(n) + β(ℓ−1(n))
+ o(n1/2/ logn)

∼ nh

logn
,

Var[Mn] ∼
v(ℓ−1(n))

(ℓ′(ℓ−1(n)))2
∼ (h2 − h2)n

log2 n
, (9.9)

where ℓ(m) and v(m) are defined in (9.7) and (9.6), respectively. Furthermore,
the normalized number of phrases converges in distribution and moments to the
the standard normal distribution N(0, 1). More precisely, for any given real x

lim
n→∞

P (Mn < E[Mn] + x
√
Var[Mn]) = Φ(x) (9.10)

where

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

In addition, for all nonnegative k,

lim
n→∞

E



(
Mn −E[Mn]√

Var[Mn]

)k
 = µk (9.11)

where

µk =





0 k odd

k!
2k/2(k/2)!

k even
(9.12)

are the moments of N(0, 1).
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We next consider the large and moderate deviation results for Mn, which we
will prove in Section 9.4.

Theorem 9.2.2. Consider the LZ’78 algorithm over a sequence of length n
generated by a memoryless source.

(i) [Large deviations]. For all 1/2 < δ < 1 there exist ε > 0, B > 0, and β > 0
such that, for all y > 0,

P (|Mn −E[Mn]| > ynδ) ≤ A exp

(
−βnε y

(1 + n−εy)δ

)

for some A > 0.
(ii) [Moderate deviation]. There exists B > 0 such that

P (|Mn −E[Mn]| ≥ x
√

Var[Mn]) ≤ Be−
x2

2

for all nonnegative real x < Anδ with δ < 1/6.

Using these large deviation results, we conclude that the average compression
rate converges to the entropy rate. Furthermore, our large deviation results allow
us also to estimate the average redundancy

E[rn] =
E[Cn]

n
− h,

and its limiting distribution when n→∞. We formulate these results precisely
in the next theorem.

Theorem 9.2.3. The average compression rate converges to the entropy rate,
that is,

lim
n→∞

E[Cn]

n
= h. (9.13)

More precisely, for all 1/2 < δ < 1,

E[Cn] = ℓ−1(n)(log ℓ−1(n) + log |A|) +O(nδ logn)

= E[Mn](logE[Mn] + log |A|) + o(n1/2+ε)

and

Var[Cn] ∼ Var[Mn](logE[Mn] + log |A|+ 1)2

∼ (h2 − h2)n.
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Furthermore,
Cn −E[Cn]√

Var[Cn]

d→ N(0, 1)

and also in moments, where N(0, 1) represents the standard normal distribution.

Proof. Let µn = E[Mn] and σn =
√
Var(Mn). Also define

g(y) = y(log |A|+ log y).

Notice that Cn = g(Mn). Clearly, for any fixed x > 0

P (Mn ≥ µn + xσn) = P (g(Mn) ≥ g(µn + xσn)). (9.14)

Using a Taylor expansion we have

g(µn + xσn) = g(µn) + xσng
′(µn) +O

(
(xσn)

2

µn

)
, (9.15)

where
g′(y) = 1 + log |A|+ log y.

Given Theorem 9.2.1 we conclude that

lim
n→∞

P (Mn ≥ µn + xσn) = Φ(x),

and then by (9.14)–(9.15) we find that

P (Cn ≥ g(µn + xσn)) = P

(
Mn ≥ µn + xσng

′(µn)

(
1 +O

(
xσn

µng′(µn)

)))
,

which converges to Φ(x) since

Φ

(
x+O

(
x2σn

µng′(µn)

))
= Φ(x) +O(n−1/2+ε).

In other words,

lim
n→∞

P (Cn ≤ µn(logµn + log |A|) + xσn(log µn + log |A|+ 1)) = Φ(x).

Via a similar analysis we find that

lim
n→∞

P (Cn ≤ µn(logµn + log |A|)− xσn(log µn + log |A|+ 1)) = Φ(x).

Thus, the random variable
Cn − g(µn)
σng′(µn)
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tends to the normal distribution in probability.
In order to conclude the convergence in moments, we use the moderate devi-

ation result. Observe that by Theorem 9.2.4, to be proved next, the normalized
random variable satisfies

P

(∣∣∣∣
Cn − g(µn)
σng′(µn)

∣∣∣∣ ≥ x
)
≤ Be−x2/2

for x = O(nδ), when δ < 1/6. Thus

Cn − g(µn)
σng′(µn)

has bounded moments. Indeed, we have for x = nε, for ε < 1/6,

P

(∣∣∣∣
Cn − g(µn)
σng′(µn)

∣∣∣∣ ≥ nε
)
≤ Be−n2ε/2.

Since
√
2n ≤Mn ≤ n, we conclude that

g(
√
n) ≤ g(Mn) ≤ g(n) = O(n logn).

Therefore, for all integer k,

E

[∣∣∣∣
Cn − g(µn)
σng′(µn)

∣∣∣∣
k
]
= 2k

∫ ∞

0

xk−1P

(∣∣∣∣
Cn − g(µn)
σng′(µn)

∣∣∣∣ ≥ x
)
dx

≤ 2k

∫ nε

0

xk−1e−Bx
2/2dx+O(nk logk n)e−n

2ε/2 = O(1).

In summary, the random variable

Cn − g(µn)
σng′(µn)

=
Cn − µn(log µn + log |A|))
σn(logµn + log |A|+ 1)

has bounded moments. Therefore, by virtue of the dominated convergence and
the convergence to the normal distribution

lim
n→∞

E

[
Cn − g(µn)
σng′(µn)

]
= 0

lim
n→∞

E

[
Cn − g(µn)
σng′(µn)

]2
= 1.
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In other words, for some ε > 0

E[Cn] = g(µn) + o(n−1/2+ε) (9.16)

Var[Cn] ∼ Var[Mn](logµn + log |A|+ 1)2 (9.17)

which proves our variance estimate.

In order to establish the limiting distribution for the redundancy we also
need the corresponding large deviation results for the code length Cn.

Theorem 9.2.4. Consider the LZ’78 algorithm over a memoryless source.

(i) [Large deviations] For all 1/2 < δ < 1 there exist ε > 0, B > 0, and β > 0
such that, for all y > 0,

P (|Cn −E[Cn]| > ynδ log(n/ logn)) ≤ A exp

(
−βnε y

(1 + n−εy)δ

)
(9.18)

for some A > 0.
(ii) [Moderate deviation] There exists B > 0 such that for n

P (|Cn −E[Cn]| ≥ x
√

Var[Cn]) ≤ Be−
x2

2 (9.19)

for all nonnegative real x < Anδ with δ < 1/6.

Proof. We start with the moderate deviation result. From Theorem 9.2.2 we
know that for x ≤ An1/6 and some A,B > 0 we have

P (Mn ≥ µn + xσn) ≤ Be−x
2/2.

As before we write g(x) = x(log |A|+log x) and note that g(Mn) = Cn. We also
have

P (g(Mn) ≥ g(µn + xσn)) ≤ Be−x
2/2.

Since

g(µn + xσn) = g(µn) + g′(µn)σnx

(
1 +O

(
xσn

µng′(µn)

))

we arrive at

P

(
g(Mn) ≥ g(µn) + xσng

′(µn)

(
1 + O

(
xσn

g′(µn)µn

)))
≤ Be−x2/2.

However, for x = O(n1/6)

x
σn

g′(µn)µn
≤ An1/6 σn

g′(µn)µn
= O(n−1/3)→ 0,
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hence

P (g(Mn) ≥ g(µn) + xσng
′(µn)) = P (g(Mn) ≥ g(µn) + σnx(1 +O(n−1/3))

≤ Be−x
2/2(1+O(n−1/3))

≤ B′e−x
2/2

for some B′ > 0. Therefore, from (9.16) and (9.17) we conclude that

P (Cn > E[Cn] + x
√
Var[Cn]) ≤ B′′e−x

2/2

and similarly

P (Cn < E[Cn]− x
√
Var[Cn]) ≤ B′′e−x

2/2

for some B′′ > B′, where B′′ absorbs the asymptotics of (9.16) and (9.17).
We now turn our attention to the large deviation result. Since Mn ≤ n, we

observe that if µn ≤ z ≤ n then

g(z) ≤ g(µn) + (z − µn)g′(n).

Thus, for y such that µn + ynδ ≤ n,

g(Mn) ≥ g(µn) + ynδg′(n)⇒ g(Mn) ≥ g(µn + ynδ)⇒Mn ≥ µn + ynδ.

Thus by Theorem 9.2.2(i) we obtain on the one hand

P (g(Mn) ≥ g(µn) + ynδg′(n)) ≤ A exp

(
−βnε y

(1 + n−εy)δ

)
.

The result also holds for µn + ynδ > n since P (Mn > n) = 0. On the other
hand, for

√
2n ≤ v ≤ µn we have g(v) ≥ g(µn) + (v − µn)g′(µn). Thus

g(Mn) ≤ g(µn)− ynδg′(µn)⇒ g(Mn) ≤ g(µn − ynδ)⇒Mn ≥ µn − ynδ.

Again by Theorem 9.2.2(i),

P (g(Mn) ≥ g(µn)− ynδg′(µn)) ≤ A exp

(
−βnε y

(1 + n−εy)δ

)
.

Since g′(µn) and g′(n) are both O(log n), the order nδ is not changed in the
large deviation result.

The next finding is a direct consequence of Theorems 9.2.3 and 9.2.4.
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Corollary 9.2.5. The redundancy rate rn satisfies, for all 1/2 < δ < 1,

E[rn] =
E[Cn]

n
− h

= h
log(|A|) − β(ℓ−1(n))

log ℓ−1(n) + β(ℓ−1(n))
+O(nδ−1 logn)

∼ h
log(|A|)− β (hn/logn)

logn
, (9.20)

and

Var[rn] ∼
h2 − h2

n
.

Furthermore,
rn −E[rn]√

Var[rn]

d→ N(0, 1)

and the convergence also holds in moments.

Proof. We will deal here only with E[rn] since the rest is a direct consequence
of previous findings. We observe that the above Corollary follows from a trivial
derivation:

E[rn] +O(nδ−1) =
ℓ−1(n)(log(ℓ−1(n)) + log |A|)− nh

n

=
ℓ−1(n) log |A|+ ℓ−1(n) log ℓ−1(n)− hℓ(ℓ−1(n))

n

=
ℓ−1(n)

n

(
log |A| − β(ℓ−1(n)

)
,

where we have used the fact that ℓ(ℓ−1(n)) = n, by the definition of the inverse
function and that

hℓ(ℓ−1(n)) = ℓ−1 log ℓ−1(n) + β(ℓ−1(n))

by the definition of ℓ(n).

In Figure 9.4 we show experimental histograms of rn for different values of
n. We see that when n increases the mean of rn decreases, in theory as 1/ logn.
However, the variance decreases much faster, as 1/n.

9.3. From Lempel–Ziv to digital search tree

In this section we make a connection between the Lempel–Ziv algorithm and
digital search trees, using a renewal theory argument. In particular, we prove
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Figure 9.4. Simulation of the redundancy distribution for (right to left)
n = 400, n = 1000, n = 2000, and n = 10000, with pa = 0.9.

here more precise results for moments and distributions (i.e., the CLT and the
large deviations) for the path length in a digital search tree. We may, therefore,
view this section as a continuation of our discussion from Chapter 7, in particular
Sections 7.2.3 and 7.3.2. We shall use the analytic tools developed in Chapter 7
such as the Mellin transform and analytic depoissonization. However, we need
a major strengthening of these tools in order to establish our findings regarding
the Lempel–Ziv’78. In particular, we shall develop a more powerful analytic
depoissonization.

We recall that our main goal is to derive an estimate on the probability
distribution of the number of phrases Mn in the LZ’78 algorithm. We assume
that our original text is a prefix of length n of an infinite sequence X generated
by a memoryless source over the alphabet A. We build a digital search tree
(DST) by parsing the infinite sequence X up to the mth phrase; see Figure 9.1
for an illustration. Here we use m for the number of strings inserted into the
associated DST since n is reserved for the string length to be parsed by the
LZ’78 algorithm.
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Let Lm be the total path length in the associated DST after the insertion
of m (independent) strings. The quantity Mn is exactly the number of strings
that need to be inserted to increase the path length of the associated DST to n.
This observation leads to the following identity valid for all integers n and m:

P (Mn > m) = P (Lm < n). (9.21)

This is called the renewal equation. It allows us to study the number of phrases
Mn through the path length Lm of the associated digital search tree built over
m fixed independent strings.

We now use generating functions to find a functional equation for the distri-
bution of Lm, from which we can estimate the moments of Lm and its limiting
distribution. Let Lm(u) = E[uLm ] be the moment generating function of Lm.
In the following, k is a tuple (k1, . . . , k|A|) where ka for a ∈ A stands for the
number of strings that start with symbol a. Since the strings inserted into the
DST are independent, we conclude that

Lm+1(u) = um
∑

k

(
m

k

) ∏

a∈A
pkaa Lka(u), (9.22)

where (
m

k

)
=

m!∏
a∈A ka!

.

Next, we introduce the exponential generating function

L(z, u) =
∑

m

zm

m!
Lm(u),

leading to the following partial functional-differential equation

∂

∂z
L(z, u) =

∏

a∈A
L(pauz, u). (9.23)

It is clear from the construction that L(z, 1) = ez, since Lm(1) = 1 for all
integers m. Furthermore, by a Taylor expansion around the mean, we have, for
all integers m and for t complex (sufficiently small that logLm(e

t) exists),

log(Lm(et)) = tE[Lm] +
t2

2
Var[Lm] +O(t3). (9.24)

Notice that the term O(t3) is not uniform in m. In passing, we remark that
E[Lm] = L′

m(1) and Var[Lm] = L′′
m(1)+L′

m(1)−(L′
m(1))

2. The mean E[Lm] can
be found from Theorem 7.2.10 of Chapter 7. Here we use a Mellin transform and
analytic depoissonization to estimate the variance and the limiting distribution.
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9.3.1. Moments

We first deal with the moments of the path length in a DST built from m inde-
pendent strings generated by a memoryless source. We use the Mellin transform
and depoissonization to prove the next result. This result can be viewed as an
extension of Theorem 7.2.10 of Chapter 7.

Theorem 9.3.1. Consider a digital search tree built over m independent strings.
Then

E[Lm] = ℓ(m) +O(1), (9.25)

Var[Lm] = v(m) + o(m), (9.26)

where ℓ(m) and v(m) are defined in (9.7) and (9.6), respectively.

Proof. Our approach here is different from that in Sections 7.2.3 and 7.3.2. In
what follows, we use poissonization to find functional equations for the pois-
sonized mean X̃(z) and poissonized variance Ṽ (z), which are defined as follows:

X̃(z) =
∂

∂u
L(z, 1)e−z,

Ṽ (z) =
∂2

∂u2
L(z, 1)e−z + X̃(z)− (X̃(z))2.

Note that, via straightforward algebra,

E[Lm] =
∂

∂u
Lm(1) = m![zm]X̃(z)ez,

Var[Lm] =
∂2

∂u2
Lm(u) +

∂

∂u
PLm(1)− (

∂

∂u
Lm(1))2

= m![zm](Ṽ (z) + (X̃(z))2)ez − (E[Lm])
2.

We shall recover the original mean and variance through the depoissonization
Theorem 7.2.15 from Chapter 7. In fact, from Theorem 7.2.15 we conclude that,
for all δ > 0,

E[Lm] = X̃(m) +O(mδ), (9.27)

Var[Lm] = Ṽ (m)−m(X ′(m))2 +O(mδ), (9.28)

provided that X̃(z) = O(|z|1+δ) and Ṽ (z) = O(|z|1+δ), which we will prove
in Lemma 9.4.3 of Section 9.4.3. In passing, we should point out that in Theo-
rem 7.2.10 of Chapter 7 we gave the expected depth, which leads to the expected
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value E[Lm]. We now recompute E[Lm] through X(m) and then deal with the
variance Var[Lm] through V (m).

