
Analytic Information Theory:

From Compression to Learning

Michael Drmota and Wojciech Szpankowski

November 18, 2022

To Gabi

vi

Contents

Preface . xiii

Acknowledgments . xix

I KNOWN SOURCES 1

Chapter 1 Preliminaries . 3

1.1 Source Code and Entropy . 3
1.2 Prefix Codes and Their Properties 5
1.3 Redundancy . 8
1.4 Exercises . 9

Bibliographical notes . 10

Chapter 2 Shannon and Huffman FV Codes 11

2.1 Average Redundancy for Memoryless Sources 11
2.1.1 Shannon Code . 11
2.1.2 Huffman Codes . 16
2.1.3 Golomb Code . 19

2.2 Shannon Code Redundancy for Markov Sources 21
2.2.1 Proof of Theorem 2.2.1 25
2.2.2 Extension to Irreducible Aperiodic Markov Sources 31

2.3 Maximal Redundancy for a Generalized Shannon Code 34
2.4 Exercises . 38

Bibliographical notes . 39

Chapter 3 Tunstall and Khodak VF Codes 41

3.1 Variable-to-Fixed Codes . 41
3.2 Redundancy of the Khodak VF Code 43

viii Contents

3.2.1 Proof of Theorem 3.2.4. 50
3.3 Analysis of the Tunstall Code . 52
3.4 Back to Khodak Code with Bounded Phrase Length 54

3.4.1 Proof of Theorem 3.4.1 60
3.4.2 Proof of Theorem 3.4.2 62

3.5 Exercises . 64
Bibliographical notes . 65

Chapter 4 Divide-and-Conquer VF Codes 67

4.1 Redundancy of Boncelet’s Code 67
4.2 Divide-and-Conquer Recurrence 71

4.2.1 Examples . 76
4.2.2 Sketch of Proof of Theorem 4.2.1 78

4.3 Central Limit Law for Boncelet’s Algorithms 82
Exercises . 84
Bibliographical notes . 85

Chapter 5 Khodak VV Codes . 87

5.1 Variable-to-Variable Codes and Redundancy Rate 87
5.2 Redundancy of the Khodak VV Code 88
5.3 Explicit Construction of a Khodak VV Code 96
5.4 Khodak’s Redundancy for Almost All Sources 101

5.4.1 Proof of Lemma 5.4.1 . 104
Exercises . 109
Bibliographical notes . 109

Chapter 6 Non Prefix One-to-One Codes 111

6.1 Binary One-to-One Code . 112
6.2 Non-binary One-to-One Code . 119
6.3 Exercises . 125

Bibliographical notes . 125

Chapter 7 Advanced Data Structures: Tree Compression . . . 127

7.1 Binary Trees . 128
7.1.1 Plane Binary Trees . 129
7.1.2 Entropy Evaluation . 133
7.1.3 A Compression Algorithm for Plane Binary Trees 135
7.1.4 Non-Plane Binary Trees 137
7.1.5 A Compression Algorithm for Non-Plane Binary Trees . . 147

Contents ix

7.2 d-ary Plane Trees . 151
7.2.1 d-ary Increasing Trees . 151
7.2.2 Entropy for d-ary Plane Trees 154
7.2.3 A Compression Algorithm for d-ary Plane Trees 158

7.3 General Plane Trees . 161
7.3.1 Entropy of General Trees 162

7.4 Exercises . 169
Bibliographical notes . 170

Chapter 8 Graph and Structure Compression 173

8.1 Graph Generation Models . 174
8.2 Graphs versus Structures . 175
8.3 Erdős-Rényi Graphs . 178

8.3.1 Structural Entropy . 179
8.3.2 An Algorithm and Its Analysis 183
8.3.3 Proof of Theorem 8.3.3 185
8.3.4 Proof of Lemma 8.3.10 . 200
8.3.5 Proof of Lemma 8.3.8 . 204

8.4 Preferential Attachment Graphs 205
8.4.1 Graph Entropy H(G). 206
8.4.2 Structural Entropy H(S(G)) 211
8.4.3 A Structural Compression Algorithm. 226
8.4.4 Proof Lemma 8.4.15 . 229

8.5 Exercises . 231
Bibliographical notes . 233

II UNIVERSAL CODES 235

Chapter 9 Minimax Redundancy and Regret 237

9.1 Minimax Redundancy and Regret 238
9.2 Operational Expressions for Minimax Redundancy 240

9.2.1 Average Minimax Redundancy 240
9.2.2 Maximal Minimax . 243

9.3 Average and Maximal Minimax Relationships 244
9.3.1 Proof of Lemma 9.3.1 . 249
9.3.2 Hypothesis (H1) for Memoryless Sources 250

9.4 Regret for Online Learning . 253
9.5 Exercises . 258

Bibliographical notes . 259

x Contents

Chapter 10 Redundancy of Universal Memoryless Sources . . . 261

10.1 Maximal Minimax Redundancy for Finite Alphabet 261
10.1.1 Coding Contribution: Asymptotics of R∗

n(Q
∗) 262

10.1.2 Unknown Statistics Contribution: Asymptotics of R̃∗
n . . 267

10.1.3 Redundancy for Constrained Distributions 270
10.2 Maximal Minimax Redundancy for Large Alphabet 273

10.2.1 Proof of Theorem 10.2.1 276
10.3 Average Minimax Redundancy 279

10.3.1 Average Minimax with Constrained Distribution 279
10.3.2 Unconstrained Case for m = o(n) 281
10.3.3 Proof of Theorem 10.3.1 283

10.4 Learnable Information and Minimax Redundancy 289
10.5 Minimax Regret for Online Logistic Regression 292

10.5.1 Proof of Theorem 10.5.1 295
10.5.2 Proof of Proposition 10.5.2 299

10.6 Exercises . 304
Bibliographical notes . 307

Chapter 11 Markov Types and Redundancy for Markov Sources 309

11.1 Some Preliminaries . 309
11.2 Markov Types . 310

11.2.1 Number of Types . 314
11.2.2 Counting Non-Cyclic Markov Types. 325
11.2.3 Number of Sequences of a Given Type 326

11.3 Minimax Redundancy for Markov Sources 331
11.3.1 Asymptotics of R̃∗

n . 331
11.3.2 Higher Order Markov Sources 336
11.3.3 Coding Contribution to the Redundancy 337

11.4 Exercises . 343
Bibliographical notes . 344

Chapter 12 Non-Markovian Sources: Redundancy of Renewal Processes347

12.1 Renewal Source . 347
12.2 Maximal Minimax Redundancy 350

12.2.1 Proof of Lemma 12.2.1 and Theorem 12.2.3 353
12.2.2 Average vs Maximal Redundancy 362

12.3 Exercises . 363
Bibliographical notes . 363

Contents xi

III APPENDICES 365

Chapter A Probability . 367

A.1 Preliminaries . 367
A.2 Random Variables . 367
A.3 Convergence of random variables 371

Bibliographical notes . 374

Chapter B Generating Functions 375

B.1 Generating Functions. 375
B.2 Combinatorial Structures. 376

Bibliographical notes . 382

Chapter C Complex Asymptotics 383

C.1 Analytic Functions . 383
C.2 Special Functions . 386
C.3 Asymptotic Methods: Saddle Point 390
C.4 Analytic Depoissonization . 394
C.5 Polar and Algebraic Singularities 397

Bibliographical notes . 400

Chapter D Mellin Transform and Tauberian Theorems 401

D.1 Mellin Transform . 401
D.2 Tauberian Theorems . 403
D.3 A Recurrence . 407

Bibliographical notes . 412

Chapter E Exponential Sums and Uniform Distribution mod 1 415

E.1 Exponential Sums . 415
E.2 Uniformly Distributed Sequences mod 1 418

Bibliographical notes . 422

Chapter F Diophantine Approximation 423

F.1 Dirichlet’s Approximation Theorem 423
F.2 Continued Fractions . 424
F.3 Geometry of Numbers . 428

Bibliographical notes . 429

Bibliography . 431

Index . 449

Preface

Information and computation are two of the defining concepts in the modern era.
Shannon laid the foundation of information (theory), demonstrating that prob-
lems of communication and compression can be precisely modeled, formulated,
and analyzed. Turing, on the other hand, formalized the concept of computa-
tion, defined as the transformation of information by means of algorithms. In
this book we focus on information (or better learnable/ extractable information)
that we hope to present in its most compact form (i.e., shortest description). To
achieve this goal we need first to understand what information is, and then al-
gorithmically extract it in its most compact form (i.e., find efficient compression
algorithm).

Let us start with a general discussion of information. We adopt here a
definition of information as that which can be used to distinguish one set of data
samples from another. This process of “distinguishing” involves an “observer
function”, that maps a dataset to an observed object. The observer function in
traditional information theory may correspond to a channel. In a more general
setting, the observer function may be an arbitrary function, such as a learning
operator, formulated as an optimization procedure. For example, a given dataset
can be “observed” through a classifier (e.g., a logistic regression function). In
this case, two datasets have the same information content if they yield the same
classifier relative to the learning method that produces that classifier.

Another fundamental question of information theory and statistical inference
probes how much “useful or learnable information” one can actually extract from
a given data set. We would like to understand how much useful information,
structure, regularity, or summarizing properties are in database or a sequence.
We will argue in this book (see Section 10.4 that learnable information is not
that much related to entropy, the beloved quantity of information theory, but
rather the excess of the shortest database description over the entropy which
is known under the name redundancy of regret. This book is devoted to study
redundancy via some powerful analytic tools that allow us to analyze it with the
utmost precision.

xiv Preface

Source Coding vel Data Compression. The basic problem of source
coding better known as (lossless) data compression is to find a (binary) code that
can be unambiguously recovered with the shortest possible description either on
average or for individual sequences. Thanks to Shannon’s work we know that on
average the number of bits per source symbol cannot be smaller than the source
entropy rate. There are many codes asymptotically achieving the entropy rate,
therefore one turns attention to redundancy. The average redundancy of a source
code is the amount by which the expected number of binary digits per source
symbol for that code exceeds entropy. One of the goals in designing source
coding algorithms is to minimize the redundancy. Redundancy can be viewed as
the rate of convergence to the entropy, and only those compression algorithms
that converge fast enough (with small redundancy) are of interest. In this book,
we discuss various classes of source coding and their corresponding redundancy
for known sources (part I) and some class of unknown sources (part II).

We can view data compression as a probability assignment. Then, source
coding and prediction are special cases of the online learning problems that we
briefly discuss in the second part of this book.

Lossless compression comes in three flavors: fixed-to-variable (FV) length
codes, variable-to-fixed (VF) length codes, and finally variable-to-variable (VV)
length codes. In FV codes a fixed length block (sequence) is mapped into a
variable length code. In VF codes a variable length block is represented by
a fixed length code, usually an entry to a dictionary. The VV codes include
the previous two families of codes and is the least studied among all data com-
pression schemes. Over the years there has been a resurgence of interest in
redundancy rate for fixed-to-variable coding as seen in Dembo and Kontoyiannis
(1999, 2001, 2002), Jacquet and Szpankowski (1995), Kontoyiannis (1999, 2000,
2001), Linder, Lugosi, and Zeger (1995), Louchard and Szpankowski (1995),
Rissanen (1984a, 1996), Savari (1997, 1998), Savari and Gallager (1997), Shields
(1996), Shtarkov (1987), Szpankowski (1998, 2000), Weinberger, Merhav, and
Feder (1994), Wyner (1972a), Yang and Kieffer (1998), Xie and Barron (1997,
2000). Surprisingly there are only a handful of results for variable-to-fixed
codes as witnessed by Jelinek and Schneider (1972), Krichevsky and Trofimov
(1981), Merhav and Neuhoff (1992), Savari (1999), Savari and Gallager (1997),
Schalkwijk (1972), Tjalkens and Willems (1992), Visweswariah, Kulkurani, and
Verdu (2001), Ziv (1990). There is almost non-existing literature on variable-to-
variable codes with the exception of a few such as Fabris (1992), Freeman (1993),
Khodak (1972), Krichevsky and Trofimov (1981). While there is some work on
universal VF codes such as Tjalkens and Willems (1992), Visweswariah et al.
(2001), Ziv (1990), to the best of our knowledge redundancy for universal VF
and VV codes were not studied with the exception of some work of the Russian
school Krichevsky and Trofimov (1981), Krichevsky (1994).

Preface xv

Throughout this book, we shall study various intriguing trees describing
Huffman, Tunstall, Khodak and Boncelet codes and other advanced data struc-
tures such as graphs. These data structures are studied in this book by ana-
lytic techniques of analysis of algorithm as discussed in Flajolet and Sedgewick
(2008), Knuth (1997, 1998a, 1998b), Szpankowski (2001). The program of ap-
plying mathematical techniques from analytic combinatorics (that have been
successfully applied to analysis of algorithms) to problems of source coding and
in general to information theory lies at the crossroad of computer science and
information theory. It is also known as analytic information theory, e.g., see
Jacquet and Szpankowski (1999), Szpankowski (2012). We study source coding
algorithms using tools from the analysis of algorithms and analytic combina-
torics to discover precise and minute behavior of such code redundancy.

Let us mention that the interplay between information theory and computer
science/ machine learning dates back to the founding father of information the-
ory, Claude E. Shannon. His landmark paper “A Mathematical Theory of Com-
munication” is hailed as the foundation for information theory. Shannon also
worked on problems in computer science such as chess-playing machines and
computability of different Turing machines. Ever since Shannon’s work on both
information theory and computer science, the research at the interplay between
these two fields has continued and expanded in many exciting ways. In the late
1960s and early 1970s, there were tremendous interdisciplinary research activ-
ities, exemplified by the work of Kolmogorov, Chaitin, and Solomonoff, with
the aim of establishing algorithmic information theory. Motivated by approach-
ing Kolmogorov complexity algorithmically, A. Lempel (a computer scientist),
and J. Ziv (an information theorist) worked together in the late 1970s to de-
velop compression algorithms that are now widely referred to as Lempel-Ziv
algorithms. Analytic information theory is a continuation of these efforts. Fur-
thermore, recently one sees efforts to apply analytic combinatorics to learning
theory, in particular, online regret as witnessed by Jacquet, Shamir, and Sz-
pankowski (2021), Shamir and Szpankowski (2021, 2021).

Contents of the book

We now discuss in some details the content of the book. The preliminary
Chapter 1 introduces some notation and definitions. Chapter 2 is focused
on fixed-to-variable codes in which the encoder maps fixed length blocks of
source symbols into variable-length binary code strings. Two prominent fixed-
to-variable length coding algorithms are the Shannon code and the Huffman
code. We first discuss precise analyzes of Shannon code redundancy for mem-
oryless and Markov sources. We show that the average redundancy either con-
verges to an explicitly computable constant, as the block length increases, or it
exhibits a very erratic behavior fluctuating between 0 and 1. We also observe

xvi Preface

a similar behavior for the worst case or maximal redundancy. Then we move
to the Huffman code. Despite the fact that Huffman codes have been so well
known for so long, it was only relatively recently that their redundancy was
fully understood. In Abrahams (2001) Abrahams summarizes much of the vast
literature on fixed-to-variable length codes. Here, we present a precise analy-
sis as discussed in Szpankowski (2000) of the Huffman average redundancy for
memoryless sources. We show that the average redundancy either converges to
an explicitly computable constant, as the block length increases, or it exhibits
a very erratic behavior fluctuating between 0 and 1. Then we discuss similar
results for Markov sources.

In Chapter 3 we study variable-to-fixed codes. A VF encoder partitions the
source string into variable-length phrases that belong to a given dictionary D.
Often a dictionary is represented by a complete tree (i.e., a tree in which every
node has maximum degree), also known as the parsing tree. The code assigns a
fixed-length word to each dictionary entry. An important example of a variable-
to-fixed code is the Tunstall (1967) code. Savari and Gallager (1997) present an
analysis of the dominant term in the asymptotic expansion of the Tunstall code
redundancy. In this book we describe a precise analysis of the phrase length
(i.e., path from the root to a terminal node in the corresponding parsing tree)
for such a code and its average redundancy. We also discuss a variant of Tunstall
code known as VF Khodak code.

In the next Chapter 4 we continue analyzing VF codes due to Boncelet
(1993) who used the divide-and-conquer principle to design a practical encod-
ing. Boncelet’s algorithm is computationally fast and its practicality stems from
the divide and conquer strategy: It splits the input (e.g., parsing tree) into
several smaller subproblems, solving each subproblem separately, and then knit-
ting together to solve the original problem. We use this occasion to present a
careful analysis of a divide-and conquer recurrence which is at foundation of sev-
eral divide-and-conquer algorithms such as heapsort, mergesort, discrete Fourier
transform, queues, sorting networks, compression algorithms, and so forth as dis-
cussed in depth in Flajolet and Sedgewick (2008), Knuth (1998a), Szpankowski
(2001). Here we follow Drmota and Szpankowski (2013).

In Chapter 5 we consider variable-to-variable codes. A variable-to-variable
(VV) code is a concatenation of variable-to-fixed and fixed-to-variable codes.
A variable-to-variable length encoder consists of a parser and a string encoder.
The parser, as in VF codes, segments the source sequence into a concatenation
of phrases from a predetermined dictionary D. Next, the string encoder in a
variable-to-variable scheme takes the sequence of dictionary strings and maps
each one into its corresponding binary codeword of variable length. Aside from
the special cases where either the dictionary strings or the codewords have a
fixed length, very little is known about variable-to-variable length codes, even

Preface xvii

in the case of memoryless sources. Khodak (1972) described a VV scheme with
small average redundancy that decreases with the growth of phrase length. He
did not offer, however, an explicit VV code construction. We will remedy this
situation and follow Bugeaud, Drmota, and Szpankowski (2008) to give an ex-
plicitly construction of the VV code.

In the next Chapter 6 we discuss redundancy of one-to-one codes that are
not necessarily prefix or even uniquely decodable. Recall that non-prefix codes
are such codes which are not prefix free and do not satisfy Kraft’s inequality. In
particular, we analyze binary and non-binary one-to-one codes whose average
lengths are smaller than the source entropy in defiance of the Shannon lower
bound.

The last two Chapters 7 and 8 deal with more advanced data structures.
Information theory traditionally deals with “conventional data” almost exclu-
sively represented by sequences, be it textual data, image, or video data. Over
the last decade, repositories of various data have grown enormously. Most of the
available data is no longer in conventional form. Instead, biological data (e.g.,
gene expression data, protein interaction networks, phylogenetic trees), topo-
graphical maps (containing various information about temperature, pressure,
etc.), medical data (cerebral scans, mammogram, etc.), and social network data
archives are in the form of multimodal data structures, that is, multitype and
context dependent structures, often represented by trees and graphs. In Chap-
ter 7 we present compression algorithms and precise analysis of various trees:
from plane binary trees to non-plane general trees. In Chapter 8 we discuss
a harder problem, namely how many bits are needed to describe a graph. In
fact we focus on non-labelled graphs that we call structures. First we discuss
standard Erdős-Rényi graphs and after designing a structural compression, we
precisely analyze it using analytic tools such as Mellin transform and analytic
depoissonization. Then we study dynamic graphs in which nodes and vertices
may be added or deleted. We focus on the preferential attachment graphs. We
first discuss in details its symmetry and then derive the graph and structural
entropies. Finally, we present asymptotically optimal structural compression for
such graphs.

The second part of the book is about universal compression and online learn-
ing in which the encoder receive a sequence generated by an unknown source
with potentially additional information known as feature data. We start with a
preliminary Chapter 9 in which we precisely define the worst case and average
minimax redundancy and regret. We then show that the worst case redundancy
can be studied through the so called Shtarkov sum while for the average minimax
redundancy we have to resort to Bayesian methods. Finally, we compare the
worst case and the average minimax redundancies and provide a constructive
method to estimate one from the other.

xviii Preface

The next long Chapter 10 deals with the worst case and minimax redundancy
for memoryless class of sources. We first observe that due to the integer nature
of the code length we need to split the redundancy into two parts called the
coding part and the non-integer part. The coding part is studied using tools
developed in Chapter 2. The non-integer part depends on the statistics and
structure of the source. We first consider sources with finite alphabet as well as
constrained sources in which the symbol probability belongs to a bounded set.
For such sources we provide precise asymptotic expansion of the average and
maximal redundancy. We apply here special generating functions called tree-
function and singularity analysis. In the last part of the chapter we consider
sources over unbounded alphabet that may grow with the sequence length. We
also turn our attention to online minimax regret which can be viewed as source
coding with side information.

In Chapter 11 we study minimax redundancy for Markov sources. We first
discuss Markov types counting the number of sequences of a given type and the
number of Markov type. This allows us to provide a precise asymptotics of the
minimax redundancy, the coding part and the non-coding part.

Finally, in the last Chapter 12 we consider non-Markovian sources with un-
bounded memory. For clarity we only discuss renewal sources introduced by
Csiszar and Shields (1996) and prove precise asymptotics for the worst case
minimax regret for renewal sources of order one. discuss the average minimax
regret, suggesting that they are not asymptotically equivalent.

We end the book with seven Appendixes. They cover probability, generating
functions, special functions as well as more esoteric topics like complex analysis,
Mellin transform, exponential sums, and diophantine approximations.

Acknowledgments

There is a long list of colleagues and friends from whom we benefited through
their encouragement and constructive comments. They have helped us in various
ways during our work on the analysis of algorithms and information theory. We
mention here only a few: Alberto Apostolico, Yongwook Choi, Luc Devroye,
Ananth Grama, H-K. Hwang, Svante Janson, Philippe Jacquet, John Kieffer,
Chuck Knessl, Yiannis Kontoyiannis, Tomasz Luczak, Abram Magner, Arun
Padakandal, Ralph Neininger, Yuriy Reznik, Gil Shamir, Bob Sedgewick, Gadiel
Seroussi, Krzysztof Turowski, Brigitte Vallée, Sergio Verdu, MarkWard, Marcelo
Weinberger. We are particularly in debt to Philippe Jacquet for his friendship
and collaboration. This book could not happen without herculean job in analytic
combinatorics done by our late friend and mentor Philippe Flajolet. We thank
all of them from the bottom of our hearts.

This book has been written over the last five years, while we have been
traveling around the world carrying (electronically) numerous copies of various
drafts. We have received invaluable help from the staff and faculty of Institute of
Discrete Mathematics and Geometry of TU Wien and the Department of Com-
puter Sciences at Purdue University. The first author thanks Austrian Science
Fund (FWF) for their support. The second author is grateful to the National
Science Foundation, that has supported his work over the last 30 years. We
have also received support from institutions around the world that have hosted
us and our book: INRIA, LINCS, Paris; the Gdańsk University of Technology,
Gdańsk; Jagiellonian University, Kraków; the University of Hawaii; and ETH,
Zurich. We thank them very much.

Finally, no big project like this one can be completed without help from our
families. We thank Heidemarie, Johanna, and Peter as well as Mariola, Lukasz,
Paulina, and Ollie from the bottom of our hearts. This book is dedicated to
Gabi who passed away too early.

xx Acknowledgments

Michael Drmota
Wojtek Szpankowski

Part I

KNOWN SOURCES

CHAPTER 1

Preliminaries

In this introductory chapter we introduce some notation, including definitions
and basic properties of source coding, entropy and redundancy. In particular, we
define the average redundancy and the worst case redundancy for prefix codes.

1.1. Source Code and Entropy

Let us start with some notation. Throughout, we write x = x1x2 . . . for a
non-empty sequence of unspecified length over a finite alphabet A. We also
write xji = xi . . . xj ∈ Aj−i+1 for a consecutive subsequence of length j − i+ 1.
Sometimes we use the abbreviation xn = xn1 . Finally, throughout we write Z, Q
and R for integer, rational, and real numbers respectively.

A (binary) code is a one-to-one (or injective) mapping

C : A → {0, 1}+

from a finite alphabet A (the source) to the set {0, 1}+ of non empty binary
sequences (where we use the notation S+ = ∪∞i=1S

i) One can extend this concept
tom-ary codes C : A → {0, 1, . . .m−1}+, if needed. We write L(C, x) (or simply
L(x)) for the length of C(x). Finally, a code is a prefix code if no code word is
a prefix of another code word.

In this book we mostly deal with a sequence of codes

Cn : An → {0, 1}+,

where An is a sequence of alphabets. In particular, if this sequence is of the form
An = An, where A = {0, ...,m− 1}, the code is called a fixed-to-variable (FV)
code discussed in Chapter 2. If An ⊆ A+ and {0, 1}+ is replaced by {0, 1}M for
some M , we deal with variable-to-fixed (VF) codes; otherwise we have a general
variable-to-variable (VV) code. We discuss VF codes in Chapters 3 and 4 and
VV codes in Chapter 5.

4 Chapter 1. Preliminaries

We denote by P a probability distribution on the alphabet A. The elements
of the source can be then interpreted as a random variable X with probability
distribution P (X = x) = P (x). Such a source is also called probabilistic source.
For example the code length L(X) is then a random variable, too, and the
expected code lengthE[L(X)] is an important parameter of a probabilistic source
code.

The source entropy of a probabilistic source is defined by

H(X) := H(P) = −E[logP (X)] = −
∑

x∈A
P (x) logP (x),

where we write log for the logarithm of unspecified base, however, throughout
usually the base is equal to 2 unless specified otherwise.

Finally, we introduce a few other concepts related to entropy that we will
use throughout the book.

Definition 1.1.1. (i) Let A and A′ be two finite alphabets and P a probability
distribution on A × A′ and (X,Y) a random vector with P (X = a, Y = a′) =
P (a, a′). Then the Joint Entropy h(X,Y) is defined as

H(X,Y) = −E[logP (X,Y)] = −
∑

a∈A

∑

a′∈A′

P (a, a′) logP (a, a′). (1.1)

(ii) The Conditional Entropy h(Y |X) is

H(Y |X) = −E[logP (Y |X)] =
∑

a∈A
P (a)H(Y | X = a)

= −
∑

a∈A

∑

a′∈A′

P (a, a′) logP (a′|a), (1.2)

where P (a′|a) = P (a, a′)/P (a) and P (a) =
∑

a′∈A′ P (a, a′).
(iii) The Relative Entropy or Kullback Leibler Distance between two distributions
P and Q defined on the same probability space (or finite alphabet A) is

D(P‖|Q) = E

[
log

P (X)

Q(X)

]
=
∑

a∈A
P (a) log

P (a)

Q(a)
, (1.3)

where by convention 0 log(0/Q) = 0 and P log(P/0) =∞.

(iv) The Mutual Information of X and Y is the relative entropy between the joint
distribution of X and Y and the product distribution P (X)P (Y), that is,

I(X ;Y) = E

[
log

P (X,Y)

P (X)P (Y)

]
=
∑

a∈A

∑

a′∈A′

P (a, a′) log
P (a, a′)

P (a)P (a′)
. (1.4)

1.2. Prefix Codes and Their Properties 5

(v) Rényi’s Entropy of order b (−∞ ≤ b ≤ ∞, b 6= 0) is defined as

Hb(X) = − logE[P b(X)]

b
= −1

b
log
∑

a∈A
P b+1(a), (1.5)

provided b 6= 0 is finite, and by

H−∞ = min
i∈A
{P (i)}, (1.6)

H∞ = max
i∈A
{P (i)}. (1.7)

Observe that H(X) = limb→0Hb(X).

If Pn is a sequence of probability measures on An (for n ≥ 1) we also define
the entropy rate h, if it exists, as

h = lim
n→∞

H(Pn)

n
= lim

n→∞

−∑xn∈An Pn(x
n) logPn(x

n)

n
.

1.2. Prefix Codes and Their Properties

As discussed, a prefix code is a code for which no codeword C(x) for x ∈ A
is a prefix of another codeword. For such codes there is a mapping between
a code word C(x) and a path in a tree from the root to a terminal (external)
node (e.g., for a binary prefix code move to the left in the tree represents 0
and move to the right represents 1), as shown in Figure 1.1. We also point out
that a prefix code and the corresponding path in a tree defines a lattice path in
the first quadrant also shown in Figure 1.1. Here left L and right R traversals
in the binary tree corresponds to “left” or “up” movement in the lattice. If
some additional constraints are imposed on the prefix codes, this translates into
certain restrictions on the lattice path indicated as the shaded area in Figure 1.1.
(see Section 3.4 for some embellishments on this topic).

The prefix condition imposes some restrictions on the code length. This fact
is known as Kraft’s inequality discussed next.

Theorem 1.2.1. [Kraft’s Inequality] Let |A| = N . Then for any binary prefix
code C we have ∑

x∈A
2−L(C,x) ≤ 1.

Conversely, if positive integers ℓ1, ℓ2, . . . , ℓN satisfy the inequality

N∑

i=1

2−ℓi ≤ 1. (1.8)

6 Chapter 1. Preliminaries

L R

R

L

Figure 1.1. Lattice paths and binary trees

then there exists a prefix code with these codeword lengths.

Proof. This is an easy exercise on trees. Let ℓmax be the maximum codeword
length. Observe that at level ℓmax some nodes are codewords, some are descen-
dants of codewords, and some are neither. Since the number of descendants at
level ℓmax of a codeword located at level ℓi is 2

ℓmax−ℓi , we obtain

N∑

i=1

2ℓmax−ℓi ≤ 2ℓmax ,

which is the desired inequality. The converse part can also be proved, and the
reader is asked to prove in in Exercise 1.7.

Using Kraft’s inequality we can now prove the first theorem of Shannon
(which was first established by Khinchin) that bounds from below the average
code length.

Theorem 1.2.2. Let C be a prefix code on the alphabet A, P a probability
distribution on A, and X a random variable with P (X = a) = P (a). Then the
average code length E[L(C,X)] cannot be smaller than the entropy H(P), that
is,

E[L(C,X)] ≥ H(P)

where the expectation is taken with respect to the distribution P and the loga-
rithms in the definition of H(P) is the binary logarithms.

Proof. Let K =
∑

x 2
−L(x) ≤ 1 and L(x) := L(C, x). Then by Kraft’s inequality

K ≤ 1. Furthermore by using the inequality − log2 x ≥ 1
ln 2 (1− x) for x > 0 we

1.2. Prefix Codes and Their Properties 7

get (recall that log = log2)

E[L(C,X)]−H(P)] =
∑

x∈A
P (x)L(x) +

∑

x∈A
P (x) logP (x)

= −
∑

x∈A
P (x) log

2−L(x)/K

P (x)
− logK

≥ 1

ln 2

(
∑

x∈A
P (x) − 1

K

∑

x∈A
2−L(x)

)
− logK

= − logK ≥ 0

as proposed.

Observe that above theorem implies the existence of at least one element
x̃ ∈ A such that

L(x̃) ≥ − logP (x̃). (1.9)

Furthermore, we can complement Theorem 1.2.2 by the following property.

Lemma 1.2.3 (Barron). Let C be a prefix code and a > 0. Then

P (L(C,X) < − logP (X)− a) ≤ 2−a.

Proof. We argue as follows (again log = log2):

P (L(X) < − logP (X)− a) =
∑

x:P (x)<2−L(x)−a

P (x)

≤
∑

x:P (x)<2−L(x)−a

2−L(x)−a

≤ 2−a
∑

x

2−L(x) ≤ 2−a,

where we have used Kraft’s inequality.

What is the best prefix code with respect to code length? We are now
in a position to answer this question. As long as the expected code length is
concerned, one needs to solve the following constrained optimization problem
for:

min
L

∑

x

L(x)P (x) subject to
∑

x

2−L(x) ≤ 1. (1.10)

This optimization problem has an easy real valued solution through Lagrangian
multipliers, and one finds that the optimal code length is L(x) = − logP (x)

8 Chapter 1. Preliminaries

provided the integer character of the length is ignored (see Exercise 1.8). If it
is not ignored, then interesting things happen. First, the excess of the code
length over − logP (x) is called the redundancy and is discussed in this book,
in particular in Chapter 2. Furthermore, to minimize the redundancy, that is,
to make − logP (x) as close to an integer as possible, ingenious algorithms were
designed that we will discussed in Part I of this book, in particular in Chapter 5.

In this book we mostly deal with prefix codes with the exception of Chapter 6
where we discuss non prefix one-to-one codes.

To start with, we just mention a very simple prefix code, namely the Shannon
code. It assigns to x ∈ A a codeword with code length

L(x) = ⌈− logP (x)⌉.

By Theorem 1.2.1 such a prefix code always exists, since

∑

x∈A
2−⌈− logP (x)⌉ ≤

∑

x∈A
P (x) = 1.

1.3. Redundancy

In general, one needs to round the length to an integer, thereby incurring some
cost. This cost is usually known under the name redundancy. More precisely,
redundancy is the excess of real code length over its ideal (optimal) code length
which is assumed to be − logP (x). There are several possible specification of
this general definition. For a known distribution P , that we assume throughout
Part I, the pointwise redundancy RC(x) for a code C and the average redundancy

R
C
are defined as

RC(x) = L(C, x) + logP (x),

R = E[L(C,X)]−H(P)].

Furthermore, we define the maximal or worst case redundancy R∗ as

R∗ = max
x∈A

[L(C, x) + logP (x)] = max
x∈A

RC(x).

The pointwise redundancy can be negative, but the average and worst case
redundancies cannot due to the Shannon theorem (Theorem 1.2.2) and (1.9),
respectively.

For example, for the Shannon code we have

0 ≤ R ≤ R∗ = max
x∈A

[⌈− logP (x)⌉+ logP (x)] < 1.

1.4. Exercises 9

1.4. Exercises

1.1 Establish the following properties

H(X,Y) = H(X) +H(Y |X),

H(X1, X2, . . . , Xn) =

n∑

i=1

H(Xi|Xi−1, . . . , X1),

I(X ;Y) = H(X)−H(X |Y) = H(Y)−H(Y |X),

I(X ;X) = H(X).

1.2 Prove that the following inequalities hold

D(P‖|Q) ≥ 0, (1.11)

I(X ;Y) ≥ 0, (1.12)

H(X) ≥ H(X |Y), (1.13)

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi), (1.14)

with equality in (1.11) if and only if P (a) = Q(a) for all a ∈ A, equality
in (1.12) and (1.13) if and only if X and Y are independent, and equality
in (1.14) if and only if X1, . . . , Xn are independent.

1.3 Let Y = g(X) where g is a measurable function. Prove

• h(g(X)) ≤ h(X);

• h(Y |X) = 0.

1.4 Random variables X,Y, Z form a Markov chain in that order (denoted
by X → Y → Z) if the conditional distribution of Z depends on Y and
is independent of X , that is,

P (X = x, Y = y, Z = z) = P (X = x)P (Y = y|X = x)P (Z = z|Y = y)

for all possible x, y, z. Prove the data processing inequality that states

I(X ;Y) ≥ I(X ;Z)

if X → Y → Z.

1.5 Consider a probability vector p = (p1, . . . , pn) such that
∑n

i=1 pi = 1.
What probability distribution p minimizes the entropy H(p)?

1.6 (Log Sum Inequality) (i) Prove that for non-negative numbers a1, . . . , an
and b1, . . . , bn

n∑

i=1

ai log
ai
bi
≥
(

n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

10 Preliminaries

with equality if and only if ai

bi
= const.

(ii) Deduce form (i) that for p1, . . . , pn and q1, . . . , qn such that
∑n

i=1 pi =∑n
i=1 qi = 1 we have

n∑

i=1

pi log
1

qi
≥

n∑

i=1

pi log
1

pi
,

that is,

min
qi

n∑

i=1

pi log
1

qi
=

n∑

i=1

pi log
1

pi
.

(iii) Show that the following (potential) extension of (ii) is not true

n∑

i=1

pi

⌈
log

1

qi

⌉
≥

n∑

i=1

pi

⌈
log

1

pi

⌉

where ⌈x⌉ is the smallest integer greater or equal x.

1.7 Prove the converse part of the Kraft’s inequality in Theorem 1.2.1.

1.8 Consider the optimization problem (1.10). Show that the optimal length
is L(x) = − logP (x).

Bibliographical notes

Information theory was born in 1948 when Shannon (1948) published his monu-
mental work where he presented three theorems: on source and channel coding
and distortion theory. There are many good books discussing information the-
ory. We recommend Gallager (1968) and Cover and Thomas (1991).

Lemma 1.2.3 was first proved by Barron (1985). The worst case redundancy
was introduced by Shtarkov (1987).

CHAPTER 2

Shannon and Huffman FV Codes

We now turn our attention to fixed-to-variable length codes, in particular to
Shannon and Huffman codes. In this chapter, we assume that a known source
with distribution P generates a sequence xn := xn1 = x1 . . . xn of fixed length
n, that is, the alphabet A is of the form An = An, where we write A =
{0, 1, . . . ,m − 1}, however, we mostly discuss the binary case (m = 2). The
code words C(xn1) may be of a variable length. We first analyze the average
redundancy for Shannon and Huffman codes for memoryless sources. Then we
study the Shannon code redundancy for Markov sources. Finally, we consider a
code that optimizes the worst case redundancy which turns out to be a general-
ized Shannon code.

2.1. Average Redundancy for Memoryless Sources

We now assume that a sequence of fixed length n, denoted xn = xn1 is generated
by a binary memoryless source with p being the probability of emitting 0, that
is, P (xn) = pk(1 − p)n−k, where k = |{1 ≤ j ≤ n : xj = 0}|. We also write
q := 1−p. WE also obverse that the entropy rate h = −p log p−(1−p) log(1−p).

2.1.1. Shannon Code

Recall that the Shannon code is a prefix code that is as close as possible to the
optimal (real-valued) code word length − logP (xn). It assigns to xn ∈ An =
{0, 1}n a codeword with code length

L(xn) = ⌈− logP (xn)⌉.