From (9.23), after some algebra we find that X̃(z) satisfies the functional
equation

X̃(z) + X̃ ′(z) = z +
∑

a∈A
X̃(paz). (9.29)

We apply a Mellin transform, as discussed in Table 7.1 of Chapter 7. Define

X∗(s) =

∫ ∞

0

X(z)zs−1dz

as the Mellin transform of X̃(z). Using Table 7.1, we conclude that the Mellin

transform of X̃ ′(z) is−(s−1)X∗(s−1). Therefore, we introduce another function
γ(s) defined by

X∗(s) = Γ(s)γ∗(s). (9.30)

Then, from (9.29) we obtain the following functional equation for γ∗(s):

γ∗(s)− γ∗(s) = γ∗(s)
∑

a∈A
p−sa (9.31)

for ℜ(s) ∈ (−2,−1). Writing

h(s) = 1−
∑

a∈A
p−sa

and

Q(s) =

∞∏

k=0

h(s− k)

we find by iterating (9.31) and using (9.30)

X∗(s) =
Q(−2)
Q(s)

Γ(s). (9.32)

Using the inverse Mellin transform and the residue theorem we obtain

X̃(z) =
z

h
log z +

z

h

(
γ − 1 +

h2
2h
− α−∆1(log z)

)
+O(1), (9.33)

where ∆1(log z) is a periodic function defined in Theorem 7.2.10 of Chapter 7.
Then by (9.27) we can prove our claim regarding E[Lm].
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The analysis of Ṽ (z) is more delicate but follows a similar pattern. It is more

convenient to use W (z) = Ṽ (z)− X̃(z), which satisfies

W (z) +W ′(z)−
∑

a∈A
W (paz) = (X̃ ′(z))2 + 2

∑

a∈A
pazX̃

′(paz). (9.34)

This equation has no closed-form solution owing to the (X ′(z))2 term. We set
W (z) =W1(z) +W2(z), where

W1(z) +W ′
1(z)−

∑

a∈A
W1(paz) = 2

∑

a∈A
pazX

′(paz), (9.35)

W2(z) +W ′
2(z)−

∑

a∈A
W2(paz) = (X ′(z))2. (9.36)

It is proved below that W2(z) = O(z) when z → ∞, so for now we concentrate
on W1(z). The Mellin transform W ∗

1 (s) of W1(z) satisfies

h(s)W ∗
1 (s)− (s− 1)W ∗

1 (s− 1) = −2(h(s)− 1)sX∗(s).

If we set W ∗
1 (s) = ω1(s)X

∗(s) then ω1(s) satisfies the following functional equa-
tion:

ω1(s)− ω1(s− 1) = −2s
(

1

h(s)
− 1

)

which we can solve to find that

ω1(s) = −2
∑

k≥0

(s− k)
(

1

h(s− k) − 1

)
.

Thus

W ∗
1 (s) = −2X∗(s)

∑

k≥0

(s− k)
(

1

h(s− k) − 1

)
. (9.37)

The sum on the right-hand side converges since 1−h(s− k) tends exponentially
to 0 when k →∞. After some tedious residue analysis, one finds that

W1(z) =
z log2 z

h2
+

2z log z

h3

(
γh+ h2 −

h2

2
− ηh− h∆2(log z)

)
+O(z), (9.38)

where η was defined in (7.35) of Chapter 7 for the binary case and in (9.4) for the
general case. The function ∆2(x) is identically equal to zero when the numbers
{log pa}a∈A are irrationally related. For {log pa}a∈A rationally related ∆2(x)
is a periodic function with small amplitude. To complete our estimation of the
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variance, we use the depoissonization result (7.63) of Theorem 7.2.15 to recover
(9.26).

Now we return to W2(z), which satisfies (9.36). The case of W2(z) is more
difficult to deal with since the Mellin transform of (X ′(z))2 involves convolutions.
Therefore we will rely on an indirect method to estimate W2(z). To this end we
write

W2(z)e
z =

∫ z

0

(
(X̃ ′(x))2 +

∑

a∈A
W2(pax)

)
exdx. (9.39)

Let ρ = maxa∈A{pa}. If z ≤ ρ−k−1 for some integer k then for all a ∈ A we
have paz ≤ ρ−k. We denote

Ak = max
z≤ρ−k

{
W2(z)

z

}
.

We will prove in Lemma 9.4.3 below that X(z) = O(z1+δ) for any δ > 0,
hence (e.g., by the Ricati theorem) we conclude that X ′(z) = O(zδ) or more
precisely that |X ′(z)| ≤ B|z|δ for some B > 0. By equation (9.39) we get, for
ρ−k ≤ z ≤ ρ−k−1,

|W2(z)e
z| ≤ B2|z|2δez +

∑

a∈A
Akpa|z|ez = B2|z|2δez +Ak|z|ez

since paz ≤ ρ−k for all a ∈ A. Therefore we have

Ak+1 ≤ B2ρ(1−2δ)k +Ak.

Taking 2δ < 1 we finally arrive at

lim sup
k
Ak ≤

B2

1− ρ1−2δ
+A0 <∞,

and therefore W2(z) = O(z). This completes the proof.

9.3.2. Distributional analysis

We will now show that the limiting distribution of the path length is normal for
m → ∞. In order to accomplish this, we need an important technical result,
which will be proved in Section 9.4.3.

Theorem 9.3.2. For all δ > 0 and for all δ′ < δ there exists ε > 0 such that

logLm(etm
−δ

) exists for |t| ≤ ε and

logLm(etm
−δ

) = O(m), (9.40)

logLm(etm
−δ

) =
t

mδ
E[Lm] +

t2

2m2δ
Var[Lm] + t3O(m1−3δ′ ) (9.41)
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for large m.

Given that Theorem 9.3.2 is granted, we present next and prove the central
limit theorem for the path length in a DST.

Theorem 9.3.3. Consider a digital search tree built over m sequences gener-
ated by a memoryless source. Then

Lm −E[Lm]√
Var[Lm]

→ N(0, 1)

in probability and in moments. More precisely, for any given real number x:

lim
m→∞

P (Lm < E[Lm] + x
√
Var[Lm]) = Φ(x), (9.42)

and, for all nonnegative integers k and ε > 0,

E



(
Lm −E[Lm]√

Var[Lm]

)k
 = µk +O(m−1/2+ε) (9.43)

where the µk are centralized moments of the normal distribution given by (9.12).

Proof. We apply Levy’s continuity theorem, or equivalently Goncharov’s result,
asserting that

Lm −E[Lm]√
Var[Lm]

tends to the standard normal distribution for complex τ ,

Lm

(
exp

(
τ√

Var(Lm)

))
e−τE[Lm]/

√
Var[Lm] → eτ

2/2. (9.44)

To prove the above we apply several times our main technical result, Theo-
rem 9.3.2, with

t =
τmδ

√
VarLm

= O(m−1/2−ε+δ)→ 0,

where δ < 1/2 and ε > 0. Thus by Theorem 9.3.2 we find that

logLm

(
exp

(
τ√

Var(Lm)

))
=

τE[Lm]√
VarLm

+
τ2

2
+O(m−1/2+ε′ ) (9.45)

for some ε′ > 0. By (9.44) the normality result follows.
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To establish the convergence in moments we use (9.45). Observing that the
kth centralized moment of Lm is the kth coefficient at t = 0 of

exp

(
τ√

Var(Lm)

)
exp

(
−τE[Lm]/

√
Var[Lm]

)

we apply the Cauchy formula on a circle of radius R encircling the origin. Thus

E



(
Lm −E[Lm]√

Var[Lm]

)k
 =

1

2iπ

∮
dτ

τk+1
Lm

(
exp

(
τ√

Var(Lm)

))

×e−τE[Lm]/
√
Var[Lm]

=
1

2iπ

∮
dτ

τk+1
exp

(
τ2

2

)
(1 +O(m− 1

2+ε
′

)

= µk +O
(
R−k exp(R2/2)m− 1

2+ε
′
)
.

This completes the proof.

In order to compare our theoretical results with experiment, in Figure 9.5 we
display the histograms of L200 for a binary alphabet with pa = 0.8 and L800 for
pa = 0.9. As can be seen for m = 800 we have a reasonably good approximation.

9.3.3. Large deviation results

We now study the large deviations for Lm and prove the following result.

Theorem 9.3.4. Consider a digital search tree built over m sequences gener-
ated by a memoryless source.

(i) [Large deviations]. Let 1
2 < δ < 1. Then there exist ε > 0, B > 0, and

β > 0 such that, for all x ≥ 0,

P (|Lm −E[Lm]| > xmδ) ≤ B exp(−βmεx). (9.46)

(ii) [Moderate deviations]. There exists B > 0 such that

P (|Lm −E[Lm]| ≥ x
√
Var[Lm]) ≤ Be−

x2

2 (9.47)

for nonnegative real x < Amδ with δ < 1/6 and A > 0.
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(a) (b)

Figure 9.5. Simulation of the histograms of (a) L200 for pa = 0.8 and
(b) L800 for pa = 0.9. In (a) we also show, for comparison, the theoretical
limiting distribution for pa = 0.8.

Proof. We apply the Chernov bound. Let t > 0 be a nonnegative real number.
We have the identity

P
(
Lm > E[Lm] + xmδ

)
= P

(
etLm > e(E[Lm]+xmδ)t

)
.

Using Markov’s inequality we find that

P (etLm > e(E[Lm]+xmδ)t) ≤ E[etLm ]

e(E[Lm]+xmδ)t

= Lm(e
t) exp(−tE[Lm]− xmδt).

Here we have taken

δ′ =
δ + 1/2

2
>

1

2
, ε = δ′ − 1

2
> 0,

since δ > 1/2. We now apply Theorem 9.3.2, setting t = t′m−δ′ , to obtain

logLm(et) = tE[Lm] +O(t2Var[Lm]).

By Theorem 9.3.1 we conclude that

logLm(e
t)− tE[Lm] = O(m−ε). (9.48)
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We complete the lower bound by setting tmδ = t′mε with β = t′.
To obtain an upper bound we follow the same route, but considering −t

instead of t and using

P
(
Lm < E[Lm]− xmδ

)
= P

(
e−tLm > e−(E[Lm]−xmδ)t

)

≤ Lm(e−t) exp(tE[Lm]− xmδt).

To prove part (ii) we apply again Theorem 9.3.2 with

t =
xmδ′

√
Var[Lm]

, (9.49)

where δ < δ′ < 1/6. Then by Theorem 9.3.2 (with δ and δ′ formally inter-
changed)

logLm

(
exp(

x√
Var(Lm)

)

)
= E[Lm]

x√
Var[Lm]

+
x2

2Var[Lm]
Var[Lm]

+
x3m3δ′

(Var[Lm)]
3
2

O(m1−3δ).

Observe that the error term for x = O(mδ) is

O(m− 1
2+3δ′(logm)−3/2) = o(1)

since δ′ < 1/6, and this leads to

logLm

(
exp

(
x√

Var(Lm)

))
−E[Lm]

x√
Var[Lm]

=
x2

2
+ o(1). (9.50)

Therefore, by the Markov inequality, for all t > 0 we have

P (Lm > E[Lm] + x
√
Var[Lm]) ≤ exp(logLm(e

t)− tE[Lm]− xt
√

Var[Lm]).

Using (9.50) we find that

P (Lm > E[Lm] + x
√
Var[Lm]) ≤ exp

(
x2

2
+ o(1)− x2

)
∼ exp

(
−x

2

2

)
,

where we have set t = x/
√
Var[Lm] in the last line. This completes the proof of

the lower bound, while for the upper bound we follow the same argument but
with t replaced by −t.
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9.4. Proofs of Theorems 9.2.1 and 9.2.2

In this section we prove our main results, namely Theorems 9.2.1 and 9.2.2 given
that Theorem 9.3.2 is granted.

9.4.1. Large deviations: proof of Theorem 9.2.2

We start with Theorem 9.2.2(i). By (9.21) we have

P (Mn > ℓ−1(n) + ynδ) = P (Mn > ⌊ℓ−1(n) + ynδ⌋)
= P

(
L⌊ℓ−1(n)+ynδ⌋ < n

)
.

Observe that E[Lm] = ℓ(m) +O(1), and hence

E[L⌊ℓ−1(n)+ynδ⌋] = ℓ(ℓ−1(n) + ynδ) +O(1). (9.51)

Since the function ℓ(·) is convex and ℓ(0) = 0 we have, for all real numbers a > 0
and b > 0

ℓ(a+ b) ≥ ℓ(a) +
ℓ(a)

a
b, (9.52)

ℓ(a− b) ≤ ℓ(a)− ℓ(a)

a
b. (9.53)

Applying inequality (9.52) to a = ℓ−1(n) and b = ynδ we arrive at

n−E[L⌊ℓ−1(n)+ynδ⌋] ≤ −y
n

ℓ−1(n)
nδ + O(1). (9.54)

Thus
P (L⌊ℓ−1(n)+ynδ⌋ < n) ≤ P (Lm −E[Lm] < −xmδ +O(1))

with

m = ⌊ℓ−1(n) + ynδ⌋, x =
n

ℓ−1(n)

nδ

mδ
y. (9.55)

We now apply several times Theorem 9.3.4 concerning the path length Lm. That
is, for all x > 0 and for all m, there exist ε > 0 and A such that

P (Lm −E[Lm] < xmδ) < Ae−βxm
ε

. (9.56)

In other words,

P (Lm −E[Lm] < xmδ +O(1)) ≤ Ae−βxmε+O(mε−δ)) ≤ A′e−βxm
ε
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for some A′ > A. We find that

P (Mn > ℓ−1(n) + ynδ) ≤ A′ exp(−βxmε). (9.57)

We know that ℓ−1(n) = Ω(n/logn). Thus, with x defined as in (9.55), we have

x = O((log n)1+δ)
y

(1 + ynδ−1 logn)δ
≤ β′ nε1y

(1 + yn−ε2)δ

for some β′ > 0. Setting ε1 < ε and ε2 < ε for some ε > 0, we establish the
upper bound.

In a similar fashion, we have

P (Mn < ℓ−1(n)− ynδ) = P (L⌊ℓ−1(n)−ynδ⌋ > n) (9.58)

and
E[L⌊ℓ−1(n)−ynδ⌋] = ℓ(ℓ−1(n)− ynδ) +O(1). (9.59)

Using inequality (9.53) we obtain

n−E[L⌊ℓ−1(n)−ynδ⌋] ≥ y
n

ℓ−1(n)
nδ +O(1). (9.60)

In conclusion,

P (L⌊ℓ−1(n)−ynδ⌋ > n) ≤ P (Lm −E[Lm] > xmδ +O(1))

with

m = ⌊ℓ−1(n)− ynδ⌋, x =
n

ℓ−1(n)

nδ

mδ
y.

Observe that this case is easier since now m < ℓ−1(n) and we do not need the
correcting term (1 + ynε)−δ.

Now we turn our attention to the moderate deviation results expressed in
Theorem 9.2.2(ii) (with δ < 1/6). The proof is essentially the same, except that
we now consider

y
sn

ℓ′(ℓ−1(n))
with sn =

√
v(ℓ−1(n))

instead of ynδ, and we assume y = O(nδ
′

) for some δ′ < 1/6. Thus

y
sn

ℓ′(ℓ−1(n))
= O(n1/2+ε) = o(n)

for some ε > 0. By Theorem 9.2.1 we know that

E[Mn] = ℓ−1(n) + o(sn/ℓ
′(ℓ−1(n));
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thus, for y > 0,

P

(
Mn > ℓ−1(n) + y

sn
ℓ′(ℓ−1(n))

)
= P (Lm < n), (9.61)

with
m = ⌊ℓ−1(n) + y

sn
ℓ′(ℓ−1(n))

⌋.

We use the estimate

ℓ(a+ b) = ℓ(a) + ℓ′(a)b + o(1)

when b = o(a) and a→∞. Thus

ℓ

(
ℓ−1(n) + y

sn
ℓ′(ℓ−1(n))

)
= n+ ysn + o(1). (9.62)

Since
√
v(m) = sn +O(1) we have

n = E[Lm]− y
√
v(m) +O(1).

By Theorem 9.3.4 we know that

P (Lm < E[Lm]− y
√
v(m) +O(1)) ≤ A exp(−y2/2),

where the O(1) term is given by

exp

(
O

(
y2

v(m)

))
= exp(o(1)),

which is absorbed into A since δ < 1/6. The proof for y < 0 follows a similar
path.

9.4.2. Central limit theorem: Proof of Theorem 9.2.1

We first show that, for all 1/2 < δ < 1

E[Mn] = ℓ−1(n) +O(nδ).

Indeed, for any random variable X , we have

|E[X ]| ≤ E[|X |] =
∫ ∞

0

P (|X | > y)dy;
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we now set X =Mn − ℓ−1(n) to find from Theorem 9.2.2(i)

|E[Mn]− ℓ−1(n)| ≤ nδ + nδ
∫ ∞

1

P (|Mn − ℓ−1(n)| > ynδ)dy = O(nδ).

By the renewal equation (9.21), for a given y we have

P

(
Mn > ℓ−1(n) + y

sn
ℓ′(ℓ−1(n))

)
= P (L⌊ℓ−1(n)+y sn

ℓ′(ℓ−1(n))
⌋ < n).

As before, let

m =

⌊
ℓ−1(n) + y

sn
ℓ′(ℓ−1(n))

⌋
.

We know that
n−E[Lm] = −ysn +O(1)

and
sn =

√
v(ℓ−1(n)) =

√
Var[Lm](1 + o(1)).

Therefore

P

(
Mn > ℓ−1(n) + y

sn
ℓ′(ℓ−1(n))

)
= P

(
Lm < E[Lm] + y

√
Var[Lm](1 + o(1))

)
.

Hence

P
(
Lm < E[Lm] + y(1 + o(1))

√
Var[Lm]

)
≥ P

(
Mn > ℓ−1 + y

sn
ℓ′(ℓ−1(n))

)
,

since for all y′ we have

lim
m→∞

P
(
Lm < E[Lm] + y′

√
Var[Lm]

)
= Φ(y′),

where, we recall, Φ is the distribution of N(0, 1). Therefore, by the continuity
of Φ(x),

lim
m→∞

P
(
Lm < E[Lm] + y(1± o(1))

√
Var[Lm]

)
= Φ(y).

Thus

lim
m→∞

P

(
Mn > ℓ−1(n) + y

sn
ℓ′(ℓ−1(n))

)
= 1− Φ(y),

and, using the same method, we can also establish the matching lower bound

lim
m→∞

P

(
Mn < ℓ−1(n)− y sn

ℓ′(ℓ−1(n))

)
= Φ(y).
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This proves two things: first, that

(Mn − ℓ−1(n))
ℓ′(ℓ−1(n))

sn

tends to the normal distribution in probability; second, since by the moderate
deviation result the normalized random variable

(Mn − ℓ−1(n))
ℓ′(ℓ−1(n))

sn

has bounded moments. Then by virtue of dominated convergence and conver-
gence to the normal distribution we have

lim
n→∞

E

[
(Mn − ℓ−1(n))

ℓ′(ℓ−1n))

sn

]
= 0,

lim
n→∞

E

[(
(Mn − ℓ−1(n))

ℓ′(ℓ(−1n))

sn

]2)
= 1.

In other words,

E[Mn] = ℓ−1(n) + o(n1/2 logn),

Var[Mn] ∼
v(ℓ−1(n))

(ℓ′(ℓ−1(n)))2
,

which prove (9.8) and (9.9). This completes the proof of our main result in
Theorem 9.2.1.

9.4.3. Some technical results

The main goal of this subsection is to prove Theorem 9.3.2. We accomplish this
through several technical results.

First, we will work with the Poisson model, that is, the exponential gener-
ating function L(z, u) satisfying (9.23) (or its Poisson version L(z, u)e−z), from
which we can extract information about the probability generating function
Lm(u) for large z and u in the vicinity of u = 1. Throughout we will use an-
alytic depoissonization, as discussed in Chapter 7. However, here we need an
extension of the results presented in Table 7.2 to diagonal exponential depois-
sonization, reviewed below.

Recall the Poisson mean X̃(z) and the Poisson variance Ṽ (z), defined in
Section 9.3.1 by

X(z) =
∂

∂u
L(z, 1), X̃(z) = X(z)e−z,

Ṽ (z) = e−z
∂2

∂u2
L(z, 1) + X̃(z)− (X̃(z))2.
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For a given z and for any t, we then have

logL(z, et) = z + X̃(z)t+ Ṽ (z)
t2

2
+O(t3). (9.63)

We first obtain some estimates on the Poisson mean X̃(z) and the Poisson

variance Ṽ (z) (see Lemma 9.4.3 below), by applying Theorem 9.4.2 proved in
Section 9.4.4. Then we derive some estimates on the derivative of logL(z, et) (see
Lemma 9.4.4). Finally, we use the depoissonization tool given in Theorem 9.4.1
to prove Theorem 9.3.2.

The main tool of this section is analytic depoissonization. To this end we
will use the diagonal exponential depoissonization established in Jacquet and
Szpankowski (1998). Let θ be a nonnegative number smaller than π/2, and
let S(θ) be a complex cone around the positive real axis defined by S(θ) =
{z : | arg(z)| ≤ θ}. We will use the following theorem (see Theorem 8 in Jacquet
and Szpankowski (1995)), known as the diagonal exponential depoissonization
tool.

Theorem 9.4.1 (Jacquet and Szpankowski, 1998). Let uk be a sequence of com-
plex numbers, and θ ∈]0, π2 [. For all ε > 0 there exist c > 1, α < 1, A > 0, and
B > 0 such that

z ∈ S(θ) and |z| ∈ [
m

c
, cm]⇒ | log(L(z, um)| ≤ B|z|,

z /∈ S(θ), |z| = m⇒ |L(z, um)| ≤ Aeαm.

Then

Lm(um) = L(m,um)(1+o(m
−1/2+ε)) exp

(
−m− m

2

(
∂

∂z
log(L(m,um))− 1

)2
)

(9.64)
for m→∞.

In Theorems 9.4.7 and 9.4.11 we prove the following main technical result
needed to establish Theorem 9.3.2.

Theorem 9.4.2. Let δ ∈]0, 1[. There exist numbers θ ∈]0, π2 [, α < 1, A > 0,
B > 0, and ε > 0 such that for all complex t such that |t| ≤ ε:

z ∈ S(θ) ⇒ | log(L(z, et|z|−δ

))| ≤ B|z| (9.65)

z /∈ S(θ) ⇒ |L(z, et|z|−δ

)| ≤ Aeα|z|. (9.66)
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Granted Theorem 9.4.2, we now proceed to estimate the Poisson mean and
variance that will be used to prove Theorem 9.4.5 (the main technical result of
this subsection), in which we state an estimate on logLm(e

t).
We start with some bounds on the Poisson mean, variance, and logL(z, et).

Lemma 9.4.3. Let δ be an arbitrary nonnegative number. There exists ε > 0
such that for |t| ≤ ε and z ∈ S(θ) the following estimates hold:

X̃(z) = O(|z|1+δ),
Ṽ (z) = O(|z|1+2δ),

logL(z, et|z|
−δ

) = z + X̃(z)
t

|z|δ + Ṽ (z)
t2

2|z|2δ +O(t3|z|1+3δ).

Proof. We first notice that logL(z, 1) = z. We recall that X̃(z) and Ṽ (z) are
respectively the first and the second derivative of L(z, et) with respect to t at
t = 0. By Cauchy’s formula we have

X̃(z) =
1

2iπ

∮
logL(z, et)

dt

t2
, (9.67)

Ṽ (z) =
2

2iπ

∮
logL(z, et)

dt

t3
, (9.68)

where the integrals are along the circle of center 0 and radius ε|z|−δ. On this
integral contour the estimate | logL(z, et)| ≤ B|z| holds, and therefore we have

|X̃(z)| ≤ B

ε
|z|1+δ, (9.69)

|Ṽ (z)| ≤ 2B

ε2
|z|1+2δ, (9.70)

which proves the first two assertions. For the third, we need to assess the
remainder

R(z, t) = logL(z, et)− z − X̃(z)t− Ṽ (z)
t2

2
.

We again use the Cauchy formula, obtaining

R(z, t) =
2t3

2iπ

∮
logL(z, et

′

)
dt′

(t′)3(t′ − t) . (9.71)
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The above follows on noting that

R(z, t) =
1

2iπ

∮
logL(z, et

′

)
dt′

(t′ − t) ,

R(z, 0) =
1

2iπ

∮
logL(z, et)

dt

t
,

R′(z, 0) =
1

2iπ

∮
logL(z, et)

dt

t2
,

R′′(z, 0) =
1

2iπ

∮
logL(z, et)

dt

t3
.

We integrate R(z, t) around the circle of center 0 and radius ε|z|−δ. If we restrict
t in such a way that |t| ≤ ε

2 |z|−δ then |t− t′| ≥ ε
2 |z|−δ, and

|R(z, t)| ≤ 8B

ε3
|t|3|z|1+3δ,

which completes the proof.

Now let

D(z, t) :=
∂

∂z
logL(z, et)

which is needed in (9.64) to apply the diagonal depoissonization. Our second
technical lemma provides estimates on D(z, t).

Lemma 9.4.4. Let δ > 0. There exist ε > 0 and B′ > 0 such that, for all t
for which |t| < ε, we have

|D(m, tm−δ))| ≤ B′,

D(m, tm−δ) = 1 + X̃ ′(m)
t

mδ
+O(t2m2δ),

X̃ ′(m) = O(mδ)

for m→∞.

Proof. The key point here is to show that D(m, tm−δ)) = O(1). In order to
establish this, we again use the Cauchy formula:

D(m, tm−δ) =
1

2iπ

∮
logL(z, etm

−δ

)
dz

(z −m)2
, (9.72)

where the integration contour encircles m with radius O(m) and lies on the cone

S(θ). Let |t| ≤ ε such that (9.66) holds, namely | logL(z, etm−δ

)| ≤ B|z| since
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m = O(|z|). To this end the contour is chosen to be a circle of center m and
radius m sin(θ). Noticing that |z| < m(1 + sin(θ)) we finally arrive at

|D(m, tm−δ)| ≤ B 1 + sin(θ)

sin(θ)
. (9.73)

From here the proof takes a similar path to that in the proof of the previous
lemma. Noting that D(m, 0) = 1, we have

X̃ ′(m) =
∂

∂t
D(m, 0) =

1

2iπ

∮
D(m, t′)

dt′

(t′)2

D(m, tm−δ) = 1 + X̃ ′(m)tm−δ ++
tm−δ

2iπ

∮
D(m, t′)

dt′

(t′)2(t′ − tm−δ)
,

where the integral contour is now a circle of center tm−δ and radius εm−δ.

These two lemmas allow us to establish the following intermediate result.

Theorem 9.4.5. There exists a number A > 0 such that for all arbitrarily
small δ′ < δ, and for all complex t such that |t| ≤ A, we have

logLm(etm
−δ

) = X̃(m)
t

mδ
+
(
Ṽ (m)−m(X̃ ′(m))2

) t2

2m2δ
+O(t3m1−3δ+6δ′)

for m→∞.

Proof. We need to apply (9.64) of Theorem 9.4.1. Let δ′ < δ be arbitrarily
small. We require Lemma 9.4.3 with t′ and δ′ t′ = tmδ′−δ; the condition |t′| ≤ ε
is then easily checked. From

logL(m, et
′m−δ′

) = m+ X̃(m)
t′

mδ′
+ Ṽ (m)

t′2

2m2δ′
+O(t′3m1+3δ′)

we find that

logL(m, etm
−δ

) = m+ X̃(m)
t

mδ
+ Ṽ (m)

t2

2m2δ
+O(t3m1−3δ+6δ′).

In order to apply (9.64) we need to estimate

(
∂

∂z
log(L(m,um))− 1

)2

= (D(m,um)− 1)
2
,

where um = etm
−δ

. Applying Lemma 9.4.4 with t′ = tmδ′−δ we find that

D(m, etm
−δ

) = 1 + X̃ ′(m)
t

mδ
+O(t2m−2δ+4δ′). (9.74)
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Then using X ′(m) = O(mδ′ ) we arrive at

(
D(m, etm

−δ

)− 1
)2

= (X̃ ′(m))2
t2

m2δ
+O(t3m−3δ+5δ′).

Putting everything together and using (9.64) of Theorem 9.4.1, we finally achieve

the expected estimate on logLm(etm
−δ

).

The next result allows us to connect the Poissonized mean and variance with
the original mean and variance; it follows directly from Theorem 9.4.5. In fact,
we have already established the original mean and variance in Theorem 7.2.15.

Corollary 9.4.6. For any δ′ > 0

E[Lm] = X̃(m) + o(1) = O(m1+δ′),

Var[Lm] = Ṽ (m)−m(X ′(m))2 + o(1) = O(m1+2δ′)

as m→∞.

We are finally in a position to prove Theorem 9.3.2 granted Theorem 9.4.2,
which we establish in the next subsection. From Theorem 9.4.1 and Lemma 9.4.4,
for any δ′ > 0, we obtain the estimate

logLm(etm
−δ′

) = O(m)

which proves (9.40) of Theorem 9.3.2. To prove (9.41) we need to estimate the
remainder

Rm(t) = logLm(e
t)−E[Lm]t−Var[Lm]

t2

2
.

By the Cauchy formula, as in the proof of Lemma 9.4.3 we have

Rm(t) =
2t3

2iπ

∮
logLm(e

t′)
dt′

(t′)3(t′ − t) , (9.75)

where the integral is around a circle of center 0 and radius ε|z|−δ. If we again
restrict t in such a way that |t| ≤ ε

2 |z|−δ then |t− t′| ≥ ε
2 |z|−δ. As in the proof

of Lemma 9.4.3, we find that

Rm(t) = t3O

(
m1+3δ′

ε3

)
.

Therefore, for δ > δ′ we finally arrive at

Rm(tm−δ) = t3O
(
m1−3(δ−δ′)

)
= t3O

(
m1−3(δ′′)

)
(9.76)

for some δ′′ > 0. This completes the proof of Theorem 9.3.2.
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9.4.4. Proof of Theorem 9.4.2

To complete our analysis we need to prove Theorem 9.4.2; we will establish
(9.65) and (9.66) respectively in Theorems 9.4.7 and 9.4.11 below.

We apply the increasing domains technique introduced in Section 7.2.5. Re-
call that this technique allows us to establish a property over an area of the com-
plex plane (e.g., a cone) by mathematical induction. Indeed, let R be a real num-
ber. We denote by S0(θ) the subset of the linear cone S(θ) = {z : | arg(z)| ≤ θ}
consisting of the complex numbers of modulus smaller than or equal to R. By
extension, let k be an integer and denote by Sk(θ) the subset of S(θ) that consists
of complex numbers of modulus smaller than or equal to Rρk, where

ρ = min
u∈U(1),a∈A

{
1

pa|u|

}
> 1 (9.77)

for a neighborhood U(1) of u = 1. By construction, if z ∈ Sk(θ) for k > 0 and
u ∈ U(1) then all pauz for a ∈ A belong to Sk−1(θ). Thus a property (e.g.,
recurrence (9.23)) that holds for Sk−1(θ) can be extended to a larger subset of
the cone, namely Sk(θ), as in standard mathematical induction.

Our goal is to present a polynomial estimate logL(z, u) (i.e., logL(z, u) =
O(z)) for large z in a cone containing the real positive axis. The main problem is
that of the existence of the logarithm of L(z, u), in particular for complex values
of z and u. Technically, we can prove the existence and growth of logL(z, u)
only for complex u with a small imaginary part as z increases. For this we fix
an arbitrary nonnegative real number δ < 1 and complex t and z such that

u(z, t) = et|z|
−δ

. (9.78)

The key to our analysis is the following theorem, which proves equation (9.65)
of Theorem 9.4.2.

Theorem 9.4.7. There exists a complex neighborhood U(0) of t = 0 and B > 0
such that for all t ∈ U(0) and for all z ∈ S(θ) the function logL(z, u(z, t)) exists
and

logL(z, u(z, t)) ≤ B|z|. (9.79)

We will prove the theorem in several steps. The “road map” for the proof
is as follows. We first introduce a function f(z, u), which we call the kernel
function; it is defined by

f(z, u) =
L(z, u)
∂
∂zL(z, u)

=
L(z, u)∏

a∈A L(pauz, u)
. (9.80)
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Notice that, formally,
1

f(z, u)
=

∂

∂z
logL(z, u).

Indeed, if we can show that the kernel function is well defined and is never zero
in a convex set containing the real positive line then we will have proved that
logL(z, u) exists, since

logL(z, u) =

∫ z

0

dx

f(x, u)
. (9.81)

Furthermore, if we can prove that the estimate f(x, u) = Ω(1) holds then

logL(z, u) =

∫ z

0

dx

f(x, u)
= O(z) (9.82)

as needed to establish (9.65) of Theorem 9.4.2.
Understanding the kernel function is therefore the key to our analysis. In

passing we observe that this function satisfies the following differential equation:

∂

∂z
f(z, u) = 1− f(z, u)

∑

a∈A

pau

f(pauz, u)
. (9.83)

We proceed now with the proof of Theorem 9.4.7. We start with a trivial
lemma, whose proof is left to the reader as an exercise.

Lemma 9.4.8. For (x, ε) a real positive tuple, let a function h(x, ε) be defined
on an open set containing all tuples (x, 0) with x ≥ 0. Assume that the function
h(x, ε) is real positive and continuously differentiable. If

∀x ≥ 0 :
∂

∂x
h(x, 0) < 1

then for all compact sets Kx there exists a compact neighborhood of U(0) of 0:
(x0, t) ∈ Kx × U(0) such that the sequence

xk+1 = h(xk, ε) (9.84)

defined for k integer converges to a bounded fixed point when k →∞.

Let us define the function a(z, u) as follows:

1

f(z, u)
= 1 + a(z, u).

In the next two lemmas we prove that a(z, u) = O(1) for u as in (9.78), and
this, by (9.82), will prove (9.65).
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Lemma 9.4.9. Let δ′ be a real number such that δ′ < δ < 1. For all number
â > 0 there exists a real number ε > 0 such that for all real t and |t| < ε we have

|a(z, u(z, t))| ≤ â |t||z|δ′ (9.85)

for all z ∈ S(θ).