As mentioned above, Kraft’s inequality (Theorem 1.2.1) assures that such a code
always exists

12 Chapter 2. Shannon and Huffman FV Codes

For memoryless source, we have P (xn) = pkqn−k where k is the number of

0s in xn. Hence, its average redundancy R
S

n is then

R
S

n =

n∑

k=0

(
n

k

)
pkqn−k

(
⌈− log(pkqn−k)⌉+ log pkqn−k

)
.

We rewrite it in a slightly different form. We denote by 〈x〉 = x − ⌊x⌋ the
fractional part of real number x. It is easy to see that

⌈−x⌉+ x = 〈x〉 (2.1)

for any real x. Hence we have

R
S

n =

n∑

k=0

(
n

k

)
pkqn−k〈αk + βn〉, (2.2)

where

α = log

(
p

1− p

)
and β = log (1− p) . (2.3)

We are interested in the asymptotic behavior of R
S

n given by (2.2). In order
to handle the function 〈x〉 (that is periodic with period 1) at least heuristically
we start with a Fourier series of, namely with for x ∈ R

〈x〉 = 1

2
−

∞∑

h=1

sin 2πhx

hπ

=
1

2
+

∑

h∈Z\{0}
che

2πihx, ch =
i

2πh
. (2.4)

Hereafter, we shall write ∑

h 6=0

:=
∑

h∈Z\{0}
.

Observe that for x = 0 and x = 1 the right-hand and the left-hand sides of (2.4)
do not agree. These are the points of discontinuity of 〈x〉.

We now continue our try to evaluate the average redundancy R
S

n as expressed
in (2.2). Observe that its behavior depends on rationality or irrationality of α.
Indeed, if α is rational, say α = 1/2 and β = 0, then 〈αk + βn〉 takes only two
values (i.e., 0 or 1/2), and hence the average redundancy oscillates. This is not
the case when α is irrational.

2.1. Average Redundancy for Memoryless Sources 13

Let’s us first deal with the case when α is irrational. Using (2.4) in (2.2) and
by neglecting the discontinuities of 〈x〉 we obtain

R
S

n =
1

2
+

n∑

k=0

(
n

k

)
pkqn−k

∑

h 6=0

che
2πih(αk+βn)

=
1

2
+
∑

h 6=0

che
2πihβn

(
pe2πimα + q

)n
. (2.5)

If α is irrational then |pe2πihα + q| < 1 which implies that
(
pe2πihα + q

)n →
0. Hence, it is very likely that the infinite sum

∑
h 6=0 is o(1) as n → ∞, or

equivalently R
S

n → 1
2 as n → ∞. Unfortunately, it seems to be cumbersome to

prove this fact directly from the representation (2.5) since the Fourier series does
not converge absolutely. However, we can deal with the sum (2.2) rigorously by
applying the theory of sequences distributed modulo 1 (see Appendix E) and
obtain the following result.

Theorem 2.1.1. Let R
S

n denote the average redundancy of the Shannon code
over a binary memoryless source An = {0, 1}n of length n with parameter p ∈
(0, 1). If p = 1

2 , then R
S

n = 0. If p 6= 1
2 and α and β are defined in (2.3), then

as n→∞

R
S

n =

1
2 + o(1) if α irrational

1
2 + 1

M

(
〈Mnβ〉 − 1

2

)
+O(ρn) if α = N

M , gcd(N,M) = 1

where ρ < 1.

The rest of this section is devoted to the proof of Theorem 2.1.1. We start
with the irrational case. We set

pn,k =

(
n

k

)
pkqn−k.

and observe that
∑

k pn,k = (p + q)n = 1. We then apply Theorem E.2.1 from
Appendix E (see also Exercises 2.1 and 2.2) which says that the condition

n∑

k=0

(
n

k

)
pkqn−ke2πih(αk+βn) → 0 (2.6)

(for all non-zero integers h) implies that

lim
n→∞

n∑

k=0

(
n

k

)
pkqn−kf(αk + βn) =

∫ 1

0

f(y) dy

14 Chapter 2. Shannon and Huffman FV Codes

for all Riemann-integrable functions f with period 1. We will apply this property

for f(y) = 〈y〉 with integral
∫ 1

0
〈y〉 dy = 1

2 .
We just have to check the condition (2.6). By the binomial theorem we have

n∑

k=0

(
n

k

)
pkqn−ke2πih(αk+βn) = e2πihβn

(
pe2πihα + q

)n
. (2.7)

As already observed above we have |pe2πihα + q| < 1 if α is irrational. Thus,
(2.6) is satisfied for all non-zero integers h. Consequently Theorem 2.1.1 holds
if α is irrational.

Now, we turn our attention to the case when α is rational. Here we use a
discrete Fourier analysis, see also Lemma 2.1.5. We assume α = M/N where
M,N are non-zero integers such that gcd(N,M) = 1. (If α = 0 — which is

equivalent to p = 1
2 — we trivially have R

S

n = 0.) We proceed as follows

R
S

n =

n∑

k=0

(
n

k

)
pkqn−k

〈
k
N

M
+ βn

〉
=

n∑

k=0

pn,k

〈
k
N

M
+ βn

〉

=

M−1∑

ℓ=0

∑

k≡ℓ mod M

pn,k

〈
ℓ
N

M
+ βn

〉

=

M−1∑

ℓ=0

∑

k≡ℓ mod M

pn,k

〈
ℓ

M
+ βn

〉

=
M−1∑

ℓ=0

〈
ℓ

M
+ βn

〉 ∑

k≡ℓ mod M

(
n

k

)
pk(1− p)n−k. (2.8)

To evaluate the last sum we need the following simple lemma. It asserts
that if one picks every Mth term of the binomial distribution, then the total
probability of this sample is “well” approximated by 1/M .

Lemma 2.1.2. For fixed M , there exist ρ < 1 such that

∑

k≡ℓ mod M

(
n

k

)
pk(1− p)n−k =

1

M
+O(ρn) (2.9)

for all ℓ ≤M .

Proof. Let ωk = e2πik/M for k = 0, 1, . . . ,M − 1 be the Mth root of unity. It is
well known that

1

M

M−1∑

k=0

ωn
k =

{
1 if M |n
0 otherwise.

(2.10)

2.1. Average Redundancy for Memoryless Sources 15

where M |n means that M divides n. In view of this, we can write

∑

k≡ℓ mod M

(
n

k

)
pkqn−k =

n∑

k=0

(
n

k

)
pkqn−k 1

M

M−1∑

r=0

ωk−ℓ
r

=
1+ (pω1 + q)nω−ℓ

1 + · · ·+ (pωM−1 + q)nω−ℓ
M−1

M

=
1

M
+O(ρn), (2.11)

since |(pωr + q)| = p2 + q2 + 2pq cos(2πr/M) < 1 for r 6= 0. This proves the
lemma.

By (2.8) we thus have

R
S

n =
1

M

M−1∑

ℓ=0

〈
ℓ

M
+ βn

〉
+O(ρn).

Now set

g(y) =
1

M

M−1∑

ℓ=0

〈
ℓ

M
+ y

〉
.

Then by definition we have g
(
y + 1

M

)
= g(y). So let us assume first that

0 ≤ y < 1
M . In this case we obtain

g(y) =
1

M

M−1∑

ℓ=0

〈
ℓ

M
+ y

〉

=
1

M

M−1∑

ℓ=0

(
ℓ

M
+ y

)

=
1

M2

M(M − 1)

2
+ y

=
1

2
− 1

2M
+ y.

In general we find

g(y) = g

(
1

M
〈My〉

)
=

1

2
− 1

2M
+

1

M
〈My〉 = 1

2
− 1

M

(
1

2
− 〈My〉

)
.

Summing up we arrive at

R
S

n =
1

2
− 1

M

(
1

2
− 〈βnM〉

)
+O(ρn)

in the rational case. This completes the proof of Theorem 2.1.1.

16 Chapter 2. Shannon and Huffman FV Codes

2.1.2. Huffman Codes

It is known that the following optimization problem over all prefix codes C

R
H

= min
C

E[L(C,X) + logP (X)]

is solved by the Huffman code. Recall that the Huffman code is a recursive
algorithm built over the associated Huffman tree, in which the two nodes with
lowest probabilities are combined into a new node whose probability is the sum
of the probabilities of its two children.

We assume again that P is a memoryless source on An = {0, 1}n with pa-
rameter p, where we also assume that p < 1

2 , and we continue to write

P (xn) = pkqn−k

for the probability of generating a binary sequence consisting of k zeros and
n− k ones. The expected code length E[Ln] of the Huffman code is

E[Ln] =
n∑

k=0

(
n

k

)
pkqn−kL(k), (2.12)

where

L(k) =
1(
n
k

)
∑

j∈Sk

lj

with Sk representing the set of all inputs having probability pkqn−k, and lj being
the length of the jth code in Sk. By the sibling property of Gallager (1978) we
know that code lengths in Sk are either equal to l(k) or l(k)+1 for some integer
l(k). If nk denotes the number of code words in Sk that are equal to l(k) + 1,
then

L(k) = l(k) +
nk(
n
k

) .

Clearly, l(k) = ⌊− log(pkqn−k)⌋. Stubley (1994) analyzed carefully nk and
showed

R
H

n =

n∑

k=0

(
n

k

)
pkqn−k

(
log(pkqn−k) + ⌊− log(pkqn−k)⌋

)
(2.13)

+ 2
n−1∑

k=0

(
n

k

)
pkqn−k

(
1− 2(log(p

kqn−k)+⌊− log(pkqn−k)⌋)
)
+ o(1).

In Exercise 2.3 we ask the reader to establish (2.13).

2.1. Average Redundancy for Memoryless Sources 17

As before, using 〈x〉 = x− ⌊x⌋ we find

log(pkqn−k) + ⌊− log(pkqn−k)⌋ = −〈αk + βn〉

where for convenience we restate (cf. (2.3))

α = log

(
1− p
p

)
, β = log

(
1

1− p

)
. (2.14)

Thus we arrive at the following

R
H

n = 2−
n∑

k=0

(
n

k

)
pkqn−k〈αk+βn〉−2

n∑

k=0

(
n

k

)
pkqn−k2−〈αk+βn〉+o(1). (2.15)

This is our starting formula for the average Huffman redundancy that can be
asymptotically evaluated. In the rest of this section we prove the following
result.

Theorem 2.1.3 (W. Szpankowski, 2000). Consider the Huffman block code of
length n over a binary memoryless source. Suppose that 0 < p < 1

2 and define
α and β by (2.14). Then as n→∞ the average redundancy is given by

R
H

n =

3
2 − 1

ln 2 + o(1) ≈ 0.057304, α 6∈ Q

3
2 − 1

M

(
〈βMn〉 − 1

2

)
− 1

M(1−2−1/M)
2−〈nβM〉/M + o(1), α = N

M ,

where Q is the set of rational numbers, and N,M are relatively prime integers,
that is, gcd(N,M) = 1.

Before we present a proof, we plot in Figure 2.1 the average redundancy

R
H

n presented in (2.15) as a function of n for two values of α, one irrational
(Figure 2.1(a)) and one rational (Figure 2.1(b)). The two modes of behavior are
clearly visible. The function in Figure 2.1(a) converges to a constant (≈ 0.057)
for large n as predicted by Theorem 2.1.3, while the curve in Figure 2.1(b) is
quite erratic.

In the rational case, we observe that the redundancy swings from almost zero
to about 0.086. In order to be more precise (and reproving the upper bound of

Gallager (1978)) we set x = 〈Mnβ〉 and observe that R
H

n can only be maximal
if M = 1. In this case we, thus, have

R
H

n (x) ∼ 2− x− 2−x+1 (2.16)

18 Chapter 2. Shannon and Huffman FV Codes

706050403020100

0.08

0.07

0.06

0.05

0.04

0.03

706050403020100

0.08

0.06

0.04

0.02

(a) (b)

Figure 2.1. The average redundancy of Huffman codes (2.15) versus
block size n for: (a) irrational α = log((1 − p)/p) with p = 1/π; (b)
rational α = log((1− p)/p) with p = 1/9.

which satisfies

max
0≤x<1

2− x− 2−x+1 = 1− 1 + ln ln 2

ln 2
= log(2(log e)/e) = 0.08607 . . . (2.17)

and corresponds to the Gallager upper bound. We formulate it as a corollary.

Corollary 2.1.4. Let R
H

n denote the average redundancy of a Huffman block
code of length n over a binary memoryless source. Then

lim sup
n→∞

R
H

n ≤ 1− 1 + ln ln 2

ln 2
= log(2(log e)/e) ∼ 0.08607 . . . , (2.18)

Proof of Theorem 2.1.3. To establish Theorem 2.1.3 we must only deal
with the asymptotics of the following sum

Tn =
n∑

k=0

(
n

k

)
pkqn−k2−〈αk+βn〉. (2.19)

As above we consider the rational and irrational case. For the irrational case,
we simply use Theorem E.2.1 from Appendix E with f(t) = 2−t and δn = βn;
recall that the exponential sums (2.7) tend to 0 if α is irrational.

2.1. Average Redundancy for Memoryless Sources 19

For the rational case, we can use the next Lemma 2.1.5 (with f(y) = 2−〈y〉)
from which Theorem 2.1.3 follows. The proof follows the footsteps of our deriva-
tions in (2.8). We ask the reader to prove it in Exercise 2.4.

Lemma 2.1.5. Let 0 < p < 1 be a fixed real number and suppose that α = N
M

is a rational number with gcd(N,M) = 1. Then, for every bounded function
f : [0, 1]→ R we have

n∑

k=0

(
n

k

)
pk(1− p)n−kf(〈kα+ y〉) = 1

M

M−1∑

l=0

f

(
l

M
+
〈My〉
M

)

+ O(ρn)

uniformly for all y ∈ R and some ρ < 1.

2.1.3. Golomb Code

In this section we give a short account on Golomb’s code that can be viewed
as a special case of Huffman’s code adapted to infinite alphabets. Our analysis
in this section will differ from other sections since we perform asymptotics not
with regard to the block length but rather at the limit of a code parameter.

More precisely, let

P (i) = (1− θ)θi, i ∈ Z≥0, (2.20)

be the probability assignment on the set of nonnegative integers where 0 < θ < 1.
Golomb (1996) proposed the following optimal binary code. Let ℓ be an integer
such that

θℓ =
1

2
, (2.21)

which means that we restrict on θ that are roots of 1/2. In Golomb’s code an
integer i is represented as i = ℓj + r, where j = ⌊i/ℓ⌋ and 0 ≤ r < ℓ. We
encode j by a unary code (i.e., j zeros followed by a one) while r is encoded by
a Shannon code (for a uniform distribution on ℓ symbols).

In Exercise 2.5 we ask the reader to show that the average Golomb’s code
length E[L] is

E[L] = ⌈log ℓ⌉+ θ2
⌊log ℓ⌋+1

θℓ − 1
. (2.22)

Roughly speaking, the first term above corresponds to the Shannon code while

the second term represents the unary coding. The average redundancy R
G

ℓ of
the Golomb code becomes

R
G

ℓ = E[L]−H(θ) (2.23)

20 Chapter 2. Shannon and Huffman FV Codes

l

50004000300020001000

0.032

0.031

0.03

0.029

0.028

0.027

0.026

0.025

Figure 2.2. The average redundancy of Golomb codes versus ℓ.

where the entropy H(θ) of the geometric distribution (2.20) can be computed
as

H(θ) = − log(1− θ)− θ

1− θ log θ. (2.24)

We will estimate R
G

ℓ as l →∞ or equivalently as θ → 1.
The result on the behavior of the average redundancy is presented next.

Observe that in this case, there is only the oscillatory mode behavior of R
G

ℓ as
illustrated in Figure 2.2.

Theorem 2.1.6. Consider the Golomb code over the non-negative integers
generated by a geometric source Geometric(θ) such that there exists an inte-
ger ℓ with θℓ = 1

2 . Then as ℓ→∞, so that θ → 1,

R
G

ℓ = 1− 〈log ℓ〉+ 4 · 2−21−〈log ℓ〉 − log(log e)− log e− 1

2ℓ
+O(ℓ−2). (2.25)

Furthermore, the average redundancy R
G

ℓ oscillates around 2−log(log e)−log e =
0.028538562 . . . with

lim inf
ℓ→∞

R
G

ℓ = 0.0251005712 . . . , (2.26)

lim sup
ℓ→∞

R
G

ℓ = 0.0327344112 (2.27)

Proof. We assume that θℓ = 1/2 as in (2.22), and estimate the entropy H(θ) (cf.
(2.24)) as ℓ→∞ (i.e, θ = 2−1/ℓ → 1). Using the following Taylor expansion

log(1− 2−x) = log(ln(2)) + log(x) − 1

2
x+

ln(2)

24
x2 +O(x3), x→ 0, (2.28)

2.2. Shannon Code Redundancy for Markov Sources 21

we arrive at

H(θ) = log ℓ+ log(log e) +
1

2ℓ
+O(ℓ−2). (2.29)

The average redundancy R
G

ℓ = E[L]−H(θ), where E[L] is given by (2.22),
follows after some simple algebra

R
G

ℓ = 1− 〈log ℓ〉+ 4 · 2−21−〈log ℓ〉 − log(log e)− log e− 1

2ℓ
+O(ℓ−2) (2.30)

as ℓ→∞ or θ → 1. This proves (2.25) of Theorem 2.1.6. We should also point

out that using the above approach we can get a full asymptotic expansion of R
G

ℓ

as ℓ→∞.
To compute the magnitude of the oscillation, let us define C = log(log e) +

log e = 1.971461414 We set

g(x) = 1− x+ 4 · 2−21−x − C (2.31)

for 0 ≤ x ≤ 1. (Observe that g(x) is asymptotically equal to RG
ℓ when

x = 〈log ℓ〉.) One derives that g(x) achieves its maximum value g(x1) :=
max{g(x)} = .327344112 . . . at

x1 = log

(−2 ln(2)
W (−0.25 log e)

)
(2.32)

where W (x) is the Lambert-W function defined as W (x)eW (x) = x (see Corless,
Gonnet, Hare, Jeffrey, and Knuth (1996) or Appendix C). Similarly, the function
g(x) achieves its minimum value g(x2) := min{g(x)} = .251005712 . . . at

x2 = log

(−2 ln(2)
W (−1,−0.25 log e)

)
(2.33)

where W (−1, x) is a branch of the Lambert-W function (see Appendix C). It
is also easy to see that the average redundancy oscillates around g(0) = g(1) =
2− C = .0285385862 This proves Theorem 2.1.6.

We should remark that since 〈logn〉 is dense in (0, 1) it follows by (2.30) that

the average redundancy R
G

ℓ asymptotically oscillates within a certain interval
without reaching a limit, as observed in Figure 2.2.

2.2. Shannon Code Redundancy for Markov Sources

In this section we study the average redundancy of the Shannon code for Markov
sources, that is, the probability distribution on the alphabet An = {0, 1, . . . ,m−

22 Chapter 2. Shannon and Huffman FV Codes

1}n is given by a first order Markov process X1, X2, The transition matrix
will be denoted by P = (p(j|k))m−1

j,k=0 and the initial state probabilities by pk =
P (Xt = k) (k = 0, 1, . . . ,m− 1). Furthermore we write πk (k = 0, 1 . . . ,m− 1)
for the stationary state probabilities. Thus, the probability of a given source
string xn = (x1, . . . , xn) ∈ An = An, under the given Markov source, is

P (xn) = px1

n∏

t=2

p(xt|xt−1). (2.34)

The average redundancy of the Shannon code is then

Rn = E[⌈− logP (Xn)⌉+ logP (Xn)] = E[〈logP (Xn)〉]. (2.35)

Our main result in this section is the following theorem.

Theorem 2.2.1. Consider the Shannon code of block length n for a Markov
source with initial state probabilities p0, . . . , pm−1 and a positive transition ma-
trix P. Define

αjk = log

[
p(j|0)p(j|j)
p(k|0)p(j|k)

]
, j, k ∈ {0, 1, . . . ,m− 1}. (2.36)

Then the average redundancy Rn is characterized as follows:
(a) If not all αjk are rational, then

Rn =
1

2
+ o(1). (2.37)

(b) If all αjk are rational, then for every j, k ∈ {0, . . . ,m− 1}, let

ζjk(n) =M [(n− 1) log p(0|0)− log p(j|0) + log p(k|0) + log pj], (2.38)

and

Ωn =
1

2

(
1− 1

M

)
+

1

M

m−1∑

j=0

m−1∑

k=0

pjπk〈ζjk(n)〉, (2.39)

where M is the smallest common integer multiple of the denominators of {αjk},
when each one of these numbers is represented as a ratio between two relatively
prime integers. Then

Rn = Ωn +O(ρn) (2.40)

for some ρ < 1.

2.2. Shannon Code Redundancy for Markov Sources 23

Before we prove Theorem 2.2.1, we give some comments. Theorem 2.2.1
tells us that, as in the memoryless case, Rn has two modes of behavior. In the
convergent mode, which happens when at least one αjk is irrational, Rn → 1/2.
In the oscillatory mode, which happens when all {αjk} are rational, Rn oscillates
and it asymptotically coincides with Ωn.

The expression of the oscillatory case, Ωn, is not quite intuitive at first glance,
therefore we make an attempt to give some quick insight which captures the
essence of the main points. The arguments here are informal and non-rigorous
(see Section 2.2.1 for a rigorous proof). The Fourier series expansion of the
periodic function 〈u〉 is given by

〈u〉 = 1

2
+
∑

h 6=0

che
2πihu. (2.41)

The important fact about the coefficients ch = i/(2πh) is that they are inversely
proportional to h, so that for every two integers k and h, ch·k = ch/k. Now,
when computing Rn = E[〈logP (Xn)〉], let us take the liberty of exchanging the
order between the expectation and the summation, that is,

Rn =
1

2
+
∑

h 6=0

chE[e2πih logP (Xn)]. (2.42)

It turns out that under the conditions of the oscillatory mode, E[e2πih logP (Xn)]
tends to zero as n → ∞ for all h, except for multiples of M , namely, h = ℓM ,
l = ±1,±2, Thus, for large n, we have

Rn ≈
1

2
+
∑

ℓ 6=0

cℓME[e2πiℓM logP (Xn)]

=
1

2
+

1

M

∑

ℓ 6=0

cℓE[e2πiℓM logP (Xn)]

=
1

2
+

1

M

[
E[〈M logP (Xn)〉]− 1

2

]

=
1

2

(
1− 1

M

)
+

1

M
E[〈M logP (Xn)〉]. (2.43)

Now, consider the set of all xn that begin from state x1 = j and end at
state xn = k. Their total probability is about pjπk for large n since Xn is
almost independent of X1. It turns out that all these sequences have exactly
the same value of 〈M logP (xn)〉, which is exactly 〈ζjk(n)〉 (or, in other words,
〈M logP (xn)〉 = 〈ζx1xn(n)〉 independently of x2, . . . , xn−1) and this explains

24 Chapter 2. Shannon and Huffman FV Codes

the expression of Ωn. The reason for this property of 〈M logP (xn)〉 is the
rationality conditions 〈M · αuv〉 = 0, u, v ∈ {0, 1, . . . ,m− 1}, which imply that
〈M log p(xt|xt−1)〉 = 〈M log[p(xt|1)p(0|0)/p(xt−1|0)]〉, and so,

〈M logP (xn)〉 = 〈M log pj〉+
n∑

t=2

〈M log p(xt|xt−1)〉 mod 1

= 〈M log pj〉+
n∑

t=2

〈M log[p(xt|1)p(0|0)/p(xt−1|0)]〉 mod 1

which, thanks to the telescopic summation, is easily seen to coincide with the
fractional part of ζjk(n), and of course, 〈ζjk(n)〉 depends on ζjk(n) only via its
fractional part.

We will illustrate Theorem 2.2.1 on one example.

Example 2.2.2. Consider a Markov source for which the rows of P are all
permutations of the first row, which is p = (p0, . . . , pm−1). Now, assuming
that αj := log(p1/pj) are all rational, let M be the least common multiple of
their denominators (i.e., the common denominator) when each one of them is
expressed as a ratio between two relatively prime integers. Then,

〈ζjk(n)〉 = 〈M(n− 1) log p(0|0)−M log p(j|0) +M log p(k|0)
+M log pj〉

= 〈M(n− 1) log p0 −M log pj +M log pk +M log pj〉
= 〈M(n− 1) log p0 +M log pk〉
= 〈Mn log p0 −M log p0 +M log pk〉
= 〈Mn log p0〉,

where in the last step, we have used the fact that (M log p0 −M log pk) is an
integer and that 〈u〉 is a periodic function with period 1. We have

Rn =
1

2

(
1− 1

M

)
+

1

M

m−1∑

j=0

m−1∑

k=0

pjπk〈ζjk(n)〉+ o(1)

=
1

2

(
1− 1

M

)
+

1

M

m−1∑

j=0

m−1∑

k=0

pjπk〈nM log p1〉+ o(1)

=
1

2

(
1− 1

M

)
+

1

M
〈nM log p0〉+ o(1). (2.44)

If not all αj are rational, then Rn → 1/2, as predicted by Theorem 2.2.1.

2.2. Shannon Code Redundancy for Markov Sources 25

To see why the conditions of Theorem 2.2.1 lead to the rationality condition
herein, let us denote

ujk = 〈h log[p(j|0)/p(k|0)]〉 ,
vjk = 〈h log[p(j|j)/p(j|k)]〉 .

Then, the conditions of Theorem 2.2.1 mean that ujk + vjk = 0 and for all
pairs j and k. Therefore, the number of constraints here is of the order of m2,
whereas the number of degrees of freedom that generate these variables, in this
example, is m − 1, i,e., the variables 〈h log(p1/pj)〉, j = 1, 2, . . . ,m − 1. Thus,
we can think of this as an overdetermined set of homogeneous linear equations
whose only solution is zero, meaning that all 〈h log(p1/pj)〉, j = 1, 2, . . . ,m− 1,
vanish. Note that the memoryless source is a special case of this example, where
the rows of P are all identical to the first row, (p0, . . . , pm−1). Indeed, (2.44)
coincides with the expression of the memoryless case as discussed in the first
subsection of this chapter.

2.2.1. Proof of Theorem 2.2.1

The main idea behind the analysis of Rn = E[〈logP (Xn)〉] is to approximate
the periodic function 〈·〉 by a sequence of trigonometric polynomials, and then to
commute the expectation with the summation and analyze the various terms of
the series. Actually this is the same idea that is used in Appendix E for the proof
of Lemma E.1.3. The main Fourier analytic tool that we use is an approximation
lemma by Vaaler (1985) (see also Theorem E.1.2 in Appendix E). The following
analysis is very close to the proof of Lemma E.1.3.

Define the functions ̺−H and ̺+H as

̺−H(y) = CH(y)−DH(y) (2.45)

and
̺−H(y) = CH(y) +DH(y), (2.46)

where the functions CH(y) and DH(y) are given as finite Fourier series

CH(y) =
∑

|h|≤H

ch(H)e2πihy, DH(y) =
∑

|h|≤H

ch(H)e2πihy

for which the coefficients satisfy

c0(α,H) =
1

2
, |ch(H)| ≤ 1

2π|h| , |dh(H)| ≤ 1

2H + 2
.

26 Chapter 2. Shannon and Huffman FV Codes

As stated in Theorem E.1.2 in Appendix E the functions ̺−H and ̺+H satisfy

̺−H(y) ≤ 〈y〉 ≤ ̺+H(y).

We now proceed to establish upper and lower bounds for Rn, however, we
only present details for the lower bound. We have

Rn = E [〈logP (Xn)〉]
≥ E

[
̺−H(logP (Xn))

]

=
1

2
+

∑

1≤|h|≤H

ch(H)E
[
e2πih logP (Xn)

]

− d0 −
∑

1≤|h|≤H

dh(H)E
[
e2πih logP (Xn)

]
. (2.47)

We next show that in the irrational case we have

lim
n→∞

E
[
e2πih logP (Xn)

]
= 0 (2.48)

for all integers h 6= 0. Clearly, if (2.48) holds then it follows that

lim inf
n→∞

Rn ≥
1

2
− 1

2H + 2

for all integers H ≥ 1 and thus lim infn→∞Rn ≥ 1
2 . We ask in Exercise 2.6 to

complete the derivation and establish an upper bound. Consequently we have
Rn = 1

2 + o(1) (as n→∞) in the irrational case.
In order to show (2.48) in the irrational case, we define the m×m complex

matrix Ah whose entries are

ajk(h) = p(k|j) exp [2πih log p(k|j)] , j, k = 0, . . . ,m− 1. (2.49)

We also define the m–dimensional column vectors

ch = (p0 exp[2πih log p0)], . . . , pm−1 exp[2πih log pm−1])
T , (2.50)

and 1 = (1, 1, . . . , 1)T , where the superscript T denotes vector/matrix transpo-
sition. Then, according to (2.34) it follows that

E
[
e2πih log P (Xn)

]
= c

T
hA

n−1
h 1. (2.51)

Let lj,h and rj,h be, respectively, the left eigenvector and the right eigenvector
pertaining to the eigenvalue λj,h (j = 0, 1, . . . ,m − 1) of the matrix Ah. Here,

2.2. Shannon Code Redundancy for Markov Sources 27

we index the eigenvalues of Ah according to a non–increasing order of their
modulus, that is,

|λ1,h| ≥ |λ2,h| ≥ · · · ≥ |λm,h|. (2.52)

Since P is a stochastic matrix (so, its maximum modulus eigenvalue is 1) and its
elements are the absolute values of the corresponding elements of Ah, it follows
from from Theorem 8.4.5 of Noble and Johnson (1985) that |λ1,h| ≤ 1 (and
hence |λj,h| ≤ 1 for all j = 0, 1, . . . ,m− 1). Also, the systems of left– and right
eigenvectors form a bi-orthogonal system, i.e., lTj,hrk,h = 0, j, k = 0, 1, . . . ,m−1,

j 6= k. We scale these vectors such that lTj,hrj,h = 1 for all j = 0, 1, . . . ,m − 1.
For a quadratic matrix A the spectral radius is denoted by ρ(A).

By the spectral representation of matrices, we have

An−1
h 1 =

m−1∑

j=0

λn−1
j,h · lTj,h1 · rj,m, (2.53)

and so,

c
T
hA

n−1
h 1 =

m−1∑

j=0

λn−1
j,h · lTj,h1 · cTh rj,h. (2.54)

Now the following lemma, that appears in Noble and Johnson (1985) (with minor
modifications in its phrasing), is useful to show that |λ1,h| < 1 in the irrational
case.

Lemma 2.2.3 (see Theorem 8.4.5, Noble and Johnson (1985)). Let F = {fkj}
and G = {gkj} be two m×m matrices. Assume that F is a real, non–negative
and irreducible matrix, G is a complex matrix, and fkj ≥ |gkj | for all k, j ∈
{0, 1, . . . ,m− 1}. Then, ρ(G) ≥ ρ(F) with equality if and only if there exist real
numbers s, and w0, . . . , wm−1 such that G = e2πisDFD−1, where

D = diag
(
e2πiw0 , . . . , e2πiwm−1

)
.

The proof of the necessity of the condition G = e2πisDFD−1 appears in
Noble and Johnson (1985). The sufficiency is obvious since the matrix DFD−1

is similar to F and hence has the same set of eigenvalues.
We wish to apply Lemma 2.2.3 in order to distinguish between the two afore-

mentioned cases concerning the spectral radius of Ah. Consider the state tran-
sition probability matrix P in the role of F of Lemma 2.2.3 (i.e., fkj = p(j|k))
and the matrix Ah in the role of G. Since P is assumed positive in this part,
then it is obviously non–negative and irreducible. Since it is a stochastic ma-
trix, its spectral radius is, of course, ρ(P) = 1. Also, by definition of Ah, as the
matrix {p(j|k) ·exp[2πih log p(j|k)]}, it is obvious that the elements of P are the

28 Chapter 2. Shannon and Huffman FV Codes

absolute values of the corresponding elements of Ah, and so, all the conditions
of Lemma 2.2.3 clearly apply. The lemma then tells us that ρ(Ah) = ρ(P) = 1
if and only if there exist real numbers s and w0, . . . wm−1 such that for some
integer h:

h log p(j|k) = (s+ wk − wj) mod 1, j, k = 0, . . . ,m− 1, (2.55)

where x = y mod 1 means that the fractional parts of x and y are equal, that
is, 〈x〉 = 〈y〉.

To find a vector w = (w0, . . . , wm−1) and a number s with this property
(if exists), we take the following approach: Consider first the choice k = j in
(2.55). This immediately tells us that s, if exists, must be equal to h log p(j|j)
(mod 1) for every j = 0, . . . ,m− 1. In other words, one set of conditions is that
h log p(j|j) are all equal (mod 1), or equivalently,

〈
h log

p(j|j)
p(0|0)

〉
= 0, j = 0, 1, . . . ,m− 1, (2.56)

and then s is taken to be the common value of all 〈h log p(j|j)〉. Thus, (2.55)
becomes

− h log p(j|j)
p(j|k) = (wk − wj) mod 1, j, k = 0, . . . ,m− 1, (2.57)

and it remains to find the vector w if possible. To this end, observe that if w
satisfies (2.57), then for every constant c, w + c also satisfies (2.57). Taking
c = −w0, the first component of w, is arbitrary. It is apparent that if (2.57) can
hold for some w, then there is such a vector whose first component vanishes,
and then by setting k = 0 in (2.57), we learn that

wj =

〈
−h log p(j|0)

p(j|j)

〉
, j = 0, . . . ,m− 1, (2.58)

is a legitimate choice. Thus, (2.57) becomes
〈
−h log

[
p(j|0)p(j|j)
p(k|0)p(j|k)

]〉
= 0 j, k = 0, . . . ,m− 1. (2.59)

Note that by setting k = 0 in (2.59), we get (2.56) as a special case, which
means that (2.59), applied to all j, k ∈ {0, 1, . . . ,m − 1}, are all the necessary
and sufficient conditions needed for ρ(Ah) = 1. Now, a necessary and sufficient
condition for (2.59) to hold for some integer h, is that the numbers

αjk = log

[
p(j|0)p(j|j)
p(k|0)p(j|k)

]
(2.60)

2.2. Shannon Code Redundancy for Markov Sources 29

would be all rational.
Summing up, it follows that ρ(Ah) < 1 if at least one αjk is irrational. Hence,

as explained above, it follows in this case that Rn ∼ 1
2 + o(1). This establishes

the first part of Theorem 2.2.1.
If all αjk are rational, then we have to argue in a different way. We have

already did some heuristic calculations indicating what kind of result we can
expect. Actually, we can use a method similarly to the calculations of (2.8) and
Lemma 2.1.2, properly adapted to Markov sources, that covers the rational case.

In order to simplify the presentation, we consider just the binary casem = 2.
The general case is just notationally more involved. First, we split up the sum
according to the initial and final states

E [〈logP (Xn)〉] =
∑

x1,...,xn

P (xn)〈logP (xn)〉

=
1∑

j=0

1∑

k=0

∑

x1=j,xn=k

P (xn)〈logP (xn)〉.

Let us consider (first) the case j = k = 0 and denote by kij is the number of
pairs (ij) in xn. Clearly, k00 + k01 + k10 + k11 = n− 1. But also k01 = k10 since
the number of pairs ending at 1 must be equal to the number of pairs starting
with 1 (for in depth discussion of Markov types see Section 11.2 of Chapter 11).
We then can write P (xn) as

P (xn) = p0P (0|0)k00P (0|1)k01P (1|0)k10P (1|1)k11 ,

= p0[P (0|0)]n−1

[
P (0|1)P (1|0)
P (0|0)P (0|0)

]k01
[
P (1|1)
P (0|0)

]k11

.

Hence, using (2.36), we can represent logP (xn) as

logP (xn) = (n− 1) logP (0|0) + log p0 − k01α01 + k11α10.

By assumption, we can write α01 = L0/M and α10 = L1/M assuming that
gcd(L0, L1,M) = 1. Thus, 〈logP (xn)〉 is constant if −k01L0+k01L1 is in a fixed
residue class mod M . With the help of the following lemma, which generalizes
Lemma 2.1.2 to Markov sources, we are then able to evaluate asymptotically the
sum ∑

x1=xn=0

P (xn)〈logP (xn)〉.

Lemma 2.2.4. Suppose thatM ≥ 1 and that L0 and L1 satisfy gcd(L0, L1,M) =
1. Then, for every 0 ≤ ℓ < M and 0 ≤ j, k ≤ 1 there exists ρ < 1 such that

∑

x1=j, xn=k,−k01L0+k01L1≡ℓ mod M

P (xn) =
pjπk
M

+O(ρn). (2.61)

30 Chapter 2. Shannon and Huffman FV Codes

Proof. We start with the case j = k = 0. Let G00(z) and G01(z) be the
generating function

G00(z) =
∑

n≥1

∑

x1=xn=0

P (xn)zn, G01(z) =
∑

n≥1

∑

x1=0, xn=1

P (xn)zn.

Then these generating function satisfy the following system of linear equations:

G00(z) = G00(z)p(0|0)z +G01(z)p(1|0)z + p0z,

G01(z) = G00(z)p(0|1)z +G01(z)p(1|1)z.

In particular it follows that

G00(z) =

∣∣∣∣
p0z −p(1|0)z
0 1− p(1|1)z

∣∣∣∣
∣∣∣∣
1− p(0|0)z −p(1|0)z
−p(0|1)z 1− p(1|1)z

∣∣∣∣

=
p0z(1− p(1|1)z)

1− (p(0|0) + p(1|1))z + (p(0|0)p(1|1)− p(0|1)p(1|0))z2 .

Note that this identity is also true if the p(j|k) are treated as formal variables.
However, if we assume that p(0|0) + p(0|1) = p(1|0) + p(1|1) = 1 then we have

G00(z) =
p0z(1− p(1|1)z)

(1− z)(1− (p(0|0) + p(1|1)− 1)z)

which implies that

[zn]G00(z) =
p0(1− p(1|1))

2− p(0|0)− p(1|1) +O(|1 − p(0|0)− p(1|1)|n) = p0π0 +O(ρn)

for ρ = |1− p(0|0)− p(1|1)| < 1.
Furthermore, by setting ωr = e2πir/M and by using (2.10), we have

∑

x1=j, xn=k,−k01L0+k01L1≡ℓ mod M

P (xn) = [zn]
1

M

M−1∑

r=0

ω−ℓ
r · (2.62)

p0z(1− p(1|1)ωL1
r z)

1− (p(0|0) + p(1|1)ωL1
r)z + (p(0|0)p(1|1)ωL1

r − p(0|1)ωL0
r p(1|0))z2

,

that is, we replace p(0|1) by p(0|1)ωL0
r and p(1|1) by p(0|1)ωL1

r , r = 0, . . . ,M−1.
Note that for r = 0 we already observed that [zn](1/M)G00(z) = (1/M)p0π0 +

2.2. Shannon Code Redundancy for Markov Sources 31

O(ρn). Thus it remains to show that the corresponding contributions for r =
1, . . . ,M − 1 are negligible. For this purpose we consider the matrix

A(r) =

(
p(0|0) p(0|1)ωL0

r

p(1|0) p(1|1)ωL1
r

)
.

For r = 0 we clearly have ρ(A(0)) = 1 for the spectral radius. If we can show
that ρ(A(r)) < 1 for r = 1, . . . ,M − 1 then the following polynomial

∣∣∣∣
1− p(0|0)z −p(0|1)ωL0

r z
−p(1|0)z 1− p(1|1)ωL1

r z

∣∣∣∣

= 1− (p(0|0) + p(1|1)ωL1
r)z +

+(p(0|0)p(1|1)ωL1
r − p(0|1)ωL0

r p(1|0))z2 (2.63)

has no zeros of modulus |z| ≤ 1 (see Exercise 2.9). Hence both poles of the
corresponding generating function have modulus > 1 which implies that the
n-th coefficient can be bounded by O(ρn) for some ρ < 1.

In order to show that ρ(A(r)) < 1 we just have to apply (again) Lemma 2.2.3
and directly observe that ρ(A(r)) = 1 would imply that ωL0

r = ωL1
r = 1 which can

only occur for r = 0 (here we have to use the assumption gcd(L0, L1,M) = 1).
The other cases (where j = 1 or k = 1) can be handled in completely the

same way.

Summing up, this shows that

Rn =
1∑

j=0

1∑

k=0

pjπk
1

M

M−1∑

ℓ=0

〈
ℓ+ ζjk(n)

M

〉
+O(ρn).

We should observe that the term pjπk is approximately the probability of X1 = j
and Xn = k since for large n X1 and Xn are almost independent. Thus we
immediately obtain (2.40) completing the proof of Theorem 2.2.1.

2.2.2. Extension to Irreducible Aperiodic Markov Sources

We now discuss some extensions of Theorem 2.2.1. In particular, we drop the
assumption that all transition probabilities must be strictly positive and assume
that P corresponds to an irreducible aperiodic Markov source.

When some of the entries of the matrix P vanish, then obviously, Theo-
rem 2.2.1 cannot be used as the corresponding parameters αjk are no longer
well defined. Lemma 2.2.3, which stands at the heart of the proof of Theo-
rem 2.2.1, can still be used as long as P is irreducible, but more caution should

32 Chapter 2. Shannon and Huffman FV Codes

be exercised. The key issue is still to determine whether there exist parameters
s and w that satisfy

h log p(j|k) = (s+ wk − wj) mod 1, (2.64)

but now these equations are imposed only for the pairs (j, k) for which p(j|k) > 0
(as for the other pairs ajk(h) = p(j|k) = 0 satisfy the conditions of Lemma 2.2.3
automatically anyway).

For example, if one or more diagonal element of P is positive, and for all
positive p(j|j), the numbers 〈h log p(j|j)〉 are equal, then s can still be taken
to be the common value of all these numbers. If, in addition, at least one
row of P is strictly positive, say, row number l, then wj can be taken to be
〈−h log[p(l|l)/p(j|l)]〉, and then the rationality condition of Theorem 2.2.1 is
replaced by the condition that

α′
jk = log

[
p(j|0)p(0|0)
p(k|0)p(j|k)

]
(2.65)

must be rational for all (j, k) with p(j|k) > 0.
For a general non-negative matrix P, however, it may not be a trivial task to

determine whether (2.64) has a solution, and if so, what this solution is. In fact,
it may be simpler and more explicit to check directly if Ah has an eigenvalue on
the unit circle (which thereby dictates s) and then to find w using Lemma 2.2.3.
This leads to the following generalized version of Theorem 2.2.1.

Theorem 2.2.5. Consider the Shannon code of block length n for an irre-
ducible aperiodic Markov source. Let M be defined as the smallest positive inte-
ger h such that

ρ(Ah) ≡ |λ1,h| = 1 (2.66)

and set M =∞ if (2.66) does not hold for any positive integer h. Then, Rn is
characterized as follows:
(a) If M =∞, then

Rn =
1

2
+ o(1). (2.67)

(b) If M < ∞, then the asymptotic representation of Theorem 2.2.1, part (b),
holds with ζjk(n) being redefined according to

ζjk(n) = −M [(n− 1)s+ wj − wk − log pj], (2.68)

where

s =
arg(λ1,M)

2π
(2.69)

2.2. Shannon Code Redundancy for Markov Sources 33

and

wj =
arg(xj)

2π
, j = 0, 1, . . . ,m− 1, (2.70)

xj being the j–th component of the right eigenvector x of AM , which is associated
with the dominant eigenvalue λ1,M .

The proof of Theorem 2.2.5 is very similar to that of Theorem 2.2.1 and hence
we will not provide it here. In a nutshell, we observe that the Perron–Frobenius
Theorem and Lemma 2.2.3 are still applicable. Then, we use the necessity of
the condition Ah = e2πisDPD−1 and the fact that once this condition holds,
the vector

x = D · 1 = (e2πiw0 , . . . , e2πiwm−1)T

is the right eigenvector associated with the dominant eigenvalue λ1,m = e2πis.
We again have to prove a corresponding analogue of Lemma 2.2.4.

Finally, we present an example with a reducible Markov source for which our
results do not apply. In particular, in this case there is only one convergent
mode of behavior.

Example 2.2.6. Consider the case m = 2, where p(0|1) = 0 and α := p(1|0) ∈
(0, 1), i.e.,

P =

(
1− α α
0 1

)
. (2.71)

Assume also that p0 = 1 and p1 = 0. Since this is a reducible Markov source
(once in state 1, there is no way back to state 1), we cannot use Theorems 2.2.1
and 2.2.5, but we can still find an asymptotic expression of the redundancy in
a direct manner: Note that the chain starts at state ‘0’ and remains there for
a random duration, which is a geometrically distributed random variable with
parameter (1−α). Thus, the probability of k 0’s (followed by n−k 1’s) is about
(1 − α)k · α (for large n) and so the argument of the function 〈·〉 should be the
logarithm of this probability. Taking the expectation w.r.t. the randomness of
k, we readily have

Rn =

∞∑

k=0

α(1− α)k〈logα+ k log(1− α)〉 + o(1). (2.72)

We see then that there is no oscillatory mode in this case, as Rn always tends
to a constant that depends on α, in contrast to the convergent mode of Theo-
rems 2.2.1 and 2.2.5, where the limit is always 1/2, independently of the source
statistics. To summarize, it is observed that the behavior here is very different
from that of the irreducible case, characterized by Theorems 2.2.1 and 2.2.5.

34 Chapter 2. Shannon and Huffman FV Codes

2.3. Maximal Redundancy for a Generalized Shannon Code

In this section we switch from the average redundancy to the worst case or
maximal redundancy. For a given probability distribution P on an alphabet A,
we are looking for a prefix code that minimizes the maximal redundancy R∗(P),
that is,

R∗(P) = min
C

max
x∈A

[L(C, x) + logP (x)]. (2.73)

To solve this optimization problem we introduce a generalized Shannon code
denoted as CGS . We write the code length of a generalized Shannon code as

L(x,CGS) =

{
⌊log 1/P (x)⌋ if x ∈ L
⌈log 1/P (x)⌉ if x ∈ U ,

where L∪U = A is a partition of the alphabet A. In addition, we shall postulate
that Kraft inequality holds, that is, we have (for the binary case)

∑

x∈L
P (x)2〈− logP (x)〉 +

1

2

∑

x∈U
P (x)2〈− logP (x)〉 ≤ 1.

Our main result of this section is to prove that there exists a generalized
Shannon code that is optimal with respect to the maximal redundancy as for-
mulated in (2.73).

Theorem 2.3.1 (M. Drmota and W. Szpankowski, 2004). If the probability dis-
tribution P is dyadic, i.e. logP (x) ∈ Z for all x ∈ A, then R∗

n(P) = 0. Other-
wise, let t0 ∈ T = {〈− logP (x)〉 : x ∈ A} be the largest t such that

∑

x∈Lt

P (x)2〈− logP (x)〉 +
1

2

∑

x∈Ut

P (x)2〈− logP (x)〉 ≤ 1, (2.74)

where
Lt := {x ∈ A : 〈− logP (x)〉 < t}

and
Ut := {x ∈ A : 〈− logP (x)〉 ≥ t}.

Then
R∗(P) = 1− t0 (2.75)

and the optimum is obtained for a generalized Shannon code with L = Lt0 and
U = Ut0 .

2.3. Maximal Redundancy for a Generalized Shannon Code 35

Proof. If P is dyadic then the numbers l(x) := − logP (x) are positive integers
satisfying ∑

x

2−l(x) = 1.

Kraft’s inequality holds and consequently there exists a (prefix) code C with
L(C, x) = l(x) = − logP (x) for all x ∈ A, and this R∗(P) = 0.

Now assume that P is not dyadic and let C∗ denote the set of optimal codes,
i.e.

C∗ = {C ∈ C : R∗(C,P) = R∗(P)}.
The idea of the proof is to establish several properties of an optimal code. In
particular, we will show that there exists an optimal code C∗ ∈ C∗ with the
following two properties:

(i) For all x
⌊− logP (x)⌋ ≤ L(C∗, x) ≤ ⌈− logP (x)⌉ (2.76)

(ii) There exists s0 ∈ (0, 1] such that

L(C∗, x) = ⌊log 1/P (x)⌋ if 〈log 1/P (x)〉 < s0 (2.77)

and
L(C∗, x) = ⌈log 1/P (x)⌉ if 〈log 1/P (x)〉 ≥ s0. (2.78)

Observe that without losing generality we may assume that s0 = 1 − R∗(P).
Thus, in order to compute R∗(P) we just have to consider codes satisfying (2.77)
and (2.78). As already mentioned, (2.74) is just Kraft’s inequality for codes of
that kind. The optimal choice is t = t0 which also equals s0. Consequently
R∗(P) = 1− t0.

In view of the above, it suffices to prove properties (i) and (ii). Assume
that C∗ is an optimal code. First of all, the upper bound in (2.76) is obviously
satisfied for C∗. Otherwise we would have

max
x

[L(C∗, x) + logP (x)] > 1

which contradicts a simple bound applied to a regular Shannon code. Second,
if there exists x such that L(C∗, x) < ⌊log 1/P (x)⌋, then (in view of Kraft’s

inequality) we can modify this code to a code C̃∗ with

L(C̃∗, x) = ⌈log 1/P (x)⌉ if L(C∗, x) = ⌈log 1/P (x)⌉,
L(C̃∗, x) = ⌊log 1/P (x)⌋ if L(C∗, x) ≤ ⌊log 1/P (x)⌋.

36 Chapter 2. Shannon and Huffman FV Codes

By construction, R∗(C̃∗, P) = R∗(C∗, P). Thus, C̃∗ is optimal, too. This proves
(i).

Now consider an optimal code C∗ satisfying (2.76) and let x̃ ∈ A with
R∗(P) = 1 − 〈− logP (x̃)〉. Thus, L(C∗, x) = ⌊log 1/P (x)⌋ for all x with
〈− logP (x)〉 < 〈− logP (x̃)〉. This proves (2.77) with s0 = 〈− logP (x̃)〉. Fi-
nally, if (2.78) is not satisfied, then (in view of Kraft’s inequality) we can modify

this code to a code C̃∗ with

L(C̃∗, x) = ⌈log 1/P (x)⌉ if 〈log 1/P (x)〉 ≥ s0,
L(C̃∗, x) = ⌊log 1/P (x)⌋ if 〈log 1/P (x)〉 < s0.

By construction, R∗(C̃∗, P) = R∗(C∗, P). Thus, C̃∗ is optimal, too. This proves
(ii) and the lemma.

We apply the above now to a binary memoryless source on the alphabet
An = {0, 1}n with parameter p.

Theorem 2.3.2. Let P be a binary Bernoulli source on the alphabet An =
{0, 1}n with parameter p and let R∗

n(p) denote the corresponding maximal re-
dundancy.
(i) If log 1−p

p is irrational then, as n→∞,

R∗
n(p) = −

ln ln 2

ln 2
+ o(1) = 0.5287 . . .+ o(1). (2.79)

(ii) If log 1−p
p = N

M (for some coprime integers M,N ∈ Z) is rational and
non-zero, then as n→∞

R∗
n(p) = o(1)+

− ⌊M log(M(21/M − 1))− 〈Mn log 1/(1− p)〉⌋+ 〈Mn log 1/(1− p)〉
M

. (2.80)

Finally, if log 1−p
p = 0 then p = 1

2 and R∗
n(1/2) = 0.

Proof. As before we set

α = log
1− p
p

, β = log
1

1− p .

Then
− log(pk(1− p)n−k) = αk + βn.

Since α is irrational, we know from the previous section that for any Riemann
integrable function f

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−kf(〈αk + βn〉) =

∫ 1

0

f(x) dx. (2.81)

2.3. Maximal Redundancy for a Generalized Shannon Code 37

Now set fs0(x) = 2x for 0 ≤ x < s0 and fs0(x) = 2x−1 for s0 ≤ x ≤ 1. We find

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−kfs0(〈αk + βn〉) = 2s0−1

ln 2
.

In particular, for

s0 = 1 +
ln ln 2

ln 2
= 0.4712 . . .

we obtain
∫ 1

0 f(x) dx = 1, so that the Kraft’s inequality becomes equality. This
implies that

lim
n→∞

R∗
n(p) = 1− s0 = 0.5287 . . .

which proves (2.79).
Now we establish the second part of Theorem 2.3.2, that is, log 1−p

p = N
M

is rational and non-zero (with coprime integers N,M). We use Lemma 2.1.5
applied to fs0(x) and obtain

n∑

k=0

(
n

k

)
pk(1− p)n−kfs0(〈αk + βn〉) = 1

M

M−1∑

m=0

fs0

(〈
mN

M
+ βn

〉)
+ o(1)

=
1

M

M−1∑

m=0

fs0

(
m+ 〈Mβn〉

M

)
+ o(1).

We suppose that s0 is of the form

s0 =
m0 + 〈Mβn〉

M

and choose m0 maximal such that

1

M

M−1∑

m=0

fs0

(
m+ 〈Mβn〉

M

)
=

2〈Mβn〉/M

M

(
m0−1∑

m=0

2m/M +

M−1∑

m=m0

2m/M−1

)

=
2(〈Mβn〉+m0)/M−1

M(21/M − 1)

≤ 1.

Thus
m0 =M + ⌊M log(M(21/M − 1))− 〈Mn log 1/(1− p)〉⌋,

38 Chapter 2. Shannon and Huffman FV Codes

and consequently

R∗
n(p) = 1− s0 + o(1)

= 1− m0 + 〈Mβn〉
M

+ o(1)

= −⌊M log(M(21/M − 1))− 〈Mn log 1/(1− p)〉⌋+ 〈Mnβ〉
M

+ o(1).

This completes the proof of Theorem 2.3.2.

2.4. Exercises

2.1 We say that a real-valued sequence xn is B-uniformly distributed if

D
(pn,k)
N (xn)→ 0 for pn,k =

(
n
k

)
pk(1− p)n−k. Provide a detailed proof of

the following theorem.

Theorem 2.4.1. Let 0 < p < 1 be a fixed real number and suppose
that the sequence xn is B-uniformly distributed modulo 1. Then for
every Riemann integrable function f : [0, 1]→ R we have

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−kf(〈xk + y〉) =

∫ 1

0

f(t) dt, (2.82)

where the convergence is uniform for all shifts y ∈ R.

See Appendix E for more details.

2.2 Prove the Weyl criteria presented below.

Theorem 2.4.2 (Weyl’s Criterion). A sequence xn is B-u.d. mod 1
if and only if

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−ke2πimxk = 0 (2.83)

holds for all m ∈ Z \ {0}.

2.3 Provide all details to prove Stubley’s formulas (2.12) and (2.13).

2.4 Prove Lemma 2.1.5 which we repeat here.

Bibliographical notes 39

Lemma 2.4.3. Let 0 < p < 1 be a fixed real number and suppose
that α = N

M is a rational number with gcd(N,M) = 1. Then, for every
bounded function f : [0, 1]→ R we have

n∑

k=0

(
n

k

)
pk(1 − p)n−kf(〈kα+ y〉) = 1

M

M−1∑

l=0

f

(
l

M
+
〈My〉
M

)

+ O(ρn)

uniformly for all y ∈ R and some ρ < 1.

2.5 Establish the following formula

E[L] = ⌈log ℓ⌉+ θ2
⌊log ℓ⌋+1

θℓ − 1
, θℓ = 1/2,

for the average length of the Golomb code.

2.6 Derive the corresponding upper bound to (2.47).

2.7 Prove Lemma 2.2.3

2.8 Provide details for the derivation of (2.62).

2.9 Prove that the polynomial defined in (2.63) has no zeros of modulus
|z| ≤ 1.

2.10 Provide a proof of Lemma 2.2.5.

2.11 Consider the following generalization of the average and worst case re-
dundancy. Let r be a real number and define the r-redundancy as follows

Rr(P) = max
C

(
∑

x

P (x)[l(x) + logP (x)]r

)1/r

.

Notice that r = 1 it reduces to the average redundancy while for r =∞
it comes the worst case redundancy. Find the optimal code.

2.12 Extend Theorem 2.3.2 to Markov sources.

Bibliographical notes

Since the appearance in 1952 of Huffman’s classical paper Huffman (1952) on
optimal variable length source coding, Huffman coding still remains one of the
most familiar topics in information theory. A good survey on this topic can
be found in Abrahams (2001). Over more than sixty years, insightful, elegant
and useful constructions have been set up to determine tighter bounds on the
Huffman code redundancy: see Capocelli and de Santis (1989, 1991), Gallager

40 Shannon and Huffman FV Codes

(1978), Manstetten (1980), Stubley (1994). Formulas (2.12) and (2.13) were
first derived in Stubley (1994). To the best of our knowledge the first precise
asymptotics of the Huffman redundancy was presented in Szpankowski (2000).
We base our presentation of the Huffman redundancy on this work. The Markov
case discussed in Section 2.2 is based on Merhav and Szpankowski (2013).

The worst case (maximum) redundancy was introduced by Shtarkov 1987.
The optimization problem (2.73) was likely for the first time presented in Drmota
and Szpankoski (2002) (see also Drmota and Szpankowski (2004)), however,
some earlier work can also be found in Campbell (1965), Nath (1975), Parker
(1980) where conditions for optimality of the Huffman and other codes were
given for a class of weight function and cost criteria.

Golomb code was introduced in Golomb (1996), however, we follow here the
description form Gallager and van Voorhis (1975) and Merhave, Seroussi, and
Weinberger (2000).

The theory of sequences distributed modulo 1 is well explained in Kuipers
and Niederreiter (1974), Drmota and Tichy (1997). See also Appendix E.

CHAPTER 3

Tunstall and Khodak VF Codes

In this and the next chapter we study variable-to-fixed (VF) length codes. Recall
that in the VF scenario, the source string x, say over an m-ary alphabet A =
{0, 1, . . . ,m − 1}, is partitioned into non-overlapping (unique) phrases, each
belonging to a given dictionary D. In what follows we will assume that D is
prefix free (no sting of D is prefix of another string in D) that guarantees the
uniqueness of the partioning. Such a dictionary D can be represented by a
complete m-ary parsing tree T . The dictionary entries d ∈ D correspond to the
leaves of the associated parsing tree, and, of course, the tree represention of D
can be directly algorithmically used to partition the source string. The encoder
represents then each element of D by a fixed length binary code word If the
dictionary D hasM entries, then the code word for each phrase has ⌈logM⌉ bits
(recall that log denotes the binary logarithm). The code C is, thus, a mapping
C : D → {0, 1}⌈logM⌉. Since the average length of this code is (trivially) ⌈logM⌉
the redundancy can be only small if the dictionary D has the property that all
d ∈ D have almost the same probability P (d) ≈ 1

M .
The best known variable-to-fixed length code is the Tunstall code that is

(almost) the same as the independently discovered Khodak code. Since the
Khodak code can be mathematically described in a more direct way we focus
our analysis mainly on the Khodak code. At the end of the chapter we study
also a Khodak code variant with phrase length constraints.

3.1. Variable-to-Fixed Codes

We start with a description of the Tunstall code for anm-ary memoryless source.
In such a code, edges in the m-ary parsing tree correspond to letters from the
source alphabet A = {0, 1, . . . ,m− 1} and are labeled by the alphabet probabil-
ities, say p0, . . . , pm−1. Every vertex in such a tree is assigned the probability of
the path leading to it from the root, as shown in Figure 3.1. This is, of course,
consistent with the assumption that we consider a memoryless source, the prob-

42 Chapter 3. Tunstall and Khodak VF Codes

Figure 3.1. Tunstall’s and Khodak’s Codes for M = 5, v = 4, binary
source with p = 0.6 (and q = 1 − p). Here the resulting dictionary is
D = {00, 01, 10, 110, 111}.

ability of a vertex is the product of probabilities of edges leading to it. Clearly
the probabilities of the leaves – that correspond to the dictionary D – add up to
1. The goal of the following algorithm is to construct a parsing tree such that
the probabilities of the leaves are as close as possible, that is, the distribution on
D is close to uniform. The algorithms starts with the trivial tree that contains
just the root (corresponding to the empty word and) that is labeled by the prob-
ability 1. At each iteration one selects a (current) leaf of highest probability, say
Pmax, and grows m children out of it with probabilities p0Pmax, . . . , pm−1Pmax.
Clearly all these probabilities are smaller than Pmax. After J iterations, the
parsing tree has J non-root internal nodes and M = (m− 1)J +m leaves, each
representing a distinct dictionary entry.

Another algorithm was proposed by Khodak (1969) who independently dis-
covered the Tunstall code using a rather different approach. Let us define pmin =
min{p0, . . . , pm−1}. Khodak suggested to choose a real number v > 1/pmin and
to grow a complete parsing tree until all leaves d ∈ D satisfy

pmin/v ≤ P (d) < 1/v. (3.1)

Khodak’s and Tunstall’s algorithms are illustrated in Figure 3.1 with the dic-
tionary D = {00, 01, 10, 110, 111} corresponding to strings represented by the
paths from the root to all terminal nodes.

3.2. Redundancy of the Khodak VF Code 43

It is known (see Exercise 3.1) that the parsing trees for the Tunstall and
Khodak algorithms are – in most instances — exactly the same, however, they
react differently to the probability tie when expanding a leaf. More precisely,
when there are several leaves with the same probability, the Tunstall algorithm
selects one leaf and expands it, then selects another leaf of the same probability,
and continues doing it until all leaves of the same probability are expanded. The
Khodak algorithm expands all leaves with the same probability simultaneously,
in parallel; thus there are “jumps” in the number of dictionary entries M when
the parsing tree grows. For example, in Figure 3.1 two nodes marked “0.24” will
be expanded simultaneously in the Khodak algorithm, and one after another by
the Tunstall algorithm.

Our goal is to present a precise analysis of the Khodak and Tunstall re-
dundancy as well as to provide some insights into the behavior of the parsing
tree (i.e., the path length distribution). In particular, we consider the average
redundancy rate r which is defined as

r =
logM

E[D]
− h, (3.2)

where E[D] =
∑

d∈D |d|P (d) is the average phrase length of the dictionary D
and

h := hS =

m−1∑

i=0

pi log(1/pi)

is the entropy rate of the source; we recall again that log denotes the binary log-
arithm. We note that E[D] is also known as the average delay, which is actually
the average path length from the root to a terminal node in the corresponding
parsing tree.

In passing we should mention here the Conservation of Entropy Property
which states that the entropy of the dictionary hD is related to the source entropy
hS as follows

hD = hSE[D]. (3.3)

We ask the reader in Exercise 3.2 to establish this relation.

3.2. Redundancy of the Khodak VF Code

For Khodak’s code, it follows from (3.1) that if y is a proper prefix of one or
more entries of D (that is, y corresponds to an internal node of the parsing tree
T), then

P (y) ≥ 1/v. (3.4)

44 Chapter 3. Tunstall and Khodak VF Codes

It is therefore easier to describe the internal nodes of the parsing tree T rather
than its leaves. We shall follow this approach when analyzing the phrase length
D of Khodak’s code.

In what follows we always fix some v > 0 and will denote by Dv the dictionary
of the corresponding Khodak code, by Mv the cardinality of Dv, and by Dv the
phrase lengths |d| of d ∈ Dv, considered as a random variable with probability
distribution P on Dv.

As mentioned above, our goal is to understand the behavior of the dictio-
nary size Mv and the probabilistic behavior of the phrase length Dv (when the
source is memoryless). We present our results for a general source alphabet
A = {0, 1, . . . ,m−1} of size m with probability pi for 0 ≤ i < m; however, most
proofs are for a binary source alphabet with p0 = p and p1 = q = 1− p.

We first deal withMv and provide a simple relation between it and parameter
v. To find an expression for Mv we introduce a new function A(v) defined as
the number of source strings with probability at least 1/v, that is,

A(v) =
∑

y:P (y)≥1/v

1. (3.5)

Observe that A(v) represents the number of internal nodes in Khodak’s con-
struction with parameter v of a Tunstall tree. Equivalently, A(v) counts the
number of strings y with the self-information − logP (y) ≤ log v. The function
A(v) satisfies the following recurrence

A(v) =

{
0 v < 1,
1 +A(vp0) + · · ·+A(vpm−1) v ≥ 1.

(3.6)

Indeed, by definition we have A(v) = 0 for v < 1. Now suppose that v ≥ 1.
Since every m-ary string is either the empty string or a string starting with
a source letter j where 0 ≤ j < m, we directly find the recurrence A(v) =
1 +A(vp0) + · · ·+A(vpm−1).

Since A(v) represents the number of internal nodes in Khodak’s construction
with parameter v it follows that the dictionary size is given by

Mv = |Dv| = (m− 1)A(v) + 1.

Therefore, it is sufficient to obtain asymptotic expansions for A(v) for v →∞.
To present these results succinctly, we need to introduce the concept of ra-

tionally related numbers.

Definition 3.2.1 (Rationally/irrationaly related). We say that log(1/p0), . . . ,
log(1/pm−1) are rationally related if there exists a positive real number L such

3.2. Redundancy of the Khodak VF Code 45

that log(1/p0), . . . , log(1/pm−1) are integer multiples of L, that is,

log(1/pj) = njL, nj ∈ Z, (0 ≤ j < m).

Without loss of generality we can assume that L is as large as possible which is
equivalent to gcd(n0, . . . , nm−1) = 1.

For example, in the binary case m = 2 this is equivalent to the state-
ment that the ratio log(1/p0)/ log(1/p1) is rational. Similarly we say that
log(1/p0), . . . , log(1/pm−1) are irrationally related if they are not rationally re-
lated.

Now are we ready to present our first result.

Theorem 3.2.2. We consider Khodak’s VF code with parameter v. If we as-
sume that log(1/p0), . . . , log(1/pm−1) are irrationally related, then

Mv = (m− 1)
v

h ln 2
+ o(v), (3.7)

where h denotes the entropy rate of the source.
Otherwise, when log(1/p0), . . . , log(1/pm−1) are rationally related, let L > 0

be the largest real number for which log(1/p1), . . . , log(1/pm) are integer multi-
ples of L. Then

Mv = (m− 1)
Q1(log v)

h
v +O(v1−η) (3.8)

for some η > 0, where

Q1(x) =
L

1− 2−L
2−L〈 x

L 〉, (3.9)

and, recall, 〈x〉 = x− ⌊x⌋ is the fractional part of the real number x.

Proof. We present the proof that is based on the Mellin transform. Furthermore,
for simplicity we only present it for the binary case m = 2. In Exercise 3.3 we
ask the reader to provide a detailed proof for m > 2.

The Mellin transform F ∗(s) of a function F (v) for complex s is defined as
(see Appendix D)

F ∗(s) =

∫ ∞

0

F (v)vs−1dv,

if it exists. Using the fact that the Mellin transform of F (ax) is a−sF ∗(s), a
simple analysis of recurrence (3.6) reveals that the Mellin transform A∗(s) of
A(v) is given by

A∗(s) =
−1

s(1− p−s
0 − p−s

1)
, ℜ(s) < −1.

46 Chapter 3. Tunstall and Khodak VF Codes

In order to find asymptotics of A(v) as v →∞ one can directly use the Taube-
rian theorem by Wiener-Ikehara (properly adapted for the Mellin transform, as
discussed in Appendix D)), which says that if F (v) = 0 for v < 1, F (v) ≥ 0 and
non-decreasing for v ≥ 1, and if 1

sF
∗(s) can be represented as

1

s
F ∗(s) = G(s) +

A0

s− s0
,

where G(s) is analytic for ℜ(s) < s0 and has a continuous extension to the half
plane ℜ(s) ≤ s0, then it follows that

F (v) ∼ A0v
−s0 .

In the present context we can apply this theorem directly in the case, where
log(p0)/ log(p1) is irrational. In this case we observe that s0 = −1 is the only
(polar) singularity on the line ℜ(s) = −1 (compare with Lemma D.3.1), that
A∗(s) exists for ℜ(s) < −1 and that (s + 1)A∗(s) can be analytically extended
to a region that contains the line ℜ(s) = −1. In particular one finds

A(v) ∼ v

h ln 2
, (v →∞).

This proves the first part of Theorem 3.2.2.
In the rational case, that is, log(1/p0) = n0L and log(1/p1) = n1L for

coprime integers n0, n1 we just have to analyze the recurrence

Gn = 1 +Gn−n0 +Gn−n1 , (3.10)

where Gn abbreviates A(2Ln). Equivalently we have A(v) = G(⌊log v⌋/L). By
setting

G(z) =
∑

n≥0

Gnz
n

we obtain from (3.10) the relation

G(z) =
1

(1− z)(1− zn0 − zn1)
.

This rational function has a dominant simple polar singularity at z0 = 2−L < 1.
Since n0 and n1 are coprime there are no other polar singularities on the circle
|z| = 2−L. Thus, from the representation

G(z) =
1

(1 − z0)(n0z
n0
0 + n1z

n1
0)

1

1− z/z0
+H(z),

3.2. Redundancy of the Khodak VF Code 47

where H(z) is analytic for |z| < z0 + κ for some κ > 0, we directly get

Gn =
1

(1− 2−L)(n02−n0L + n12−n1L)
2Ln +O(2Ln(1−η))

for some η > 0 and consequently

A(v) =
L2−L〈logv/L〉

(1 − 2−L)

v

h
+O(v(1−η)).

As above, 〈x〉 is the fractional part of x.

Next we deal with our main goal, namely the analysis of the phrase length
and Khodak’s code redundancy. We start with deriving the moment generating
function of the phrase length Dv and then its moments. Let us define the
probability generating function D(v, z) of the phrase length D := Dv for the
Khodak code with parameter v as

D(v, z) := E[zDv] =
∑

d∈Dv

P (d)z|d|.

However, it is better to work with another generating function describing the
probabilities of strings which correspond to internal nodes in the parsing tree
Tv. Therefore, we also define

S(v, z) =
∑

y: P (y)≥1/v

P (y)z|y|. (3.11)

Lemma 3.2.3. The function S(v, z) satisfies the following recurrence

S(v, z) =

{
0 v < 1,
1 + p0zS(vp0, z) + · · ·+ pm−1zS(vpm−1, z) v ≥ 1.

(3.12)

Furthermore,
D(v, z) = 1 + (z − 1)S(v, z) (3.13)

for all complex z.

Proof. The recurrence (3.12) can be derived in the same way as for A(v). The
relation (3.13) follows from the following general fact on trees.

Let D̃ be a uniquely parsable dictionary (e.g., leaves in the corresponding

parsing tree) and Ỹ be the collection of strings which are proper prefixes of one
or more dictionary entries (e.g., internal nodes). Then for all complex z

∑

d∈D̃

P (d)
(
1 + z + · · · z|d|−1

)
=
∑

y∈Ỹ

P (y)z|y|, (3.14)

48 Chapter 3. Tunstall and Khodak VF Codes

This can be deduced directly by induction and implies (3.13) as the reader is
asked to check in Exercise 3.4.

Alternatively we can use the following result (see Exercise 3.5). For every
real-valued function G defined on strings over A

∑

d∈D
P (d)G(d) = G(∅) +

∑

y∈Y
P (y)

∑

s∈A

P (ys)

P (y)
(G(ys)−G(y)) (3.15)

where ∅ denotes an empty string, D the set of external nodes and Y the set of
internal nodes. By choosing G(x) = z|x| we directly find

∑

d∈D
P (d)z|d| = z0 +

∑

y∈Y
P (y)

∑

s∈A
P (s)

(
z z|y| − z|y|

)

= 1 + (z − 1)
∑

y∈Y
P (y),

which again proves (3.14).

In view of Lemma 3.2.3 we conclude that

E[D] =
∑

y∈Y
P (y) = S(v, 1), E[D(D − 1)] = 2

∑

y∈Y
P (y)|y| = S′(v, 1)

This allows us to formulate our next result.

Theorem 3.2.4. We consider Khodak’s VF code with parameter v.
(i) If log(1/p0), . . . , log(1/pm−1) are irrationally related, then

E[Dv] = S(v, 1) =
log v

h
+

h2
2h2

+ o(1), (3.16)

where h2 =
∑m−1

i=0 pi log
2(1/pi), while in the rational case

E[Dv] = S(v, 1) =
log v

h
+

h2
2h2

+
Q2(log v)

h
+O(v−η) (3.17)

for some η > 0, where

Q2(x) = L ·
(
1

2
−
〈 x
L

〉)
(3.18)

for L as defined above.
(ii) The phrase length Dv in Khodak’s construction with parameter v of the
Tunstall code with a dictionary of size Mv over a biased memoryless source

3.2. Redundancy of the Khodak VF Code 49

(i.e., not all symbol probabilities are equal) satisfies a central limit law, that is,
as Mv →∞

Dv − 1
h logMv√(

h2

h3 − 1
h

)
logMv

→ N(0, 1)

where N(0, 1) denotes the standard normal distribution. Furthermore, we have

E[Dv] =
logMv

h
+O(1)

Var[Dv] ∼
(
h2
h3
− 1

h

)
logMv,

where Mv is give in Theorem 3.2.2.

Finally, before presenting a proof of Theorem 3.2.4, let us discuss its conse-
quences for the redundancy rate of the Khodak code. By combining (3.7) and
(3.16) resp. (3.8) and (3.17) we find for the irrational case

E[Dv] =
logMv

h
+

log(h ln 2/(m− 1))

h
+

h2
2h2

+ o(1)

and in the rational case we have

E[Dv] =
logMv

h
+

log(h/(m− 1))

h
+

h2
2h2

+

− logL+ log(1− 2−L) + L/2

h
+O(M−η

v).

Recall that L > 0 is the largest real number for which log(1/p0), . . . , log(1/pm−1)
are integer multiples of L. As a direct consequence, we can derive a precise
asymptotic formula for the average redundancy of the Khodak code, that is,

rKM =
logM

E[D]
− h .

The following result is a consequence of the above derivations.

Corollary 3.2.5. Let Dv denote the dictionary in Khodak’s construction of the
Tunstall code of size Mv. If log(1/p0), . . . , log(1/pm−1) are irrationally related,
then

rKMv
=

h

logMv

(
−h2
2h
− log(h ln 2/(m− 1))

)
+ o

(
1

logMv

)
.

50 Chapter 3. Tunstall and Khodak VF Codes

In the rational case we have

rKMv
=

h

logMv

(
− h2

2h
− log(h/(m− 1))− log

(
2L/2 − 2−L/2

L

))

+O

(
1

log2Mv

)

where L > 0 is the largest real number for which log(1/pi), 0 ≤ i ≤ m− 1, are
integer multiples of L.

3.2.1. Proof of Theorem 3.2.4.

Again we only present the proof of the binary case. In order to prove Theo-
rem 3.2.4(i), we consider

E[Dv] =
∑

y:P (y)≥1/v

P (y) = S(v, 1).