Proof. We apply the increasing domain technique with

ρ = min
u∈U(1),a∈A

{
1

pa|u|

}
> 1

for a compact neighborhood U(1) of u = 1, which is assumed to be small enough
so that ρ is greater than 1. To proceed, we make u(z, t) independent of z in

the subset Sk(θ) of the kth increasing domain, by introducing uk(t) = etν
k

for
ν = ρ−δ, and fix

µ = ρ−δ
′

> ν

for δ′ < δ. In the following we will write fk(z) = f(z, uk(t)) and uk = uk(t),
omitting the variable t. Recall that the kernel function satisfies the differential
equation:

f ′
k(z) = 1− fk(z)

∑

a∈A

pauk
f(paukz, uk)

. (9.86)

Let ak(z, t) = a(z, uk(t)). Since L(z, 1) = ez for all z, f(z, 1) = 1. Since
∂
∂uf(z, u) is well defined and continuous, we can restrict the neighborhood U(1)
in such a way that f(z, u) is non zero and therefore a(z, u) is well defined for
z ∈ S0(θ) = {z ∈ S(θ) : |z| < R} and u ∈ U(1). Let a0 be a nonnegative
number such that

∀u ∈ U(1) , ∀z ∈ S0(θ) : |a0(z, t)| ≤ a0|t|. (9.87)

Now we fix ε such that a0ε < 1. We want to prove that there exists a number
ε > 0 such that there is an increasing sequence of nonnegative numbers ak such
that

|ak(z, t)| ≤ ak|t|µk (9.88)

for all z ∈ Sk(θ) and all t for which |t| ≤ ε, with lim supk→∞ ak <∞.
We now apply the increasing domain approach. Let z ∈ Sk(θ). We set

gk(z) =
∑

a∈A

pauk
f(paukz, uk)

. (9.89)
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Thus (9.86) can be rewritten as f ′
k(z) = 1 − gk(z)fk(z), and the differential

equation can be solved to give

fk(z) = 1 +

∫ z

0

(1− gk(x)) exp(Gk(x)−Gk(z))dx , (9.90)

where Gk(z) is a primitive of the function gk(z).
We now will give some bounds on gk(z) for z ∈ Sk(θ) and |t| < ε. For all

a ∈ A we assume that paukz ∈ Sk−1(θ). We have uk(t) = uk−1(νt) and we can
use the recursion (9.90) since |νt| < ε. In particular we have

gk(z) =
∑

a∈A
pauk(1 + ak−1(paukz, νt)) = 1 + bk(z, t) (9.91)

with
bk(z, t) =

∑

a∈A
pa(uk − 1 + ukak−1(paukz, νt)). (9.92)

Since both |ak−1(puk, νt)| and |ak−1(quk, νt)| are smaller than ak−1νµ
k−1|t|,

and since |uk − 1| ≤ βνk|t| for some β close to 1, we have |b(z, t)| ≤ bk|t| with

bk = (ak−1νµ
k−1 + βνk)(1 + βνkε). (9.93)

Thus, substituting into (9.90) we find that

|fk(z)− 1| ≤
∫ z

0

|bk(x, t)| exp(ℜ(Gk(x)−Gk(z)))dx

≤
∫ 1

0

bk|t||z| exp(ℜ(Gk(zy)−Gk(z)))dy

≤ bk|t|
cos(θ)− bk|t|

.

Clearly,

ℜ(Gk(yz)−Gk(z)) = −ℜ(z)(1− y) +
∫ 1

y

ℜ(zbk(zx, t))dx

≤ − cos(θ)|z|+ bk|z|,

hence ∣∣∣∣
1

fk(z)
− 1

∣∣∣∣ ≤
bk|t|

cos(θ)−bk|t|

1− bk|t|
cos(θ)−bk|t|

=
bk|t|

cos(θ)− 2bk|t|
. (9.94)
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Therefore,

ak ≤
(
ak−1

ν

µ
+ β

νk

µk

)
(1 + βνkε)

1

cos(θ)− bkε
. (9.95)

Now let h(ak, ε) be the right-hand side of (9.95). Notice that

∂

∂ak
h(ak, 0) =

ν

µ cos(θ)
< 1

for small enough θ. Thus we are in within the remit of Lemma 9.4.8. Moreover,
h(x, ε) is increasing. Since in Lemma 9.4.8 we can make ε as small as necessary,
lim supk→∞ ak <∞ and (9.88) is proved, and so is the lemma.

We can extend this lemma to a complex neighborhood of t = 0 (u = 1).

Lemma 9.4.10. For all numbers α > 0 there exist ε > 0, θ ∈]0, π/2[ such
that, for complex t with |t| < ε,

|a(z, u(z, t))| ≤ α |t||z|δ′ (9.96)

for all z ∈ S.

Proof. The proof is essentially the same as that of the previous lemma ex-
cept that we have to extend the cone S(θ) to a larger set S ′(θ) defined by
{z : | arg(z)| ≤ θ+φ|z|δ−1} such that if z ∈ S ′(θ) then, for all a ∈ A, pau(z, t)z
also belongs to S ′(θ) (with a small rotation of angle ℑ( t

|z|δ ) in the case where

two points outside S(θ) may not satisfy the induction hypothesis).

We can now establish (9.66) of Theorem 9.4.2.

Theorem 9.4.11. Let θ ∈]0, π/2[. There exist numbers A > 0, α < 1, and
ε > 0 such that, for all complex t with |t| ≤ ε,

z /∈ S(θ)⇒ |L(z, u(z, t))| ≤ Aeα|z| . (9.97)

Proof. We proceed as for the previous proof. First we prove the statement for t
real (near t = 0) and then consider complex t. We take a neighborhood U(1) of
u = 1 (or t = 0) and define ρ as in (9.77). We define C̄(θ) as the complement of
S(θ) in the complex plane. We also introduce

λ = min
u∈U(1),a∈A

{pa|u|}. (9.98)
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We set R > 0 and define C̄0(θ) and C̄k(θ) for integer k > 0 as subsets of C̄(θ):

C̄0(θ) = {z ∈ C̄(θ), |z| ≤ λR},
C̄k(θ) = {z ∈ C̄(θ), λR < |z| ≤ ρkR}.

With these definitions, if u ∈ U(1) when z is in C̄k(θ) − C̄k−1(θ) then both puz
and quz are in C̄k−1(θ). This determines the increasing domains in this case.

Since L(z, 1) = ez, if α > cos(θ) then |L(z, 1)| ≤ eα|z|. There exist A0 > 0
and ε such that for all t with |t| ≤ ε and for all z ∈ C̄0(θ): |L(z, et)| ≤ A0e

α|z|.
We also tune ε so that α

∏
k uk(ε) < 1.

We proceed with the same analysis for z ∈ C̄1(θ). However, since |L(z, 1)| is
strictly smaller than eα|z| for all z ∈ C̄1(θ), we can find A1 < 1 and ε > 0 such
that for all t with |t| ≤ ε and for all z ∈ C̄1(θ) we have |L(z, et)| ≤ A1e

α|z|. In
fact, since

min
z∈C̄1(θ)

{ |ez|
eα|z|

}
→ 0

when R→∞ we can make A1 as small as we want.
We now define αk = α

∏i=k
i=0 uk(ε). We will prove by induction that there

exists an increasing sequence Ak < 1 such that, for t with |t| ≤ ε,

z ∈ C̄k(θ)⇒ |L(z, uk(t))| ≤ Akeαk|z|. (9.99)

Our plan is to prove this property by induction. Assume that is true for all
integers smaller than or equal to k − 1; we will then prove that it is true for k.
Assume that z ∈ C̄k(θ)− C̄k−1(θ). We use the differential equation

L(z, uk) = L(z/ρ, uk) +

∫ z

z/ρ

∏

a∈A
L(paukx, uk)dx.

Clearly,

|L(z, uk)| ≤ |L(z/ρ, uk)|+ |z|
∫ 1

1/ρ

∏

a∈A
|L(paukzy, uk)|dy.

Using the induction hypothesis,

|L(z/ρ, uk)| ≤ Ak−1e
αk−1|z|/ρ,

and so for all a ∈ A,

|L(paukyz, uk)| ≤ Ak−1e
αk−1pa|uk||z|y ≤ Ak−1e

αkp|z|y
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(we have αk−1|u| ≤ αk−1e
ε = αk). Thus

|L(z, uk)| ≤ Ak−1e
αk−1|z|/ρ +

A2
k−1

αk

(
eαk|z| − eαk|z|/ρ

)
.

This gives an estimate

Ak ≤
A2
k−1

αk
+Ak−1e

−ρk−2(ρ−1)αkR.

Evidently, the term in e−ρ
k−2(ρ−1)αkR can be made as small as we want by

increasing R. If we choose A1 such that

A1

α1
+ e−ρ

k−2(ρ−1)αkR < 1

for all k then we get Ak ≤ Ak−1 and the theorem is proven for t real. Figure 9.6

displays the function logL(z, uk(t))/z for t = 0.1 and t = −0.1 for uk(t) = etν
k

with ν = ρ−0.5 ≈ 1.34524 and k = 1, . . . , 6. This confirms graphically our
assertion.

Figure 9.6. The function (logL(z, uk))/z when pa = pb = 0.5 and uk =

etν
k

for t = 0.1 and t = −0.1 for k = 1, . . . , 6.

Now, we need to expand our proof to the case where t is complex and |t| ≤ ε.
To this end we use a trick similar to that in the proof of Lemma 9.4.10. We
expand C̄(θ) as

C̄′(θ) = {z : arg(z)| ≥ θ + φRδ−1 − φ|z|δ−1},

for |z| > Rρ, in order to ensure that paukz stays in C̄′(θ) for all a ∈ A when

z ∈ C̄′k(θ) − C̄′k−1(θ)
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(absorbing, if needed, a tiny rotation that the factor uk implies when t is com-
plex). Of course, one must choose φ such that θ + φRδ−1 < π/2 and tune ε.
Figure 9.7 displays the function logP (z, uk(t))/z for t = 0.1i and k = 6 with the
usual convention for complex function display. Again it confirms our statement.

Figure 9.7. The function logL(x+iy, uk(t)))/(x+iy) when pa = pb = 0.5

and uk = etν
k

for t = 0.1.i and k = 6.

9.5. Exercises

9.1 Prove Lemma 9.4.8.

9.2 Analyze the phrase length Dn in the LZ’78 algorithm; that is, com-
pute the mean and the variance, as well as proving the CLT and large
deviation results for Dn.

9.3 Consider a digital search tree built over an unbiased binary memoryless
source, that is, one with pa = pb = 0.5. Prove that the variance of
the path length grows linearly in this case, that is, Var[Lm]Θ(m) and
compute precisely the term in front ofm (see Kirschenhofer et al. 1994).

9.4 Study the problem of Gilbert and Kadota (1992), namely: How many
parsings of total length n can one construct fromm words? For example,
for m = 2 we have four parsings of length 3, namely (0)(00), (0)(01),
(1)(10) and (1)(11), and two parsings of length 2, namely (0)(1) and
(1)(0). Let Fm(n) be the number of parsings built fromm words of total
length n, and let Fm(x) =

∑∞
n=0 Fm(n)xn be its generating function.



308 Chapter 9. Lempel–Ziv’78 Compression Algorithm

Note that

Fm+1(x) = xm
m∑

k=0

(
m

k

)
Fk(x)Fm−k(x).

Observe that
Fm(n) = 2nP (Lsymm = n)

where Lsymm is the path length in a symmetric digital tree. In particular,
for n = m log2m+O(

√
m) show that

Fm(n) ∼ 2n√
2π(C + δ(log2 n))m

exp

(
− (n−m log2m)2

2(C + δ(log2 n))m

)

for a constant C and a fluctuating function δ(x).

9.5 First consider the generalized Lempel–Ziv’78 scheme. Fix an integer
b ≥ 1. The algorithm parses a sequence into phrases such that the
next phrase is the shortest phrase seen in the past by at most b − 1
phrases (b = 1 corresponds to the original Lempel–Ziv algorithm). For
example, consider the sequence ababbababaaaaaaaaac over the alphabet
A = {a, b, c}. For b = 2 it is parsed as follows:

(a)(b)(a)(b)(ba)(ba)(baa)(aa)(aa)(aaa)(c)

with seven distinct phrases and eleven phrases altogether. Analyze
this algorithm, its compression rate, its redundancy and the number
of phrases (see Louchard, Szpankowski, and Tang (1999)).

9.6 In Theorem 9.3.3 we established the central limit theorem for the path
length Lm in a digital search tree. Using the Berry–Esseen inequality
establish the rate of convergence to the CLT.

9.7 In Theorem 9.2.1 we establish the central limit theorem for the number of
phrases Mn in the LZ’78 algorithm. Using the Berry–Esseen inequality
establish the rate of convergence to the CLT.

9.8 The multiplicity parameter for tries is defined in Section 7.2.4 and for
suffix trees in Section 8.3. Consider the LZ’78 scheme and the associated
digital search tree and define the corresponding parameter. This param-
eter coincides with the number of previous phrases that are equal to the
new inserted phrase (without the last symbol). Analyze this parameter.

9.9 Consider two stringsXn and Y m. Parse the stringXn using the Lempel–
Ziv’78 algorithm. Then consider parsing the other string, Y m, with re-
spect to Xn by the LZ’78 algorithm. Analyze the phrase length and the
number of phrases of Y m (see Ziv and Merhav (1993)).

9.10 Extend the main results of this chapter to Markov sources (see Jacquet
et al. (2001)).
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Bibliographical notes

In this chapter we studied the limiting distribution, the large deviations, the
moments of the number of phrases, and the redundancy of the Lempel–Ziv’78
compression scheme when the text is generated by a memoryless source. Among
other things we proved that the number of phrases satisfies the central limit law
and that the (normalized) redundancy rate of the LZ’78 code obeys the CLT.
We accomplished this by studying the path length in a digital search tree with
a fixed number of strings, as discussed in depth in Chapter 7.

The Lempel–Ziv algorithm was introduced in Ziv and Lempel (1978). It
has been analyzed in several papers, e.g., Aldous and Shields (1988), Louchard
and Szpankowski (1995), Louchard et al. (1999), Jacquet et al. (2001), Merhav
(1991), Plotnik, Weinberger, and Ziv (1992), Savari (1997), Wyner (1997) and
Ziv and Merhav (1993). In particular, the limiting distribution for the number
of phrases in LZ’78 was studied in Aldous and Shields (1988) and Jacquet and
Szpankowski (1995). In Aldous and Shields (1988) only an unbiased (symmetric)
memoryless source was analyzed (pa = 0.5). Aldous and Shields (1988) wrote:
“It is natural to conjecture that asymptotic normality holds for a larger class of
processes . . . . But in view of the difficulty of even the simplest case (i.e., the fair
coin-tossing case we treat here) we are not optimistic about finding a general
result. We believe the difficulty of our normality result is intrinsic . . . .” The
general memoryless case was solved in Jacquet and Szpankowski (1995) using
analytic tools of a similar nature to those in this chapter. A simplified and
generalized analysis was presented in Jacquet and Szpankowski (2011, 2014).
However, the proof of the CLT in our 1995 paper was quite complicated: it
involves a generalized analytic depoissonization over convex cones in the complex
plane. It should be pointed out that, since this 1995 paper, no simpler proof, in
fact, no new proof of the CLT has been presented except for that by Neininger
and Rüschendorf (2004); however, that was only for unbiasedmemoryless sources
(as in Aldous and Shields (1988)). The proof of Neininger and Rüschendorf
(2004) applies the so-called contraction method.

The redundancy of the Lempel–Ziv’78 remained an open problem for some
time. It was conjectured in Plotnik et al. (1992) that the average redundancy
decays as O(log logn/ logn). It was finally settled in Louchard and Szpankowski
(1997) and Savari (1997). The variance and the limiting distribution of the
redundancy were presented for the first time in Jacquet and Szpankowski (2011,
2014).

Finally, universal types based on LZ’78 are discussed in Seroussi (2006b); see
also Knessl and Szpankowski (2005) and Seroussi (2006a).





CHAPTER 10

String Complexity

In this chapter we analyze a set of distinct substrings (factors, words) of a
sequence X . We denote this set as I(X). Our goal is to estimate the cardinality
of I(X), known as the string complexity. More interestingly, we shall also study
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the cardinality of I(X) ∩ I(Y ) when X and Y are two sequences. This is called
the joint string complexity.

The string complexity captures the richness of the language used in a se-
quence. For example, sequences with low complexity contain a large number of
repeated substrings and they eventually become periodic (e.g., the tandem re-
peats in a DNA sequence). On the one hand, in order to identify unusually low-
or high-complexity strings one needs to determine how far their complexities are
from the average or maximum string complexity. On the other hand, the joint
string complexity is a very efficient way of evaluating the degree of similarity
of two sequences. For example, the genome sequences of two dogs will contain
more common words than the genome sequences of a dog and a cat; the set
of common words of one author’s text is larger than the set of common words
between two texts from two different authors. Similarly, two texts written in
the same language have more words in common than texts written in very dif-
ferent languages. Also, the joint complexity is larger when languages are quite
close (e.g., French and Italian), and smaller when languages are rather different
(e.g., English and Polish). In fact this can be verified experimentally as will be
discussed in the last section of this chapter (see Figure 10.2).

Here we will analyze the average (joint) string complexity under the assump-
tion that the underlying sequences are generated by memoryless sources. We
should point out that the technique proposed in this chapter can be extended to
Markov sources, as recently proposed in Jacquet and Szpankowski (2012) and
in Jacquet et al. (2013).