Here the Mellin transform is given by

D∗(s) =

∫ ∞

0

E[Dv]v
s−1 dv =

−1
s(1− p1−s

0 − p1−s
1)

(ℜ(s) < 0)

and it leads (in the irrational case) after applying a proper extension of the
Wiener-Ikehara theorem (see Theorem D.2.2 in Appendix D) to the asymptotic
equivalent

E[Dv] ∼
ln(v)

h ln 2
=

log(v)

h
.

Note that the double pole at s = 0 is responsible for the log-factor. Actually a
more careful analysis that is based on the inverse Mellin transform (see the last
part of Appendix D, properly adapted) determines also the second order term:

E[Dv] =
log(v)

h
+

h2
2h2

+ o(1).

In the rational case, it is easy to see (similarly to the proof of Theorem 3.2.2)
that

E[Dv] =
log(v)

h
+

h2
2h2

+
L

h

(
1

2
−
〈
log(v)

L

〉)
+O(rη)

for some η > 0, where we recall 〈x〉 is the fractional part of x.
The analysis of D(v, z) is more involved. Here we do not give a full proof

but restrict ourselves to the irrational case and give (only) a heuristic argument

3.2. Redundancy of the Khodak VF Code 51

bases on the Wiener-Ikehara Tauberian theorem discussed in Appendix D and
below. A full proof the reader is asked to provide in Exercise 3.3.

We assume that z is a real number close to 1, say |z − 1| ≤ δ. The Mellin
transform D∗(s, z) of D(v, z) with respect to v is

D∗(s, z) =
1− z

s(1 − zp1−s − zq1−s)
− 1

s
, (3.19)

for ℜ(s) < s0(z), where s0(z) denotes the real solution of the characteristic
equation:

zp1−s + zq1−s = 1, (3.20)

where now we write p := p0 and q := p1. It is easy to see that

s0(z) = −
z − 1

h ln 2
+

(
1

h ln 2
− h2

2h3 ln 2

)
(z − 1)2 +O(|z − 1|3) (3.21)

as z → 1.1

The next step is to determine the polar singularities of the meromorphic
continuation of D∗(s, z) right to the line ℜ(s) = s0(z), that is, we have to
analyze the set

Z(z) = {s ∈ C : zp1−s + zq1−s = 1} (3.22)

of all complex roots of the characteristic equation (4.14). This can be handled
with the help of Lemma D.3.1 from Appendix D. Since we restrict ourselves to
the irrational case it follows that s0(z) is the only root on the line ℜ(s) = s0(z).
For all other roots sk(z) (k ∈ Z ⊆ {0}) we have ℜ(sk(z)) > s0(z). Furthermore,
the additional zero s = 0 is canceled because of the additional term −1/s.

From Wiener-Ikehara’s Tauberian theorem we find that (for fixed z 6= 1)

D(v, z) =
1− z

zs0(z)h(s0(z)− 1) ln 2
v−s0(z)(1 + o(1)), (v →∞), (3.23)

where h(s) abbreviates

h(s) = p−s log(1/p) + q−s log(1/q).

Now if we assume that the error term in (3.23) is uniform in z then we can use
the local expansion (3.21) to obtain uniformly for |z − 1| ≤ δ as v → ∞, and
then

D(v, z) = v−s0(z)(1 +O(s0(z)) + o(1))

= v
z−1
h ln 2+(

1
h ln 2−

h2
2h3 ln 2

)(z−1)2+O(|z−1|3) (1 +O(|z − 1|) + o(1)) .

1Note that we now in a similar situation as described in Appendix D. The only difference is
that we are considering here the Mellin transform and not the Mellin-Stieltjes transform (that
differ only by a proper scaling).

52 Chapter 3. Tunstall and Khodak VF Codes

Recall that D(v, z) = E[zDv] is the probability generating function of the dic-
tionary length Dv and, therefore, it can be used to derive the limiting behavior.

We can use the local expansion (3.21) with z = et/(log v)1/2 to obtain

v−s0(z) = exp

(
log v

(
z − 1

h ln 2
−
(

1

h ln 2
− h2

2h3 ln 2

)
(z − 1)2 +O(|z − 1|3)

))

= exp

(
1

h
t
√
log v +

1

h

t2

2
−
(
1

h
− h2

2h3

)
t2 +O(t3/

√
log v)

)

= exp

(
1

h
t
√
log v +

(
h2
h3
− 1

h

)
t2

2
+O(t3/

√
log v)

)
.

Hence, we arrive at

E
[
et(Dv− 1

h log v)/
√
log v

]
= e−(t/h)

√
log vE

[
eDvt/

√
log v

]
∼ e t2

2 (
h2
h3 − 1

h). (3.24)

By Laplace’s theorem this would prove the normal limiting distribution as v →
∞ (and also convergence of all (centralized) moments as well as exponential tail
estimates).

In order to make this arguments rigorous we have to show that the asymptotic
relation (3.23) is uniform for |z − 1| ≤ δ. Instead of using a Tauberian theorem
we can also use the inverse Mellin transform

D(v, z) =
1

2πi
lim

T→∞

∫ σ+iT

σ−iT

D∗(s, z)v−s ds (3.25)

(with σ < s0(z)) and proceed as demonstrated at the end of Appendix D.
In the rational case we reduce the recurrence for D(v, z) to a discrete re-

currence (as is the proof of Theorem 3.2.2) which can be asymptotically solved
uniformly in z and provides a central limit theorem by Laplace’s theorem. The
reader is asked in Exercise 3.7 to provide a detailed proof of this claim.

3.3. Analysis of the Tunstall Code

Let us now return to the Tunstall code. Recall that the parsing tree is the same
as for the Khodak code, but in the case of a tie, the Tunstall code adds a phrase
one at a time, while the Khodak code all at once. Nevertheless, one should
expect similar results. Indeed, in the next theorem we present our findings for
the Tunstall code.

3.3. Analysis of the Tunstall Code 53

Theorem 3.3.1. Let D̃M denote the phrase length of the Tunstall code when
the dictionary size is M ≥ 1. Then for a biased source (i.e., when the probabil-
ities pi are not equal)

D̃M − 1
h logM√(

h2

h3 − 1
h

)
logM

→ N(0, 1),

where N(0, 1) denotes the standard normal distribution, and

E[D̃M] =
logM

h
+O(1),

Var[D̃M] ∼
(
h2
h3
− 1

h

)
logM

for M →∞.

Proof. We shall show that Theorem 3.3.1 can be deduced from Theorem 3.2.4.
(The converse is obviously true.) This follows, informally, from the fact that
Tunstall’s code and Khodak’s code are “almost equivalent” as discussed above.

Let’s be more precise. Suppose that v is chosen in a way that there exists a
word x with P (x) = 1/v. In particular the dictionary Dv contains all external

nodes d that are adjacent to internals x with P (x) = 1/v. Now let D̃M be the
dictionary (of size M) of any Tunstall code where only some of these internal
nodes x with P (x) = 1/v have been expanded. Then Dv is the Tunstall code
where all nodes x with P (x) = 1/v have been expanded. Hence, by this coupling

of the dictionaries we certainly have for the dictionary lengths |D̃M −Dv| ≤ 1.

This also implies that E[D̃M] = E[Dv] +O(1) and Var[D̃M −Dv] = O(1).
We observe that the central limit theorem is not affected by this variation.

Since Dv satisfies a central limit theorem (see Theorem 3.2.4) we find

D̃M − 1
h logM√(

h2

h3 − 1
h

)
logM

→ N(0, 1).

For the expected value and variance we have E[D̃M] = 1
h logM +O(1) and

Var[D̃M] = Var[Dv] +O
(√

Var[Dv]
)

∼
(
h2
h3
− 1

h

)
logM.

54 Chapter 3. Tunstall and Khodak VF Codes

Indeed, more generally, let Yn = Xn+Zn and we know that Xn satisfies a central
limit theorem of the form

Xn −E[Xn]√
Var[Xn]

→ N(0, 1)

such that Var[Xn] → ∞ as well as Var[Zn]/Var[Xn] → 0 as n → ∞. Then
also Yn satisfies a central limit theorem, i.e.

Yn − E[Yn]√
Var[Yn]

→ N(0, 1),

and we have

Var[Yn] = Var[Xn] +Var[Zn] +O(
√

Var[Xn]Var[Zn]) ∼ Var[Xn]·
which follows from Cauchy-Schwarz’s inequality

E[(Xn −E[Xn])(Zn −E[Zn])] ≤ (Var[Xn])
1/2(Var[Zn])

1/2.

This completes the proof of Theorem 3.3.1.

Let us offer some final remarks. We already observed that the parsing trees
for the Tunstall and Khodak algorithms are the same except when there is a
“tie”. This situation can occur both, for the rational case and for the irrational
case, and somewhat surprisingly leads to the cancellation of oscillation in the
redundancy of the Khodak code for the rational case. As shown in Savari and
Gallager (1997) tiny oscillations remain in the Tunstall code redundancy for the
rational case. We ask the reader in Exercise 3.8 to provide details.

3.4. Back to Khodak Code with Bounded Phrase Length

Before we discuss a Khodak code with some additional constraints, let us de-
scribe another representation of the Khodak code using a random walk in the
first quadrant. As already observed in Chapter 1, a path in the parsing tree
from the root to a leaf corresponds to a random walk on a lattice in the first
quadrant of the plane (see Figure 1.1). Indeed, observe that our analysis of the
Khodak code boils down to studying the following sum

A(v) =
∑

y:P (y)≥1/v

f(v)

for some function f(v). Since P (y) = pk1qk2 for some nonnegative integers
k1, k2 ≥ 0, we conclude that the summation set of A(v) can be expressed, after
setting v = 2V , as

k1 log(1/p) + k2 log(1/q) ≤ V. (3.26)

3.4. Back to Khodak Code with Bounded Phrase Length 55

This corresponds to a random walk in the first quadrant with the linear boundary
condition ax + by = V , where a = log(1/p) and b = log(1/q) as shown in
Figure 3.2. The phrase length Dv of the Khodak code coincides with the exit
time of such a random walk (i.e., the last step before the random walk hits the
linear boundary). This correspondence is further explored in Janson (1986).

Figure 3.2. A random walk with a linear barrier; the exit time is equiv-
alent to the phrase length in the Khodak algorithm (e.g., the exit time
= 7).

This new representation of the Khodak code allows us to analyze a novel
version of the code by putting additional constraints on the random walk in
the first quadrant. In this section, we consider the Khodak code with bounded
phrase length, that is, we additionally impose that

k1 + k2 ≤ K (3.27)

for some positive integer K. Throughout this section we assume the binary
alphabet with p = p1 and q = p2.

We consider here a random walk in the first quadrant with two constraints:
(3.26) and (3.27). In other words, we study a Khodak code with phrase length
bounded by K, that is, any parsing tree of such a code has no leave beyond level
K. This is illustrated in Figure 3.3.

Our goal is to understand the probabilistic behavior of the phrase length
DK,V for a Khodak code with bounded phrase length. However, in order to

56 Chapter 3. Tunstall and Khodak VF Codes

Figure 3.3. Lattice paths in a bounded region

express succinctly these results we need to enumerate the number of paths in
the bounded area of the first quadrant. To be more precise, let us define

CK,V := {(x1, x2) ∈ R2
≥0 : x1 + x2 ≤ K, x1 log(1/p) + x2 log(1/q) ≤ V }.

Let then LK,V be the corresponding set of lattice paths within the region CK,V

and TK,V be the associated binary tree. In order to present our results, we need
to study first the cardinality of LK,V , that is,

|LK,V | =
∑

k1+k2≤K, k1 log 1
p+k2 log 1

q≤V

(
k1 + k2
k1

)
.

In this context it is natural to let K be an integer variable and V a positive real
variable.

In the formulation of our results we will make use of ssp = ssp(K,V) defined
as the root of

R(ssp) :=
p−ssp + q−ssp

p−ssp log 1
p + q−ssp log 1

q

=
K

V
. (3.28)

Note that ssp > −1 if and only if K/V < 1/h.
We further set recall the definition (3.9):

Q1(x) =
L

1− 2−L
2−L〈 x

L 〉.

In the next section we present a sketch of the proof of our first result.

3.4. Back to Khodak Code with Bounded Phrase Length 57

Theorem 3.4.1. Suppose that δ > 0 is given.
(i) Assume that K and V satisfy the following constraints

V

h
· (1 + δ) ≤ K ≤ V

min{log(1/p), log(1/q)} · (1 − δ). (3.29)

If log p/ log q is irrational, then as K,V →∞

|LK,V | =
2V

h ln 2
(1 + o(1)). (3.30)

However, if log p
log q is rational then

|LK,V | =
Q1(V)

h
2V +O(2V (1−η)) (3.31)

for some η > 0, where L > 0 is the largest real number for which log(1/p) and
log(1/q) are integer multiples of L.
(ii) Next, if

2V

log(1/p) + log(1/q)
· (1 + δ) ≤ K ≤ V

h
· (1− δ), (3.32)

then

|LK,V | ∼
∑

ℓ≥0

Q∆ (ssp, (K − ℓ) ln p− V ln 2)

(p−ssp + q−ssp)ℓ
· (p

−ssp + q−ssp)K2−V ssp

√
2πK T (ssp)

, (3.33)

where ∆ = ln q − ln p,

T (s) =
p−s ln2 1

p + q−s ln2 1
q

p−s + q−s
−
(
p−s ln 1

p + q−s ln 1
q

p−s + q−s

)2

,

and

Q∆(s, x) =
∆

1− es∆ e
s∆〈 x

∆ 〉

If log p/ log q = d/r is rational then

|LK,V | ∼
d−r−1∑

j=0

e2πi
j
δQL

(
ssp − 2πij

δ ,K ln p− V ln 2
)

1− e
2πi

jd
d−r

p−ssp+q−ssp

(3.34)

· (p
−ssp + q−ssp)K2−V ssp

√
2πK T (ssp)

.

58 Chapter 3. Tunstall and Khodak VF Codes

Figure 3.4. The drift in the first and second case of Theorem 3.4.2

(iii) Finally, if

V

max{log(1/p), log(1/q)} · (1 + δ) ≤ K ≤ 2V

log(1/p) + log(1/q)
· (1− δ) (3.35)

then (for some η > 0)

|LK,V | = 2K+1 −O(2K(1−η)). (3.36)

However, the main result of this section deals with the phrase length DK,V

which we discuss next. As noticed the phrase length coincides with the first exit
time from CK,V . Observe that we assign to the lattice paths in LK,V a natural
probability distribution. Recall that if y ∈ LK,V consists of k1 steps of the form
R (for Right) and k2 steps of the form L (for Left) then we set P (y) := pk1qk2

and that this is exactly the probability distribution that is induced by a random
walk that starts at (0, 0) and is generated by independent steps R and L with
probabilities p and q. Further, since every path y eventually leaves CK,V we
surely have

∑
y∈LK,V

P (y) = 1. Certainly, we can also think of the corresponding
trees TK,V and its external nodes. Our second result concerns the exit timeDK,V

of this random walk, that is, the number of steps |y| = k1 + k2 of y ∈ LK,V (see
Figure 3.4). In the next subsection we present a brief sketch of the proof.

Theorem 3.4.2. Let DK,V denote the exit time of the above described random
walk and the phrase length in the Khodak code with phrase length bounded by K.
Fix δ > 0.
(i) If (3.29) holds, then we have, as K,V →∞,

DK,V − 1
h log |LK,V |

((
h2

h3 − 1
h

)
log |LK,V |

)1/2 → N(0, 1),

3.4. Back to Khodak Code with Bounded Phrase Length 59

where N(0, 1) denotes the standard normal distribution. Furthermore,

E[DK,V] =
log |LK,V |

h
+

log h

h
+

h2
2h2

+
− logL+ log(1− 2−L) + L

2

h
(3.37)

+o

(
1

log |LK,V |

)
,

where L = 0 if log p/ log q is irrational and L > 0 is defined as in Theorem 3.4.1
if log p/ log q is rational. Further

Var[DK,V] ∼
(
h2
h3
− 1

h

)
log |LK,V | (3.38)

where LK,V is discussed in Theorem 3.4.1.
(ii) If (3.32) or (3.35) holds, then the distribution of DK,V is asymptotically
concentrated at K + 1, that is,

P (DK,V 6= K + 1) = O(e−ηK)

as K,V →∞ for some η > 0. We also have E[DK,V] = K + 1 + O(e−ηK) and
Var[DK,V] = O(e−ηK).

Let us explain intuition behind these results. We observe that a random walk
(that starts at (0, 0) and is generated by independent steps R and L with prob-
abilities p and q) has an average position (pm, qm) after m steps. Furthermore,
by approximating this random walk by a Brownian motion it is clear that the
deviation from the mean is (almost surely) bounded by O(

√
m log logm). Thus,

if (3.29) holds then the Brownian motion approximation can be used to derive
the central limit theorem (see, for example, Janson (1986)). The bound coming
from k1 + k2 ≤ K has practically no influence (cf. Figure 3.4). However, in the
second and third case ((3.32) and (3.35)), the bound k1 log p

−1+ k2 log q
−1 ≤ V

is negligible and, thus, the exit time is concentrated at K+1. This also explains
the first threshold K/V ∼ 1/h of Theorem 3.4.1. The second threshold K/V ∼
2/(log p−1 + log q−1) comes from the fact that

∑
k1+k2≤K

(
k1+k2

k1

)
= 2K+1 − 1

and that ∑

k1+k2≤K, k1 log 1
p+k2 log 1

q>V

(
k1 + k2
k1

)
(3.39)

becomes negligible, that is, O(2K(1−η)), if

K/V < (1− δ) · 2/(log 1

p
+ log

1

q
).

60 Chapter 3. Tunstall and Khodak VF Codes

The two thresholds K/V ∼ 1/h and

K/V ∼ 2/(log
1

p
+ log

1

q
)

are not covered by Theorems 3.4.1 and 3.4.2. The reader is asked to derive them
in Exercise 3.12. In fact it is possible to characterize the limiting behavior of
|LK,V | andDK,V also in these cases but the statements (and also the derivations)
are very involved and are not discussed here.

3.4.1. Proof of Theorem 3.4.1

As above, for any lattice path y we set P (y) = pk1qk2 if y consists of k1 steps
R and k2 steps L. We further set v = 2V . Then k1 log p

−1 + k2 log q
−1 ≤ V is

equivalent to P (y) ≥ 1/v. Observe that

AK(v) =
∑

y:P (y)≥1/v, |y|≤K

1

is the number of lattice paths with endpoints contained in CK,V . Due to the
binary tree interpretation of these lattice paths we have

|LK,V | = AK(v) + 1 = AK(2V) + 1

since the number of external nodes of a binary tree exceeds the number of internal
nodes by exactly 1.

For the proof of the limit laws of the exit time we will also make use of the
following sum

SK(v, z) =
∑

y:P (y)≥1/v, |y|≤K

P (y)z|y|

as already defined (3.11).
First, by definition it is clear that AK(v) = 0 and SK(v, z) = 0 for v < 1 and

all K ≥ 0, however, for v ≥ 1 we recursively have

AK+1(v) = 1 +AK(vp) +AK(vq)

SK+1(v, z) = 1 + pzSK(vp, z) + qzSK(vq, z).

From this recursive description we immediately obtain the corresponding rela-
tions for the Mellin transforms, namely

A∗
K+1(s) = −

1

s
+ (p−s + q−s)A∗

K(s) (ℜ(s) < −1)

3.4. Back to Khodak Code with Bounded Phrase Length 61

and

S∗
K+1(s, z) = −

1

s
+ (zp1−s + zq1−s)S∗

K(s, z) (ℜ(s) < 0).

Since A∗
0(v) = S∗

0 (v, z) = − 1
s we explicitly find

A∗
K(s) = −1− (p−s + q−s)K+1

s(1 − (p−s + q−s))

S∗
K(s, z) = −1− (z(p1−s + q1−s))K+1

s(1− z(p1−s + q1−s))
.

In order to find asymptotics of AK(v) as v →∞ we must compute the inverse
transform of A∗

K(s):

AK(v) =
1

2πi
lim

T→∞

∫ σ+iT

σ−iT

A∗
K(s)v−s ds, (3.40)

where σ < −1. The factor (z(p1−s + q1−s))K+1 needs special care and the
corresponding part will be handled with saddle point methods.

Case (i). We first assume that we are in the first case of Theorem 3.4.1,
that is, the relation (3.29) holds. Then we know that ssp < −1. We split up the
integral (3.40) into two parts:

I1 = − 1

2πi
lim

T→∞

∫ σ+iT

σ−iT

− 1

s(1− (p−s + q−s))
v−s ds,

I2 = − 1

2πi
lim

T→∞

∫ σ+iT

σ−iT

(p−s + q−s)K+1

s(1− (p−s + q−s))
v−s ds.

We observe that I1 is the same expression that occurs in the unconstrained case.
The integral I2 has to be treated in a completely different way. First of all,

we shift the integral to the line σ = ssp < −1 and observe that

(p−ssp + q−ssp)Kv−ssp = vR(ssp) log(p
−ssp+q−ssp)−ssp

where ssp and R(ssp) are defined in (3.28). Notice also that

R(ssp) log(p
−ssp + q−ssp)− ssp < 1

if ssp 6= −1. Hence, I2 can be estimated by

I2 = O
(
vR(ssp) log(p

−ssp+q−ssp)−ssp
)
= O

(
2V (1−η2)

)
(3.41)

for some η2 > 0. In Exercise 3.13 the reader is asked to provide details of this
estimate. Again we have to overcome the technical problem that the integral is
not absolutely convergent.

62 Chapter 3. Tunstall and Khodak VF Codes

Case (ii). Next we assume that we are in the second case of Theorem 3.4.1,
that is, the relation (3.32) holds. Here ssp > −1 and we do not split the integral
(3.40) into two parts. Of course, we again shift the integral to a line σ > −1,
namely to σ = ssp > −1. Note that the zeros of the denominator are no
singularities of the function A∗

K(s) since the numerator has the same zeros.
Nevertheless, the integral

AK(v) = − 1

2πi
lim

T→∞

∫ ssp+iT

ssp−iT

1− (p−s + q−s)K+1

s(1 − (p−s + q−s))
v−s ds, (3.42)

needs a delicate analysis. It is again not absolutely convergent but this is just a
technical question. The second problem comes from the fact that on the line of
integration there are infinitely many saddle points. First note that s = ssp is a
saddle point of the mapping

s 7→ (p−s + q−s)Kv−s = eK ln(p−s+q−s)−sV ln 2

and, thus the integral from ssp − iK 1
2−ε to ssp + iK

1
2−ε (for some ε > 0) is

asymptotically given by

1√
2πK T (ssp)

(p−ssp + q−ssp)K+12−sspV

ssp(1− (p−ssp + q−ssp))
.

However, as already noted this is not the only saddle point on this line of inte-
gration. Set th = 2πh/(log p− log q) = −2πih/∆. Then all points s = ssp + ith,
h ∈ Z, are saddle points. Consequently, the total contribution of the integral is
asymptotically given by

∑

h∈Z

1√
2πK T (ssp)

(p−ssp + q−ssp)K+12−sspV p−ith(K+1)2−iV th

(ssp + ith)(1− (p−ssp + q−ssp)p−ith)
.

The representations (3.33) and (3.34) follow after a few lines of computation by
using the Fourier expansion of Q∆(s, x).

Case (iii). If (3.35) holds then ssp > 0. Thus if we shift the line of
integration of the integral (3.42) to σ = ssp we have to take into account the
residue 2k+1 corresponding to the polar singularity s = 0. The saddle point
machinery for the remaining integral at the line σ = ssp provides the error term.

3.4.2. Proof of Theorem 3.4.2

In order to treat the exit time DK,V we make again use of the corresponding tree
TK,V we refer to Lemma 3.2.3, which we re-state as follows: Let T be an m-ary

3.4. Back to Khodak Code with Bounded Phrase Length 63

tree, let X denote the set of leaves and Y the set of internal nodes. Furthermore,
we assume a probability distribution p0, . . . , pm−1 on an m-ary alphabet A and
identify a node in T with a word over A in the usual way. Then we have

∑

x∈X

P (x)z|x| = (z − 1)
∑

y∈Y

P (y)z|y| + 1. (3.43)

This directly implies that the probability generating function of DK(v, z) =
E[zDK,V] (where v = 2V) is given by, as proved in Lemma 3.2.3

DK(v, z) = (z − 1)SK(v, z) + 1 (v ≥ 1)

and consequently its Mellin transform has the following representation (for
ℜ(s) < 0):

D∗
K(s, z) = (z − 1)S∗

K(s, z)− 1

s
=

(1− z)(1− z(p1−s + q1−s)K+1)

s(1− z(p1−s + q1−s))
− 1

s
.

Hence, we have for any σ < 0

E[zDK,V] =

1

2πi
lim

T→∞

∫ σ+iT

σ−iT

(
(1− z)(1− z(p1−s + q1−s)K+1)

s(1− z(p1−s + q1−s))
− 1

s

)
v−s ds.

In the first case of Theorem 3.4.2, that is, if (3.29) holds then we split up the
integral into two parts I1(z) + I2(z):

I1(z) =
1

2πi
lim

T→∞

∫ σ+iT

σ−iT

(
(1− z)

s(1− z(p1−s + q1−s))
− 1

s

)
v−s ds,

I2(z) = −
1

2πi
lim

T→∞

∫ σ+iT

σ−iT

(1− z)(z(p1−s + q1−s)K+1

s(1− z(p1−s + q1−s))
v−s ds.

Observe that I1(z) is again directly related to the unconstrained case. Thus we
get (as above)

I1(z) = v−s0(z) (1 +O (|z − 1|)) ,
where s0(z) is the real solution of the equation z(p1−s0 + q1−s0) = 1.

In the second integral I2(z) we shift the line of integration to σ = ssp+1 < 0
and obtain an negligible exponentially small error term. Consequently we obtain
the same kind of central limit theorem as in the unconstrained case.

The derivation of the mean value and variance is asked to be provided in
Exercise 3.11.

64 Chapter 3. Tunstall and Khodak VF Codes

In the second case of Theorem 3.4.2 (where (3.32) or (3.35) holds) we do
not split up the integral into two parts, which implies that the integrand has no
singular points other than s = 0. We shift the line of integration to σ = ssp+1 >
0 and obtain (again by taking care that there is no absolute convergence)

E[zDK,V] = zK+1 +O(|z − 1|v−η) (3.44)

where η = ssp + 1 > 0. By construction we know that DK,V ≤ K + 1. From
(3.44) we can easily deduce that DK,V is in fact concentrated at K + 1. By
Markov’s inequality (for z < 1) we directly obtain

P (DK,V ≤ K) ≤ z−KE
[
zDK,V 1{DK,V ≤K}

]

= = z−K
(
E[zDK,V]− zK+1

)
+ z P (DK,V ≤ K)

which implies (with z = 1 − 1
K) the estimate P (DK,V ≤ K) = O(v−η). This

proves the concentration. We have v = 2V and, thus, v−η = 2−ηV is exponen-
tially small. By using the corresponding tail estimate of the form P (DK,V ≤
K − r) = O(e−r/Kv−η), we can also deal with moments and obtain E[DK,V] =
K + 1 +O(K2v−η) and Var[DK,V] = O(K3v−η).

3.5. Exercises

3.1 Prove that the parsing trees for Tunstall and Khodak algorithms are
exactly the same (see Savari and Gallager (1997)).

3.2 Establish the Conservation of Entropy Property which states that the
entropy of the dictionary hD is related to the source entropy hS , that is,

hD = hSE[D]

(see Savari (1999)).

3.3 Provide detailed proofs of Theorems 3.2.2 and 3.2.4 for m > 2.

3.4 Prove (3.14).

3.5 Establish Massey (1983) result, namely (3.15).

3.6 Give a prove of Lemma D.3.1. See also Drmota, Reznik, and Szpankowski
(2010).

3.7 Supply details of the proof of Theorem 3.2.2 for the rational case using
Mellin transform.

3.8 Consider again the Khodak algorithm for the rational case. Develop
precise analysis showing that somewhat surprisingly there is cancellation
of oscillation in the redundancy of the Khodak code (see Savari and
Gallager (1997)).

Bibliographical notes 65

3.9 Show that there are tiny oscillations remain in the Tunstall code redun-
dancy for the rational case. See Savari and Gallager (1997).

3.10 Extend our analysis of Tunstall and Khodak codes to Markov sources.

3.11 Complete the proof of Theorem 3.4.2 by providing a detailed derivations
of the average depth (3.37) and the variance (3.38).

3.12 Derive the two remaining thresholds, namely, K/V ∼ (log 2)/h and
K/V ∼ 2/(log2

1
p + log2

1
q) of Theorem 3.4.2.

3.13 Provide detailed derivations of the estimation (3.41).

Bibliographical notes

Tunstall (1967) algorithm for the construction of a VF code has been extensively
discussed in Abrahams (2001). Simple bounds for its redundancy were obtained
independently by Khodak (1969) and Jelinek and Schneider (1972). Tjalkens
and Willems (1992) were the first to look at extensions of this code to sources
with memory. Savari and Gallager (1997) proposed a generalization of Tunstall’s
algorithm for Markov sources and used renewal theory for an asymptotic analysis
of the average code word length and for the redundancy for memoryless and
Markov sources.

The Conservation of Entropy Property (3.3) was established in Katona and
Tusnady (1967), Savari (1999).

Our presentation of the Khodak and Tunstall algorithms is based on an
analytic approach discussed in Drmota, Reznik, Savari, and Szpankowski (2006),
Drmota et al. (2010). Section 3.4 is based on Drmota and Szpankowski (2007)
(see also Janson (1986)). A precise analysis of infinite saddle points is first
discussed in Park, Hwang, Nicodeme, and Szpankowski (2009), but see also
Jacquet and Szpankowski (2015) and Jacquet, Milioris, and Szpankowski (2020).
A preliminary analysis of a Khodak-like code was presented in Choi and Golin
(2001) using a Laplace transform approach.

CHAPTER 4

Divide-and-Conquer VF Codes

In this chapter, we consider again a variable-to-fixed code due to Boncelet (1993)
who used the divide-and-conquer principle to design a practical arithmetic en-
coding. Boncelet’s algorithm is computationally fast and its practicality stems
from the divide and conquer strategy to build a parsing tree: It splits the input
(e.g., parsing tree) into several smaller subproblems, solving each subproblem
separately, and then knitting together to solve the original problem.

We first describe in some details Boncelet’s algorithm and present its redun-
dancy analysis. To prove these results we need precise results about a discrete
divide-and-conquer recurrence that for some T (n) satisfies

T (n) = an +

m∑

j=1

bjT (⌊pjn+ δj⌋) +
m∑

j=1

bjT
(⌈
pjn+ δj

⌉)
(4.1)

for some known sequence an and given bj, bj , pj and δj , δj . The discrete nature of
this recurrence (represented by the floor ⌊·⌋ and ceiling ⌈·⌉ functions) introduces
certain oscillations not captured by traditional analysis of the divide and conquer
recurrence. In the second part of this chapter we present a rigorous and precise
analysis of the discrete divide-and-conquer recurrence that goes beyond data
compression.

4.1. Redundancy of Boncelet’s Code

We now describe the Boncelet VF algorithm. To recall, a variable-to-fixed length
encoder partitions the source string, say over a binary (or more generally over an
m-ary) alphabet, into a concatenation of variable-length phrases. Each phrase
belongs to a given dictionary D of source strings which constitutes a complete
prefix free set. Such a uniquely parsable dictionary is represented by a com-
plete parsing tree, i.e., a tree in which every internal node has all 2 (or more

68 Chapter 4. Divide-and-Conquer VF Codes

generally m) children nodes. The dictionary entries correspond to the leaves of
the associated parsing tree. The encoder represents each parsed string by the
fixed length binary code word corresponding to its dictionary entry by the code
mapping C : D → {0, 1}⌈log |D|⌉. Boncelet’s algorithm, described next, is a prac-
tical algorithm to generate a parsing tree for a VF code, and therefore should
be compared to the (asymptotically) optimal Tunstall and Khodak algorithms
discussed in Chapter 3.

The main idea of Boncelet’s VF code is to construct a parsing tree using
a simple divide-and-conquer strategy. More precisely, let n = |D| denote the
number of leaves in the corresponding parsing tree, hence also the size of the
dictionary.1 We construct the parsing tree as follows: to build a tree with n
leaves, we split n into n = n0 + n1 so that there are n0 leaves in the left subtree
and n1 leaves in the right subtree. We accomplish it using a divide-and-conquer
strategy, that is, we set

n0 = ⌊p0n+ δ⌋ , n1 = ⌈p1n− δ⌉

for some δ ∈ (0, 1) (that satisfies 2p0 + δ < 2) and p0 is the probability of
generating a “0” with p0+p1 = 1 (we consider here only the binary case). Then
the procedure is recursively applied until only 1 or 2 leaves are left.

Example 4.1.1. We want to build a tree with n = 10 leaves and p0 = 1/3.
There are ⌊10/3⌋ = 3 leaves in the left subtree and 7 in the right subtree.
Recursively, 7 leaves of the root right subtree we split 7 = 2 + 5 so that the left
subtree of the root right subtree will end up with two leaves, the right subtree
of the root right subtree will have 5 leaves, and so on. At the end we will build
a complete pursing tree on 10 leaves.

Let D = {v1, . . . vn} denote the set of phrases of the Boncelet code that are
constructed in this way, that is, they correspond to the paths from the root to
leaves of the Boncelet’s parsing tree, and let ℓ(v1), . . . , ℓ(vn) be the corresponding
phrase lengths. Clearly the probabilities p0, p1 induce a probability distribution
P (v1), . . . , P (vn) on the leaves of the parsing tree and, thus, on the phrases.
This fits naturally to a Bernoulli source with probabilities p0, p1 when the input
string is partitioned according to D.

Our aim at is to understand the probabilistic behavior of the phrase length
that we denote as Dn and the average redundancy. By definition the probability

1We should mention that in this chapter we use n to denote the number of leaves and the
number of dictionary entries. Notice that in the previous chapters we used M for n which is
more convenient in the context of divide-and-conquer recurrences.

4.1. Redundancy of Boncelet’s Code 69

generating function of Dn is defined as

C(n, y) = E[yDn] =
n∑

j=1

P (vj)y
ℓ(vj).

Boncelet’s splitting procedure leads to the following recurrence on C(n, y) for
n ≥ 2

C(n, y) = p0 y C (⌊p0n+ δ⌋ , y) + p1 y C (⌈p1n− δ⌉ , y) (4.2)

with initial conditions C(0, y) = 0 and C(1, y) = 1. We shall use this repre-
sentation again in the last section of this chapter when we sketch a proof of a
central limit law for the phrase length.

For now let us focus on the average phrase length and code redundancy. Let
Dn denote the average phrase length

Dn = E[Dn] =

n∑

j=1

P (vj) ℓ(vj)

which is also given by Dn = C′(n, 1) (where the derivative is taken with respect
to y) and satisfies the recurrence

Dn = 1 + p0D⌊p0n+δ⌋ + p0D⌈p1n−δ⌉ (4.3)

with D0 = D1 = 0. This recurrence falls exactly under our divide and conquer
recurrence (4.1).

We will discuss a more general recurrence in the next section where in The-
orem 4.2.1 we give a general solution of (4.1), and in particular recurrence (4.3)
discussed in Example 4.2.8 below. In Section 4.2 we present a sketch of the proof
our main result regarding the performance of the Boncelet algorithm.

Theorem 4.1.2. Consider a binary memoryless source with positive probabili-
ties p0 = p and p1 = q and entropy h = p log(1/p)+ q log(1/q). Let Dn = E[Dn]
denote the expected phrase length of the binary Boncelet code with n phrases.
(i) If the ratio (log p)/(log q) is irrational, then

Dn =
1

h
logn− α

h
+ o(1), (4.4)

where

α =
Ẽ′(0)− G̃′(0)

ln 2
− h− h2

2h
, (4.5)

h2 = p log2(1/p) + q log2(1/q), and Ẽ′(0) and G̃′(0) are the derivatives at s = 0
of the Dirichlet series defined in (4.26) below.

70 Chapter 4. Divide-and-Conquer VF Codes

(ii) If (log p)/(log q) is rational, then

Dn =
1

h
logn− α+Ψ(logn)

h
+O(n−η), (4.6)

where Ψ(t) is a periodic function and η > 0.

Recall from Chapter 3 that for variable-to-fixed codes, the average (normal-
ized) redundancy is expressed as

rn =
logn

E[Dn]
− h =

log n

Dn

− h

since every phrase of average lengthDn requires logn bits to point to a dictionary
entry. Our previous results imply immediately the following corollary.

Corollary 4.1.3. Let rn denote the (normalized) average redundancy of the bi-
nary Boncelet code (with positive probabilities p0 = p and p1 = q and n phrases).
(i) If the ratio (log p)/(log q) is irrational, then

rn =
hα

log n
+ o

(
1

logn

)
(4.7)

with α defined in (4.5).
(ii) If (log p)/(log q) is rational, then

rn =
h(α+Ψ(logn))

log n
+ o

(
1

logn

)
(4.8)

where Ψ(t) is a periodic function.

Let us now compare the redundancy of Boncelet’s algorithm to the asymp-
totically optimal Tunstall algorithm. From Corollary 3.2.5 we know that the
redundancy of the Tunstall/Khodak code is2

rKn =
h

logn

(
− log(h ln 2)− h2

2h

)
+ o

(
1

logn

)

(provided that (log p)/(log q) is irrational; in the rational case there is also a
periodic term in the leading asymptotics).