We first present the average string complexity of a single string of length n
and prove that it equals n2/2 − O(n log n). Then, we will show that the aver-
age joint string complexity is Θ(n) when two strings are generated by the same
source model and Θ(nκ), for some κ < 1, when the strings are generated by two
different independent sources. When proving these results we use techniques
discussed in Chapters 7 and 8 as the string complexity is related to some pa-
rameters of the associated suffix tree. Furthermore, we need an extension of the
methodology used so far to include the two-dimensional Mellin transform and
depoissonization.

10.1. Introduction to string complexity

In this section, we formally introduce string complexity as well as the joint string
complexity. We also present some simple properties that will be used throughout
this chapter.
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10.1.1. String self-complexity

We first consider the string complexity of a single string, which we also call the
self-complexity. Throughout we denote by X the string (text) whose complexity
we plan to study. Define by I(X) the set of distinct substrings ofX . For example,
if X = aabaa, then I(X) = {ε, a, b, aa, ab, ba, aab, aba, baa, aaba, abaa, aabaa}; if
X = abbba, then I(X) = {ε, a, b, ab, bb, ba, abb, bbb, bba, abbb, bbba, abbba}. The
string complexity is the cardinality of I(X).

In this chapter we study the average string complexity. Clearly,

E[|I(X)|] =
∑

X∈An

P (X)|I(X)|,

where |I(X)| denotes the cardinality of I(X). Let |X |w denote the number of
times that the word w occurs inX ; it is nothing other than our familiar frequency
count OX(w) analyzed in depth in Chapter 2. It is now easy to observe that

|I(X)| =
∑

w∈A∗

min{1, |X |w},

since we count only distinct occurrences of w in X . Furthermore, since between
any two positions in X there is one and only one substring, we also have

∑

w∈A∗

|X |w =
(|X |+ 1)|X |

2
.

This we can rewrite in a more convenient form as

|I(X)| = (|X |+ 1)|X |
2

−
∑

w∈A∗

max{0, |X |w − 1}.

Now let |X | = n, and denote the average string complexity by

Cn := E[|I(X)| | |X | = n].

Then, in terms of our regular notation On(w) = |X |w from Chapter 2, we finally
arrive at

Cn =
(n+ 1)n

2
−
∑

w∈A∗

∑

k≥2

(k − 1)P (On(w) = k). (10.1)

10.1.2. Joint string complexity

Let X and Y be two sequences, not necessarily of the same length. We define
J(X,Y ) as the set of common factors between X and Y , that is, J(X,Y ) =
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I(X) ∩ I(Y ). For example, if X = aabaa and Y = abbba, then J(X,Y ) =
{ε, a, b, ab, ba}. We call |J(X,Y )| the joint complexity of sequences X and Y .

Our goal is to estimate the average joint complexity Jn,m = E[|J(X,Y )|] of
two random sequences X and Y of lengths n and m, respectively, generated by
two (possibly different) independent sources. We denote these sources as source
1 and source 2. We have

|J(X,Y )| =
∑

w∈A∗

min{1, |X |w} ·min{1, |Y |w}.

Therefore, for |X | = n and |Y | = m

Jn,m = E[|J(X,Y )|]− 1 =
∑

w∈A∗−{ε}
P (O1

n(w) ≥ 1)P (O2
m(w) ≥ 1)

where Oin(w) is the number of w-occurrences in a string of length n generated
by source i. We have removed the empty word to ease the presentation.

10.2. Analysis of string self-complexity

Now we briefly discuss the average string self-complexity when the underlying
string is generated by a memoryless source.

Theorem 10.2.1. Assume that the string X of length n is generated by a
memoryless source over a finite alphabet A. Then the average string complexity
Cn is

Cn =
(n+ 1)n

2
− n

h
(log n− 1 +Q0(logn) + o(1))

where h is as usual the entropy rate per symbol of the text source while Q0(x) is
a periodic function of small amplitude, with zero mean when the log pa, a ∈ A,
are rationally related, and zero otherwise.

Proof. From (10.1) we conclude that

Cn =
(n+ 1)n

2
+ sFSn − n(DFS

n )′(1) (10.2)

where sFSn is the average size of a finite suffix tree and DFS
n (u) = E[uD

FS
n ] is the

probability generating function for the depth of insertion in the finite suffix tree
as described in Section 8.1.2. Furthermore, by Theorem 8.1.13 we know that
there exists ε > 0 such that sFSn = sTn+O(n

1−ε) and DFS
n (u) = DT

n (u)+O(n
−ε),

where sTn and DT
n (u) are the respective quantities for the independent tries. As
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in Chapter 7 we denote by, respectively, E[Sn] = sTn and E[Ln] = n(DFS
n )′(1)

the average size and the external path length in the associated (independent)
trie. In Theorem 7.2.9 and Theorem 7.2.7 we show that

E[Sn] =
1

h
(n+Ψ(logn)) + o(n),

E[Ln] =
n logn

h
+ nΨ2(logn) + o(n),

where Ψ(logn) and Ψ2(log n) are periodic functions when the log pa, a ∈ A are
rationally related. This completes the proof.

For a more detailed analysis of the average string complexity for an unbiased
memoryless source the reader is referred to Janson, Lonardi, and Szpankowski
(2004) and Exercise 10.4.

10.3. Analysis of the joint complexity

We now concentrate on the average case analysis of the joint string complexity.
In this section we present some preliminary results. In particular, in Theo-
rem 10.3.1 we establish – as we did in Chapter 8 for suffix trees – that we can
analyze the joint string complexity through independent strings. Then we extend
the depoissonization technique discussed in Chapter 7 to the two-dimensional
case needed for our current analysis. We finish this section by establishing some
recurrences on the average joint string complexity.

10.3.1. Independent joint complexity

We first define the independent joint complexity. Consider n independent strings.
We denote by Ωin(w) the number of strings for which w is a prefix when the n
strings are generated by a source i, for i ∈ {1, 2}. In this case we define

Cn,m =
∑

w∈A∗−{ε}
P (Ω1

n(w) ≥ 1)P (Ω2
m(w) ≥ 1) (10.3)

and call it the average independent string complexity. In Chapter 7 we noticed
that

P (Ωin(w) ≥ 1) = 1− (1− Pi(w))n,
P (Ωin(w) ≥ 2) = 1− (1− Pi(w))n − nPi(w)(1 − P i(w))n−1.

Our main key result established below shows that the joint string complexity
Jn,n is well approximated by Cn,n.
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10.3.2. Key property

In the first part of this book, we studied the number of word w occurrences,
denoted as On(w), in a random text of length n. We now compare it with Ωn(w).
Using Corollary 8.1.12 we can easily prove (see Exercise 10.6) the following
important relationships.

Theorem 10.3.1. Let k be an integer and let w ∈ Ak. Define

p = max
a∈A
{P (a)} . (10.4)

Then for all ε > 0 and w ∈ Bk we have

P (On(w) ≥ 1)− P (Ωn(w) ≥ 1) = O(n−εP (w)1−εpk/2) (10.5)

P (On(w) ≥ 2)− P (Ωn(w) ≥ 2) = O(n−εP (w)1−εpk/2), (10.6)

where, as we recall from Chapter 8, Bk is the set of words w of length k such
that maxP(w) − {k} ≤ k/2 and

∑
w∈Ak−Bk

P (w) = O(pk/2). Furthermore,
when w /∈ Bk,

P (On(w) ≥ 1)− P (Ωn(w) ≥ 1) = O(n−εP (w)1−ε) (10.7)

P (On(w) ≥ 2)− P (Ωn(w) ≥ 2) = O(n−εP (w)1−ε) (10.8)

for large n.

We now assume that both sources are memoryless and write Pi(a) for the
probability of occurrence of symbol a ∈ A generated by source i. Our main key
result is presented next.

Theorem 10.3.2. There exists ε > 0 such that

Jn,m − Cn,m = O(min{n,m}−ε) (10.9)

for large n.

Proof. For w ∈ A∗ and n integer, let

∆i
n(w) = P (Oin(w) ≥ 1)− P (Ωin(w) ≥ 1). (10.10)

We have

|Jn,m − Cn,m| ≤
∑

w∈A∗

(
|∆1

n(w)| + |∆2
m(w)| + |∆1

n(w)∆
2
m(w)|

)
.
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Let us consider the sum of the |∆1
n(w)|. We set

∑
w∈A∗ |∆1

n(w)| = δ1 + δ2
with δ1(n) =

∑
w∈B|w|

|∆1
n(w)| and δ2(n) =

∑
w∈A∗−B|w|

|∆1
n(w)|. Using Theo-

rem 10.3.1 we know that, for all ε > 0,

δ1(n) = O

(
∑

w∈A∗

n−εP (w)1−εp|w|/2
)

= O

(
∑

k

n−εq−kεpk/2
)
,

δ2(n) = O


 ∑

w∈A∗−B|w|

n−εP (w)1−ε


 = O

(
∑

k

n−εq−kεpk/2
)
,

for p = maxa∈A{P (a)} and q = mina∈A{P (a)}. We conclude that δ1(n) and
δ2(n) are both of order n−ε as long as q−εp1/2 < 1.

We can prove similarly that
∑
w∈A∗ |∆2

m(w)| = O(m−ε) when the same
condition is applied to the second source model. The evaluation of the sum∑

w∈A∗ |∆1
n(w)∆

2
m(w)| is left as Exercise 10.7.

10.3.3. Recurrence and generating functions

From now on we will exclusively concentrate on Cn,m (see (10.3)) for memoryless
sources. We start with a recurrence for the independent joint string complexity.

Lemma 10.3.3. For n,m ≥ 1 we have the recurrence

Cn,m = 1+
∑

a∈A

∑

k,ℓ≥0

(
n
k

)
P1(a)

k(1−P1(a))
n−k

(
m
ℓ

)
P2(a)

ℓ(1−P2(a))
m−ℓCk,ℓ,

(10.11)
with C0,m = Cn,0 = 0.

Proof. Let us assume that n,m > 0. Partitioning A∗ as {ε} +∑a∈A aA∗ and
using (10.3) we arrive at

Cn,m = 1 +
∑

a∈A

∑

w∈A∗

(1− (1 − P1(aw))
n)(1− (1 − P2(aw))

m). (10.12)

Factoring Pi(aw) as Pi(a)Pi(w) and expanding, we obtain

1− (1− P1(a)P1(w))
n =

∑

k

(
n
k

)
P1(a)

k(1− P1(a))
n−k (1− (1 − P1(w))

k
)
,

1− (1− P2(a)P2(w))
m =

∑

ℓ

(
m
ℓ

)
P2(a)

ℓ(1 − P2(a))
m−ℓ (1− (1 − P2(w))

ℓ
)
.
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We now establish (10.11) using (10.3) with n,m replaced by k, ℓ.

In passing, we observe that

C1,1 =
1

1−∑a∈A P1(a)P2(a)
.

As already seen in previous chapters, recurrences like the above are easier to
solve in the poissonized version. However, this time we need a two-dimensional
poissonized generating function, defined by

C(z1, z2) =
∑

n,m≥0

Cn,m
zn1 z

m
2

n!m!
e−z1−z2 .

Then (10.11) becomes

C(z1, z2) = (1 − e−z1)(1− e−z2) +
∑

a∈A
C (P1(a)z1, P2(a)z2) . (10.13)

Clearly,
n!m!Cn,m = [zn1 ][z

m
2 ]C(z1, z2)e

z1+z2

which is a two-dimensional (double) depoissonization operation. As mentioned
earlier, we presented one-dimensional depoissonization in Table 7.2. However,
in our present case we have two variables, z1 and z2, and we need a generalized
depoissonization that will allow us to claim that Cn,n = C(n, n) +O(1). This is
discussed in the next subsection.

10.3.4. Double depoissonization

Let an,m be a two-dimensional (double) sequence of complex numbers. We define
the double Poisson transform f(z1, z2) of an,m as

f(z1, z2) =
∑

n,m≥0

an,m
zn1
n!

zm1
m!

e−z1−z2 .

It is relatively straightforward to obtain an extension of the one-dimensional
depoissonization result presented in Table 7.2 to the two-dimensional case.

Lemma 10.3.4. Let Sθ be a cone of angle θ around the real axis. Assume that
there exist B > 0, D > 0, α < 1 and β such that for |z1|, |z2| → ∞:

(i) if z1, z2 ∈ Sθ then |f(z1, z2)| = B(|z1|β + |z2|β);

(ii) if z1, z2 /∈ Sθ then |f(z1, z2)ez1+z2 | = Deα|z1|+α|z2|;
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(iii) if zi ∈ Sθ and zj /∈ Sθ for {i, j} = {1, 2} and |f(z1, z2)ezj | < D|zi|βeα|zj|.

Then

an,m = f(n,m) +O

(
nβ

m
+
mβ

n

)

for large m and n.

Proof. Let

fn(z2) =
∑

m

an,m
zm2
m!

e−z2 .

We notice that f(z1, z2) is the Poisson transform of the sequence fn(z2) with
respect to the variable z1.

First depoissonization. For z2 ∈ Sθ we have the following estimates

for z1 ∈ Sθ , |f(z1, z2)| < B(|z1|β + |z2|β)
for z1 /∈ Sθ , |f(z1, z2)ez1 | < D|z2|βeα|z1|.

Therefore, for z2 ∈ Sθ we have, for all integers k > 0,

fn(z2) = f(n, z2) +O

(
nβ−1 +

|z2|β
n

)
+O(|z2|βnβ−k).

Similarly, when z2 /∈ Sθ we have

for z1 ∈ Sθ , |f(z1, z2)ez2 | < D|z1|βeα|z2|
for z1 /∈ Sθ , |f(z1, z2)ez1+z2 | < Deα|z1|+α|z2|.

Thus for all integer k and ∀z2 /∈ Sth

fn(z2)e
z2 = f(n, z2)e

z2 +O(nβ−1eα|z2|) +O(nβ−keα|z2|).

Second depoissonization. The two results for fn(z2), respectively for z2 ∈ Sθ
and z2 /∈ Sθ, allow us to depoissonize fn(z2). Then

• for z2 ∈ Sθ, fn(z2) = O(nβ + |z2|β);

• for z2 /∈ Sθ, fn(z2)ez2 = O(nβeα|z2|).

The “big oh” terms are uniform. Therefore, for all k > β,

an,m = fn(m) +O

(
nβ

m
+
mβ

n

)
+O

(
nβmβ−k) .
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Since

fn(m) = f(n,m) +O

(
nβ−1 +

mβ

n

)
,

setting k > β + 1 we prove the desired estimate.

We will now prove that C(z1, z2) satisfies the conditions of Lemma 10.3.4,
to conclude that

Cn,m = C(n,m) + O
( n
m

+
m

n

)
.

Lemma 10.3.5. The generating function C(z1, z2) satisfies the condition of
Corollary 10.3.4 with β = 1.

Proof. We will prove that the generating function C(z1, z2) satisfying the func-
tional equation (10.13) fulfills the conditions of Lemma 10.3.4 with β = 1. More
specifically, we will prove that when z1 and z2 belong to a cone Sθ with angle
θ < π/2 around the positive real axis, C(z1, z2) = O(|z1|+ |z2|).

We now use the increasing domain technique discussed in Section 7.2.5. Let
ρ = maxa∈A,i∈{1,2}{Pi(a)}. We denote by Sk the fraction of the cone containing

points such that |z| < ρ−k. Notice that Sk ∈ Sk+1 for all integer k. We also
notice that C(z1, z2) = O(|z1|+ |z2|) when z1, z2 → 0; therefore we can define

Bk = max
(z1,z2)∈Sk×Sk

{ |C(z1, z2)|
|z1|+ |z2|

}
<∞.

We know that C(z1, z2) satisfies the functional equation (10.13). If (z1, z2) ∈
Sk+1 ×Sk+1 −Sk ×Sk then, for all a ∈ A (P1(a)z1, P2(a)z2) are in Sk ×Sk and
therefore we have

|C(z1, z2)| ≤ Bk
(
∑

a∈A
P1(a)|z1|+ P2(a)|z2|

)
+ 1 = Bk(|z1|+ |z2|) + 1,

since |1− e−zi | < 1 for i = 1, 2. Thus we can derive the recurrence for all k ≥ 1:

Bk+1 ≤ Bk + max
(z1,z2)∈Sk+1×Sk+1−Sk×Sk

{
1

|z1|+ |z2|

}
= Bk + ρk.

We need to note carefully that

min
(z1,z2)∈Sk+1×Sk+1−Sk×Sk

{|z1|+ |z2|} = ρ−k,

since only one of z1 and z2 can have modulus greater than ρ−k. It turns out
that limk→∞Bk <∞ and therefore condition (i) of Lemma 10.3.4 holds.
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Now we will prove condition (iii) of Lemma 10.3.4. To this end we define
G as the complementary cone of Sθ and Gk as the portion consisting of points
of modulus smaller than ρ−k. We will use cos θ < α < 1; therefore ∀z ∈ G:
|ez| < eα|z|. We define Dk as follows:

Dk = max
(z1,z2)∈Gk×Gk

{ |C(z1, z2) exp(z1 + z2)|
exp(α|z1|+ α|z2|)

}
.

Defining G(z1, z2) = C(z1, z2)e
z1+z2 , we have the equation

G(z1, z2) =
∑

a∈A
G(P1(a)z1, P2(a)z2) exp((1 − P1(a))z1 + (1 − P2(a))z2)

+(ez1 − 1)(ez2 − 1).