Example 4.1.4. Consider p = 1/3 and q = 2/3. Then the recurrence for Dn

is precisely the same as that of Example 4.2.8 below. Consequently α ≈ 0.0518
while for the Tunstall code the corresponding constant in front of h/ logn is
equal to − log(h ln 2)− h2

2h ≈ 0.0496.

2Recall that we now write n for the dictionary size M .

4.2. Divide-and-Conquer Recurrence 71

It is also interesting to study the asymptotic behavior of the distribution
of the phrase length Dn. Actually a precise analysis of the recurrence (4.2),
explained in Section 4.3, leads to the following result.

Theorem 4.1.5. Consider a binary memoryless source with p 6= q. Then the
phrase length distribution Dn of the corresponding Boncelet code with n phrases
satisfies the central limit law, that is,

Dn − 1
h logn√(

h2

h3 − 1
h

)
logn

→ N(0, 1),

where N(0, 1) denotes the standard normal distribution, and

E[Dn] =
logn

h
+O(1), Var[Dn] ∼

(
h2
h3
− 1

h

)
logn

for n→∞.

4.2. Divide-and-Conquer Recurrence

To prove Theorem 4.1.2 we will rely quite heavily on a solution of the divide-
and-conquer recurrence which we describe next in some generality.

We shall assume that a problem of size n is split into m subproblems. It is
natural to assume that there is a cost associated with combining subproblems
together to find the solution. We denote such a cost by an. In addition, each
subproblem may contribute in a different way to the final solution; we represent
this by coefficients bj and bj for 1 ≤ j ≤ m. Finally, we postulate that the
original input n is divided into subproblems of size ⌊hj(n)⌋ and ⌈hj(n)⌉, 1 ≤
j ≤ m, where hj(x) and hj(x) are functions that satisfy hj(x) ∼ hj(x) ∼ pjx
for x → ∞ and for some 0 < pj < 1. We aim at presenting precise asymptotic
solutions of discrete divide and conquer recurrences of the following form for
n ≥ 2

T (n) = an +

m∑

j=1

bjT (⌊hj(n)⌋) +
m∑

j=1

bjT
(⌈
hj(n)

⌉)
. (4.9)

A popular approach to solve this recurrence is to relax it to a continuous
version of the following form (hereafter we assume bj = 0 for simplicity)

T (x) = a(x) +

m∑

j=1

bjT (hj(x)), x > 1, (4.10)

72 Chapter 4. Divide-and-Conquer VF Codes

where hj(x) ∼ pjx with 0 < pj < 1, and solve it using a Master Theorem
of a divide-and-conquer recurrence. The most general solution of (4.10) is due
to Akra and Bazzi (1998) who proved (under certain regularity assumptions,
namely that a′(x) is of polynomial growth and that hj(x)−pjx = O(x/(ln x)2))

T (x) = Θ

(
xs0
(
1 +

∫ x

1

a(u)

us0+1
du

))
, (4.11)

where s0 is a unique real root of

∑

j

bjp
s
j = 1. (4.12)

Actually, this also leads directly to (see Exercise 4.3)

T (n) = Θ

ns0

1 +

n∑

j=1

aj
js0+1

 (4.13)

in the discrete version provided that an+1−an is at most of polynomial growth.
Discrete versions of the divide and conquer recurrence, given by (4.9) are

more subtle and require a different approach. We will use Dirichlet series (closely
related to the Mellin transform) that better captures the discrete nature of the
recurrence, and then apply Tauberian theorems together with the Mellin-Perron
formula presented in Appendix D.

We now present asymptotics of the divide and conquer recurrence when the
sequences an of the form an = Cna(lnn)b (with C > 0 and a, b ≥ 0).

Theorem 4.2.1 (M. Drmota and W. Szpankowski, 2013). Let T (n) be the di-
vide and conquer recurrence defined in (4.9) with an = Cna(lnn)b (C > 0,
a, b ≥ 0) such that:

(A1) bj and bj are non-negative with bj + bj > 0,

(A2) hj(x) and hj(x) are increasing and non-negative functions such that hj(x) =
pjx + O(x1−δ) and hj(x) = pjx +O(x1−δ) for positive pj < 1 and δ > 0,
with hj(n) < n and hj(n) ≤ n− 1 for all n ≥ 2.

Furthermore, let s0 be the unique real solution of the equation

m∑

j=1

(bj + bj)p
s0
j = 1. (4.14)

Then the sequence T (n) has the following asymptotic behavior:

4.2. Divide-and-Conquer Recurrence 73

(i) If a > s0, then

T (n) =

{
C′na(lnn)b +O

(
na(lnn)b−1

)
if b > 0,

C′na +O(na−δ′) if b = 0,

where δ′ = min{a− s0, δ} and

C′ =
C

1−∑m
j=1(bj + bj)paj

.

(ii) If a = s0, then

T (n) = C′′na(lnn)b+1 +O
(
na(lnn)b

)

with

C′′ =
C

(b+ 1)
∑m

j=1(bj + bj)paj ln(1/pj)
.

(iii) If a < s0 (or if we just assume that an = O(na) for some a < s0
as long as an is a non-negative and non-decreasing sequence), then for
log p1, . . . , log pm irrationally related (see Chapter 3)

T (n) ∼ C′′′ns0 ,

where C′′′ is a positive constant. If log p1, . . . , log pm are rationally related
and if we also assume that (the so called “small growth property”)

T (n+ 1)− T (n) = O
(
ns0−η

)
(4.15)

holds for some η > 1− δ, then

T (n) = Ψ(logn)ns0 +O
(
ns0−η′

)

where Ψ(t) is a positive and periodic continuous function with period L
and η′ > 0.

We now offer some remarks.

Remark 4.2.2. The order of magnitude of T (n) can be checked easily using
Akra and Bazzi (1998). In particular, if we just know an upper bound for an
which is of the form an = O(na(lnn)b) – even if an is not necessarily increasing
– the Akra-Bazzi theorem provides an upper bound for T (n) which is of form

74 Chapter 4. Divide-and-Conquer VF Codes

stated in Theorem 4.2.1. Hence the theorem can be easily adapted to cover an
of the form

an = Cna(lnn)b +O((na1 (lnn)b1)

with a1 < a or with a1 = a but b1 < b. We split up the solution T (n) into

T (n) = T1(n) + T2(n), where T1(n) corresponds to a
(1)
n = Cna(lnn)b, for which

we can apply Theorem 4.2.1, and T2(n) corresponds to the error term a
(2)
n =

O((na1(lnn)b1), for which we apply the Akra-Bazzi theorem.
The same idea can be used for a bootstrapping procedure. Theorem 4.2.1

provides the asymptotic leading term for T (n) that is (for example, in case (i))
of the form C′na(lnn)b. Hence, by setting T (n) = C′na(lnn)b +S(n) we obtain
a recurrence for S(n) that is precisely of the form (4.9) with a new sequence an
that is of smaller order than the previous one. At this step we can either apply
Theorem 4.2.1 a second time or the Akra-Bazzi theorem.

Remark 4.2.3. Theorem 4.2.1 can be extended to the case

an = Cna(lnn)b,

where a > 0 and b is an arbitrary real number. The same result holds with the
only exception a = s0 and b = −1. In this case we obtain

T (n) = C′′na ln lnn+O
(
na(lnn)−1

)

with

C′′ =
C∑m

j=1 bjp
a
j ln(1/pj)

.

Remark 4.2.4. The third case (iii): a < s0, is of particular interest. Let us
consider first the irrationally related case. Even in this case it is not immediate
clear how to describe explicitly the constant C′′′. It depends heavily on an and
also on T (n) and can be written as

C′′′ =
Ã(s0) +

∑m
j=1 bj(Gj(s0)− Ej(s0)) +

∑m
j=1 bj(Gj(s0)− Ej(s0))

s0
∑m

j=1(bj + bj)p
s0
j ln(1/pj)

(4.16)

with

Ã(s) =

∞∑

n=1

an+2 − an+1

ns
,

4.2. Divide-and-Conquer Recurrence 75

and

Gj(s) =
∑

n<nj(1)

T (⌊hj(n+ 2)⌋)− T (⌊hj(n+ 1)⌋)
ns

(4.17)

+
T (2)− T (⌊hj(nj(1) + 1)⌋)

nj(1)
,

Ej(s) =

∞∑

k=1

(T (k + 2)− T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
, (4.18)

where nj(k) = max{n ≥ 1 : hj(n+ 1) < k + 2}, and

Gj(s) =
∑

n<nj(1)

T
(⌈
hj(n+ 2)

⌉)
− T

(⌈
hj(n+ 1)

⌉)

ns

+
T (2)− T

(⌈
hj(nj(1) + 1)

⌉)

nj(1)
,

Ej(s) =

∞∑

k=1

(T (k + 2)− T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
,

where nj(k) = min{n ≥ 1 : hj(n + 2) > k + 1}. We will show in the proof

of Section 4.2.2 that the series Ã(s0), Ej(s0) and Ej(s0) actually converge. It
should be also mentioned that there is no general error term in the asymptotic
relation T (n) ∼ C′′′ns0 .

In the rationally related case the periodic function Ψ(t) has a convergent
Fourier series Ψ(t) =

∑
k cke

2kπix/L, where the Fourier coefficients are given by

ck =
Ã(sk) +

∑m
j=1 bj(Gj(sk)− Ej(sk)) +

∑m
j=1 bj(Gj(sk)− Ej(sk))

sk
∑m

j=1(bj + bj)p
s0
j ln(1/pj)

, (4.19)

where sk = s0 + 2kπi/L. In particular the constant coefficient c0 equals C′′′.
Note that it cannot be deduced from this representation that the Fourier series
is convergent. This makes the problem really subtle.

Remark 4.2.5. The small growth condition (4.15) is important for the asymp-
totics. In examples of below Section 4.2.1 we discuss several recurrences in which
this conditions holds and it doesn’t leading to different asymptotic behavior.

We next present some applications of our main Theorem 4.2.1 before pre-
senting a sketch of its proof.

76 Chapter 4. Divide-and-Conquer VF Codes

4.2.1. Examples

We first illustrate our theorem on a few simple divide and conquer recurrences.
Note that we only consider examples for the case (iii) and (ii), since they are
more interesting. For more recurrences see Exercises 4.6–4.9.

Example 4.2.6. The recurrence

T (n) = T (⌊n/2⌋) + 2T (⌈n/2⌉) + n

is related to the Karatsuba algorithm as discussed in Knuth (1998a). Here after
solving the characteristic equation (4.14) we find

s0 = ln(1/3)/ ln(1/2) = 1.5849 . . .

and s0 > a = 1. Furthermore, since m = 1, we are in the rationally related
case. Here the small growth condition (4.15) is satisfied so that we can apply
Theorem 4.2.1 to obtain

T (n) = Ψ(logn)n
ln 3
ln 2 · (1 + o(1)) (n→∞)

with some continuous periodic function Ψ(t).
In a similar manner, the Strassen algorithm as discussed in Knuth (1998a)

for matrix multiplications results in the following recurrence

T (n) = T (⌊n/2⌋) + 6T (⌈n/2⌉) + n2.

Here we have m = 1, s0 = ln 7/ ln 2 ≈ 2.81 and a = 2, and again we get an
representation of the form

T (n) = Ψ(logn)n
ln 7
ln 2 · (1 + o(1)) (n→∞)

with some periodic function Ψ(t).

Example 4.2.7. The next two examples show that a small change in the re-
currence might change the asymptotic behavior significantly. First let

T (n) = T (⌊n/2⌋) + T (⌈n/4⌉)

with T (1) = 1. Here we have s0 = ln((1+
√
5)/2) ln 2 ≈ 0.6942 and we are in the

rationally related case. Furthermore it follows easily that T (n+ 1)− T (n) ≤ 1.
Hence the small growth condition (4.15) is satisfied and we obtain

T (n) ∼ ns0Ψ(logn)

4.2. Divide-and-Conquer Recurrence 77

(a) (b)

Figure 4.1. Illustration to Example 4.2.7: (a) recurrence T (n) =
T (⌊n/2⌋) + T (⌈n/4⌉), (b) recurrence T (n) = T (⌊n/2⌋) + T (⌊n/4⌋).

for a continuous periodic function Ψ(t); see Figure 4.1(a).
However, if we just replace the ceiling function by the floor function, that is,

T̃ (n) = T̃ (⌊n/2⌋) + T̃ (⌊n/4⌋) for n ≥ 4

and T̃ (1) = T̃ (2) = T̃ (3) = 1, then the small growth condition (4.15) is not

satisfied . We get T̃ (n) = Fk for 2k−1 ≤ n < 2k, where Fk denotes the k-th
Fibonacci number. This leads to

T̃ (n) ∼ ns0Ψ̃(log n),

where Ψ̃(t) = ((1 +
√
5)/2)1−〈t〉/

√
5 is discontinuous for t = 0; see also Fig-

ure 4.1(b).

Example 4.2.8. Finally we consider a recurrence for the Boncelet’s algorithm
with p0 = 1/3 and p1 = 2/3. Then

T (n) =
1

3
T

(⌊
n

3
+

1

2

⌋)
+

2

3
T

(⌈
2n

3
− 1

2

⌉)
+ 1

with initial value T (1) = 0. Its asymptotic solution is given by

T (n) =
1

h
logn+ C + o(1),

78 Chapter 4. Divide-and-Conquer VF Codes

with h = 1
3 log 3 +

2
3 log

3
2 and some constant C. We can compute C = −α/h,

where

α =
∑

m≥1

T (m+ 2)− T (m+ 1)

3

(
log

⌈
3m+

5

2

⌉
− log(3m)

)
(4.20)

+ 2
∑

m≥1

T (m+ 2)− T (m+ 1)

3

(
log

⌊
3

2
m+

5

4

⌋
− log(

3m

2
)

)

+
log 3

3
− h−

1
3 log

2 3 + 2
3 log

2 3
2

2h

We have used this example for computing the redundancy of the binary Boncelet
code in Example 4.1.4.

4.2.2. Sketch of Proof of Theorem 4.2.1

We present here only a part of the proof of Theorem 4.2.1. A complete detailed
proof can be found in Drmota and Szpankowski (2013) to which we refer the
interested reader.

Let us start with defining some appropriate Dirichlet series whose analysis
will lead to asymptotic behavior of T (n). We set

T̃ (s) =

∞∑

n=1

T (n+ 2)− T (n+ 1)

ns
,

provided the series is convergent. By partial summation and using a-priori upper
bounds for the sequence T (n), it follows that T̃ (s) converges (absolutely) for
s ∈ C with ℜ(s) > max{s0, σa, 0}, where s0 is the real solution of the equation

(4.14), and σa is the abscissa of absolute convergence of Ã(s) defined as

Ã(s) =

∞∑

n=1

an+2 − an+1

ns
. (4.21)

To find a formula for T̃ (s) we apply the recurrence relation (4.9). To simplify
our presentation, we first assume that bj = 0, that is, we consider only the floor
function on the right hand side of the recurrence (4.9); those parts that contain
the ceiling function can be handled in the same way. We thus obtain

T̃ (s) = Ã(s) +

m∑

j=1

bj

∞∑

n=1

T (⌊hj(n+ 2)⌋)− T (⌊hj(n+ 1)⌋)
ns

.

4.2. Divide-and-Conquer Recurrence 79

For k ≥ 1 set
nj(k) := max{n ≥ 1 : hj(n+ 1) < k + 2}.

By definition it is clear that nj(k + 1) ≥ nj(k) and

nj(k) =
n

pj
+O

(
k1−δ

)
. (4.22)

Furthermore, by setting Gj(s) we obtain

∞∑

n=1

T (⌊hj(n+ 2)⌋)− T (⌊hj(n+ 1)⌋)
ns

= Gj(s) +

∞∑

k=1

T (k + 2)− T (k + 1)

nj(k)s
.

We now compare the last sum to psj T̃ (s):

∞∑

k=1

T (k + 2)− T (k + 1)

nj(k)s
=

∞∑

k=1

T (k + 2)− T (k + 1)

(k/pj)s

−
∞∑

k=1

(T (k + 2)− T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
= psj T̃ (s)− Ej(s),

where Ej(s) is

Gj(s) =
∑

n<nj(1)

T (⌊hj(n+ 2)⌋)− T (⌊hj(n+ 1)⌋)
ns

+
T (2)− T (⌊hj(nj(1) + 1)⌋)

nj(1)
, (4.23)

Ej(s) =

∞∑

k=1

(T (k + 2)− T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
. (4.24)

Defining

E(s) =

m∑

j=1

bjEj(s) and G(s) =

m∑

j=1

bjGj(s)

we finally obtain the relation

T̃ (s) =
Ã(s) +G(s)− E(s)

1−∑m
j=1 bj p

s
j

. (4.25)

80 Chapter 4. Divide-and-Conquer VF Codes

As mentioned above, (almost) the same procedure applies if some of the bj
are positive, that is, the ceiling function also appear in the recurrence equation.
The only difference to (4.25) is that we arrive at a representation of the form

T̃ (s) =
Ã(s) + G̃(s)− Ẽ(s)

1−∑m
j=1(bj + bj) psj

, (4.26)

with a properly modified functions G̃(s) and Ẽ(s), however, they have the same
analyticity properties as in (4.25).

For the asymptotic analysis we will only consider the irrational case for which
we apply Tauberian theory. The analysis of the rational case is based on the
inverse Mellin transform and quite involved calculations, see Appendix D. The
reader is asked in Exercise 4.10 to provide missing details.

We recall that we have a representation (4.25) of the Dirichlet series T̃ (s) =∑
n≥1(T (n + 2) − T (n + 1))n−s, where T (n + 2) ≥ T (n + 1), and that we are

interested in the asymptotic behavior of

T (n) = T (2) +

n−2∑

k=1

(T (k + 2)− T (k + 1)). (4.27)

Hence it is sufficient to get some information on the partial sums of the coefficient
of the Dirichlet series T̃ (s).

For the asymptotic analysis, we recall the fact that a Dirichlet series C(s) =∑
n≥1 cnn

−s can be represented as the Mellin-Stieltjes transform of the partial
sums c(v) =

∑
n≤v cn (see Appendix D):

C(s) =
∑

n≥1

cn
ns

=

∫ ∞

0

v−s dc(v).

In our present context we set

c(v) =
∑

n≤v

(T (n+ 2)− T (n+ 1))

so that we get
T (n) = T (2) + c(n− 2).

Hence, the asymptotic behavior of T (n) depends on the asymptotic behavior of

c(v) which is reflected by the singular behavior of 1
s T̃ (s); see the Wiener-Ikehare

Tauberian Theorem D.2.2 from Appendix D. Clearly, the singularities of 1
a Ã(s)

4.2. Divide-and-Conquer Recurrence 81

are at least s = 0 and the roots of the denominator in (4.26), that is, roots of
the characteristic equation

m∑

j=1

(bj + bj) p
s
j = 1. (4.28)

(Note that s0 is the unique real solution of this equation.) Furthermore there

might be singularities from Ã(s), G̃(s), and Ẽ(s).
By assumption we know that an = Cna(lnn)b for some a > 0 and some

real number b. By Theorem D.2.4 from Appendix D we know that Ã(s) can be
represented as

Ã(s) = b
Γ(b + 1)

(s− a)b+1
+

Γ(b + 1)

(s − a)b +G(s), (4.29)

if b is not a negative integer, or we have

Ã(s) = σ
(−1)k
(k − 1)!

(s− a)k−1 ln(s− a) (4.30)

+
k(−1)k
(k − 1)!

(s− a)k ln(s− a) +G(s)

if b = −k is a negative integer. In both cases G(s) is analytic for ℜ(s) > a− 1.
We also note that an estimate of the form an = O(na) implies that the

function a(v) =
∑

n≥v(an+2 − an+1) satisfies

a(v) = O(va).

Consequently the Dirichlet series

Ã(s) =
∑

n≥1

an+2 − an+1

ns
= s

∫ ∞

0

a(v)v−s−1 dv

represents an analytic function for ℜ(s) > a.

By the same reasoning it follows that the function Ẽ(s) is analytic for ℜ(s) >
s0−δ. For example by using the Akra-Bazzi theorem we have the a-priori upper
bound T (n) = O(ns0). Furthermore

1

(k/pj)s
− 1

nj(k)s
= O

(
1

(k/pj)ℜ(s)+δ

)
.

Hence by partial summation and by the monotonicity of the sequences T (n) it
follows that the series

∑

k≥1

(T (k + 2)− T (k + 1))
1

(k/pj)ℜ(s)+δ

82 Chapter 4. Divide-and-Conquer VF Codes

represents an analytic function for ℜ(s) > s0− δ. Hence, the same holds for the

function Ẽ(s)

Summing up, we see that T̃ (s) is an analytic function for ℜ(s) > max{s0, a}.
Hence, we have to distinguish three different cases: a > s0, a = s0, and a < s0.
These three cases correspond to the different parts of the master theorem for the
divide-and-conquer recurrence, Theorem 4.2.1. In the first case the (asymptotic)
behavior of an dominates the asymptotics of T (n), in the second case, there is
an interaction between the internal structure of the recurrence and the sequence
an (resonance), and in the third case the behavior of the solution is driven by
the recurrence and does not depend on an

So let us consider first the case a > s0. From (4.29) and (4.30) it follows

that 1
s T̃ (s) has a meromorphic extension to ℜ(s) > s0 with polar singularity at

s = a. Hence we directly apply the Wiener-Ikehara Theorem D.2.2 and obtain

T (n) = T (2) + c(n− 2) ∼ C′na(lnn)b

for a proper constant C′ > 0. (By using the inverse Mellin transform it is also
possible to obtain the proposed error term.)

Next suppose that a < s0, that is, the third case. Here s0 is the dominant
singularity. Since we are in the irrational case there are no other singularities
on the line ℜ(s) = s0. Consequently the assumptions of Theorem D.2.2 are
satisfied (with K = 0) and it directly follows that

T (n) ∼ C′′′ns0

for some positive constant C′′′. Note that we do not require the precise behavior
of an. We just have to assume that an is non-decreasing and that an = O(na)
for some a < s0.

Finally if s0 = a then the singularities of Ã(s) and that of
(
1−∑m

j=1 bj p
s
j

)−1

coincide. In particular the order of the polar singularity at s = s0 = a is now
b+ 2. Furthermore in the irrational case this is the only singularity on the line
ℜ(s) = s0. Again the assumptions of Theorem D.2.2 are satisfied so that the
result follows:

an ∼ C′′na(lnn)b+1

as desired.

4.3. Central Limit Law for Boncelet’s Algorithms

We next provide a very brief sketch of the proof of the the central limit theorem
for the phrase length Dn of the Boncelet algorithm that is stated in Theo-
rem 4.1.5. Again we only consider the irrationally related case for a binary
alphabet.

4.3. Central Limit Law for Boncelet’s Algorithms 83

To deal with C(n, y), we consider the Dirichlet series

C(s, y) =

∞∑

n=1

C(n+ 2, y)− C(n+ 1, y)

ns
.

For simplicity we just consider here the case y > 1. (The case y ≤ 1 can be
handled in a similar way.) Then C(s, y) converges for ℜ(s) > s0(y), where s0(y)
denotes the real zero of the equation (for a binary alphabet)

y(ps+1 + qs+1) = 1

discussed in Lemma D.3.1. We find

C(s, y) =
(y − 1)− Ẽ(s, y)

1− y(ps+1 + qs+1)
,

where

Ẽ(s, y) = py

∞∑

k=1

(C(k + 2, y))− C(k + 1, y))

 1

(k/p)s
− 1(⌈

k+2−δ
p

⌉
− 2
)s

+qy

∞∑

k=1

(C(k + 2, y))− C(k + 1, y))

 1

(k/q)s
− 1(⌊

k+1+δ
q

⌋
− 1
)s

converges for ℜ(s) > s0(y)− 1 and satisfies Ẽ(0, y) = 0 and Ẽ(s, 1) = 0.
Then by the Wiener-Ikehara theorem only the residue at s0(y) contributes

to the main asymptotic leading term. (Recall that we consider the case y > 1).
We thus have

C(n, y) ∼ Res

(
((y − 1)− Ẽ(s, y))(n− 3/2)s

s(1− y(ps+1 + qs+1))
; s = s0(y)

)

=
((y − 1)− Ẽ(s0(y), y))(n− 3/2)s0(y)

−s0(y)(ln(p)ps0(y)+1 + ln(q)qs0(y)+1))
(1 + o(1)).

The essential but non-trivial observation is that this asymptotic relation holds
uniform for y in an interval around 1. This can be actually checked in the same
way as for the example that is discussed at the end of Appendix D. So let us
assume that this uniformity holds. Then we are precisely in the same situation
as in the case of the Tunstall code (see Chapter 3) and we obtain a central limit
theorem.

As in the previous cases the rationally related case is even more subtle. We
ask the reader in Exercise 4.12 to supply details of the proof.

84 Divide-and-Conquer VF Codes

Exercises

4.1 Build the Boncelet’s parsing tree for n = 22 and p0 = 1/4.

4.2 Derive a more precise formula for the oscillating function Ψ(logn) ap-
pearing in (4.6) of Theorem 4.1.2.

4.3 Derive Akra and Bazzi (1998) formulas (4.11) and (4.13) for the contin-
uous version of the divide and conquer recurrence.

4.4 Consider again Examples 4.2.6–4.2.8 and consider continuous versions
of them, that is, without floor or ceiling function. Apply Akra and Bazzi
(1998) formula (4.11) or (4.13) to analyze these recurrences.

4.5 Prove the estimate (4.20) in Example 4.2.8.

4.6 Consider the recurrence

T (n) = 2T (⌊n/2⌋) + 3T (⌊n/6⌋) + n logn.

Let s0 = 1.402 . . . > 1 be the solution of the characteristic equation
(4.14). Show that

T (n) ∼ Cns0 (n→∞)

for some constant C.

4.7 Consider the following recurrence

T (n) = 2T (⌊n/2⌋) + 1 (with T (1) = 1)

Show that
T (n) = 2⌊log n⌋+1 − 1

and
T (n) = nΨ(logn)− 1

with Ψ(t) = 21−{t},

4.8 Consider the recurrence

T (n) = 2T

(⌊
2

3
n

⌋)

with T (1) = 1. Show that T (n) = 2k for nk ≤ n < nk+1, where n0 = 1
and nk+1 =

⌈
3
2nk

⌉
.

4.9 Study the recurrence

T (n) = 2T

(⌊
n+ 2

√
n+ 1

2

⌋)
(n ≥ 6)

Bibliographical notes 85

with T (n) = 1 for 1 ≤ n ≤ 5. Show that

T (n) = 2k, nk ≤ n < nk+1,

where n1 = 6 and nk+1 = ⌈2nk +1− 2
√
2nk⌉. It then follows that nk is

asymptotically of the form nk = c12
k−c22k/2+O(1) (for certain positive

constants c1, c2). Show finally that it is not possible to represent T (n)
asymptotically as T (n) ∼ nΨ(logn).

4.10 Establish Theorem 4.2.1 for the rational cases.

4.11 Prove Theorem D.2.4. See also Drmota and Szpankowski (2013).

4.12 Provide missing details for the proof of Theorem 4.1.5 in the rational
case.

4.13 Analyze the Boncelet algorithm for Markov sources.

Bibliographical notes

Divide and conquer is a very popular strategy to design algorithms. It splits
the input into several smaller subproblems, solving each subproblem separately,
and then knitting together to solve the original problem. Typical examples in-
clude heapsort, mergesort, discrete Fourier transform, queues, sorting networks,
compression algorithms as discussed in Flajolet and Sedgewick (2008), Cormen,
Leierson, and Rivest (1990), Knuth (1998a), Roura (2001), Szpankowski (2001).

It is relatively easy to determine the general growth order of the (continuous)
divide and concur recurrence as discussed in Roura (2001). A precise asymptotic
analysis is often appreciably more subtle. The most general solution of the
continuous version of the divide and conquer is due to Akra and Bazzi (1998).
The literature on continuous divide and conquer recurrence is very extensive.
We mention here Akra and Bazzi (1998), Cormen et al. (1990), Roura (2001).

The discrete version of the divide and conquer recurrence has received much
less attention, especially with respect to precise asymptotics. For example, Fla-
jolet and Golin (1954) and Cheung, Flajolet, Golin, and Lee (2008) studied
the recurrence but only for p1 = p2 = 1/2. Furthermore, Erdös, Hildebrand,
Odlyzko, Pudaite, and Reznick (1987) apply renewal theory and Hwang (2000)
(cf. also Grabner and Hwang (2005), Hwang and Janson (2011)) used analytic
techniques to analyze similar recurrences. The oscillatory behavior of some di-
vide and conquer was observed in Delange (1954, 1975), Grabner and Hwang
(2005).

Dirichlet series and Mellin-Perron formula are discussed in many books. We
mention here Apostol (1976). Tauberian theorems are well presented in Korevaar
(2002). See also our Appendix C.

86 Divide-and-Conquer VF Codes

The Boncelet’s algorithm was introduced by Boncelet (1993). The whole
chapter is based on Drmota and Szpankowski (2013) and Drmota et al. (2010).

CHAPTER 5

Khodak VV Codes

In the last three chapters, we discussed fixed-to-variables FV codes such as
Shannon and Huffman codes (see Chapter 2), and variable-to-fixed VF codes
such as Tunstall, Khodak, and Boncelet codes (see Chapters 3 and 4). As a
consequence of Theorems 2.1.1 and 2.1.3 it follows that the normalized redun-
dancy is inversely proportional to the block length n, that is, of order Θ(1/n).
In Theorems 3.2.4 and 3.3.1, we analyzed Khodak and Tunstall VF codes and
proved that the average redundancy (see in particular Corollary 3.2.5) decays
like Θ(1/E[D]), where E[D] is the average phrase length of the input string. In
summary, for both FV and VF codes the normalized redundancy (rate) decays
inversely proportional to the (average) phrase length (that we will denote by
D).

However, it is an intriguing question whether one can construct a code with
normalized redundancy of order o(1/D). This quest was accomplished by Kho-
dak (1972), who proved that one can find a variable-to-variable VV code with

normalized redundancy of order O(D
−5/3

). In this chapter we present a trans-
parent proof and an explicit algorithm to achieve this bound. We also will show

that the maximal normalized redundancy is O(D
−4/3

). Finally, in a major ex-
tension of Khodak’s results we present stronger results for almost all sources.

5.1. Variable-to-Variable Codes and Redundancy Rate

A variable-to-variable (VV) length code partitions a source sequence into vari-
able length phrases that are encoded into strings of variable lengths. While it is
well known that every VV (prefix) code is a concatenation of a variable-to-fixed
length code (e.g., Tunstall code) and a fixed-to-variable length encoding (e.g.,
Huffman code), an optimal VV code for a given dictionary size has not yet been
found.

Let us first briefly describe a VV encoder. A VV encoder has two compo-

88 Chapter 5. Khodak VV Codes

nents, a parser and a string encoder. The parser partitions the source sequence
x into phrases from a predetermined dictionary D. We shall write d or di for
a dictionary entry, and by D we denote the average dictionary (phrase) length
also known as the average delay. As argued in previous chapters, a convenient
way of representing the dictionary D is by a complete m-ary tree also know as
the parsing tree. Next, the string encoder in a VV scheme maps each dictionary
phrase into its corresponding binary codeword C(d) of length |C(d)| = ℓ(d).
Throughout this chapter, we assume that the string encoder is a slightly mod-
ified Shannon code and we concentrate on building a parsing tree for which
− logP (d) (d ∈ D) is close to an integer. This allows us to construct a VV
code with redundancy rates (per symbol) approaching zero as the average delay
increases.

In (3.2) of Chapter 3 we define the normalized average redundancy rate as

r =

∑
d∈D P (d)ℓ(d)− hD

E[D]
=

∑
d∈D P (d)(ℓ(d) + logP (d))

E[D]
, (5.1)

where P is the probability law of the dictionary phrases and

E[D] =
∑

d∈D
|d|P (d) =: D.

By analogy we define the maximal normalized redundancy rate r∗ for VV codes
as follows

r∗ =
maxd∈D[ℓ(d) + logP (d)]

D
. (5.2)

In this chapter we shall study both, the average redundancy rate and the max-
imal redundancy rate for VV codes.

5.2. Redundancy of the Khodak VV Code

In this section we present several results regarding the average and maximal
redundancy rates for a VV Khodak code. We also construct an explicit algorithm
to achieve these bound.

We start with the main theorem of this section (that is due to Khodak
(1972)).

Theorem 5.2.1. Let m ≥ 2 and consider a memoryless source over an m-ary
alphabet. Then for every D0 ≥ 1, there exists a VV code with average dictionary
length E[D] =: D ≥ D0 such that its average redundancy rate satisfies

r = O(D
−5/3

), (5.3)

and the maximal code length is O(D logD).

5.2. Redundancy of the Khodak VV Code 89

The rest of this section is devoted to the proof of Theorem 5.2.1. We assume
an m-ary source alphabet A = {0, . . . ,m− 1} with corresponding probabilities
p0, . . . , pm−1. Let us first give some intuition. For every d ∈ D, we can represent
P (d) as

P (d) = pk0
0 · · · p

km−1

m−1 ,

where ki = ki(d) is the number of times the symbol i appears in d. In what fol-
lows we write type(d) = (k0, k1, . . . , km−1) (see also Chapter 11). Furthermore,
the string encoder of our VV code uses a slightly modified Shannon code that
assigns to d ∈ D a binary word of length ℓ(d) close to − logP (d) when logP (d)
is slightly larger or smaller than an integer. (Kraft’s inequality will not be au-
tomatically satisfied but Lemma 5.2.4 below takes care of it.) Observe that the
average redundancy of the Shannon code is

∑

d∈D
P (d)[⌈− logP (d)⌉+ logP (d)] =

∑

d∈D
P (d)〈logP (d)〉

=
∑

d∈D
P (d) · 〈k0(d)γ0 + k1(d)γ1 + · · ·+ km−1(d)γm−1〉

where γi = log pi. In order to build a VV code with r = o(1/D), we have
to find integers k0 = k0(d), . . . , km−1 = km−1(d) such that the linear form
k0γ0 + k1γ1 + · · ·+ km−1γm−1 is close to but slightly larger than an integer for
almost all d.

Next we discuss some properties of the distribution of 〈k0γ0 + k1γ1 + · · · +
km−1γm−1〉 when at least one of γi is irrational.

Some preliminary results. Let ‖x‖ = min(〈x〉, 〈−x〉) = min(〈x〉, 1 − 〈x〉)
be the distance to the nearest integer. The dispersion δ(X) of the set X ⊆ [0, 1)
is defined as

δ(X) = sup
0≤y<1

inf
x∈X
‖y − x‖,

that is, for every y ∈ [0, 1), there exists x ∈ X with ‖y − x‖ ≤ δ(X). Since
‖y+1‖ = ‖y‖, the same assertion holds for all real y. Furthermore the points of
X are at most 2δ(X) apart in [0, 1]. Therefore, for every y there exist distinct
points x1, x2 ∈ X with 〈y − x1〉 ≤ 2δ(X) and 〈y − x2〉 ≤ 2δ(X).

The following property will be used throughout this chapter. This is a stan-
dard result following from Dirichlet’s Approximation Theorem F.1.1. The reader
is asked in Exercise 5.2 to prove Lemma 5.2.2.

Lemma 5.2.2. (i) Suppose that θ is an irrational number. Then there exist
infinitely many positive integers N such that

δ ({〈kθ〉 : 0 ≤ k < N}) ≤ 2

N
.

90 Chapter 5. Khodak VV Codes

(ii) In general, let (γ0, . . . , γm−1) be an m-vector of real numbers such that at
least one of its coordinates is irrational. Then there exist infinitely many integers
N such that the dispersion of the set

X = {〈k0γ + · · ·+ km−1γm−1〉 : 0 ≤ kj < N (0 ≤ j < m)}

is bounded by

δ(X) ≤ 2

N
.

Crucial lemma. The central step of the proof of Theorem 5.2.1 is the
observation that a bound on the dispersion of linear forms of log pj implies
the existence of a VV code with small redundancy. Clearly, Lemma 5.2.2 and
Lemma 5.2.3 directly imply Theorem 5.2.1 by setting η = 1 if one of the log pj is
irrational. (If all log pj are rational, then the construction is even simpler. We
ask the reader to handle this case in Exercise 5.3)

Lemma 5.2.3. Let pj > 0 (0 ≤ j < m) with p0 + · · ·+ pm−1 = 1 be given and
suppose that for some N ≥ 1 and η ≥ 1 the set

X = {〈k0 log p0 + · · ·+ km−1 log pm−1〉 : 0 ≤ kj < N (0 ≤ j < m)},

has dispersion

δ(X) ≤ 2

Nη
. (5.4)

Then there exists a VV code with average phrase length D = Θ(N3), with max-
imal length of order Θ(N3 logN), and with average redundancy rate

r ≤ cm ·D
− 4+η

3

where cm is a constant that may depend on m.

Proof of Lemma 5.2.3. We now concentrate on the proof of Lemma 5.2.3.
The main thrust of the proof is to construct a complete prefix free set D of words
(i.e., a dictionary) on m symbols such that logP (d) is very close to an integer
ℓ(d) with high probability. This is accomplished by growing an m-ary tree T
in which paths from the root to terminal nodes have the property that logP (d)
close to an integer (for most d).

In the first step, we set k0i := ⌊piN2⌋ (0 ≤ i < m) for a large integer N and
define

x = k00 log p0 + · · ·+ k0m−1 log pm−1.

5.2. Redundancy of the Khodak VV Code 91

By our assumption (5.4) of Lemma 5.2.3, there exist integers 0 ≤ k1j < N such
that 〈

x+ k10 log p0 + · · ·+ k1m−1 log pm−1

〉
=

〈
(k00 + k10) log p0 + · · ·+ (k0m−1 + k1m−1) log pm−1

〉
<

4

Nη
.

Now consider all paths in a (potentially) infinite m-ary tree starting at the root
with k00 +k

1
0 edges of type 0, k01 +k

1
1 edges of type 1,. . ., and k0m−1+k

1
m−1 edges

of type m− 1 (cf. Figure 5.1). Let D1 denote the set of such words. (These are
the first words of our prefix free dictionary set we are going to construct.) By an
application of Stirling’s formula it follows that there are two positive constants
c′, c′′ such that the probability

P (D1) =

(
(k00 + k10) + · · ·+ (k0m + k1m)

k00 + k10 , . . . , k
0
m−1 + k1m−1

)
p
k0
0+k1

0
0 · · · pk

0
m−1+k1

m−1

m−1

satisfies
c′

N
≤ P (D1) ≤

c′′

N
(5.5)

uniformly for all k1j with 0 ≤ k1j < N . In summary, by construction all words
d ∈ D1 have the property that

〈logP (d)〉 < 4

Nη
,

that is, logP (d) is very close to an integer. Note further that all words in d ∈ D1

have about the same length

n1 = (k00 + k′0) + · · ·+ (k0m−1 + k′m−1) = N2 +O(N),

and words in D1 constitute the first crop of “good words”. Finally, let B1 =
An1 \ D1 denote all words of length n1 not in D1 (cf. Figure 5.1). Then

1− c′′

N
≤ P (B1) ≤ 1− c′

N
.

In the second step, we consider all words r ∈ B1 and concatenate them with
appropriately chosen words d2 of length ∼ N2 such that logP (rd2) is close to
an integer with high probability. The construction is almost the same as in the
first step. For every word r ∈ B1 we set

x(r) = logP (r) + k00 log p0 + · · ·+ k0m−1 log pm−1.

92 Chapter 5. Khodak VV Codes

Figure 5.1. Illustration to the construction of the VV code.

By (5.4) there exist integers 0 ≤ k2j (r) < N (0 ≤ j < m) such that

〈
x(r) + k20(r) log p0 + · · ·+ k2m−1(r) log pm−1

〉
<

4

Nη
.

Now consider all paths (in the infinite tree T) starting at r ∈ B1 with k00 +k
2
0(r)

edges of type 0, k01+k
2
1(r) edges of type 1, . . ., and k

0
m−1+k

2
m−1(r) edges of type

m − 1 (that is, we concatenated r with properly chosen words d2) and denote
this set by D+

2 (r). We again have that the total probability

P (D2(r)) = P (r)

×
(
(k00 + k20(r)) + · · ·+ (k0m−1 + k2m−1(r))

k00 + k20(r), . . . , k
0
m−1 + k2m−1(r)

)
p
k0
0+k2

0(r)
0 · · · pk

0
m−1+k2

m−1(r)

m−1

5.2. Redundancy of the Khodak VV Code 93

of these words is bounded from below and above by

P (r)
c′

N
≤ P (D2(r)) ≤ P (r)

c′′

N
.

Furthermore, by construction we have 〈logP (d)〉 < 4
Nη for all d ∈ D+

2 (r).

Similarly, we can construct a set D−
2 (r) instead of D+

2 (r) for which we have
1−〈logP (d)〉 < 4/Nη. We will indicate in the sequel whether we will use D+

2 (r)
or D−

2 (r).
Let D2 =

⋃
(D+

2 (r) : r ∈ B1) (or D2 =
⋃
(D−

2 (r) : r ∈ B1)). Then all words
d ∈ D2 have almost the same length |d| = 2N2 + O(2N), their probabilities
satisfy

〈logP (d)〉 < 4

Nη
or 1− 〈logP (d)〉 < 4

Nη

and the total probability is bounded by

c′

N

(
1− c′′

N

)
≤ P (D2) ≤

c′′

N

(
1− c′

N

)
.

For every r ∈ B1, let B+(r) (or B−(r)) denote the set of paths (resp. words)
starting with r of length 2(k00+ · · ·+k0m−1)+(k11+k

2
1(r)+ · · ·+k1m−1+k

2
m−1(r))

that are not contained in D+
2 (r) (or D−

2 (r)) and set B2 =
⋃
(B+

2 (r) : r ∈ B1) (or
B2 =

⋃
(B−

2 (r) : r ∈ B1)). Observe that the probability of B2 is bounded by

(
1− c′′

N

)2

≤ P (B2) ≤
(
1− c′

N

)2

.

We continue this construction, as illustrated in Figure 5.1, and in step j we
define sets of words Dj and Bj such that all words d ∈ Dj satisfy

〈logP (d)〉 < 4

Nη
or 1− 〈logP (d)〉 < 4

Nη

and the length of d ∈ Dj ∪ Bj is then given by |d| = jN2 + O(jN). The
probabilities of Dj and Bj are bounded by

c′

N

(
1− c′′

N

)j−1

≤ P (Dj) ≤
c′′

N

(
1− c′

N

)j−1

, (5.6)

(
1− c′′

N

)j

≤ P (Bj) ≤
(
1− c′

N

)j

. (5.7)

This construction is terminated after K = O(N logN) steps so that

P (BK) ≤ c′′
(
1− c′

N

)K

≤ 1

Nβ

94 Chapter 5. Khodak VV Codes

for some β > 0. This also ensures that

P (D1 ∪ · · · ∪ DK) > 1− 1

Nβ
.

The complete prefix free set D on the m symbols is given by

D = D1 ∪ · · · ∪ DK ∪ BK .

By the above construction, it is also clear that the average dictionary phrase
length is bounded by

c1N
3 ≤ D =

∑

d∈D
P (d) |d| ≤ c2N3

for certain constants c1, c2 > 0. Notice further that the maximal code length
satisfies

max
d∈D
|d| = O(N3 logN) = O(D logD).

Now we construct a variant of the Shannon code with r = o(1/D). For every
d ∈ D1 ∪ · · · ∪ DK we can choose a non-negative integer ℓ(d) with

|ℓ(d) + logP (d)| < 2

Nη
.

In particular, we have

0 ≤ ℓ(d) + logP (d) <
2

Nη

if 〈logP (d)〉 < 2/Nη and

− 2

Nη
< ℓ(d) + logP (d) ≤ 0

if 1− 〈logP (d)〉 < 2/Nη. For d ∈ BK we simply set ℓ(d) = ⌈− logP (d)⌉.
The final problem is now to adjust the choices of “+” resp. “−” in the above

construction so that Kraft’s inequality is satisfied. For this purpose we use the
following easy property.

Lemma 5.2.4 (Khodak, 1972). Let D be a finite set with probability distribu-
tion P and suppose that for every d ∈ D we have |ℓ(d) + logP (d)| ≤ 1 for a
nonnegative integer ℓ(d). If

∑

d∈D
P (d)(ℓ(d) + logP (d)) ≥ 2

∑

d∈D
P (d)(ℓ(d) + logP (d))2, (5.8)

then there exists an injective mapping C : D → {0, 1}∗ such that C is a prefix
free set and |C(d)| = ℓ(d) for all d ∈ D.

5.2. Redundancy of the Khodak VV Code 95

Proof. We use the local expansion 2−x = 1 − x ln 2 + η(x) for |x| ≤ 1, where
((log 4)/4)x2 ≤ η(x) ≤ (log 4)x2. Hence

∑

d∈D
2−ℓ(d) =

∑

d∈D|
P (d)2−(ℓ(d)+logP (d))

= 1− ln 2
∑

d∈D
P (d)(ℓ(d) + logP (d))

+
∑

d∈D
P (d)η (ℓ(d) + logP (d))

≤ 1− ln 2
∑

d∈D
P (d)(ℓ(d) + logP (d))

+2 ln 2
∑

d∈D
P (d)(ℓ(d) + logP (d))2

If (5.8) is satisfied, then it follows that

∑

d∈D
2−ℓ(d) ≤ 1.

Consequently, Kraft’s inequality is satisfied, and there exists an injective map-
ping C : D → {0, 1}∗ such that C is a prefix free set and |C(d)| = ℓ(d) for all
d ∈ D.

We now set
Ej =

∑

d∈Dj

P (d)(ℓ(d) + logP (d)).

Then Ej > 0 if we have chosen “+” in the above construction and Ej < 0 if we
have chosen “−”. In any case we have

|Ej | ≤ P (Dj)
2

Nη
≤ 2c′′

N1+η

(
1− c′

N

)j−1

≤ 2c′′

N1+η
.

Suppose for a moment that we have always chosen “+”, that is, Ej > 0 for all
j ≥ 1, and that

K∑

j=1

Ej ≤
8 + 2c′′

N1+η
. (5.9)

We can assume thatN is large enough that 2/Nη ≤ 1/2. Hence, the assumptions
of Lemma 5.2.4 are trivially satisfied since 0 ≤ ℓ(d) + logP (d) < 1/2 implies

96 Chapter 5. Khodak VV Codes

2(ℓ(d) + logP (d))2 < ℓ(d) + logP (d) for all d ∈ D. If (5.9) does not hold (if we
have chosen always “+”), then one can select “+” and “−” so that

8

N1+η
≤

K∑

j=1

Ej ≤
8 + 4c′′

N1+η
.

Indeed, if the partial sum
∑K

j=i Ei ≤ (8 + 2c′′)N−1−η, then the sign of Ej is

chosen to be “+” and if
∑K

j=i Ei > (8+2c′′)N−1−η then the sign of Ej is chosen
to be “−”. Since
∑

d∈D
P (d)(ℓ(d) + logP (d))2 ≤ 4

N2η
≤ 4

N1+η
≤ 1

2

∑

d∈D
P (d)(ℓ(d) + logP (d))

the assumption of Lemma 5.2.4 is satisfied. Thus, there exists a prefix free
coding map C : D → {0, 1}∗ with |C(d)| = ℓ(d) for all d ∈ D. Applying
the above lemma we arrive (after some algebra) at the following bound on the
average redundancy rate (see Exercise 5.5)

r ≤ 1

D

∑

d∈D
P (d)(ℓ(d) + logP (d)) ≤ C 1

DN1+η
. (5.10)

Since the average dictionary phrase length D is of order N3 we have

r = O

(
D

−1− 1+η
3

)
= O

(
D

− 4+η
3

)
.

This proves the upper bound for r of Lemma 5.2.3 and, thus, Theorem 5.2.1
follows.

5.3. Explicit Construction of a Khodak VV Code

In what follows we present an algorithm for designing a VV-code with arbitrarily
large average dictionary length D for memoryless sources. More precisely, we
construct a code with redundancy r ≤ ε/D, where ε > 0 is given and D ≥
c/ε3 (for some constant c). In fact, for some large integer N we find that

D = N3 and ε = 1/N , so that r = O(D
−4/3

) which does not employ the
full strength of Theorem 5.2.1 that guarantees the existence of a code with the

average redundancy smaller than cD
−5/3

. This allows some simplification, in
particular we just use a standard Shannon code.

5.3. Explicit Construction of a Khodak VV Code 97

Continued fraction. Before we proceed, we need some facts about contin-
ued fractions (see also Appendix F). A finite continued fraction expansion is a
rational number of the form

c0 +
1

c1 +
1

c2+
1

c3+

. . .+ 1
cn

,

where c0 is an integer and cj are positive integers for j ≥ 1. We denote this
rational number as [c0, c1, . . . , cn]. With help of the Euclidean algorithm for
gcd, it is easy to see that every rational number has a finite continued fraction
expansion. Furthermore, if cj is a given sequence of integers (that are positive
for j > 0), then the limit θ = limn→∞[c0, c1, . . . , cn] exists and is denoted by the
infinite continued fraction expansion θ = [c0, c1, c2 . . .]. Conversely, if θ is a real
irrational number and if we recursively set

θ0 = θ, cj = ⌊θj⌋, θj+1 = 1/(θj − cj),

then θ = [c0, c1, c2 . . .]. In particular, every irrational number has a unique
infinite continued fraction expansion.

The convergents of an irrational number θ with infinite continued fraction
expansion θ = [c0, c1, c2 . . .] are defined as

Pn

Qn
= [c0, c1, . . . , cn],

where integers Pn, Qn are coprime. These integers can be recursively determined
by

Pn = cnPn−1 + Pn−2, Qn = cnQn−1 +Qn−2 (5.11)

that the reader is asked to prove in Exercise 5.6. In particular, Pn and Qn are
growing exponentially quickly. Furthermore, the convergents Pn

Qn
are the best

rational approximations of θ in the sense that

|Qnθ − Pn| < min
0<Q<Qn, P∈Z

|Qθ − P |.

In particular one has (see Exercise 5.7)

∣∣∣∣θ −
Pn

Qn

∣∣∣∣ <
1

Q2
n

. (5.12)

The denominators Qn are called best approximation denominators.

98 Chapter 5. Khodak VV Codes

Algorithm. Now we present algorithm KhodCode that constructs a VV
code with the normalized redundancy o(1/D). We will also make the assumption
that all symbol probabilities pj are rational numbers; otherwise we would have
to assume that pj is known to an arbitrary precision. We then know that log pj
is either irrational or an integer (which means that pj = 2−k). Thus, we can
immediately decide whether all log pj are rational or not. If all pj are negative
powers of 2, then we can use a perfect code with zero redundancy. Thus, we only
have to treat the case where pm−1 is not a negative powers of 2. We also assume
that the continued fraction expansion of log pm−1 = [c0, c1, c2, . . .] is given and
one determines a convergent

[c0, c1, c2, . . . , cn] =M/N

for which the denominator N satisfies N > 4/ε. The main goal of the algorithms
is to construct a prefix free set of words d with the property that for most
words 〈logP (d)〉 is small. The reason for this philosophy is that if one uses
the Shannon code as the string encoder, that is, ℓ(d) = ⌈− logP (d)⌉, then the
difference ℓ(d)− log(1/P (d)) = 〈logP (d)〉 is small and contributes negligibly to
the redundancy.

The main step of the algorithm is a loop of the same subroutine. The input
is a pair D, B of sets of words with the property that D ∪ B is a prefix free set.
Words d in D are already good in the sense that 〈logP (d)〉 ≤ 3

4ε, whereas words
r in B are bad because they do not satisfy this condition. In the first step of
the subroutine, one chooses a word r ∈ B of minimal length and computes an
integer k with 0 ≤ k < N that satisfies

1

N
≤ 〈kM/N + x+ logP (r)〉 ≤ 2

N
.

Here x is an abbreviation of

x =

m−1∑

j=0

k0j log pj ,

where k0j = ⌊pjN2⌋, 0 ≤ j < m. The computation of k can be done by solving
the congruence

kM ≡ 1− ⌊(x+ logP (r))N⌋ mod N (5.13)

(e.g., with help of the Euclidean algorithm). This choice of k ensures that

0 ≤ 〈k log pm + x+ logP (r)〉 ≤ 3/N ≤ 3

4
ε.

5.3. Explicit Construction of a Khodak VV Code 99

For this k we determine the setD′ of all words d of type(d) = (k00 , . . . , k
0
m−2, k

0
m−1+

k). By construction all d′ ∈ D′ satisfy

〈logP (r · d′)〉 = 〈k log pm−1 + x+ logP (r)〉 ≤ 3

4
ε.

We now replace D by D∪r ·D′ and B by (B\{r})∪r ·(An\D′). This construction
ensures that (again) all word in d ∈ D satisfy

〈logP (d)〉 ≤ 3

4
ε.

The algorithm terminates when P (D) > 1−ε/4; that is, most words in D∪B
are good. The proof of Theorem 5.2.1 shows that this actually occurs when the
average dictionary length D is of order O(N3). In particular, the special choice
of integers k0j = ⌊pjN2⌋ ensures that the probability P (D) increases step by step
as quickly as possible, compare with (5.5).

As already mentioned, we finally use the Shannon code C : D∪B → {0, 1}∗,
that is ℓ(d) = ⌈− logP (d)⌉ for all d ∈ D ∪B. The redundancy can be estimated
by

r =
1

D

∑

d∈D∪B
P (d)

(
ℓ(d)− log

1

P (d)

)

=
1

D

∑

d∈D∪B
P (d) 〈logP (d)〉

=
1

D

(
∑

d∈D
P (d)〈logP (d)〉+

∑

d∈B
P (d)〈logP (d)〉

)

≤ 1

D

(
P (D)3

4
ε+ P (B)

)

≤ 1

D

(
3

4
ε+

1

4
ε

)
=

ε

D
.

Thus this algorithm constructs a parsing tree and a VV code with a small
redundancy rate. A more formal description of the algorithm follows.

Algorithm KhodCode:

Input: (i) m, an integer ≥ 2; (ii) positive rational numbers p0, . . . , pm−1 with
p0 + · · · + pm−1 = 1, pm−1 is not a power of 2; (iii) ε, a positive real number
< 1.

100 Chapter 5. Khodak VV Codes

Output: A VV-code, that is, a complete prefix free set D on m symbols and
a prefix code C : D → {0, 1}∗, with redundancy r ≤ ε/D, where the average
dictionary code length D satisfies D ≥ c(m, p0, . . . , pm−1)/ε

3 (for some constant
c(m, p0, . . . , pm−1)).

Notation: For a word w ∈ {0, . . . ,m − 1}∗ that consists of kj copies of j

(0 ≤ j < m) we set P (w) = pk0
0 · · · p

km−1

m−1 for the probability of w and type(w) =
(k0, . . . , km−1). By ω we denote the empty word and set P (ω) = 1.

1. Calculate the convergent M
N = [c0, c1, . . . , cn] of the irrational number

log pm−1 for which N > 4/ε.

2. Set k0j = ⌊pjN2⌋ (0 ≤ j < m), x =
∑m

j=1 k
0
j log pj, and n0 =

∑m
j=1 k

0
j .

3. Set D = ∅, B = {ω}, and p = 0
while p < 1− ε/4 do

Choose r ∈ B of minimal length
b← logP (r)
Find 0 ≤ k < N that solves the congruence
kM ≡ 1− ⌊(x+ b)N⌋ mod N
n← n0 + k
D′ ← {d ∈ An : type(d) = (k00 , . . . , k

0
m−2, k

0
m−1 + k)}

D ← D ∪ r · D′

B ← (B \ {r}) ∪ r · ({0, . . . ,m− 1}n \ D′)
p← p+ P (r)P (D′), where

P (D′) =
n!

k00 ! · · · k0m−2!(k
0
m−1 + k)!

p
k0
0

0 · · · p
k0
m−2

m−2 p
k0
m−1+k

m−1 .

end while.

4. D ← D ∪ B.

5. Construct a Shannon code C : D → {0, 1}∗ with ℓ(d) = ⌈− logP (d)⌉ for
all d ∈ D.

6. End.

Example 5.3.1. We assume m = 2 with p0 = 2/3 and p1 = 1/3. In the
first iteration of the algorithm we assume that both B and C are empty. Easy
computations show that

log(1/3) = [−2, 2, 2, 2, 3, . . .], and [−2, 2, 2, 2] = −19

12
,

5.4. Khodak’s Redundancy for Almost All Sources 101

hence M = −19 and N = 12. Let us set ε = 0.4 so 4/ε = 10 < 12 = N .
Therefore, k00 = 96, k01 = 48 so that n0 = 144 = N2. Solving the congruence

−19k = 1 + 1587 mod 12

gives k = 8 and therefore

C′ = {d ∈ {0, 1}152 : type(d) = (96, 56)}

with P (C′) ≈ 0.04425103411. Observe that B = {0, 1}152 \ C.
In the second iteration we can pick up any string from B, say the string r =

00 . . . 0 with 152 zeros. We find, solving the congruence with b = 152 log(2/3) ≈
−88.91430011, that k = 5. Hence C′ = {d ∈ {0, 1}149 : type(d) = (96, 53)}
and C = {d ∈ {0, 1}152 : type(d) = (96, 56)} ∪ r · C′. We continue along the
same path until the total probability of all “good” strings in C reaches the value
3/4 · ε = 0.3, which may take some time.

5.4. Khodak’s Redundancy for Almost All Sources

In this section we present better estimates for the normalized redundancy rates,
however they are valid only for almost all memoryless sources. This means
that the set of exceptional pj , those pj with

∑m
j=1 pj = 1 and pj > 0 for all

0 ≤ j ≤ m− 1 that do not satisfy the proposed property, has zero Lebesgue
measure on the (m − 1)-dimensional hyperplane x0 + · · · + xm−1 = 1. From a
mathematical point of view, these results are quite challenging.

While Lemma 5.2.2 and 5.2.3 laid foundation for Theorem 5.2.1, the next
lemma is fundamental for our current considerations.

Lemma 5.4.1. Suppose that ε > 0. Then for almost all pj (0 ≤ j < m) with
pj > 0 and p0 + p1 + · · ·+ pm−1 = 1 the set

X = {〈k0 log p0 + · · ·+ km−1 log pm−1〉 : 0 ≤ kj < N (0 ≤ j < m)}

has dispersion

δ(X) ≤ 1

Nm−ε
(5.14)

for sufficiently large N . In addition, for almost all pj > 0 there exists a constant
C > 0 such that

‖k0 log p0 + · · ·+ km−1 log pm−1‖ ≥ C
(

max
0≤j<m

|kj |
)−m−ε

(5.15)

for all non-zero integer vectors (k0, . . . , km−1).

102 Chapter 5. Khodak VV Codes

We should point out that for m = 2 we can slightly improve the estimate
of the lemma. Indeed, we will show that for almost all p0 > 0, p1 > 0 with
p0 + p1 = 1 there exists a constant κ and infinitely many N such that the set
X = {〈k0 log p0 + k1 log p1〉 : 0 ≤ k0, k1 < N} has dispersion

δ(X) ≤ κ

N2
. (5.16)

The estimate (5.16) is a little bit sharper than (5.14). However, it is only valid
for infinitely many N and not for all but finitely many. We point out that (5.14)
and (5.16) are optimal. Since the set X consists of Nm points the dispersion
must satisfy δ(X) ≥ 1

2N
−m.

By combining Lemma 5.2.3 and Lemma 5.4.1 we directly obtain the following
property.

Theorem 5.4.2 (Y. Bugeaud, M. Drmota, and W. Szpankowski, 2008). Let us
consider a memoryless source on m ≥ 2 symbols. Then for almost all source pa-
rameters, and for every sufficiently large D0, there exists a VV code with the
average dictionary size D satisfying D0 ≤ D ≤ 2D0 such that its average redun-
dancy rate is bounded by

r ≤ D− 4
3−m

3 +ε
, (5.17)

where ε > 0 and the maximal length is O(D logD).

This theorem shows that the typical best possible average redundancy r can
be measured in terms of negative powers of D that are linearly decreasing in the
alphabet size m. However, it seems to be a very difficult problem to obtain the
optimal exponent (almost surely). Nevertheless, these bounds are best possible
through the methods we applied.

Before we present a proof of Lemma 5.4.1 and hence prove Theorem 5.4.2,
we complete our analysis with a lower bound for all sources. We start with a
simple lemma that follows directly from our proof of Lemma 5.2.4

Lemma 5.4.3. Let D be a complete prefix free set with probability distribution
P . Then for any code C : D → {0, 1}∗ we have

r ≥ 1

2

1

D

∑

d∈D

P (d)‖ logP (d)‖2.

Proof. Suppose that |x| ≤ 1. Then we have 2−x = 1 − x ln 2 + η(x) with
((ln 4)/4)x2 ≤ η(x) ≤ (ln 4)x2. Actually we can represent 2−x also for |x| > 1
and still have some positive error term η(x) that satisfies

η(x) ≥ min (η(〈x〉), η(1 − 〈x〉)) ≥ ln 4

4
‖x‖2.

5.4. Khodak’s Redundancy for Almost All Sources 103

Hence by using the representation

x = (1− 2−x + η(x))/ ln 2

we find

r =
1

D

∑

d∈D
P (d)(ℓ(d) + logP (d))

=
1

D ln 2

∑

d∈D
P (d)

(
1− 2−ℓ(d)−logP (d) + η(ℓ(d) + logP (d))

)

=
1

D ln 2

(
1−

∑

d∈D
2−ℓ(d)

)
+

1

D ln 2

∑

d∈D
P (d)η(ℓ(d) + logP (d)).

Hence, by Kraft’s inequality and the above observation the result follows imme-
diately.

We are now in a position to present a lower bound on the redundancy rates
for almost all sources. Note that the exponent is again linearly decreasing in m,
however, with a different rate than in the upper bound (5.17).

Theorem 5.4.4. Consider a memoryless source on an alphabet of size m ≥ 2.
Then for almost all source parameters, and for every VV code with average
dictionary length D ≥ D0 (where D0 is sufficiently large) we have

r∗ ≥ r ≥ D−2m−1−ε
(5.18)

where ε > 0.

Proof. By Lemma 5.4.3 we have

r ≥ 1

2D

∑

d∈D

P (d)‖ logP (d)‖2.

Suppose that P (d) = pk0
0 · · · p

km−1

m−1 holds, that is

logP (d) = k0 log p0 + · · ·+ km−1 log pm−1.

By Lemma 5.4.1, we conclude from (5.15) that for all pj and for all non-zero
integer vectors (k0, . . . , km−1)

‖k0 log p0 + · · ·+ km−1 log pm−1‖ ≥ C
(

max
0≤j<m

|kj |
)−m−ε

,

104 Chapter 5. Khodak VV Codes

and therefore

‖ logP (d)‖ ≥ C
(

max
0≤j<m

|kj |
)−m−ε

≥ C

 ∑

0≤j<m

kj

−m−ε

= C|d|−m−ε.

Consequently, by Jensen’s inequality, we obtain

r ≥ C

2D

∑

d∈D
P (d)|d|−2m−2ε

≥ C

2D

(
∑

d∈D
P (d)|d|

)−2m−2ε

≥ D
−2m−1−3ε

.

This completes the proof of Theorem 5.4.4.

5.4.1. Proof of Lemma 5.4.1

Lemma 5.4.1 states that for almost all pj > 0 (with p1 + · · ·+ pm−1 = 1) the set

X = {〈k0 log p0 + · · ·+ km−1 log pm−1〉 : 0 ≤ kj < N (0 ≤ j < m)}

has dispersion δ(X) ≤ N−m+ε for all sufficiently large N (that is, (5.14) holds)
and for all non-zero integer vectors (k1, . . . , km) the relation (5.15) holds for
some constant C > 0.

These kind of problems fall into the field of metric Diophantine approxima-
tion that is well established in number theory. One of the problems in this field
is to obtain some information about linear forms of type

L = k0γ0 + · · ·+ km−1γm−1 + km,

where kj are integers and γj are randomly chosen real numbers. In fact, one is
usually interested in lower bounds for |L| in terms of max |kj |.

In our context, we have γj = log pj so that the γj ’s are related by

2γ0 + · · ·+ 2γm−1 = 1.

This means that they cannot be chosen independently. They are situated on a
proper submanifold of the m-dimensional space. It has turned out that metric
Diophantine approximation in this case is much more complicated than in the
independent case. Fortunately, there exist now proper results that we can use
for our purpose.

5.4. Khodak’s Redundancy for Almost All Sources 105

Theorem 5.4.5 (Dickinson and Dodson, 2000). Suppose that m ≥ 2 and 1 ≤
k < m. Let U be an open set in Rk and, for 0 ≤ j ≤ m− 1, let Ψj : U → R be
C1 real functions. Let η > 0 be real. Then for almost all u = (u0, . . . , uk−1) ∈ U ,
there exists N0(u) such that for all N ≥ N0(u) we have

|k0Ψ0(u) + · · ·+ km−1Ψm−1(u) + km| ≥ N−m+(m−k)η(logN)m−k

for all non-zero integer vectors (k0, k1, . . . , km) with

max
0≤j≤k−1

|kj | ≤ N and max
k≤j≤m−1

|kj | ≤ N1−η/(logN).

More precisely, let us define a convex body consisting of all real vectors
(y0, . . . , ym) with

|y0Ψ0(u) + . . .+ ym−1Ψm−1(u) + ym| ≤ N−m+(m−k)η(logN)m−k,

|yj | ≤ N, (j = 0, . . . , k − 1), (5.19)

|yj | ≤ N1−η (logN)−1, (k ≤ j < m).

Dickinson and Dodson (2000) considered in the course of the proof of their
Theorem 2 the set S(N) that consists of all u ∈ U for which there exists an
integer vector (k0, k1, . . . , km) with 0 < max

0≤j≤m−1
|kj | < N1−η satisfying (5.19).

In particular they showed that the S(N) has the property that the set

lim sup
N→∞

S(N) =
⋂

N≥1

⋃

M≥N

S(M)

has zero Lebesgue measure. This means that almost no u belongs to infinitely
many sets S(N). In other words, for almost every u, there exists N0(u) such
that u /∈ S(N) for every N ≥ N0(u). And this is stated in Theorem 5.4.5.

For m = 2, Theorem 5.4.5 can be improved as shown by Baker (1978).

Theorem 5.4.6 (Baker, 1978). Let Ψ0 and Ψ1 be C3 real functions defined
on an interval [a, b]. For x in [a, b], set

k(x) = Ψ′
0(x)Ψ

′′
1 (x)−Ψ′′

0(x)Ψ
′
1(x).

Assume that k(x) is non-zero almost everywhere and that |k(x)| ≤ M for all
x in [a, b] and set κ = min{10−3, 10−8M−1/3}. Then for almost all x in [a, b],
there are infinitely many positive integers N such that

|k0Ψ0(x) + k1Ψ1(x) + k2| ≥ κN−2

for all integers k0, k1, k2 with 0 < max{|k0|, |k1|} ≤ N .

106 Chapter 5. Khodak VV Codes

Using Theorem 5.4.5 and Theorem 5.4.6 we are now in a position to prove
(5.14) and (5.15).

Proof of (5.15). For this purpose we can directly apply Theorem 5.4.5,
where k = m− 1 and U is an open set contained in

∆ = {u = (u0, . . . , um−2) : u0 ≥ 0, . . . , um−2 ≥ 0, u0 + · · ·+ um−2 ≤ 1}

and Ψj(u) = log(uj) (0 ≤ j ≤ m−2), resp. Ψm−1(u) = log(1−u0−· · ·−um−2).
We also know that, for almost all u, the numbers 1,Ψ0(u), . . . ,Ψm−1(u) are
linearly independent over the rationals, hence,

L := k0Ψ0(u) + · · ·+ km−1Ψm−1(u) + km 6= 0

for all non-zero integer vectors (k0, k1, . . . , km).
Set J = max0≤j≤m−1 |kj | and define N by N1−η = J logN . Assume that

J is large enough to give N ≥ N0(u). We then have (for suitable constants
c1, c2 > 0)

|L| ≥ N−m+η(logN)

≥ c1J−m−(m−1)η/(1−η)(log J)(1−m)/(1−η)

≥ c2J−m−ε

for ε = 2(m − 1)η/(1 − η) and J large enough. This completes the proof of
(5.15).

Proof of (5.14). To simplify our presentation, we first apply Theorem
5.4.6 in the case of m = 2 and then briefly indicate how it generalizes. First of
all we want to point out that Theorems 5.4.5 and 5.4.6 are lower bounds for the
homogeneous linear form

L = k0Ψ0(u) + · · ·+ km−1Ψm−1(u) + km

in terms of max |kj |. Using techniques from “geometry of numbers” these lower
bounds can be transformed into upper bounds for the dispersion of the set

X = {〈k0Ψ0(u) + · · ·+ km−1Ψm−1(u)〉 : 0 ≤ k0, . . . , km−1 < N}.

In particular we will use the notion of successive minima of convex bodies.
Let B ⊆ Rd be a 0-symmetric convex body. Then the successive minima λj are
defined by

λj = inf{λ > 0 : λB contains j linearly independent integer vectors}.

5.4. Khodak’s Redundancy for Almost All Sources 107

One of the first main results of “geometry of numbers” is Minkowski’s Second
Theorem stating that

2d/d! ≤ λ1 · · ·λdVold(B) ≤ 2d.

Let x and N be the same as Theorem 5.4.6 and consider the convex body
B ⊆ R3 that is defined by the inequalities

|y0Ψ0(x) + y1Ψ1(x) + y2| ≤ κN−2,

|y0| ≤ N,

|y1| ≤ N.

By Theorem 5.4.6 the set B does not contain a non-zero integer point. Thus, the
first minimum λ1 of B is ≥ 1. Note that Vol3(B) = 8κ. Then from Minkowski’s
Second Theorem we conclude that the three minima of this convex body satisfy
λ1λ2λ3 ≤ 1/κ. Since 1 ≤ λ1 ≤ λ2 we thus get λ3 ≤ λ1λ2λ3 ≤ 1/κ and
consequently λ1 ≤ λ2 ≤ λ3 ≤ 1/κ. In other words, there exist constants κ2 and
κ3, and three linearly independent integer vectors (a0, a1, a2), (b0, b1, b2) and
(c0, c1, c2) such that

|a0Ψ0(x) + a1Ψ1(x) + a2| ≤ κ2N
−2,

|b0Ψ0(x) + b1Ψ1(x) + b2| ≤ κ2N
−2,

|c0Ψ0(x) + c1Ψ1(x) + c2| ≤ κ2N
−2,

max{|ai|, |bi|, |ci|} ≤ κ3N.

Using these linearly independent integer vectors, we can show that the dispersion
of

X = {〈k0Ψ0(x) + k1Ψ1(x)〉 : 0 ≤ k0, k1 ≤ 7κ3N}
is small.

Let ξ be a real number (that we want to approximate by an element of X)
and consider the (regular) system of linear equations

−ξ + θa(a0Ψ0(x) + a1Ψ1(x) + a2) + θb(b0Ψ0(x) + b1Ψ1(x) + b2)

+ θc(c0Ψ0(x) + c1Ψ1(x) + c2) = 4κ2N
−2,

θaa0 + θbb0 + θcc0 = 4κ3N, (5.20)

θaa1 + θbb1 + θcc1 = 4κ3N.

Denote by (θa, θb, θc) its unique solution and set

ta = ⌊θa⌋, tb = ⌊θb⌋, tc = ⌊θc⌋,

108 Chapter 5. Khodak VV Codes

and
kj = taaj + tbbj + tccj (j = 0, 1, 2).

Of course, k0, k1, k2 are integers and from the second and third equation of (5.20)
combined with max{|ai|, |bi|, |ci|} ≤ κ3N it follows that

κ3N ≤ min{k0, k1} ≤ max{k0, k1} ≤ 7κ3N,

in particular, k0 and k1 are positive integers. Moreover, by considering the first
equation of (5.20) we see that

κ2N
−2 ≤ −ξ + k0Ψ0(x) + k1Ψ1(x) + k2 ≤ 7κ2N

−2.

Since this estimate is independent of the choice of ξ this implies

δ(X) ≤ 7κ2N
−2.

Clearly, we can apply this procedure for the functions Ψ0(x) = log x and
Ψ1(x) = log(1− x) and for any interval [a, b] with 0 < a < b < 1.

This also shows that we can choose ε = 0 in the casem = 2 for infinitely many
N in Lemma 3, provided that we introduce an (absolute) numerical constant.

Finally, we discuss the general case m ≥ 2 (and prove Lemma 5.4.1). We
consider the convex body B ⊆ Rm+1 that has volume 2m+1 and is defined by
(5.19):

|y0Ψ0(u) + . . .+ ym−1Ψm−1(u) + ym| ≤ N−m+(m−k)η(logN)m−k,

|yj| ≤ N, (j = 0, . . . , k − 1),

|yj| ≤ N1−η (logN)−1 (j = k, . . . ,m− 1).

By assumption, the first minimum λ1 ofB satisfies λ1 ≥ N−η, thus, by Minkowski’s
Second Theorem, its last minimum λm is bounded by λm ≤ Nnη. Consequently,
we have n+ 1 linearly independent vectors q(i), i = 0, . . . ,m, such that

‖q(i) ·Ψ(u)‖ ≤ N−m+(m−k)η+mη(logN)k, ‖q(i)‖∞ ≤ N1+mη.

We now argue as above, and consider a system of linear equations analogous to
(5.20). Hence, for any real number ξ, there are positive integers k0, . . . , km−1

such that

‖ − ξ + k0Ψ0(u) + . . .+ km−1Ψm(u)‖ < 1

Nm−ε
, max kj ≤ N,

where ε > 0 can be made arbitrarily small by taking sufficiently small values of
η. Applied to the functions

Ψj(u) = log(uj), 0 ≤ j ≤ m− 2

Exercises 109

and
Ψm−1(u) = log(1− u0 − · · · − um−2),

this proves (5.14). This completes the proof of Lemma 5.4.1.

Exercises

5.1 Show that every V V prefix code is a concatenation of VF and FV codes.

5.2 Prove Lemma 5.2.2.

5.3 Prove a proper variant of Theorem 5.2.1 in the case, where all log pi,
0 ≤ i < m are rational.

5.4 Provide details of (5.6)–(5.7).

5.5 Establish (5.10).

5.6 Derive recurrences (5.11).

5.7 Prove (5.12).

5.8 Solve congruence (5.13).

5.9 Using algorithm KhodCode construct a VV code for p0 = 1/5 and
p1 = 4/5.

5.10 Following the steps of the proof of Lemma 5.2.3 establish Lemma 5.4.1.

Bibliographical notes

There is scarcely any literature on VV codes with a few exceptions such as
Fabris (1992), Freeman (1993), Khodak (1972). The most interesting is a fifty
year old work by Khodak (1972). To the best of our knowledge not much was
done since then, except that Fabris (1992) and also Freeman (1993) analyzed
Tunstall–Huffman VV code and provided a simple bound on the redundancy
rate. Furthermore, Fabris (1992) also showed that a greedy optimization does
not lead to an optimal VV code.