We notice that if (z1, z2) ∈ Gk+1 × Gk+1 − Gk × Gk, then all (P1(a)z1, P2(a)z2)
are in Gk × Gk and therefore we have

|G(z1, z2)| ≤ Dk

(∑

a∈A
exp

(
(P1(a)α+ (1 − P1(a)) cos θ)|z1|

+(P2(a)α+ (1− P2(a)) cos θ)|z2|
))

+(ecos θ|z1| + 1)(ecos θ|z2| + 1).

Now we notice that ∀a ∈ A and ∀i ∈ {1, 2}:

Pi(a)α + (1− Pi(a)) cos θ − α ≤ −(1− ρ)(α − cos θ);

therefore

|G(z1, z2)|
exp(α(|z1|+ |z2|))

≤ Dk|A| exp(−(1− ρ)(α − cos θ)(|z1|+ |z2|)

+4 exp(−(α− cos θ)(|z1|+ |z2|)) .

Since (z1, z2) ∈ Gk+1 × Gk+1 − Gk × Gk implies |z1|+ |z2| ≥ ρ−k, it follows that

Dk+1 ≤ max{Dk, |A|Dk exp
(
−(1− ρ)(α− cos θ)ρ−k

)

+4 exp
(
−(α− cos θ)ρ−k

)
}.

We clearly have limk→∞Dk < ∞ and condition (iii) holds. We leave the proof
of condition (ii) as Exercise 10.8.
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10.4. Average joint complexity for identical sources

We assume here that the two sources are probabilistically identical, that is,
∀a ∈ A we have P1(a) = P2(a) = pa. In this case, we define c(z) = C(z, z)
which satisfies

c(z) = (1− e−z)2 +
∑

a∈A
c(paz). (10.14)

To this end, in order to extract the asymptotics of the generating function we
will use the Mellin transform given in Table 7.1.

Theorem 10.4.1. (i) For a biased memoryless source, the joint complexity is
asymptotically

Cn,n = n
2 log 2

h
+Q(logn)n+ o(n),

where Q(x) is a small periodic function (with amplitude smaller than 10−6)
which is nonzero only when the log pa, a ∈ A, are rationally related.
(ii) For a binary unbiased memoryless source, if ∀a ∈ A we have pa = 1/2 then
it holds that

Cn,n = 2n− 1 + (−1)n, n ≥ 2

with C1,1 = 2.

Proof. We first consider pa = 1/2 (the binary symmetric case) for which

c(z) = 2z − 1 + e−2z.

This can be directly verified by substituting it into (10.14). Then an easy cal-
culation leads to Cn,n = 2n+O(1) or more precisely Cn,n = 2n− 1+ (−1)n, for
n ≥ 2.

We now consider the general case. Since c(z) is O(z2) when z → 0 and is
O(z) when z → ∞, taking z as a positive real number, the Mellin transform
C∗(s) of c(z) is defined for ℜ(s) ∈ (−2,−1) and satisfies

c∗(s) =
(2−s − 2)Γ(s)

1−∑a∈A p
−s
a
, (10.15)

where Γ(s), as always, is the Euler gamma function. We use the inverse Mellin
transform

c(z) =
1

2iπ

∫ d+i∞

d−i∞
c∗(s)z−sds

for d ∈ (−2,−1) in the definition domain of c∗(s). The reader is referred to
Chapter 7 for a more in-depth discussion of the Mellin transform.
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The next step is to use the Cauchy residue theorem. The poles of the inte-
grand of (10.15) are:
(i) the double pole at s = −1 with residue −2z log 2/h;
(ii) sk = −1 + 2πik/L for integer k 6= 0 when the log pa, a ∈ A, are rationally
related (L was introduced in Definition 7.2.6), with residues

z−sk
2−sk − 2

h′(sk)
Γ(sk).

Therefore

c(z) =
2z log 2

h
−
∑

k 6=0

z−sk
2−sk − 2

h′(sk)
Γ(sk) +O(1)

with

Q(z) =
∑

k 6=0

z−sk
2−sk − 2

h′(sk)
Γ(sk).

By Lemma 7.2.4 the behavior of the fluctuating function Q(z) depends on the
rationality of the log pa ratios. This completes the proof.

10.5. Average joint complexity for nonidentical sources

We now handle the much more complicated case of nonidentical sources. We will
again use the functional equation (10.13) but now we need double depoissoniza-
tion, double Mellin transform, and the saddle point method. In fact, we will
establish our main result only for the special case when one source is symmetric.

10.5.1. The kernel and its properties

As in the case of identical sources, the asymptotic behavior of the joint com-
plexity depends crucially on the location of the roots of the denominator of the
corresponding (double) Mellin transform (see (10.23) below). This set of roots
is much more complex than in the previous case, so we dedicate this subsection
to understanding its properties.

Let us define

H(s1, s2) = 1−
∑

a∈A
(P1(a))

−s1 (P2(a))
−s2 .

The kernel of H(s1, s2) is the set K of tuples (s1, s2) such that H(s1, s2) = 0.
For example, (−1, 0) and (0,−1) belong to K. With this definition set

κ = min
(s1,s2)∈K∩R2

{(−s1 − s2)}.
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We will prove that Cn,n is of order nκ/
√
logn.

Let (c1, c2) be the unique real pair inK∩R2 such that c1+c2 = −κ. We denote
by ∂K the subset of K consisting of the tuples (s1, s2) such that ℜ(s1+s2) = −κ
and let ∂K∗ = ∂K − {(c1, c2)}. Although the set K is continuous, the subset
∂K is an enumerable set. A careful analysis will show that there is a positive
minimum distance that separates any pair of elements in ∂K.

Figure 10.1. The quantity κ versus p2 for p1 = q1 = 1/2 (left) and versus
(p1, p2) (right).

Example 10.5.1. Consider now a binary alphabet A = {a, b}, and let Pi(a) =
pi and Pi(b) = qi for i ∈ {1, 2}. Then in Exercise 10.9 the reader is asked to
prove that

κ =
log q2

q1
log log q2

q1
+ log p1

p2
log log p1

p2
− log q2p1

q1p2
log log q2p1

q1p2

log p1 log q2 − log p2 log q1
. (10.16)

Figure 10.1 displays κ as a function of p1, p2. Observe that, for p1 = q1 = 1/2 κ
does not reach zero when p2 or q2 is close to zero.

Now we will dwell on some important properties of the set ∂K. We prove
the following property.
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Lemma 10.5.2. The set ∂K consists of pairs (c1 + it1, c2 + it2) with (t1, t2) ∈
R2 satisfying ∀a ∈ A,

(P1(a))
it1 (P2(a))

it2 = 1. (10.17)

Proof. Indeed, assume that (s1, s2) ∈ ∂K: hence
∑

a∈A
P−s1
1 (a)P−s2

2 (a) = 1.

Consequently, ∑

a∈A

∣∣P−s1
1 (a)P−s2

2 (a)
∣∣ ≥ 1

or, equivalently, ∑

a∈A
P

−ℜ(s1)
1 (a)P

−ℜ(s2)
2 (a) ≥ 1.

Actually, the last inequality is an equality; that is,

∑

a∈A
(P1(a))

−ℜ(s1)(P2(a))
−ℜ(s2) = 1.

Indeed, assume the contrary, i.e., that

∑

a∈A
(P1(a))

−ℜ(s1)(P2(a))
−ℜ(s2) > 1;

then by continuity there exists c′2 < ℜ(s2) such that

∑

a∈A
(P1(a))

−ℜ(s1)(P2(a))
−c′2 = 1.

Thus (ℜ(s1), c′2) ∈ K. But ℜ(s1) + c′2 < ℜ(s1) + ℜ(s2) = κ, which contradicts

the definition of κ. Therefore,
∑

a∈A P
−ℜ(s1)
1 (a)P

−ℜ(s2)
2 (a) = 1 implies that

(ℜ(s1),ℜ(s2)) = (c1, c2). Furthermore, since

(P1(a))
s1 (P2(a))

s2 = (P1(a))
iℑ(s1)(P2(a))

iℑ(s2)(P1(a))
c1(P2(a))

c2 ,

each factor (P1(a))
iℑ(s1) and (P2(a))

iℑ(s2) must be equal to 1 because this is
the only way in which the identity

∑
a∈A P

−s1
1 (a)P−s2

2 (a) = 1 can be obtained.
This completes the proof.
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Example 10.5.3. We will illustrate Lemma 10.5.2 for the binary case. Then
(c1+it1, c2+it2) ∈ K must satisfy (10.17), which further means there exist pairs
(k, ℓ) ∈ Z such that

it1 log p1 + it2 log p2 = 2ikπ,

it1 log q1 + it2 log q2 = 2iℓπ.

Therefore,

t1 =
2π

D
(k log q2 − ℓ log p2), t1 =

2π

D
(−k log q1 + ℓ log p1)

with D = log p1 log q2 − log p2 log q1.

10.5.2. Main results

To present succinctly our main results for nonidentical sources, we need a gen-
eralization of the rationally related set of numbers that we introduced in Defi-
nition 7.2.6. This will lead us to the notion of commensurability.

Let x = (x1, . . . , xk) be a vector of k real numbers. We say that it is commen-
surable if there exists a real number ν 6= 0 such that νx ∈ Zk. We realize that
in this case commensurability is equivalent to the numbers x1, . . . , xk being ra-
tionally related (in Definition 7.2.6 we used L rather than ν). However, in order
to handle the joint complexity we need an extension of the idea of rational rela-
tionship to two vectors; then the concept commensurability is more appropriate.
Consider two vectors x and y. We say that they are mutually commensurable if
there exists a pair of nonzero real numbers, (ν1, ν2), such that ν1x + ν2y ∈ Zk.
The pair (ν1, ν2) is called the integer conjugate of (x,y). Furthermore, a pair
of vectors is called mutually fully commensurable when the set of integer con-
jugates is of dimension 2 (i.e., the integer conjugates are linearly independent).
In this case the set of integer conjugates forms a lattice {ka+ ℓb), (k, ℓ) ∈ Z2},
where a and b are two independent vectors. Finally, if two vectors are mutu-
ally commensurable but not fully commensurable, then the integer conjugates
form a set of the form {ka, k ∈ Z}. If x and y are not commensurable, then
we call them incommensurable. We should point out that in our case we shall
view the vectors x and y as (logP1(a1), . . . , logP1(ak)) =: (logP1(a))a∈A and
(logP2(a1), . . . , logP2(ak)) =: (logP2(a))a∈A, respectively.

We now formulate our main result; however, as mentioned earlier, in the next
subsection we prove it only for the special case when one source is unbiased (i.e.,
symmetric). We need some additional notation. Let f(s1, s2) be a C2 function;



10.5. Average joint complexity for nonidentical sources 327

then we define

∆f(s1, s2) =
∂2

∂s21
f(s1, s2) +

∂2

∂s22
f(s1, s2),

∇f(s1, s2) =
1

2

(
∂

∂s1
f(s1, s2) +

∂

∂s2
f(s1, s2)

)
.

We claim that in general the average joint string complexity Cn,n (see Theo-
rem 10.4.1) behaves asymptotically as follows

Cn,n =
nκ√
log n

(
Γ(c1)Γ(c2)√

π∆H(c1, c2)∇H(c1, c2)
+Q(logn) + o(1)

)
, (10.18)

where

Q(x) =
∑

(s1,s2)∈∂K∗

Γ(s1)Γ(s2)√
π∆H(s1, s2)∇H(s1, s2)

exp(−iℑ(s1 + s2)x).

The behavior of Q(x) depends on whether (logP1(a))a∈A and (logP2(a))a∈A
are commensurable, which in turn depends on the structure of the set ∂K∗. The
properties of Q(x) are discussed in Lemma 10.5.4 below.

In particular, we shall see that Q(x) may exhibit periodic or doubly periodic
behavior. Recall that a function f is periodic if there exists T 6= 0 such that, for
all x, f(x+T ) = f(x); a two-variable function f(x, y) is doubly periodic if there
exist T1 and T2 such that, for all x and y, we have f(x+T1, y+T2) = f(x, y). In
our case we need to modify this definition slightly, since Q(x) = F (x, x) where
F (x, y) is defined formally in (10.19) below.

Lemma 10.5.4. If (logP1(a))a∈A and (logP2(a))a∈A are not mutually com-
mensurable then

∀x : Q(x) = 0.

Otherwise Q(x) is doubly periodic unless (logP1(a))a∈A and (logP2(a))a∈A are
not fully mutually commensurable; then the function Q(x) is simply periodic.

Proof. Clearly, the set of integer conjugates (t1, t2) of ((2π)−1 logPi(a))a∈A
mapped into (c1 + it1, c2 + it2) corresponds to ∂K. We will consider the com-
mensurable and incommensurable case separately.

If the vectors (logP1(a))a∈A and (logP2(a))a∈A are not commensurable then
there is no (t1, t2) such that, ∀a ∈ A,

t1
2π

logP1(a) +
t2
2π

logP2(a) ∈ Z.



328 Chapter 10. String Complexity

But this is not sufficient for us to infer that ∂K∗ = ∅. To conclude the latter we
must prove that the existence of (t1, t2) such that t1 logP1(a)+ t2 logP2(a) = 0,
∀a ∈ A, implies (t1, t2) = (0, 0). Since the vectors (P1(a))a∈A and (P2(a))a∈A
both sum to 1 and are different, there is necessarily at least one symbol a ∈ A
such that P1(a) > P2(a). This implies that t1/t2 < 1. There is necessarily
another symbol b ∈ A such that P1(b) > P2(b) implies that t1/t2 > 1. Thus,
there is no (t1, t2) 6= (0, 0) such that, ∀a ∈ A, t1 logP1(a) + t2 logP2(a) = 0;
consequently ∂K∗ = ∅.

Now we assume that (logP1(a))a∈A and (logP2(a))a∈A are commensurable.

In this case, the elements of ∂K form a lattice of the form (sk,ℓ1 , sk,ℓ2 ) := (c1 +
i(ka1 + ℓb1), c2 + i(ka2 + ℓb2)) with (k, ℓ) ∈ Z2. Consequently

Q(x) =
∑

(k,ℓ)∈Z2−{(0,0)}
γk,ℓ exp (−ix ((a1 + a2)k + (b1 + b2)ℓ)) ,

where

γk,ℓ =
Γ(sk,ℓ1 )Γ(sk,ℓ2 )√

π∆H(sk,ℓ1 , sk,ℓ2 )∇H(sk,ℓ1 , sk,ℓ2 )
.

If we set Q(x) = F (x, x) then we can write

F (x, y) =
∑

(k,ℓ) 6=(0,0)

γk,ℓ exp (−(a1 + a2)ikx− (b1 + b2)iℓy) , (10.19)

which is doubly periodic of period (2π/(a1 + a2), 2π/(b1 + b2)). When the com-
mensurability is not full, we have ∂K = {(c1 + ika1, c2 + ika2), k ∈ Z} and Q(x)
is periodic of period 2π/(a1 + a2).

The binary case is special since, surprisingly, there is no incommensurability
at all.

Corollary 10.5.5. In the binary case, for which |A| = 2, Q(x) is always doubly
periodic. When log p1, log q1, log p2, log q2 are commensurable, Q(x) is simply
periodic.

Proof. The elements of K corresponding to the pairs (c1 + it1, c2 + it2) satisfy
the conditions discussed in Example 10.5.3 above. Consequently, the elements
of K form a lattice and therefore Q(x) is doubly periodic.
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10.5.3. Proof of (10.18) for one symmetric source

Here we will not prove (10.18) in the general case. We investigate in detail only
the case when one probability distribution is uniform over the alphabet, i.e.,
when ∀a ∈ A we have P1(a) = 1/|A| (an unbiased or symmetric source). To
simplify the notation we write pa = P2(a). We also write r(s) =

∑
a∈A p

−s
a .

Theorem 10.5.6. Let the first source be uniform with P1(a) = 1/|A|, while
the second is a general memoryless source with pa = P2(a).
(i) If the log pa, a ∈ A, are rationally related and ν is the smallest nonnegative
real such that, ∀a ∈ A, ν−1 log pa ∈ Z then

Cn,n =
nκ√
log n

(
Γ(c1)Γ(c2)√

π∆H(c1, c2)∇H(c1, c2)
+Q(logn) +O(1/ logn)

)
,

(10.20)
where

Q(x) =
∑

(s1,s2)∈∂K∗

Γ(s1)Γ(s2)√
π∆H(s1, s2)∇H(s1, s2)

exp(−iℑ(s1 + s2)x)

with

K∗ =

{
c1 +

2ikπ

log |A| + 2iπℓ

(
1

log ν
+

1

log |A| , c2 +
2iℓ

log ν

)
, (k, ℓ) ∈ Z2 \ {(0, 0)

}
.

(ii) If the log pa, a ∈ A, are not commensurable, then

Cn,n =
nκ√
log n

(
Γ(c1)Γ(c2)√

π∆H(c1, c2)∇H(c1, c2)
+Q(logn) + o(1)

)
, (10.21)

with

K∗ =

{(
c1 +

2ikπ

log |A| , c2
)
, k ∈ Z∗

}
.

Remark 10.5.7. Notice that the error term O(1/ logn) for the rational case
is smaller than the error term o(1) in (10.18).

In the rest of this section we provide a proof of Theorem 10.5.6. The heart
of it relies on showing that C(z1, z2) = O(zκ) for z1 = z2 = z and in giving an
explicit expression of the factor in front of zκ. We accomplish this by using a
double Mellin transform, which we discuss next.
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The two-dimensional (double) Mellin transform C∗(s1, s2) of the function
C(z1, z2) is defined as follows

C∗(s1, s2) =

∫ ∞

0

∫ ∞

0

C(z1, z2)z
s1−1
1 zs2−1

2 dz1dz2.

However, it is easy to see that it does not exist: the convergence strip is empty.
Indeed, let {i, j} = {1, 2}; for fixed zj we have C(z1, z2) = O(zi) when zi → 0
and zi →∞, i ∈ {1, 2}. More precisely, we have C(z1, z2) = O(z1z2) when z1, z2
when both tend to zero. To circumvent this difficulty, we define

C̃(z1, z2) = C(z1, z2)−D(z1, z2),

where

D(z1, z2) = z1e
−z1D1(z2) + z2e

−z2D2(z1)− C1,1z1z2e
−z1−z2

with

D1(z) =
∂

∂z1
C(0, z), D2(z) =

∂

∂z2
C(z, 0).

We now show that the Mellin transform of C̃(z1, z2) exists in −2 < ℜ(si) < −1.
Indeed, notice that the C̃(z1, z2) expansion contains no terms in z1, z2 or z1z2.
Thus C̃(z1, z2) = O(z2i ) when zi → 0, and so the double Mellin transform

C̃∗(s1, s2) =

∫ ∞

0

∫ ∞

0

C̃(z1, z2)z
s1−1
1 zs2−1

2 dz1dz2

of C̃(z1, z2) exists in the strip −2 < ℜ(si) < −1.
To find C̃∗(s1, s2) we need first to estimate Di(z), i ∈ {1, 2}, for large zi. We

shall prove, using the standard (one-dimensional) Mellin transform, that

Di(z) =
z log z

hij
+O(z) (10.22)

where hij = −pi log pj − qi log qj for z → +∞. Indeed, to find its strip of
convergence, observe that by (10.13) we have

C(z1, z2) = C1,1z1z2 + z21g1(z1, z2) + z22g2(z1, z2)

with analytic gi(z1, z2) and such that

D1(z) = z2
∂

∂z1
g2(0, z2).
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Thus D1(z) = O(z2) when z → 0. Similarly, D2(z). Furthermore, we have

∂

∂z1
C(0, z2) =

1

2iπ

∮
C(z1, z2)

dz1
z21

where the integral over z1 is around any contour encircling zero, using the fact
that uniformly in z2 ∈ C we have

C(z1, z2) = O(|z2|eα|z1|)

and
∂

∂z1
C(0, z2) = O(|z2|)

for z2 → +∞. Therefore, D1(z) = O(z) when z → +∞ and also D2(z) = O(z)
by symmetry. Thus the Mellin transform D∗

i (s) of Di(z) exists in the complex
vertical strip ℜ(s) ∈ (−2,−1), and is given by

D∗
i (s) = −

Γ(s)

1−∑a∈A Pi(a)(Pj(a))
−s ,

since, by (10.13),

∂

∂zi
C(z1, z2) = e−zi(1− e−zj ) +

∑

a∈A
Pi(a)

∂

∂zi
C(P1(a)z1, P2(a)z2);

thus
Di(z) = (1− e−z) +

∑

a∈A
Pi(a)Di(Pj(a)z)

and this implies (10.22).
Now, knowing Di(z) we can move on to compute the Mellin transform of

C̃(z1, z2). Let us return for now to the general case of two nonidentical sources.
Observe first that on modifying the basic functional equation (10.13) we obtain

C̃(z1, z2) = (1− e−z1)(1− e−z2)−D(z1, z2)

+
∑

a∈A
C̃(P1(a)z1, P2(a)z2) +D(P1(a)z1, P2(a)z2) .

The double Mellin transform is then

C̃∗(s1, s2) = Γ(s1)Γ(s2)

(
1

H(s1, s2)
+

s1
H(−1, s2)

+
s2

H(s1,−1)
+

s1s2
H(−1,−1)

)
.

(10.23)
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In passing we observe that

C1,1 =
1

H(−1,−1) .

To recover C̃(z, z) we apply the inverse Mellin transform

C̃(z, z) =
1

(2iπ)2

∫

ℜ(s1)=c1

∫

ℜ(s2)=c2

C∗(s1, s2)z
−s1−s2ds1ds2. (10.24)

We move the integration domain of s1 to ℜ(s1) = ρ1 and the integration domain
of s2 to ℜ(s2) = ρ2, for ρ1, ρ2 = −1 + ε with ε > 0 such that H(s1, s2) stays far
away from 0. The only poles encountered are at s1 = −1 and s2 = −1 but they
are canceled by the additional terms.

Therefore, (10.24) remains valid for ℜ(s1) = ρ1 and ℜ(s2) = ρ2 for some
ρ1, ρ2 > −1. On the new integration domain we need to focus only on the term

∫ ∫
Γ(s1)Γ(s2)

H(s1, s2)
z−s1−s2 ,

since the other leading terms contribute o(z−M ) for any M > 0 (these terms
have no singularities on the right-hand side of the double integration domain).
Indeed the term

s1Γ(s1)Γ(s2)

H(−1, s2)
has no singularity for ℜ(s1) > −1, and the term

s2Γ(s1)Γ(s2)

H(s1,−1)

has no singularity for ℜ(s2) > −1. The term

s1s2Γ(s1)Γ(s2)

H(−1,−1)

has no singularity at all. In fact the above terms are exponentially negligible
since the contribution of D(z1, z2) is exponentially small when (z1, z2) tend to
+∞. In view of this, for general nonidentical sources we arrive at

C(z, z) =

(
1

2iπ

)2 ∫

ℜ(s1)=ρ1

∫

ℜ(s2)=ρ2

Γ(s1)Γ(s2)

H(s1, s2)
z−s1−s2ds1ds2 + o(z−M ),

(10.25)
for arbitrary M > 0.
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We now look at the simplified case where one source is uniform, so that
∀a ∈ A, P1(a) = 1/|A|. Recall that in this case we write P2(a) = pa and
H(s1, s2) = 1− (|A|)s1r(s2), where r(s) =

∑
a∈A p

−s
a . Furthermore,

(
− log(r(s)) + 2ikπ

log(|A|) , s

)
∈ K

for s complex and k ∈ Z. It is also easy to compute κ in this case. Indeed,

κ = min
s∈R

{log|A|(r(s)) − s},

c2 = min args∈R{log|A|(r(s)) − s}.

We will need the following technical lemma.

Lemma 10.5.8. Let L(s) = log|A|(r(s)). Then, ∀s ∈ C, we have ℜ(L(s)) ≤
L(ℜ(s)).

Proof. The following holds:

ℜ(L(s)) = log|A|(|r(s)|) ≤ log|A|

(
∑

a∈A
|p−sa |

)
.

Thus log|A|(
∑

a∈A |p−sa |) = L(ℜ(s)).
Now we prove a lemma which is a special case of Theorem 10.5.6. Later we

will show that the additional condition in that lemma can be removed.

Lemma 10.5.9. Assume that r(s) has no root for ℜ(s) ≤ c2. Let −α2 be the
second derivative of log(r(s)) − s at its local minimum c2 on the real axis. The
average number of common words Cn,n between two sequences of the same length
n for nonidentical sources satisfies

Cn,n =

(
1√

2πα2 logn
Γ(c1)Γ(c2) +Q(logn) + o(1)

)
nκ,

where Q(logn) is a periodic function of order 10−6 when the log pa, a ∈ A, are
rationally related.

Remark 10.5.10. The condition ℜ(s) ≤ c2 ⇒ r(s) 6= 0 will be removed in the
final proof of Theorem 10.5.6 presented in the next subsection. Notice that this
condition is fulfilled when the alphabet is binary. Indeed, r(s) = 0 is equivalent
to (pa/pb)

s = −1; thus (pa/pb)ℜ(s) = 1, which can occur only when ℜ(s) = 0.
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Proof. We move the integration line of s1 in (10.25) towards the positive real
axis direction and meet one pole at s1 = 0 (residue 1). The poles of the function
(1− |A|s1(r(s2)))−1 are at

s1 = − log|A|(r(s2)) +
2ikπ

log(|A|) ,

for k integer with residues −1/log(|A|). Therefore we have

C̃(z, z) = − 1

2iπ

∫
Γ(s2)

h(s2)
z−s2ds2 +

∑

k

1

2iπ log(|A|)

∫
Γ

(
−L(s2) +

2ikπ

log(|A|)

)

×Γ(s2)zL(s2)−s2−2ikπ/log(|A|)ds2 +O(z−M ),

where, as before, h(s) =
∑

a∈A p
−s
a log pa and L(s) = log|A|(r(s)) with M > 0

arbitrary (but fixed to ensure the uniformity of O(·)). It turns out that the
function (h(s))−1 and the function

∑

k

Γ (−L(s) + 2ikπ/log(|A|))
log(|A|) zL(s)−2ikπ/log(|A|)

have the same poles and their residues cancel out. Indeed the roots of log(r(s))−
2ikπ are exactly the roots sk of h(s) and the residue of Γ (L(s)− 2ikπ/log(|A|))
is the same as the residue of (h(s))−1.

There is no other potential singularity except the root of r(s). Since by
hypothesis there is no root such that ℜ(s) ≤ c2, the integration path can be
moved towards a position c2 that contributes zL(c2)−c2 = zκ. We can ignore the
term in z−s/h(s) since it is o(zκ), because L(s) > 0 and thus L(s)− s > −s for
s between −1 and 0. Therefore we have

C(z, z) =
1

2iπ log(|A|)

∫

ℜ(s)=c2

∑

k

Γ

(
−L(s) + 2ikπ

log(|A|)

)

×Γ(s)zL(s)−s−2ikπ/log(|A|)ds+ O(zκ−ε).

We notice that L(s) − s is a saddle point at s = c2, i.e., it attains a local
minimum on the real axis and a local maximum on the imaginary axis at s = c2.
This is a natural consequence of the fact that the first and second derivative of
L(s)− s at the point s = c2 are respectively zero and nonpositive. Let −α2 be
the second derivative of L(s)− s at s = c2.

Now we will handle the rational and irrational cases separately.
Rational or Commensurable Case. In the case where L(c2 + it) is a periodic
function of t of period 2π/log ν, the function L(c2 + it) − c2 − it is therefore
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periodic in t if we omit a linear term. Therefore it has a sequence of saddle
points at c2 + itℓ with tℓ = 2iℓπ/log ν for all ℓ ∈ Z. These saddle points are the
maxima of ℜ(L(c2 + it)) and each has the same second derivative α2. In fact
it turns out that exp((L(c2 + it)− c2 − it) is periodic in t. Around each saddle
point we have uniformly

L(c2 + it)− c2 − it = κ− α2

2
(t− tℓ)2 +O((t− tℓ)3).

This property is valid for some A > 0 and for t real as long as |t − tℓ| < A for
some ℓ ∈ Z. Assuming that 2A < | log ν|, we define intervals [tℓ−A, tℓ+A] such
that

I = R− ∪ℓ∈Z[tℓ − A, tℓ +A].

Outside these intervals, namely if t is such that for all ℓ ∈ Z, |t − tℓ| > A, we
have ℜ(L(c2 + it)− c2) < κ− ε uniformly for some ε > 0. We set

1

2iπ

∫

ℜ(s)=c2

Γ(L(s))Γ(s)zL(s)−sds =
∑

ℓ∈Z

1

2π

∫ tℓ+A

tℓ−A

×Γ (−L(c2 + it)) Γ(c2 + it)zL(c2+it)−c2−itdt

+
1

2π

∫

t∈I
Γ (−L(c2 + it))

×Γ(c2 + it)zL(c2+it)−c2−itdt.

As a consequence we find that

∫ tℓ+A

tℓ−A
Γ (−L(c2 + it)) Γ(c2 + it)zL(c2+it)−c2−itdt

can be estimated as follows:

1√
log z

∫ A
√
log z

−A
√
log z

Γ

(
L

(
c2 + itℓ +

it√
log z

))
Γ

(
c2 + itℓ +

it√
log z

)

×zκ−itℓe−α2/2t
2

(
1 +O

(
t3√
log z

))
dt.

This expression becomes

zκ√
2πα2 log z

Γ
(
c1 − itℓ(1 + log|A| ν)

)
Γ(c2 + itℓ)

(
1 +O

(
1√
log z

))
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with c1 = −c2 − κ. In fact, a more careful analysis shows that the order-3 term
disappears, and thus we have an O(1/log z) term instead of an O(1/

√
log z)

term. Finally, observe that each term such as

∫ +∞

−∞
Γ

(
−L(c2 + it) +

2ikπ

log |A|

)
Γ(c2 + it)zL(c2+it)−c2−itdt

can be treated similarly.
The sum of these terms with their respective factors z−2ikπ/log |A| is asymp-

totically equivalent to
zκ√

2πα2 log z
Γ(c1)Γ(c2)

and ultimately contributes

∑

ℓ

zκ√
2πα2 log z

Γ
(
c1 − itℓ(1 + log|A| ν)

)
Γ(c2 + itℓ)

(
1 +O

(
1

log z

))
.

This becomes the double periodic function with error term log z.

Irrationals/Incommensurable Case. Here the function L(c2 + it) is not periodic.
However, there still may be a sequence of local maxima of ℜ(L(c2 + it), and we
need to deal with this.

Lemma 10.5.11. For c2 < 0, let {tk} be a sequence of local maxima of ℜ(L(c2+
itk)) such that

lim
k→∞

ℜ(L(c2 + itk)) = L(c2).

Then the sequence of the second derivatives of ℜ(L(c2 + it) at t = tk tends to
the second derivative of −L(s) at s = c2. Also, there exist A > 0 and α3 > 0
such that

lim sup
k→∞

max
t∈[tk−A,tk+A]

{ℜ(L(c2 + t))−ℜ(L(c2 + itk))

(t− tk)2
}
≤ −α3

2
.

Proof. We have

log(r(c2 + it)) = −it log pb + log

(
∑

a∈A
p−c2a

(
pa
pb

)−itk
)

and

ℜ(log(r(c2 + it)) = log

∣∣∣∣∣
∑

a∈A
p−c2a

(
pa
pb

)itk ∣∣∣∣∣ .
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We know that if ℜ(L(c2 + itk)) tends to L(c2) then ∀a ∈ A, (pa/pb)−itk → 1.
The second derivative of L(c2 + it) with respect to t is equal to

∑
a∈A(log pa)

2(pa/pb)
−c2−itk

∑
a∈A(pa/pb)

−c2−itk −
(∑

a∈A(log pa)(pa/pb)
−c2−itk

∑
a∈A(pa/pb)

−c2−itk

)2

;

hence the first part of the lemma is proved.
For the second part, we note that the derivative of any given order of ℜ(L(c2+

it) is uniformly bounded as t varies from −∞ to +∞. Therefore, for all ε > 0,
there exists A such that for all t ∈ [tk −A, tk +A] the derivative at t is within ε
of the derivative at tk. Now let L(2)(t) be the second derivative of ℜ(L(c2+ it)).
We find that ∀t ∈ [tk, tk + A], since the first derivative of ℜ(L(c2 + it)) is zero,
we have

ℜ(L(c2 + it)) = ℜ(L(c2 + itk)) +

∫ t

tk

(t− tk)L(2)(t)dt

≤ (L(2)(tk) + ε)
(t− tk)2

2

as required.

Corollary 10.5.12. There exists A > 0 such that, in the sequence of local
maxima, the separation of adjacent maxima tends to an interval larger than A.

For the irrational and incommensurable case, for all t ∈ R∗ we know that
ℜ(L(c2 + it)) < −c1. We use the fact that, for all s,

∑
k |Γ(s+ 2ikπ/log |A|)|

converges to a continuous function g(s). Therefore, the contribution of the
external terms is smaller in modulus than

∫

t/∈(−A,A)

g(L(s))|Γ(c2 + it)zL(c2+it)−c2−it|dt.