There is much more literature on Diophantine equations and their approxi-
mation. We mention here Cassels (1957), Bernik and Dodson (1999), Allouche
and Shallit (2008), Sprindzuk (1979). Continued fraction are discussed for ex-
ample in in Cassels (1957) and Allouche and Shallit (2008). Minkowski Second
theorem is discussed in Cassels (1957), Schmidt (1980).

This chapter is based on Bugeaud et al. (2008).

CHAPTER 6

Non Prefix One-to-One Codes

In this chapter we discuss non-prefix codes, that is, codes which are not prefix
free and do not satisfy Kraft’s inequality. In particular, we construct a one-to-
one code whose average length is smaller than the source entropy in defiance
of the Shannon lower bound. To focus, we only consider fixed-to-variable codes
over known memoryless sources with block size equal to n. We first present a
very precise analysis of one-to-one codes for a binary source alphabet, and then
extend it to a general finite source alphabet.

We start with some general comments. Lossless symbol-by-symbol com-
pressors are required to satisfy the condition of “unique decodability” whereby
different input strings are assigned different compressed versions. Uniquely de-
codable non-prefix codes do not offer any advantages over prefix codes since any
uniquely decodable code must assign lengths to the various symbols that satisfy
Kraft’s inequality, while a prefix code is guaranteed to exist with those symbol
lengths. Achieved by the Huffman code, an exact expression for the minimum
average length of a prefix symbol-by-symbol binary code is unknown, however,
in Chapter 2 we provided precise asymptotics.

However, the paradigm of symbol-by-symbol compression is severely subop-
timal even for memoryless sources. For example, symbol-by-symbol compression
is unable to exploit the redundancy of biased coin flips. Algorithmically, at the
expense of a slight penalty in average encoding length, this inefficiency is dealt
with stream codes such as arithmetic coding. To approach the minimum aver-
age encoding length one can partition the source string of length n into blocks
of length k and apply the symbol-by-symbol approach at the block level. The
resulting average compressed length per source symbol is equal to the entropy of
each symbol, H(X), plus at most 1/k bits if the source is memoryless, or more
generally, equal to the entropy of k consecutive symbols divided by k plus at
most 1/k bits. Thus, to achieve the best average efficiency without regard to
complexity, we can let k = n, apply a Huffman code to the whole n-tuple and

112 Chapter 6. Non Prefix One-to-One Codes

the resulting average compressed length behaves as

Ln = nH(X) +O(1).

In Chapter 2 we analyzed precisely the O(1) term, which really constitutes the
redundancy of the Huffman code.

It is possible, however, to attain average compressed length lower than the
entropy (by, for example, ignoring the unique decodebility or Kraft’s inequal-
ity). The reason is that it is often unnecessary, and in fact wasteful, to impose
the prefix condition on a code that operates at the level of the whole file to
be compressed. Applying prefix codes to n-block supersymbols is only optimal
in terms of the linear growth with n (it attains the entropy rate for stationary
ergodic sources); however, as far as sublinear terms, this conventional approach
incurs loss of optimality. The optimal fixed-to-variable length code performs no
blocking on the source output; instead the optimal length-n compressor chooses
an encoding table that lists all source realizations of length n in decreasing prob-
abilities (breaking ties using a lexicographical ordering on the source symbols)
and assigns, starting with the most probable.

The fact that the length of the compressed file is unknown a priori is im-
material since the decompressor receives as input the compressed file, including
where the file “starts and ends.” For example, files stored in a random-access
medium (such as a hard disk) do not satisfy the prefix condition: a directory (or-
ganized as a so-called inode pointer structure), contains the starting and ending
locations of the sequence of blocks occupied by each file in the storage medium.

The foregoing code is optimal not just in the sense of average length but in
the sense that the cumulative distribution function of its length is larger than
or equal to that of any other code. Such optimal codes have been previously
considered under the rubric of one-to-one codes that we discuss next.

6.1. Binary One-to-One Code

We focus on one-to-one codes for a memoryless source X over the binary alpha-
bet A = {0, 1} with p being the probability of generating a “0”. Hence, the
sequence xn = x1 . . . xn ∈ An has the empirical probability P (xn) = pkqn−k,
where k is the number of 0’s in xn and p is known. We shall assume that p ≤ q.
We first list all 2n probabilities in a non increasing order and assign the code
length ⌊log(j)⌋ to the j-th binary string on this list, as shown below:

probabilities qn
(

p
q

)0
≥ qn

(
p
q

)1
≥ . . . ≥ qn

(
p
q

)n

code lengths ⌊log(1)⌋ ⌊log(2)⌋ . . . ⌊log(2n)⌋.

6.1. Binary One-to-One Code 113

Observe that there are
(
n
k

)
equal probabilities pkqn−k. Set

Ak =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

k

)
, A−1 = 0.

Starting from the position Ak−1 +1 of the above list , the next
(
n
k

)
probabilities

are the same and equal to pkqn−k. The one-to-one code assigns to xn the shortest
(possibly empty) binary string (ties broken with the ordering 0 < 1) not assigned
to any element yn with P (yn) > P (xn). Thus, for each j = Ak−1+i, 1 ≤ i ≤

(
n
k

)
,

we assign the code length

⌊log(j)⌋ = ⌊log(Ak−1 + i)⌋

to the jth binary string. Hence the average code length is

E[Ln] =

n∑

k=0

pkqn−k
Ak∑

j=Ak−1+1

⌊log(j)⌋ (6.1)

=

n∑

k=0

pkqn−k

(nk)∑

i=1

⌊log(Ak−1 + i)⌋.

Our goal is to estimate E[Ln] asymptotically for large n and the average unnor-
malized redundancy

Rn = E[Ln]− nh(p)
where h(p) = −p log p− q log q is the binary entropy.

Let us first simplify the formula for E[Ln]. We need to handle the inner
sum that contains the floor function. To evaluate this sum we apply partial
summation (see Exercise 6.1)

N∑

j=1

aj = NaN −
N−1∑

j=1

j(aj+1 − aj). (6.2)

Using this, we easily find an explicit formula for the inner sum of (6.1), namely

Sn,k =

(nk)∑

j=1

⌊log(Ak−1 + j)⌋

=

(
n

k

)
⌊logAk⌋ − (2⌊log(Ak)⌋+1 − 2⌈log(Ak−1+2)⌉)

+ (Ak−1 + 1)(1 + ⌊log(Ak)⌋ − ⌈log(Ak−1 + 2)⌉).

114 Chapter 6. Non Prefix One-to-One Codes

After some algebra, using ⌊x⌋ = x− 〈x〉 and ⌈x⌉ = x + 〈−x〉, we finally reduce
the formula for E[Ln] to the following

E[Ln] =

n∑

k=0

(
n

k

)
pkqn−k⌊logAk⌋ (6.3)

− 2
n∑

k=0

(
n

k

)
pkqn−k2−〈logAk〉

+

n∑

k=0

(
n

k

)
pkqn−k 1 +Ak−1(

n
k

)

×
(
1 + log

(
Ak

Ak−1 + 2

)
− 〈− log(Ak−1 + 2)〉 − 〈logAk〉

)

−
n∑

k=0

(
n

k

)
pkqn−kAk−1(

n
k

)
(
2−〈logAk〉+1 − 2〈− log(Ak−1+2)〉

)

+ 2
n∑

k=0

pkqn−k2〈− log(Ak−1+2)〉.

Now we are in the position to present the result on the asymptotic behavior
of the average unnormalized redundancy Rn.

Theorem 6.1.1. Consider a binary memoryless source and the one-to-one
block code described above. Then for p < 1

2

Rn = −1

2
logn− 3 + ln 2

2 ln 2
+ log

1− p
1− 2p

1√
2πp(1− p)

+
p

1− 2p
log

(
2(1− p)

p

)
+ F (n) + o(1). (6.4)

Furthermore if α = log(1 − p)/p is irrational then F (n) = 0. Conversely if
α = N/M for some integers M,N such that gcd(N,M) = 1, then F (n) =
HM (βn − 1

2 logn), where β = log(1/(1 − p) and HM (y) is a periodic function
with period 1/M which is upper bounded by HM (y) = O(1/M).
Finally for p = 1

2 , we have

Rn = −2 + 2−n(n+ 2) (6.5)

for every n ≥ 1.

We note that the function HM (y) can be explicitly represented in terms of
integrals (see Lemma 6.1.3).

6.1. Binary One-to-One Code 115

We continue with some observations. As already discussed in Chapter 2 the
redundancy behavior depends on the rationality/irrationality of α = log(1−p)/p.
In Figure 6.1 we plot Rn + 0.5 log(n) versus n. We observe a change of “mode”
from a “converging mode” to a “fluctuating mode”, when switching from α =
log(1−p)/p irrational (cf. Figure 6.1(a)) to rational (cf. Figure 6.1(b)). We saw
this behavior already in Chapters 2 and 3 for Huffman, Shannon, and Tunstall
codes.

150 200100

−1.05

−1.15

−1.2

50

−1.1

L_n−n*h(p)+0.5*log(n)

−1.65

200

−1.45

−1.5

−1.7

−1.55

50

−1.6

150100

L_n−n*h(p)+0.5*log(n)

(a) (b)

Figure 6.1. Plots of Ln−nh(p)+0.5 log(n) (y-axis) versus n (x-axis) for:
(a) irrational α = log(1−p)/p with p = 1/π; (b) rational α = log(1−p)/p
with p = 1/9.

We briefly sketch the proof of Theorem 6.1.1 and only analyze here part (6.3)
of E[Ln] which we re-write as follows

n∑

k=0

(
n

k

)
pkqn−k⌊logAk⌋ =

n∑

k=0

(
n

k

)
pkqn−k logAk

−
n∑

k=0

(
n

k

)
pkqn−k〈logAk〉,

and define

an =

n∑

k=0

(
n

k

)
pkqn−k logAk, bn =

n∑

k=0

(
n

k

)
pkqn−k〈logAk〉.

116 Chapter 6. Non Prefix One-to-One Codes

The other terms can be handled very similarly or are negligible; for example we
have

n∑

k=0

pkqn−k2〈− log(Ak−1+2)〉 = O(qn).

We first deal with an for which we need to derive a precise asymptotic esti-
mate for An.

Lemma 6.1.2. For every sufficiently small ε > 0 there exist δ > 0 such that
uniformly for k = np+O(n1/2+ε)

Ak =
1− p
1− 2p

1√
2πnp(1− p)

(
1− p
p

)k
1

(1− p)n (6.6)

× exp

(
− (k − np)2
2p(1− p)n

)(
1 +O(n−δ)

)

for some δ > 0.

Proof. By Stirling’s formula and local expansion of the logarithm it follows that
(
n

k

)
=

1√
2πnp(1− p)

(
1− p
p

)k
1

(1− p)n exp

(
− (k − np)2
2np(1− p)

)

×
(
1 +O

(|k − np|3
n2

+
|k − np|

n

))

for k − np = O(n1/2+ε), where 0 < ε < 1
6 . This directly implies (6.6).

We remark that we could have also used the saddle point method applied to
the generating function

An(z) =
n∑

k=0

Akz
k =

(1 + z)n − 2nzn+1

1− z

with the saddle point z0 = p/(1− p).
Lemma 6.1.2 implies that (uniformly for |k − pn| ≤ n1/2+ε)

logAk = αk + nβ − log(ω
√
n)− (k − np)2

2p(1− p)n ln 2 +O(n−δ),

where ω = (1 − 2p)
√
2πp(1− p)/(1 − p) and δ > 0. Consequently we directly

obtain

an =
∑

|k−pn|≤n1/2+ε

(
n

k

)
pkqn−k logAk +O(n−δ)

= αpn+ nβ − log(ω
√
n)− 1

2 ln 2
+O(n−δ)

6.1. Binary One-to-One Code 117

For bn we need an extension of Lemma 2.1.5 from Chapter 2 presented next.

Lemma 6.1.3. Let 0 < p < 1 be a fixed real number and f : [0, 1] → R be a
Riemann integrable function.

(i) If α is irrational, then

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−kf

(〈
kα+ y − (k − np)2/(2pqn ln 2) + o(1)

〉)
(6.7)

=

∫ 1

0

f(t) dt,

where the convergence is uniform for all shifts y ∈ R.

(ii) Suppose that α = N
M is a rational number with integers N,M such that

gcd(N,M) = 1. Then uniformly for all y ∈ R

n∑

k=0

(
n

k

)
pk(1− p)n−kf

(〈
kα+ y − (k − np)2/(2pqn ln 2) + o(1)

〉)
(6.8)

=

∫ 1

0

f(t) dt+GM (y) + o(1),

where

GM (y)[f] :=
1

M

M−1∑

r=0

1√
2π

∞∫

−∞

e−x2/2

(
f

(〈
M

(
y − x2

2 ln 2

)〉)
−
∫ 1

0

f(t) dt

)
dx

is a periodic function with period 1
M and satisfies limM→∞GM (y)[f] = 0. In

particular if f is of bounded variation then GM (y)[f] = O(1/M).

Proof. We consider first the case, where α is irrational. In this case we know
that the sequences xk = αk is uniformly distributed modulo 1. Actually, since
xk+k0 = xk + xk0 is just a shifted version of the sequence xk, we have uniformly
for all k0 and (additional) shifts s

K−1∑

k=0

f(〈xk+k0 + s〉) = K

∫

0

f(t) dt+ o(K)

as K →∞. Furthermore we can perturb the sequence xk slightly to xk + oK(1)
and still obtain uniformly for all k0 and shifts s

K−1∑

k=0

f(〈xk+k0 + s+ oK(1)〉) = K

∫ 1

0

f(t) dt+ o(K)

118 Chapter 6. Non Prefix One-to-One Codes

as K →∞.
Since

(
n

k

)
pk(1− p)n−k ∼ 1√

2πnp(1− p)
exp

(
− (k − np)2
2p(1− p)n

)

is concentrated in the interval k ∈ [np−n 1
2+ε, np+n

1
2+ε] =: In it is sufficient to

restrict ourselves to this interval In. We now set K = ⌊n 1
2−2ε⌋ and partition the

interval [np−n 1
2+ε, np+n

1
2+ε] into (approximately) 2n3ε subintervals of length

K. Next observe that for k1, k2 ∈ In with |k1 − k2| ≤ K we have (uniformly)

exp

(
− (k1 − np)2
2p(1− p)n

)
= exp

(
− (k2 − np)2
2p(1− p)n

)(
1 +O(n−ε)

)
.

Hence, we have for k1 ∈ In and the subinterval [k1, k1 +K − 1]

k1+K−1∑

k=k1

(
n

k

)
pk(1− p)n−kf

(〈
kα+ y − (k − np)2/(2pqn ln 2) + o(1)

〉)

=
1√

2πnp(1− p)
exp

(
− (k1 − np)2
2p(1− p)n

)

×
k1+K−1∑

k=k1

(
1 +O(n−ε)

)
f
(〈
kα+ y − (k1 − np)2/(2pqn ln 2 + O(n−ε)) + o(1)

〉)

=
K√

2πnp(1− p)
exp

(
− (k1 − np)2
2p(1− p)n

)∫ 1

0

f(t) dt

+o

(
K√

2πnp(1− p)
exp

(
− (k1 − np)2
2p(1− p)n

))
.

Finally, by summing up over all subintervals of In, that is by considering all k1
of the form k1 = ⌊np− n 1

2+ε⌋+ rM for 0 ≤ r < 2n3ε, we directly obtain (6.7).
For the rational case we first partition the sum according to the residue

classes modulo M and, hence, obtain by Gaussian approximation

n∑

k=0

(
n

k

)
pk(1− p)n−kf

(〈
kN/M + y − (k − np)2/(2pqn ln 2) + o(1)

〉)
=

M−1∑

r=0

∑

k≡r mod M

(
n

k

)
pk(1− p)n−kf

(〈
rN/M + y − (k − np)2/(2pqn ln 2) + o(1)

〉)

=
1

M

M−1∑

r=0

1√
2π

∫ ∞

−∞
e−x2/2f

(〈
rN/M + y − x2/(2 ln 2)

〉)
dx+ o(1).

6.2. Non-binary One-to-One Code 119

Since the residue classes rN modM , r = 0, . . . ,M−1, are just all residue classes,
we complete the proof of (6.8).

Note that the sequence r/M , 0 ≤ r ≤ M − 1, has discrepancy 1/M , even
uniformly for a shifted version. Thus, we have uniformly in x

1

M

M−1∑

r=0

f
(〈
rN/M + y − x2/(2 ln 2)

〉)
=

∫ 1

0

f(t) dt+ o(1)

which implies that GM (y)[f] → 0 as M → ∞. Furthermore, if f is of bounded
variation then by Koksma-Hlawka’s inequality (Theorem E.2.3) we can replace
the error term o(1) by O(1/M) which implies that GM (y)[f] = O(1/M).

This leads us to the asymptotic behavior for

bn =
∑

|k−pn|≤n1/2+ε

(
n

k

)
pkqn−k〈logAk〉+O(n−δ)

=
∑

|k−pn|≤n1/2+ε

(
n

k

)
pkqn−k〈Nk/M + nβ − log(ω

√
n)− (k − np)2

2p(1− p)n ln 2 + O(n−δ)〉

+O(n−δ)

=
1

2
+GM (nβ − log(ω

√
n))[x] + o(1).

As mentioned above the other sums can be handled similarly (see Exer-
cise 6.6 and Szpankowski (2008)). This completes our sketch of the proof of
Theorem 6.1.1.

6.2. Non-binary One-to-One Code

Finally, we consider a non-prefix codes over a general finite alphabet. Consider a
probability distribution P on a set of ordered elements A = {0, . . . ,m− 1}. We
define a permutation π on A by π(a) < π(b) if P (a) > P (b) or if P (a) = P (b)
and a < b. Thus, π(x) = ℓ if x is the ℓ-th most probable element in A according
to the distribution P , with ties broken according to the ordering in A. It is easy
to verify that

P (x)π(x) ≤ 1 (6.9)

for all x ∈ A. Indeed, if (6.9) failed to be satisfied for x0 ∈ A, there would be
at least π(x0) masses strictly larger than 1/π(x0).

The one-to-one code assigns to x the shortest (possibly empty) binary string
(ties broken with the ordering 0 < 1) not assigned to any element y with π(y) <

120 Chapter 6. Non Prefix One-to-One Codes

π(x). Thus, we obtain (the simple but important conclusion) that the length of
the encoding of x is ⌊log π(x)⌋. We are interested in finding the average code
length

L = E[⌊logπ(X)⌋].
A simple upper bound (first noticed in Wyner (1972b)) is obtained as follows

L = E[⌊log π(X)⌋]
≤ E[log π(X)]

≤ E

[
log

1

P (X)

]

= H(P)

where (6.10) follows from (6.9). Note that dropping the prefix condition makes
the entropy an upper bound to the minimum average length, rather than a lower
bound.

As a simple example, let us compute the average code length when P is
uniform over A = {0, . . . ,m− 1}. Here we have

L =
1

m

m∑

i=1

⌊log i⌋

= ⌊logm⌋+ 1

m

(
2 + ⌊logm⌋ − 2⌊logm⌋+1

)
(6.10)

which is quite close to the entropy H(P) = logm. In the second line above we
apply formula (6.2).

Our goal is to present a general result for the asymptotic behavior of average
block code length for memoryless sources over An = {0, . . . ,m− 1}n.

Theorem 6.2.1 (W. Szpankowski and S. Verdu, 2011). Consider a memory-
less source on An = {0, . . . ,m−1}n and assume that the probability distribution
p0, . . . pm−1 on A = {0, . . . ,m−1} is not uniform. Then the average code length
of the one-to-one code is given by

E[Ln] = nh− 1

2
logn+O(1), (6.11)

where h = −∑m−1
i=0 pi log pi is the entropy. Hence, the average redundancy

becomes

Rn = −1

2
logn+O(1)

for large n.

6.2. Non-binary One-to-One Code 121

This theorem extends Theorem 6.1.1 (that was restricted to m = 2), however,
in contrast to Theorem 6.1.1 the bounded error term is not specified.

The rest of this section is devoted to the proof of Theorem 6.2.1. Without
loss of generality we assume that

p0 ≤ p1 ≤ · · · ≤ pm−2 ≤ pm−1. (6.12)

We set

Bi = log
pm−1

pi
(6.13)

for i = 0, . . . ,m− 2. Note that the entropy h can be expressed as

h = log
1

pm−1
+

m−2∑

i=0

piBi. (6.14)

Let

k = (k0, . . . , km−1) (6.15)

be such that k0+· · ·+km−1 = n denote the type of an n-string xn; the probability
of each such string is equal to

P (xn) = pk = pk0
0 · · · p

km−1

m−1 . (6.16)

Denote the set of all types of n-strings in An = {0, . . . ,m− 1}n by

Tn,m = {(k0, . . . , km−1) ∈ Nm, k0 + · · ·+ km−1 = n}.

We introduce an order among types:

j � k iff pj ≥ pk

and we sort all types from the smallest index (largest probability) to the largest.
This can be accomplished by observing that pj ≥ pk is equivalent to

j0B0 + · · ·+ jm−2Bm−2 ≤ k0B0 + · · ·+ km−2Bm−2. (6.17)

Therefore, to sort types k one needs to sort the function S : Rm−1 7→ R+

S(k) = k0B0 + · · ·+ km−2Bm−2 (6.18)

from the smallest value S(00 · · · 0) = 0 to the largest.

122 Chapter 6. Non Prefix One-to-One Codes

There are (
n

k

)
=

(
n

k0, . . . , km−1

)
=

n!

k0! · · · km−1!
(6.19)

sequences of type k and we list them in the lexicographic order. Then, the
optimum code assigns length ⌊log i⌋ to the ith sequence (1 ≤ i ≤ mn) in this
list. We denote the number of sequences more probable than or equal to type k
as

Ak :=
∑

j�k

(
n

j

)
.

In a first step we derive an asymptotic property for Ak.

Lemma 6.2.2. Suppose that m ≥ 2 and that the probability distribution p0 ≤
· · · ≤ pm−1 is not uniform. Then for every sufficiently small ε > 0 there exist
positive constants C1, C2 such that

C1n
m−2

2

(
n

k

)
≤ Ak ≤ C2n

m−2
2

(
n

k

)

uniformly for maxi |ki − npi| = O(n
1
2+ε).

Proof. We consider the case, where ki = npi, 0 ≤ i < m, and show also that all
estimates stay uniform with respect to small perturbation of the pi.

For notational convenience we write xi = ji−ki = ji−npi, 0 ≤ i < m. (Note
we have x0 + · · · + xm−1 = 0). Then by applying Stirling’s formula and local

expansions of the logarithm we obtain uniformly for maxi |ji − npi| = O(n
1
2+ε)

(
n

j

)
=

2nh

(2πn)
m−1

2
√
p0 · · · pm−1

exp

(
B0x0 + · · ·+Bm−2xm−2 −

1

2n

m−1∑

i=0

x2i
pi

)

×
(
1 +O(n−δ)

)

for some δ > 0, where h = −∑m−1
i=0 pi log pi. Thus, Ak is given by

Ak =
∑

j�k

(
n

j

)

=
mnh

(2π)
m−1

2
√
p0 · · · pm−1

∑

x�0

exp

(
B0x0 + · · ·+Bm−2xm−2 −

1

2n

m−1∑

i=0

x2i
pi

)

×
(
1 +O(n−δ)

)
..

6.2. Non-binary One-to-One Code 123

Clearly we can restrict ourselves to the case, where xi = O(n
1
2+ε). which we

assume from now on implicitly. The resulting error is negligible. In this range
we also have the property that the term

exp

(
B0x0 + · · ·+Bm−2xm−2 −

1

2n

m−1∑

i=0

x2i
pi

)

is of the same order of magnitude if the xi are varied to xi±1. Hence can replace
the upper sum S over x by an integral of the form

I =

∫

x�0

exp

(
B0x0 + · · ·+Bm−2xm−2 −

1

2n

m−1∑

i=0

x2i
pi

)
(6.20)

so that C1 ≤ I/S ≤ C2 for proper positive constants C1, C2.
We now estimate the integral (6.20). To simplify our presentation, we focus

on the case m = 3 We ask the reader in Exercise 6.9 to provide details for all
m. So let

I =

∫

B0x0+B1x1≤0

exp

(
B0x0 +B1x1 −

x20
2np0

− x21
2np1

− (x0 + x1)
2

2np2

)
dx0dx1.

In a first step we apply a proper linear transformation A1 to the variables x0, x1
such that

x20
p0

+
x21
p1

+
(x0 + x1)

2

p2
= y20 + y21 .

Clearly B0x0+B1x1 = B′
0y0+B

′
1y1 for proper real coefficients (B′

0, B
′
1) 6= (0, 0).

In a second step we apply an orthogonal operation A2 to the variables y0, y1 such
that B′

0y0 +B′
1y1 = B′′

0 z0 (and of course y20 + y21 = z20 + z21). Hence, the integral
I is (up to the constant | detA1|) given by

I ′ =

∫

B′′
0 z0≤0

exp

(
B′′

0 z0 −
1

2n
(z20 + z21)

)
dz0dz1

=
√
2πn

∫

B′′
0 z0≤0

exp

(
B′′

0 z0 −
1

2n
z20

)
dz0

=

√
2πn

|B|
(
1 +O(n−1)

)
.

Of course this proves (in the case m = 3) that Ak and
√
n
(
n
k

)
differ at most by

a bounded factor. In the general case the factor
√
n is replaced by n

m−2
2 .

Clearly all computations are stable with respect to small perturbation of the
pi. This completes the proof of the lemma.

124 Chapter 6. Non Prefix One-to-One Codes

As a corollary we obtain the following asymptotic relation for the logarithm

logAk = nh−1

2
logn+

B0x0 + · · ·+Bm−2xm−2

ln 2
− 1

2 ln2n

m−1∑

i=0

x2i
pi

+O(1) (6.21)

uniformly for xi = ki − npi = O(n
1
2+ε), 0 ≤ i < m.

We now turn to the average code length E[Ln]. We use the somewhat infor-
mal, but intuitive, notation, k + 1 and k − 1 for the next and previous types,
respectively, in the sorted list of the elements of Tn,m. Clearly, starting from
position Ak the next

(
n

k+1

)
sequences have probability pk+1. Thus the average

code length can be computed as follows

E[Ln] =
∑

k∈Tn,m

pk

Ak∑

i=Ak−1+1

⌊log i⌋

=
∑

k∈Tn,m

pk

(nk)∑

i=1

⌊log(Ak − i+ 1)⌋

=
∑

k∈Tn,m

(
n

k

)
pk

(
logAk +O

((
n

k

)
/Ak

))

where p = (p0, . . . , pm−1) and we have used that i ≤
(
n
k

)
= O(Ak). Actually we

have in central part, where |ki − npi| = O(n
1
2+ε)

(
n

k

)
= O(n−m−1

2 Ak),

which implies that

∑

k∈Tn,m

(
n

k

)2

pk/Ak = O
(
n−m−1

2

)
.

Furthermore by (6.21) we have

∑

k∈Tn,m

(
n

k

)
pk logAk =

∑

k∈Tn,m

(
n

k

)
pk

(
nh− 1

2
logn+

1

ln 2

m−2∑

i=0

Bi(ki − npi)−
1

2 ln 2n

m−1∑

i=0

(ki − npi)2
pi

+O(1)

)

= nh− 1

2
logn+O(1).

Consequently we obtain E[Ln] = nh− 1
2 logn+O(1) as proposed.

6.3. Exercises 125

6.3. Exercises

6.1 For any non-negative sequence aj establish the following identity (6.2)

N∑

j=1

aj = NaN −
N−1∑

j=1

j(aj+1 − aj)

(see Knuth (1997) Ex. 1.2.4-42).

6.2 Establish precise expansion of Ak presented in (6.6) of Lemma 6.1.2.

6.3 Following our analysis from Chapter 2 prove Lemma 6.1.3. For details
see Drmota, Hwang, and Szpankowski (2002).

6.4 For an unbiased memoryless source with p = 1/2 prove (6.5) of Theo-
rem 6.1.1.

6.5 Establish (6.10).

6.6 Estimate asymptotically the other parts of (6.3).

6.7 Let f be a function of polynomial growth. We seek asymptotics of the
so called binomial sums

Sf (n) =

n∑

k=0

(
n

k

)
pk(1− p)n−kf(k).

Prove that

Sf (n) = f(np) +
1

2
np(1− p)f ′′(np) +O(nf ′′′(ξ).

for some ξ ∈ [0, n]. For example, show that

n∑

k=0

(
n

k

)
pk(1− p)n−k log k = log(np)− 1− p

2pn
+O(n−2).

For more see Flajolet (1999), Jacquet and Szpankowski (1999). For a
multidimensional extension see Cichon and Golebiewski (2012).

6.8 Compute the precise asymptotic behavior of Anp for m = 3.

6.9 Estimate the integral (6.20) for all m.

6.10 Consider again the binary one-to-one code but assume now that the
source is unknown, that is, p is unknown and needs be estimate. Analyze
the average redundancy in this case (see e.g., Kosut and Sankar (2017)).

Bibliographical notes

Unique decipherability was addressed in many papers and books, but mostly
likely for the first time in MacMillan (1956).

126 Non Prefix One-to-One Codes

The fact that one-to-one codes have average code length smaller than en-
tropy was actually known to Shannon and Huffman. However, Wyner (1972a),
and then much later Alon and Orlitsky (1994), quantified more precisely this
difference. In particular, Alon and Orlitsky (1994) show that

L ≥ H(X)− log(H(X) + 1)− log e.

This chapter is based on Szpankowski (2008) and Szpankowski and Verdu
(2011). Further extensions can be found in Kontoyiannis and Verdu (2014)).
A univversal scheme with a precise analysis was proposed in Kosut and Sankar
(2017).

CHAPTER 7

Advanced Data Structures: Tree

Compression

Information theory traditionally deals with “conventional data” almost exclu-
sively represented by sequences, be it textual data, image, or video data. Over
the last decade, repositories of various data have grown enormously. Most of
the available data is no longer in conventional form. Instead, biological data
(e.g., gene expression data, protein interaction networks, phylogenetic trees),
topographical maps (containing various information about temperature, pres-
sure, etc.), medical data (cerebral scans, mammogram, etc.), and social network
data archives are in the form of multimodal data structures, that is, multitype
and context dependent structures, often represented by trees and graphs.

Unconventional data often contains more sophisticated structural relations.
For example, a graph can be represented by a binary matrix that further can be
viewed as a binary sequence. However, such a string does not exhibit internal
symmetries that are conveyed by the so-called graph automorphism (making
certain sequences/matrices “indistinguishable”). The main challenge in dealing
with such structural data is to identify and describe these structural relations.
In fact, these “regular properties” constitute “useful (extractable) information”
understood in the spirit of Rissanen (2003) “learnable information”.

For efficient compression of such data structures, one must take into account
not only several different types of information, but also the statistical dependence
between the general data labels and the structures themselves. In Figure 7.1
we show an example of such a multimodal structure representing an annotated
protein interaction network in which graphs, trees, DAGs, and text are involved.

In the last two chapters of of the first part of this book, we deal with advanced
data structures: In this chapter we discuss various trees (binary tree, d-ary tree,
general trees). In the next Chapter 8 we continue our discussion of advanced

128 Chapter 7. Advanced Data Structures: Tree Compression

Figure 7.1. Annotated protein interaction network: nodes in the network
represent proteins in the human interactome, and there is an edge between
two nodes if and only if the two proteins interact in some biological process.
Associated with each node is a position in a fixed ontology (encoded by a
DAG whose nodes represent classes of proteins defined by, say, structural
or functional characteristics) known as the Gene Ontology. Nodes that
are connected in the interaction network are often close in the ontology.

data structures focusing on graphs.

7.1. Binary Trees

The most popular data structure are trees, among which binary trees occupy spe-
cial position so we devote this section to such trees. They come in two varieties:
plane-oriented trees, often simply called (plane) binary trees, and non-plane

7.1. Binary Trees 129

oriented trees. In plane-oriented trees, the order of subtrees matters, while in
non-plane-oriented trees (e.g., representing a phylogenetic tree) all orientations
of subtrees are equivalent as shown below:

Figure 7.2. Plane-ordered representatives of one non-plane tree.

7.1.1. Plane Binary Trees

In this section we introduce the concepts of plane binary trees and define two
probabilistic models for these types of trees that turn out to be equivalent.

We call a rooted tree a plane binary tree when we distinguish the left-to-right-
order of the children of the nodes in the embedding of a tree on a plane. To
avoid confusion, we call a tree with no fixed ordering of its subtrees a non-plane
tree (also known in the literature as Otter trees). We shall assume throughout
this section that every internal node has two children. In a non-plane tree any
orientation of subtrees is equivalent.

Let T be the set of all binary rooted plane trees having finitely many vertices
and, for each positive integer n, let Tn be the subset of T consisting of all trees
with exactly n leaves (and n− 1 internal nodes). Similarly, let S and Sn be the
set of all binary rooted non-plane trees with finitely many vertices and exactly
n leaves, respectively.

Formally, a rooted plane binary tree t ∈ Tn can be uniquely described by
a set of triples (vi, vj , vk), consisting of a parent vertex and its left and right
children. Given such a set of triples defining a valid rooted plane binary tree, we
can standardize it to a tree defined on the vertex set {1, ..., 2n− 1} by replacing
a vertex v in each triple by the depth-first search index of v. We then consider
two trees to be the same if they have the same standard representation; see the
example in Figure 7.3.

We now introduce some notation that will be useful in the tree context. Let
t be a binary plane tree, and consider a vertex v in t. By t(v), we shall mean
the subtree of t rooted at v. We denote by tL and tR the left and right subtree
of t, respectively. Furthermore we denote by ∆(t) the number of leaves in the
tree t. Finally, we denote by root(t) the root node of t.

130 Chapter 7. Advanced Data Structures: Tree Compression

5

71

32

1

52

43

Figure 7.3. A rooted plane tree and its standardization. The left tree
can be represented by the list of triples {(5, 1, 7), (1, 2, 3)}. After standard-
ization, this becomes {(1, 2, 5), (2, 3, 4)}. Note that this is distinct from
the tree {(1, 2, 3), (3, 4, 5)} or, equivalently, {(5, 1, 7), (7, 2, 3)}.

We introduce two models for generating plane binary trees Our first model
– the binary increasing tree model – is defined as follows. We start with a tree
that consists just of the root (which is also a leaf) and apply then the following
steps:

• pick uniformly at random a leaf v in the tree generated in the previous
steps,

• append two children vL and vR to v,

• repeat this procedure until the tree has exactly n leaves.

Our second model – also known as the binary search tree model – is ubiq-
uitous in science literature, arising for example in the context of binary search
trees formed by inserting a random permutation of {1, . . . , n− 1} into a binary
search tree. Under this model we generate a random tree Tn as follows. We
start with a tree that is just a leaf and assign to this leaf the number n (indi-
cating that we will finally have precisely a trees with n leaves). Then we apply
recursively the following procedure

• choose any leaf v of the tree generated in the previous steps, and let n0 be
the integer value assigned to v.

• if n0 > 1, select randomly an integer s0 from the from the set {1, . . . , n0−1}
with probability 1

n0−1 , and then grow two edges from v with left edge
terminating at a leaf of the extended tree with value s0 and right edge
terminating at a leaf of the extended tree with value n0 − s0.

• repeat this procedure till all leaves are assigned to the value 1

7.1. Binary Trees 131

Clearly, the recursion terminates with a binary tree having exactly n leaves (in
which each leaf has assigned value 1 that can be deleted then). This tree is Tn.

Recall that ∆(t) is the number of leaves of a tree t, and ∆(t(v)) denotes the
number of leaves of a tree t rooted at v. It is easy to see that under the second
model

P (Tn = t) =
1

n− 1
P (T∆(tL) = tL)P (T∆(tR) = tR), (7.1)

which leads us to the formula

P (Tn = t) =
∏

v∈V̊ (t)

(∆(t(v)) − 1)−1 (7.2)

where V̊ (t) is the set of the internal vertices of t. It turns out that the probability
distribution in the first model (for increasing binary trees) is exactly the same,
as we prove below.

Theorem 7.1.1. Under the increasing binary tree model it holds that

P (Tn = t) =
∏

v∈V̊ (t)

(∆(t(v)) − 1)−1 (7.3)

where V̊ (t) is the set of the internal vertices of t.

Proof. We use the concept of labeled histories : a pair (t, ξ), where t ∈ Tn
(generated by the first model) and ξ is a permutation of the natural numbers
from 1 to n − 1, assigned to the internal n − 1 vertices of t, such that every
path from the root forms an ascending sequence. If we think of the internal
nodes of t as being associated with their depth-first-search numbers, then the
permutation ξ is a function mapping each internal node of t to the time at
which its two children were added to it. Thus, for instance, the root always
receives the number 1, meaning that ξ(1) = 1. Clearly, for each t, each labeled
history (t, ξ) corresponds to exactly one sequence of generation, as it defines
uniquely the order of the leaves, which are picked during consecutive stages of
the algorithm. Moreover, the probability of each feasible labeled history (t, ξ)
is equal to 1

(n−1)! since it involves choosing one leaf from k available at the

kth stage of the algorithm for k = 1, . . . , n − 1. Therefore, denoting q(t) =
|{ξ : (t, ξ) is a labelled history}|, we find

P (Tn = t) =
q(t)

(n− 1)!
.