Since L(c2 + it) is bounded as t varies from −∞ to +∞, g(L(s)) is uniformly
bounded. The function |Γ(c2 + it)| is absolutely integrable; therefore

|zL(c2+it)−c2−it−κ| → 0, z → +∞

implies that
∑

k

∫

t/∈(−A,A)

Γ

(
−L(c2 + it) +

2ikπ

log |A|

)

×Γ(c2 + it)zL(c2+it)−c2−it−2ikπ/log |A|dt = o(zκ).
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We still need to show that the error term is o(zκ/
√
log z). To this end we

must prove that, for a sequence of local maxima of ℜ(L(c2 + it)), with t real,
tending to κ, the function ℜ(L(c2+ it)) is locally bounded on such maxima by a
Gaussian function. In fact this is established by Lemma 10.5.11. We know that
there exist α3 > 0 and A > 0 such that, for all t ∈ [tk −A, tk +A],

ℜ(L(c2 + it) ≤ ℜ(L(c2 + itk))−
α3

2
(t− tk)2

and that there exists ε > 0 such that, for t not in such an interval, ℜ(L(c2+it)) <
ℜ(L(c2))− ε. Therefore
∫

t/∈(−A,A)

g(L(c2 + it))|Γ(c2 + it)|zℜ(L(c2+it))−c2dt

< O(zκ−ε) +
∑

k

∫ tk+A

tk−A
g(L(c2 + it))|Γ(c2 + it)|zℜ(L(c2+it))−c2dt.

By an easy change of variable, i.e., setting t = tk +
√
log zθ, any term on the

right-hand side can be written as

1√
log z

∫ A
√
log z

−A
√
log z

g(L(c2 + it))|Γ(c2 + it)|zℜ(L(c2+itk))−c2e−α3θ
2/2dθ.

Notice that the right-hand side is a uniformly dominated sum even when multi-
plied by

√
log z. This follows from the fact that zℜ(L(c2+itk))−c2 < zκ and that

the sum of
max

t∈[tk−A,tk+A]
{|Γ(c2 + it)|}

is uniformly dominated. Since zℜ(L(c2+itk))−c2 = o(zκ), we conclude that the
resulting sum is o(zκ/

√
log z).

10.5.4. Finishing the proof of Theorem 10.5.6

To complete the proof of Theorem 10.5.6 we must remove from Lemma 10.5.9
the condition that for all s such that ℜ(s) < c2 there are no roots of r(s).
Assume in the following that in fact there are such roots. Let θ be such that
r(θ) = 0 with ℜ(θ) ≤ c2. On such points the function L(s) is no longer analytic
but multi-valued, that is, it can have ambiguous values. Indeed, the domain of
the definition of L(s) in a complex neighborhood of θ must exclude a half line
starting from θ, i.e., a horizontal line towards the right. Below and above the
line, L(s) has well-defined values by continuity but crossing the line adds a term
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2iπ/log |A| to L(s), creating a discontinuity. We call this line the interdiction
line of θ. Therefore, it is impossible to move the line of integration in

∫

ℜ(s)=ρ2

Γ(−L(s))Γ(s)zL(s)−sds

without distorting it in order to avoid the interdiction line of θ. Fortunately,
when we sum all the contributions

Γ(s)Γ

(
−L(s) + 2ikπ

log |A|

)
zL(s)−s+2ikπ/log |A|

for k ∈ Z, the sum converges because

∑

k

∣∣∣∣Γ
(
−L(s) + 2ikπ

log |A|

)∣∣∣∣

is absolutely convergent. It turns out that the discontinuity terms due to the
interdiction line cancel out. Indeed, crossing the interdiction line is equivalent
to incrementing the integer k; therefore

∑

k

Γ(s)Γ

(
−L(s) + 2ikπ

log |A|

)
zL(s)−s+2ikπ/log |A|

has no discontinuity on this line. In other words, the function

∑

k

Γ(s)Γ

(
−L(s) + 2ikπ

log |A|

)
zL(s)−s+2ikπ/log |A|

converges and is analytic around θ.
There is still a problem, because θ is a singularity. If s → θ we obtain

ℜ(L(s)) → −∞ and therefore |Γ(−L(s))zL(s)| → ∞. Therefore, moving the
integration line of

∑

k

Γ(s)Γ

(
−L(s) + 2ikπ

log |A|

)
zL(s)−s+

2ikπ
log |A|

generates an isolated integration contour around θ. But since ℜ(L(s)) → −∞
when s → θ we can make the contour close enough to θ that the exponent
zL(s)−s is o(z−M ) for any arbitrary M > 0. In conclusion, we can ignore the
O(z−M ) term.

To conclude our discussion we must also take into account the fact that the
roots of r(s) form an enumerable set {θℓ}ℓ∈N. We must estimate whether the sum
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of the contributions of the isolated loops is o(z−M ). A simple analysis shows the
existence of a minimum in the discrepancy between the roots, so that |ℑ(θℓ)| ≥
A′ℓ for some A′ > 0 and hence the sum of the |Γ(θℓ)| converges. Furthermore,
the sum of the integrals of Γ(−L(s))Γ(s)zL(s)−s around the isolated roots θℓ is
dominated by the sum of the |Γ(θℓ)|.

Remark 10.5.13. Finally, let us look at the general formula (10.18), which
we are not going to prove here. In the general setting, {−Lk(s2)}k∈N is the
set of roots of H(s1, s2). This set of roots corresponds to multivalued functions
Lk(s) having continuous branches. In other words, the (−Lk(s), s) are analytic
descriptions of K. For θ such that (∞, θ) ∈ K we have the infinite branch of K
corresponding to the singularities of the Lk(s) branch. As discussed above, we
need to consider

C(z, z) =
∑

k∈N

∫

ℜ(s)=c2

Γ(−Lk(s))Γ(s)zLk(s)−sds+O(z−M ).

We expect that the same sort of analysis based on the sequence of saddle points,
applies for the general case.

10.6. Joint complexity via suffix trees

Enumerating the common words in sequences is not an easy task as we have
seen in the previous sections. An alternative (and almost equivalent) method
is to enumerate common words that appear at least twice. This turns out to
be equivalent to counting the number of common nodes in the corresponding
associated suffix trees. We now discuss this method.

The suffix tree SX of a word X describes the set of subwords of X that have
at least two copies in X , possibly on overlapping positions. In other words,

SX = {w : OX(w) ≥ 2},

where OX(w) is the number of times that w appears in X . Clearly, SX ⊂ AX .
We sometimes will call SX the string semi-complexity. We know that

|AX | ≈
(|X |+ 1)|X |

2

leads to a quadratic complexity, while |SX | = O(|X |). In fact, there exist
algorithms that build SX in linear time in |X | (see Chapter 6).
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10.6.1. Joint complexity of two suffix trees for nonidentical sources

Our aim is to evaluate the cardinality of SX ∩ SY when X and Y are two
sequences generated from two distinct random sources. The cardinality of this
set may be called the joint string semi-complexity. Let Rn be the average of
|SX ∩SY | when X and Y are both of length n and the two strings are generated
by two nonidentical memoryless sources. We have

Rn := E[|SX ∩ SY |] =
∑

w∈A∗

P (O1
n(w) ≥ 2)P (O2

n(w) ≥ 2). (10.26)

As in Theorem 10.3.1 we can establish a key property, that Rn is well approxi-
mated by the average number of common nodes in two independent tries built
over two sets of n independent strings. We call the latter Tn,n and, as is easy to
see,

Tn,m =
∑

w∈A∗

(1 − (1− P1(w))
n − np1(w)(1 − P1(w))

n−1)

×(1− (1− P2(w))
m −mp2(w)(1 − P2(w))

m−1)

where Pi(w) is the word probability in source model i. Throughout we will now
assume that Rn = Tn,n +O(n−ε) and study only Tn,n.

Let us start with a recurrence for Tn,m. Observe that T0,m = Tn,0 = T1,n =
Tm,1 = 0 and, for n,m ≥ 1, we have

Tn,m = 1 +
∑

a∈A

∑

k,ℓ

(
n

k

)
P1(a)

k(1− P1(a))
n−k

(
m

ℓ

)
P2(a)

ℓ(1− P2(a))
m−ℓTk,ℓ.

(10.27)
Then, using the double poissonized generating function

T (z1, z2) =
∑

n,m

Tn,m
zn1 z

m
2

n!m!
e−z1−z2

yields

T (z1, z2) =
∑

a∈A
T (P1(a)z1, P2(a)z2) + (1− (1 + z1)e

−z1)(1 − (1 + z2)e
−z2) .

(10.28)
In fact, using the same approach as in the proof of Lemma 10.3.5, we conclude
that T (z1, z2) satisfies the conditions of the depoissonization Lemma 10.3.4. We
formulate the result in the following lemma.

Lemma 10.6.1. The function T (z1, z2) satisfies the conditions of Lemma 10.3.4
with β = 1.
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We have Tn,n = T (n, n) + O(1) via double depoissonization. To estimate
T (n, n) we use a double Mellin transform T ∗(s1, s2) defined for −2 < ℜ(s1) < −1
and −2 < ℜ(s2) < −1 which becomes

T ∗(s1, s2) =
Γ(s1 + 1)Γ(s2 + 1)

H(s1, s2)

as is easy to see from (10.28). Using the same techniques as in the previous
section we can prove the theorem below which mimics Theorem 10.5.6. In fact,
in Exercise 10.10 we ask the reader to provide the details of the proof.

Theorem 10.6.2. Consider the joint string semi complexity when one string
is generated by a general memoryless source with pa = P2(a) while the second
source is unbiased, that is, P1(a) = 1/|A|.
(i) If the log pa, a ∈ A, are rationally related, i.e., commensurable, with ν the
smallest nonnegative real number such that, ∀a ∈ A, 1/ν log pa ∈ Z then

Tn,n =
nκ√
logn

(
Γ(1 + c1)Γ(1 + c2)√
π∆H(c1, c2)∇H(c1, c2)

+R(logn) +O (1/ logn)

)
,

(10.29)
where

R(x) =
∑

(s1,s2)∈∂K∗

Γ(1 + s1)Γ(1 + s2)√
π∆H(s1, s2)∇H(s1, s2)

exp(−iℑ(s1 + s2)x)

with

K∗ =

{
(c1 +

2ikπ

log |A| + 2iπℓ

(
1

log ν
+

1

log |A| ), c2 +
2iℓ

log ν

)
, (k, ℓ) ∈ Z2 \ (0, 0)

}
.

(ii) If the log pa, a ∈ A are irrational, i.e., incommensurable, then

Tn,n =
nκ√
logn

(
Γ(1 + c1)Γ(1 + c2)√
π∆H(c1, c2)∇H(c1, c2)

+R(logn) + o(1)

)
(10.30)

with

K∗ =

{
(c1 +

2ikπ

log |A| , c2), k ∈ Z∗
}
.

In fact, we believe the above finding holds true for the generally case when
both of the sources are generally memoryless. In this case, we expect

Tn,n =
nκ√
logn

(
Γ(1 + c1)Γ(1 + c2)√
π∆H(c1, c2)∇H(c1, c2)

+R(logn) + o(1)

)
. (10.31)

However, details of the proof are quite tricky and so we will skip them.
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10.6.2. Joint complexity of two suffix trees for identical sources

Let t(z) = T (z, z). When, ∀a ∈ A, P1(a) = P2(a) = pa we have

t(z) = (1 − (1 + z)e−z)2 +
∑

a∈A
t(paz).

The Mellin transform T ∗(s) of t(z), as is easy to see, satisfies

T ∗(s) =
(1 + s)(2−ss/4− 2 + 2−s)Γ(s)

h(s)
, (10.32)

from which, by following the same footsteps as in previous sections, we conclude
that (see Exercise 10.11)

Tn = [zn]t(z) =
1

2

n

h
+ nQ5(log n) + o(n) (10.33)

where Q5 is periodic when the members of the set {log pa}a∈A are rationally
related, i.e., commensurable, and zero otherwise.

10.7. Conclusion and applications

In this chapter, we studied the joint string complexity and proved that the joint
complexity of two strings generated by the same source grows as O(n) while
for strings generated by different sources it grows as O(nκ/

√
logn) for some

κ < 1. In fact these findings can be extended to Markov sources, as proved in
Jacquet and Szpankowski (2012) and Jacquet et al. (2013). In view of these
facts, we can apply the joint string complexity to discriminate between identical
and nonidentical sources. We introduce a discriminant function as

d(X,Y ) = 1− 1

logn
log J(X,Y )

for two sequences X and Y of length n. This discriminant allows us to de-
termine whether X and Y are generated by the same memoryless or Markov
source by verifying whether d(X,Y ) = O(1/ logn) → 0 or d(X,Y ) = 1 − κ +
O(log logn/ logn) > 0, respectively. In Figure 10.2 we compare the joint string
complexities of a simulated English text and the same-length texts simulated in
French and in Polish. We compare these experimental results with our theoret-
ical results (extended to Markov sources). In the simulation we used a Markov
model of order 3. It is easy to see that even for texts of lengths smaller than
1,000, one can discriminate between these languages. In fact, computations show
that for English and French we have κ = 0.18 while for English and Polish we
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Figure 10.2. Joint string complexity of simulated texts (we used third-
order Markov analysis) for English and French (upper set of points), and
English and Polish (lower set of points) languages, in each case versus the
average theoretical results (solid lines).

have κ = 0.01. Furthermore, as indicated in Jacquet et al. (2013), the joint
string complexity can be used for automated Twitter classification. In closing,
we observe that our algorithm based on the joint complexity was one of the top
finishers in the SNOW 2014 Challenge of Tweets Detection.

10.8. Exercises

10.1 Consider an unbiased memoryless source over alphabet A of cardinality
|A|. We denote by Cn(|A|) the string complexity. Prove the following
results for the average and variance of the string complexity, for small
values of n:

E [C2(|A|)] = 3− (1/|A|),
E [C3(|A|)] = 6− (3/|A|),
E [C4(|A|)] = 10− (6/|A|) + (1/|A|2)− (1/|A|3),
E [C5(|A|)] = 15− (10/|A|) + (4/|A|2)− (6/|A|3) + (2/|A|4)

and

Var [C2(|A|)] = (|A| − 1)/|A|2,
Var [C3(|A|)] = 3(|A| − 1)/|A|2,
Var [C4(|A|)] = (|A| − 1)(6|A|4 − 5|A|3 + 12|A|2 − |A|+ 1)/|A|6,
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Var [C5(|A|)] = 2(|A| − 1)(5|A|6 − 10|A|5 + 33|A|4 − 28|A|3
+16|A|2 − 10|A|+ 2)/|A|8

(see Janson et al. (2004)).

10.2 Consider a strongly, that is, exponentially, mixing stationary source.
Prove that

E[Cn] =

(
n+ 1

2

)
−O(n log n)

using Szpankowski (1993b) result on the height of a suffix tree.

10.3 Define Cℓn as the the ℓ-subword complexity or ℓ-spectrum of a string,
which is the number of distinct ℓ-length subwords of the underlying
string. Prove for an unbiased memoryless source that

E[Cℓn] = kℓ(1− e−nk−ℓ

) +O(ℓ) +O(nℓk−ℓ)

(see Janson et al. (2004) or Gheorghiciuc and Ward (2007)).

10.4 Consider again an unbiased memoryless source over a finite alphabet A.
Prove the Janson et al. (2004) result

E[Cn] =

(
n+ 1

2

)
− n log|A| n+

(
1

2
+

1− γ
ln |A| + φ|A|(log|A| n)

)
n

+O(
√
n logn)

where γ ≈ 0.577 is the Euler constant and

φ|A|(x) = −
1

log |A|
∑

j 6=0

Γ

(
−1− 2πij

ln |A|

)
e2πijx

is a continuous function with period 1. Observe that |φ|A|(x)| is very
small for small |A|: |φ2(x)| < 2×10−7, |φ3(x)| < 5×10−5, and |φ4(x)| <
3× 10−4.

10.5 Extend Theorem 10.2.1 for an ℓ-subword complexity Cℓn as defined in
Exercise 10.3 above (see Gheorghiciuc and Ward (2007)).

10.6 Provide the details of the proof of Theorem 10.3.1.

10.7 Using the notation from the proof of Theorem 10.3.2, prove that

∑

w∈A∗

|∆1
n(w)||∆2

m(w)| = O(min{n,m}−ε)

where n andm are integers representing the lengths of respective strings.
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10.8 Complete the proof of Lemma 10.3.5 by showing that condition (ii) of
Lemma 10.3.4 holds for the joint string complexity C(z1, z2) defined in
(10.13).

10.9 Prove (10.16) for a binary alphabet.

10.10 Provide the details of the proof of Theorem 10.6.2.

10.11 Considering identical memoryless sources, prove that the average num-
ber of common nodes of the two associated suffix trees can be expressed
by (10.33).

Bibliographical notes

String complexity is discussed in many books and articles, mostly from the
worst-case point of view: see Li and Vitanyi (1993), Niederreiter (1999), Shallit
(1993), and Wang and Shallit (1998). In this chapter we focused on the average-
case complexity. It was first studied in Janson et al. (2004) for random strings
generated by an unbiased memoryless source. It was then extended by Jacquet
(2007) to two unbiased memoryless sources. The joint string complexity from the
average-case point of view was first studied by Jacquet (2007), and then extended
to Markov sources by Jacquet and Szpankowski (2012). The experimental results
presented in the last section of this chapter were taken from Jacquet et al. (2013).
We would like to point out that the classification of sources was also investigated
by Ziv (1988).
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Denise, A. and Régnier, M. (2004). Rare events and conditional events on
random strings, Discrete Math. Theor. Comput. Sci., 6, 191–214.
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