Note that if ∆(t(v)) = k for any vertex v of t, then we know that the sequence of
node choices corresponding to (t, ξ) must contain exactly k− 1 internal vertices

132 Chapter 7. Advanced Data Structures: Tree Compression

from the subtree of v, and that v is the first of them. Moreover, for the subse-
quence in the sequence corresponding to (t, ξ) of a subtree t(v) rooted at vertex
v, the sequences of ∆(t(v)L)−1 vertices from its left subtree and of ∆(t(v)R)−1
vertices from its right subtree are interleaved in any order. Thus we arrive at
the following recurrence for q(t):

q(t) =

(
∆(t)− 2

∆(tL)− 1

)
q(tL)q(tR) =

(∆(t)− 2)!

(∆(tL)− 1)!(∆(tR)− 1)!
q(tL)q(tR).

This recurrence can be solved by observing that each internal vertex appears
exactly once in the numerator, and that each internal vertex not equal to the
root r appears exactly once in the denominator. Hence

q(t) =

∏
v∈V̊ (t)

(∆(t(v)) − 2)!

∏
v∈V̊ (t)\{r}

(∆(t(v)) − 1)!
.

Since ∆(t(r)) = ∆(t) = n, we thus obtain

q(t) =

∏
v∈V̊ (t)

(∆(t(v)) − 2)!

∏
v∈V̊ (t)\{r}

(∆(t(v)) − 1)!
=

(n− 2)!∏
v∈V̊ (t)\{r}

(∆(t(v)) − 1)

leading finally to

P (Tn = t) =
q(t)

(n− 1)!
=

1∏
v∈V̊ (t)

(∆(t(v)) − 1)
.

This completes the proof.

In conclusion, the models are equivalent for binary trees in the sense that
they lead to the same probability distribution on trees.

We should point out that the above equivalence does not hold for non-binary
trees. In Exercise 7.3 we ask the reader to analyze m-ary binary search trees
while in Section 7.2 we study general d-ary trees for d ≥ 2.

Remark 7.1.2. We note that it is possible to extend the above tree model
by assigning to the vertices more information, for example, by strings/words of
given length over an alphabet A. This leads to a named model in the spirit of
Aldous and Ross 2014. Magner, Turowski, and Szpankowski (2018) considered
such binary trees with vertex names, where the names are modelled by a discrete
Markov process.

7.1. Binary Trees 133

7.1.2. Entropy Evaluation

The next goal is to determine the entropy of the probability distribution H(Tn)
of the above probability model(s) for plane binary trees. The main result is the
following one.

Theorem 7.1.3. The entropy of a plane binary tree Tn is given by

H(Tn) = log(n− 1) + 2n

n−1∑

k=2

log(k − 1)

k(k + 1)
= h2n− logn+O(1),

where

h2 = 2
∑

k≥2

log(k − 1)

k(k + 1)
≈ 1.736.

Consequently the entropy rate of plane binary trees is

lim
n→∞

H(Tn)/n = h2 ≈ 1.736.

The rest of this section is devoted to the proof of Theorem 7.1.3. We start
with the observation that ∆(TL

n) is a random variable corresponding to the num-
ber of leaves in the left subtree of Tn. From the previous section, we know that
P (∆(TL

n) = k) = 1
n−1 . Next, we note that the random variable TL

n conditioned

on ∆(LTL
n) = k is identical to the random variable Tk, and the same holds for

LTR
n and Tn−k. This leads us directly to the recurrence

H(Tn) = H(∆(LTL
n))

+

n−1∑

k=1

P (∆(TL
n) = k)

(
H(TL

n |∆(TL
n) = k) +H(TR

n |∆(TL
n) = k)

)

= log(n− 1) +
2

n− 1

n−1∑

k=1

H(LTk), (7.4)

where we have also used the fact that H(∆(LTL
n)) = log(n− 1).

Such recurrences can be explicitly solved and we present it in the next lemma.
A more general version is given in Lemma 7.3.2.

Lemma 7.1.4. For constant α, x0 and x1, the recurrence

xn = an +
α

n

n!

Γ(n+ α− 1)

n−1∑

k=0

Γ(k + α− 1)

k!
xk, n ≥ 2 (7.5)

134 Chapter 7. Advanced Data Structures: Tree Compression

has the following solution for n ≥ 2:

xn = an + α(n+ α− 1)

n−1∑

k=0

ak
(k + α− 1)(k + α)

+
n+ α− 1

α+ 1

(
x1 +

x0
α− 1

)
.

Proof. Let us multiply both sides of the recurrence by the normalizing factor
Γ(n+α−1)

n! . Define also

x̂n =
xnΓ(n+ α− 1)

n!
, ân =

anΓ(n+ α− 1)

n!
.

Then (7.5) rewrites

x̂n = ân +
α

n

n−1∑

k=2

x̂k. (7.6)

To solve the recurrence (7.6) we compute

nx̂n − (n− 1)x̂n−1 = nân + αx̂n−1 − (n− 1)ân−1.

This leads us to

x̂n = ân −
(
1− 1

n

)
ân−1 +

(
1 +

α− 1

n

)
x̂n−1,

which holds for n ≥ 3. Then after iterating the above we arrive at

x̂n = x̂2

n∏

j=3

(
1 +

α− 1

j

)
+

n∑

k=3

(
âk −

(
1− 1

k

)
âk−1

) n∏

j=k+1

(
1 +

α− 1

j

)
.

(7.7)

The product can be rewritten as

n∏

j=k+1

(
1 +

α− 1

j

)
=
k!Γ(n+ α)

n!Γ(k + α)
.

Hence, after some standard calculations we obtain

x̂n = ân + (x̂2 − â2)
2Γ(n+ α)

Γ(α + 2)n!
+

Γ(n+ α)

n!

n−1∑

k=2

âk
k!

Γ(k + α)

α

k + α
.

Going back from x̂n and ân to xn, an, respectively, we obtain

xn = an + α(n+ α− 1)

n−1∑

k=2

ak
(k + α− 1)(k + α)

+ (x2 − a2)
n+ α− 1

α+ 1
.

7.1. Binary Trees 135

By observing that x2 − a2 = x1 +
x0

α−1 we have completed the proof.

We can, thus apply this formula for α = 2 and obtain the solution for xn =
H(Tn) and an = log(n− 1):

H(Tn) = log(n− 1) + 2n

n−1∑

k=2

log(k − 1)

k(k + 1)
,

where x0 = x1 = 0.
In order to finish the proof of Theorem 7.1.3 we just note that

n−1∑

k=2

log(k − 1)

k(k + 1)
=

∞∑

k=2

log(k − 1)

k(k + 1)
− log(n)

n
+O

(
1

n

)
.

This completes the proof.

7.1.3. A Compression Algorithm for Plane Binary Trees

Clearly it is now possible to encode a plane binary tree in an (almost) optimal
way, that is, the expected code length is close to the entropy. Since the prob-
ability distribution of Tn is explicit (see (7.3)) we could use the Huffman code.
However, this is not very efficient since we would need all probabilities.

In what follows we will give an algorithm that computes an arithmetic coding,
where we design the code word directly without computing the whole probability
distribution. The idea is to partition the unit interval [0, 1) into subintervals [a, b)
such that every tree t of size n corresponds to one of these intervals and that
P (t) = b − a. We then associate to each interval [a, b) a binary string, namely
the first ⌈− log(b− a)⌉+ 1 binary bits of the real number (a+ b)/2.

It is clear that the redundancy of such an encoding is ≤ 2 since every code
word length differs from − logP (t) by at most by 2. Furthermore, it is clear by
construction that all code words are different binary string (see Exercise 7.1).

More precisely, in the algorithm we start from the interval [0, 1) and we
traverse the tree t to be compressed: at each vertex we split the current interval
into parts according to the probability of the number of leaves in the left subtree.
That is, if the subtree rooted at v has k leaves and t(v)L has ℓ leaves, then we split
the interval into k− ℓ equal parts and pick ℓ-th subinterval as the new interval.
Then, we pick as a new interval: one that represents the value associated with
the current vertex (the number of leaves in the left subtree).

After we traverse the whole tree, we obtain an interval [a, b). As mentioned
above the crucial idea is that any two intervals corresponding to different trees
are disjoint and the length of each interval is equal to the probability of gener-
ating its underlying plane tree. We output the first ⌈− log(b − a)⌉ bits of a+b

2 .
The pseudocode of this algorithm, called CompressPTree is presented next:

136 Chapter 7. Advanced Data Structures: Tree Compression

function CompressPTree(t)
[a, b), d← CompressPTreeRec(t)

p← b− a, x← a+ b

2
return C

(1)
n = first ⌈− log p⌉+ 1 bits of x

function CompressPTreeRec(t)
v ← root(t)
ℓ← 0, h← 1
if v is not a leaf then

[ℓleft, hleft), dleft ← CompressPTreeRec(tL)
[ℓright, hright), dright ← CompressPTreeRec(tR)
d← dleft + dright
range← h− ℓ
h← ℓ+ range ∗ dleft/(d− 1)
ℓ← ℓ+ range ∗ (dleft − 1)/(d− 1)
range← h− ℓ
h← ℓ+ range ∗ hleft
ℓ← ℓ+ range ∗ ℓleft
range← h− ℓ
h← ℓ+ range ∗ hright
ℓ← ℓ+ range ∗ ℓright

return [ℓ, h), d

Example 7.1.5. For the following tree our algorithm CompressPTree pro-
ceeds as follows:

v1

v5v2

v4v3

v5 ⇒ [0, 1), 1
v4 ⇒ [0, 1), 1
v3 ⇒ [0, 1), 1
v2 ⇒ [0, 1), 2
v1 ⇒ [0.5, 1), 3.

Hence, we finally obtain the interval [0.5, 1), the probability p = 0.5, and the

first 2 digits of 0.75 = (0.11)2, that is, C
(1)
3 = 11.

Next we show correctness of the algorithmCompressPTree.

Lemma 7.1.6. Let t denote a given plane binary tree with n external ver-
tices. Then the algorithm CompressPTree computes an interval whose length
is equal to P (Tn = t). Furthermore the intervals constitute a partition of [0, 1).

7.1. Binary Trees 137

Proof. First, if t is just a leaf then the algorithm computes the interval [0, 1)
and the value d = 1.

Second if t is not a leaf then the length of the interval [ℓ, r) is updated by

r − ℓ = 1

d− 1
(rleft − ℓleft)(rright − ℓright)

which corresponds to the recurrence (7.1). Thus, the probability P (Tn = t) is
computed correctly. Furthermore the computed intervals are nested and cover
by construction the whole unit interval.

As mentioned above the redundancy in this arithmetic coding is within at
most 2 bits of the entropy.

Lemma 7.1.7. The average length of a codeword C
(1)
n of CompressPTree is

only within 2 bits from the entropy.

Proof. From the analysis above, we know that:

E[C(1)
n] =

∑

t∈Tn

P (Tn = t)(⌈− logP (Tn = t)⌉+ 1)

<
∑

t∈Tn

−P (Tn = t) logP (Tn = t) + 2 = H(Tn) + 2

which completes the proof.

7.1.4. Non-Plane Binary Trees

As discussed above, binary trees come in two flavors, as plane-oriented trees
and as non-plane trees. In this section we discuss non-plane trees, also called
unordered trees or Otter trees. These are just rooted trees in the graph theoretic
sense – there is no order between subtrees.

Non-plane trees are harder to analyze and less attention has been devoted
to these kind of trees in the literature. Nevertheless, non-plane trees find many
important applications from data compression to biology. For example, in a
phylogenetic tree describing n species there are n leaves representing extant
species and n − 1 internal nodes. By design there is no specific order between
the two children of a binary node. We will study these trees not in the uniform
probability model but rather a growth model of binary trees.

In data compression and other applications symmetries of plane and non-
plane trees are of interest. In particular, for compression one needs to know the
number of internal nodes that have two isomorphic subtrees, the size of such

138 Chapter 7. Advanced Data Structures: Tree Compression

isomorphic trees, and the entropy of trees. In order to analyze such quantities
we first derive a functional-differential equation for a bivariate generating func-
tion from which we compute the average number of nodes with two isomorphic
subtrees as well as the entropy of non-plane trees.

Let S be the set of all binary rooted non-plane trees having finitely many
vertices. Let Sn be the subset of S consisting of all trees with exactly n leaves.
We recall that T is the set of all binary rooted plane trees having finitely many
vertices and Tn is the subset of T consisting of all binary trees with exactly
n leaves. For any s ∈ S and t ∈ T let t ∼ s mean that the plane tree t is
isomorphic to the non-plane tree s. Furthermore, we define [s] = {t ∈ T : t ∼ s}
as a collection of all plane binary trees t that are isomorphic to the same non-
plane binary tree s.

From Theorem 7.1.1 we know that the probability of a tree t ∈ Tn is

P (Tn = t) =
∏

v∈V̊ (t)

(∆(v)− 1)−1 ,

where V̊ (t) is the set of internal nodes of t and ∆(v) is the number of leaves of
a tree rooted at v.1 For any t1, t2 ∈ Tn such that t1 ∼ s and t2 ∼ s it holds that
P (Tn = t1) = P (Tn = t2). By definition, s corresponds to |[s]| isomorphic plane
trees, so for any t ∈ [s] we have

P (Sn = s) = |[s]| · P (Tn = t), t ∈ [s]. (7.8)

Of course we can also write

P (Sn = s) =
∑

t∼s

P (Tn = t) .

Furthermore,

P (Tn = t|Sn = s) =
1

|[s]| . (7.9)

Let sym(t) be the the number of non-leaf (internal) nodes v of tree t such
that the two subtrees stemming from v are isomorphic. Observe that |S1| =
|S2| = |S3| = 1, and that |S4| = 2. If t ∈ S1, then clearly sym(t) = 0. If t ∈ S2
or t ∈ S3 then sym(t) = 1. Notice that if t1 and t2 are the two subtrees of a tree
t whose roots are the two children of the root of t, then

sym(t) =

{
sym(t1) + sym(t2) + 1 if t1 = t2
sym(t1) + sym(t2) if t1 6= t2.

1We use Tn to denote a random variable representing a random tree in Tn; however, we
often abuse notation and write Tn for both the set of trees and the random variable.

7.1. Binary Trees 139

Observe also that
sym(s) = sym(t)

for all t ∈ [s]. Furthermore, and more interestingly

|[s]| = 2n−1−sym(s). (7.10)

Indeed, we can form a new tree by rotating both subtrees of a plane tree at every
internal node that is not symmetric, that is, for those nodes whose subtrees are
not isomorphic.

With the help of this notation we can evaluate the entropy H(Sn):

H(Sn) = −
∑

s∈Sn

P (Sn = s) logP (Sn = s)

= −
∑

s∈Sn

∑

t∈[s]

P (Tn = t) log (P (Tn = t)|[s]|)

= −
∑

t∈Tn

P (Tn = t) log(P (Tn = t))−
∑

s∈Sn

P (Sn = s) log |[s]|

= H(Tn)−
∑

s∈Sn

P (Sn = s) (n− 1− sym(s))

= H(Tn)− (n− 1) +
∑

s∈Sn

P (Sn = s)sym(s). (7.11)

Out goal is, therefore, to compute the expected value

E[sym(Sn)] =
∑

s∈Sn

P (Sn = s)sym(s) =
∑

t∈Tn

P (Tn = t)sym(t).

For this purpose we first derive a differential equation for the following bi-
variate generating function

F (u, z) =
∑

t∈T
P (T = t)usym(t)z|t| =

∞∑

n=1

∑

t∈Tn

P (Tn = t)usym(t)z|t|

where we simplify our notation and write |t| for the size of a tree (i.e, the number
of leaves). Define also

B(u, z) =
∑

t∈T
P (T = t)2usym(t)z|t|−1 =

∑

t∈T
p(t)2usym(t)z|t|−1

where we write p(t) = P (T = t)

140 Chapter 7. Advanced Data Structures: Tree Compression

Lemma 7.1.8. Let f(u, z) = F (u,z)
z . Then f(u, z) satisfies the following Ric-

cati differential equation

∂f(u, z)

∂z
= f(u, z)2 + (u− 1)B(u2, z2). (7.12)

Furthermore after the substitution

f(u, z) = −
∂g(u,z)

∂z

g(u, z)

equation (7.12) becomes

∂2g(u, z)

∂2z
+ (u− 1)B(u2, z2)g(u, z) = 0 (7.13)

which is a second order linear equation assuming B(u, z) is known.

Proof. Observe that

F (u, z) =

∞∑

n=1

∑

t∈Tn

P (Tn = t)usym(t)z|t| = z +
∑

n≥2

∑

t∈Tn

P (Tn = t)usym(t)z|t| .

Since every tree t ∈ Tn for n ≥ 2 can be divided into two subtrees, we have

F (u, z) = z +
∑

s,t∈T

1

|s|+ |t| − 1
p(s)p(t)usym(s)+sym(t)+[|s=t|] · z|s|+|t|

= z +
∑

s,t∈T

1

|s|+ |t| − 1
p(s)p(t)usym(s)+sym(t) · z|s|+|t|

−
∑

t∈T

1

2|t| − 1
p(t)2u2sym(t) · z2|t| +

∑

t∈T

1

2|t| − 1
p(t)2u2sym(t)+1 · z2|t|

= z +
∑

s,t∈T

1

|s|+ |t| − 1
p(s)p(t)usym(s)+sym(t) · z|s|+|t|

+(u− 1)
∑

t∈T

1

2|t| − 1
p(t)2u2sym(t) · z2|t| .

Notice that, from the original definition of F (u, z),

F (u, z)2 =
∑

s,t∈T
p(s)p(t)usym(s)+sym(t)z|s|+|t|.

7.1. Binary Trees 141

Therefore,

z

∫ z

0

F (u,w)2

w2
dw =

∑

s,t∈T

1

|s|+ |t| − 1
p(s)p(t)usym(s)+sym(t) · z|s|+|t|.

We also have
B(u, z) =

∑

t∈T
p(t)2usym(t)z|t|−1

and

z

∫ z

0

B(u2, w2)dw =
∑

t∈T

1

2|t| − 1
p(t)2u2sym(t) · z2|t| .

Hence

F (u, z) = z + z

∫ z

0

F (u,w)2

w2
dw + (u− 1)z

∫ z

0

B(u2, w2)dw.

Let f(u, z) = F (u,z)
z . From the last equation we get

∂f(u, z)

∂z
= f(u, z)2 + (u− 1)B(u2, z2).

This proves Lemma 7.1.8.

Remark 7.1.9. We note that similar considerations can be also done for the
uniform model. If we set

F̃ (u, z) =
∑

s∈S
usym(s)z|s|

then this generating function satisfies functional equation (as shown by Bona
and Flajolet (2009))

F̃ (u, z) = z +
1

2
F̃ (u, z)2 +

(
u− 1

2

)
F̃ (u2, z2). (7.14)

Next we observe that (7.12) could be viewed as a functional-differential equa-
tion. Indeed, let us introduce a special Hadamard product of two generating
functions A(u, z), B(u, z) defined by

A(u, z) =
∑

t∈T
cA(t)u

r(t)zs(t), B(u, z) =
∑

t∈T
cB(t)u

r(t)zs(t),

142 Chapter 7. Advanced Data Structures: Tree Compression

where r(t) and s(t) map combinatorial objects t ∈ T to the non-negative integers.
We then define a Hadamard product A(u, z)⊡B(u, z) by

A(u, z)⊡B(u, z) =
∑

t∈T
cA(t)cB(t)u

r(t)zs(t).

We contrast this with the standard bivariate Hadamard product, defined by

A(u, z)⊙B(u, z) =

∞∑

n,m=0

 ∑

t : r(t)=m,s(t)=n

cA(t)

 ∑

t : r(t)=m,s(t)=n

cB(t)

 umzn.

Note that A(u, z)⊡B(u, z) is in general not equal to A(u, z)⊙B(u, z), unless r(t)
and s(t) uniquely determine t. With this definition in mind we can rewrite (7.12)
as

∂

∂z
fz(u, z) = f(u, z)2 + (u− 1)(f(u2, z2)⊡f(u2, z2)) (7.15)

which is a functional-differential equation.
Let us now evaluate the average E[sym(Sn)]. For this purpose we set

E(z) =

∞∑

n=1

E[sym(Sn)]z
n−1.

Using Lemma 7.1.8 we find the following ordinary differential equations:

E′(z) =
2E(z)

z(1− z) +B(z2) (7.16)

with E(0) = 0, where

B(z) =
∑

t∈T
p(t)2z|t|−1 =

∞∑

n=1

zn−1
∑

tn∈Tn

p(tn)
2 =

∞∑

n=1

bnz
n−1

with
bn = [zn−1]B(z) =

∑

t∈Tn

p(t)2

for n ≥ 1. It is easy to compute bn for a few small values of n, namely

b1 = b2 = 1, b3 =
1

2
, b4 =

2

9
, b5 =

13

144
, b6 =

7

200
. (7.17)

7.1. Binary Trees 143

Actually, to compute bn for all values of n we need a better approach. Define
C(z) = zB(z) and notice that

bn = [zn]C(z) = [zn−1]B(z).

We will derive a differential equation for C(z), from which a recurrence for bn
will follow. It is easy to notice that C(z) satisfies the following

C(z) = z +
∑

u,v∈T

1

(|v| + |u| − 1)2
p(u)2p(v)2z|u|+|v|.

Furthermore,

B′(z) =
∑

u,v∈T

1

(|v|+ |u| − 1)
p(u)2p(v)2z|u|+|v|−2

and
C2(z) =

∑

u,v∈T
p(u)p(v)z|u|+|v|.

Combining all of these, we arrive at the following Riccati differential equation

C(z)− zC′(z) + z2C′′(z) = C2(z). (7.18)

By standard tools we can extract from the above a recurrence for bn = [zn]C(z).
Indeed, for n ≥ 2 we have

bn =
1

(n− 1)2

n−1∑

j=1

bjbn−j (7.19)

with b1 = 1.

Remark 7.1.10. In passing we remark on the generating function C(z) satis-
fying non-linear differential equation (7.18) with coefficients bn = [zn]C(z). It
turns out that applying the method discussed in Chern, Fernandez-Camacho,
Hwang, and Martinez (2012) one can prove the following asymptotic result

bn = ρn
(
6n− 22

5
+O(n−5)

)

where ρ = 0.3183843834378459

With the help of bn we can now formulate the following result forE[sym(Sn)] =
E[sym(Tn)].

144 Chapter 7. Advanced Data Structures: Tree Compression

Theorem 7.1.11. Consider a binary plane tree and its corresponding non-
plane tree. The expected number of internal nodes with two isomorphic subtrees
is

E[sym(Sn)] = n

⌊(n+1)/2⌋∑

ℓ=1

bℓ
(2ℓ− 1)ℓ(2ℓ+ 1)

(7.20)

+ b⌊(n+1)/2⌋

(
(−1)n+1

(
2− n+ 3

(n+ 1)(n+ 2)

)
+

n

2(n+ 1)(n+ 2)

)

= e1n+O(1)

where bℓ =
∑

t∈Tℓ
p(t)2 and

e1 =

∞∑

ℓ=1

bℓ
(2ℓ− 1)ℓ(2ℓ+ 1)

≈ 0.3725.

Proof. We now compute E[sym(Tn)] = E[sym(Sn)] using the generating function

φn(u) = [zn]F (u, z) = [zn−1]f(u, z)

defined above. We observe that

E[sym(Tn)] =
dφn(u)

du

∣∣∣∣
u=1

.

Since taking the coefficient commutes with taking the derivative with respect to
u we have

d[zn−1]f(u, z)

du
= [zn−1]fu(u, z).

Thus, taking the derivative with respect to u in (7.12) gives (using (7.15))

fz,u(u, z) = 2f(u, z)fu(u, z) + (u− 1)
∂

∂u

[
(f(u, z)⊡f(u, z))

∣∣∣∣
(u2,z2)

]

+

[
(f(u, z)⊡f(u, z))

∣∣∣∣
(u2,z2)

]
,

and setting u = 1 results in

fz,u(1, z) = 2f(1, z)fu(1, z) +

[
(f(1, z)⊡f(1, z))

∣∣∣∣
(u2,z2)

]
.

7.1. Binary Trees 145

Now, we use the fact that φn(1) = 1 for n ≥ 1 implies

f(1, z) =
1

(1− z) .

We also note that

fu(1, z) =
∑

n=1

E[sym(Tn)]z
n−1 = E(z).

With the notation as above we find

E′(z) =
2E(z)

(1− z) + (A(z)⊠A(z))

∣∣∣∣
z2

=
2E(z)

z(1− z) +B(z2), (7.21)

with E(0) = 0, as needed.
We now solve (7.21). It is easy to see that

E(z) =
1

(1− z)2
(∫ z

0

B(x2)(1 − x)2dx+ C

)
.

But E(0) = 0 implies C = 0. Thus

E[sym(Tn)] = [zn−1]E(z)

= [zn−1]
1

(1− z)2
∫ z

0

B(x2)(1− x)2dx.

Next we observe (after some algebra) that

1

(1− z)2
∫ z

0

B(x2)(1− x)2dx = z +

∞∑

n=1

(
bn + bn+1

2n+ 1
z2n+1 − bn

n
z2n
)
.

By setting

ck =

0 k = 0,
1 k = 1,

− bℓ
ℓ k = 2ℓ, ℓ ≥ 1,

bℓ+bℓ+1

2ℓ+1 k = 2ℓ+ 1, ℓ ≥ 1,

(7.22)

we have

E[sym(Tn)] = [zn−1]
1

(1− z)2
∞∑

k=0

ckz
k =

n∑

k=0

ck(n− k).

It is also easy to see that

n∑

k=0

kck = 1 +

⌊n/2⌋∑

ℓ=1

(bℓ+1 − bℓ) = 1− b1 + b⌊n/2⌋+1 = (−1)n+1b⌊(n+1)/2⌋.

146 Chapter 7. Advanced Data Structures: Tree Compression

This finally leads to the representation

E[sym(Tn)] = n
n∑

k=1

ck + (−1)n+1b⌊(n+1)/2⌋. (7.23)

We can further simply this expression by computing
∑

k ck and obtain (with
L = ⌊(n+ 1)/2⌋)

∑

k

ck = 1− 2

3
b1 +

⌊(n+1)/2⌋−1∑

ℓ=2

bℓ

(
1

2ℓ− 1
− 1

ℓ
+

1

2ℓ+ 1

)
(7.24)

+ bL

(
1

2L− 1
− 1 + (−1)n

2L

)
.

We thus get the following formula:

∑

k

ck =

⌊(n+1)/2⌋−1∑

ℓ=1

bℓ
(2ℓ− 1)ℓ(2ℓ+ 1)

+ bL

(
(−1)n+1

(
1− L+ 1

2L(2L+ 1)

)
+

L− 1

2L(2L+ 1)

)
.

In summary, we have

E[sym(Tn)] = n

⌊(n+1)/2⌋∑

ℓ=1

bℓ
(2ℓ− 1)ℓ(2ℓ+ 1)

+ b⌊(n+1)/2⌋

(
(−1)n+1

(
2− n+ 3

(n+ 1)(n+ 2)

)
+

n

2(n+ 1)(n+ 2)

)

= e1n+O(1),

where, we recall that bℓ =
∑

tℓ
p(tℓ)

2 = O(1). This proves Theorem 7.1.11.

Remark 7.1.12. Let us observe that we can use just computed E[sym(Sn)]
to design and evaluate some compression algorithms on non-plane (and plane)
trees. Indeed, let us replace for every internal node with two isomorphic subtrees
by the second identical subtree with a pointer to the first subtrees. We need
about ≈ n ·0.3725 bits to accomplish it. On the other hand, if we do this, we can
save some storage on the replaced subtree. We can quantify that by computing
the total size, size(Sn), of the saved isomorphic subtrees. Similar computations
as above lead to

E[size(Sn)] = n

⌊(n+1)/2⌋∑

k=1

bk
(2k − 1)(2k + 1)

≈ n · 0.4190. (7.25)

7.1. Binary Trees 147

The reader is asked in Exercise 7.7 to prove this property.

Finally we deal with the entropy of the non-plane tree H(Sn) and its rate
h(s) = limn→∞H(Sn)/n. Here we just have to collect the results from Theo-
rems 7.1.3 and 7.1.11 and the representation (7.11).

Theorem 7.1.13. The entropy H(Sn) of non-plane binary trees with n leaves
is given by

H(Sn) = log(n− 1)− n+ 1 + 2n
n−1∑

k=2

log(k − 1)

k(k + 1)
+ n

⌊(n+1)/2⌋∑

ℓ=1

bℓ
(2ℓ− 1)ℓ(2ℓ+ 1)

+ b⌊(n+1)/2⌋

(
(−1)n+1

(
2− n+ 3

(n+ 1)(n+ 2)

)
+

n

2(n+ 1)(n+ 2)

)

= n

(
2

∞∑

k=1

log(k)

(k + 1)(k + 2)
− 1 +

∞∑

k=1

bk
(2k − 1)k(2k + 1)

)
+O(log n),

where bn =
∑

t∈Tn
p(t)2. Consequently the entropy rate h̃2 = limn→∞H(Sn)/n

is given by

h̃2 = 2

∞∑

k=1

log(k)

(k + 1)(k + 2)
− 1 +

∞∑

k=1

bk
(2k − 1)k(2k + 1)

≈ 1.109

which should be compared to the entropy rate h2 of the plane trees found in
Theorem 7.1.3.

7.1.5. A Compression Algorithm for Non-Plane Binary Trees

Next we present an compression algorithm for non-plane binary trees, again
based on an arithmetic encoding. In order to accomplish it we need to define
a total order among non-plane trees and compute efficiently the probability
distribution P (Sn < s), where < is the order to be defined. Recall again that S
is the set of all non-plane trees and Sn is the set of all non-plane rooted trees
on n leaves. Furthermore, ∆(s) is the number of leaves of the non-plane tree s.

We start with the definition of our total ordering. In what follows, we will
denote by subtrees(s) the set of the two subtrees of the tree s rooted at the
children of its root, that is, s is not a contained in subtrees(s).

Definition 7.1.14. The relation < on S is defined as follows: s1 < s2 if and
only if one of the following holds:

• ∆(s1) < ∆(s2),

148 Chapter 7. Advanced Data Structures: Tree Compression

• or ∆(s1) = ∆(s2) and min{subtrees(s1)} < min{subtrees(s2)},

• or ∆(s1) = ∆(s2), min{subtrees(s1)} = min{subtrees(s2)} and
max{subtrees(s1)} < max{subtrees(s2)}.

Here, min and max are defined recursively in terms of the order relation.

Lemma 7.1.15. The relation < is a total ordering on S.

Proof. The reflexivity and anti-symmetry are straightforward since either s1 <
s2 or s1 = s2 or s1 > s2.

To prove the transitivity, we assume that s1 < s2 and s2 < s3. Now, if
∆(s1) < ∆(s2) or ∆(s2) < ∆(s3), then ∆(s1) < ∆(s3) (so s1 < s3), as from
the definition of < we know that ∆(s1) ≤ ∆(s2) ≤ ∆(s3). The only remaining
possibility is that ∆(s1) = ∆(s2) = ∆(s3).

Then, we proceed similarly: if min{subtrees(s1)} < min{subtrees(s2)} or
min{subtrees(s2)} < min{subtrees(s3)}, then we see that min{subtrees(s1)} <
min{subtrees(s3)} (so s1 < s3) since from the definition of < if ∆(s1) = ∆(s2) =
∆(s3), then min{subtrees(s1)} ≤ min{subtrees(s2)} ≤ min{subtrees(s3)}.

Therefore, the only missing case is when ∆(s1) = ∆(s2) = ∆(s3) and
min{subtrees(s1)} = min{subtrees(s2)} = min{subtrees(s3)}. Since we know
that s1 < s2 and s2 < s3, then max{subtrees(s1)} < max{subtrees(s2)}
< max{subtrees(s3)} by induction, and this completes the proof.

We denote by less(s) = min{subtrees(s)} and gtr(s) = max{subtrees(s)} the
minimum and maximum root subtree of s, respectively, under the ordering just
introduced. Moreover, we let Tn denote the (random) plane binary tree from
which Sn is generated, and we recall the notation TL

n and TR
n for the left and

right subtrees of Tn.
The idea is to determine an algorithm that, given a non-plane binary tree

s, outputs P (Sn < s) and P (Sn = s). This will allow us to construct an
arithmetic coding scheme as follows: we associate to s the half-open interval
[a, b), whose left endpoint is given by P (Sn < s) and whose right endpoint is
P (Sn ≤ s). The length of this interval is clearly P (Sn = s), and, because of our
total ordering on non-plane trees, for two trees s1 < s2, the right endpoint of
s1 is less than or equal to the left endpoint of s2. That is, the two intervals do
not overlap. Having this interval in hand, we take the midpoint and truncate its
binary representation as usual. This will give a uniquely decodable code whose
expected length is within 2 bits of the entropy H(Sn).

Let us now consider the probabilities P (Sn = s) and P (Sn < s). First, we
derive an expression for P (Sn = s). In the case where s has two non-equal

7.1. Binary Trees 149

subtrees, we have

P (Sn = s) = P (less(Sn) = less(s), gtr(Sn) = gtr(s))

= P (TL
n ∼ less(s), TR

n ∼ gtr(s))

+ P (TL
n ∼ gtr(s), TR

n ∼ less(s)) (7.26)

where ∼ denotes isomorphism. To calculate the first term on the right-hand
side, we condition on the number of leaves in the left subtree of Tn taking the
correct value:

P (TL
n ∼ less(s), TR

n ∼ gtr(s))

= P (∆(TL
n) = ∆(less(s))) · P (TL

n ∼ less(s), TR
n ∼ gtr(s))|∆(TL

n) = ∆(less(s)))

=
1

(n− 1)
· P (S∆(less(s)) = less(s)) · P (S∆(gtr(s)) = gtr(s)).

Here, we have applied the conditional independence of the left and right subtrees
of Tn given the number of leaves in each. It turns out that the second term of
(7.26) is equal to the first, so we get in this case

P (Sn = s) =
2

(n− 1)
· P (S∆(less(s)) = less(s)) · P (S∆(gtr(s)) = gtr(s)).

In the case where the two subtrees of s are identical, only a single term in
(7.26) is present, and it evaluates to

P (Sn = s) =
1

n− 1
· P (S∆(less(s)) = less(s)) · P (S∆(gtr(s)) = gtr(s))

=
1

n− 1
· P (S∆(less(s)) = less(s))2.

Thus, in each case, we have derived a formula for P (Sn = s) (that may be
recursively computed with O(n) arithmetic operations in the worst case).

It remains to derive an expression for P (Sn < s). We again first consider the
case where s has two non-identical subtrees. Following the definition of <, this
event is equivalent to

[∆(less(Sn)) < ∆(less(s))] (7.27)

∪
[
[∆(less(Sn)) = ∆(less(s))] ∩ [less(Sn) < less(s)]

]

∪
[
[∆(less(Sn)) = ∆(less(s))] ∩ [less(Sn) = less(s)] ∩ [gtr(Sn) < gtr(s)]

]
.

150 Chapter 7. Advanced Data Structures: Tree Compression

The terms of this union are disjoint, so the total probability is the sum of the
probabilities of the individual intersection events.

The first event is equivalent to the union of the disjoint events that the left
subtree of Tn has < ∆(less(s)) leaves or more than n −∆(less(s)) leaves. The
probability of this event is thus

P (∆(less(Sn)) < ∆(less(s))) = 2 · ∆(less(s)) − 1

n− 1
.

The second and third events can be similarly written in terms of disjoint unions
of events involving the left and right subtrees of Tn. This gives recursive formulas
for their probabilities. Since the formulas are conceptually simple to derive but
tedious to write out explicitly, we do not list them, but we mention that at most
4 recursive tree comparison calls are necessary to evaluate P (Sn < s): we need
to know the probability that a tree of the appropriate size is < less(s), = less(s),
< gtr(s), and = gtr(s).

Finally, we compute P (Sn < s) in the case where the two subtrees of s are
equal. This happens if ∆(less(Sn)) < n/2 or ∆(less(Sn)) = n/2 and either
subtree of Sn is less than the tree s′ comprising the two subtrees of s.

The probability of the first event is

P (∆(less(Sn)) < n/2) = P (∆(TL
n) < n/2) + P (∆(TL

n) > n/2)

= 1− 1

n− 1
.

The probability of the second event may be computed by conditioning: the prob-
ability that ∆(less(Sn)) = ∆(TL

n) = n/2 is 1
n−1 , and the probability, conditioned

on this event, that either subtree of Sn is less than s′ is

P (TL
n < s′ ∪ TR

n < s′|∆(TL
n) = n/2)

= 1− P (TL
n ≥ s′|∆(TL

n) = n/2) · P (TR
n ≥ s′|∆(TL

n) = n/2)

= 1− (1− P (Sn/2 < s′))2.

where we have used the conditional independence of the two subtrees of Tn given
their sizes. Thus, the quantities P (Sn < s) and P (Sn = s) may be recursively
computed.

With these results in hand, the aforementioned arithmetic coding scheme, in
which the interval corresponding to a tree s ∈ Sn is [P (Sn < s), P (Sn ≤ s)). As
in the case of plane binary trees we encode then the tree s by the digits of the
mid-point of the corresponding interval. As above this leads to a code, where
the average code length exceeds the entropy at most by 2.

7.2. d-ary Plane Trees 151

Remark 7.1.16. It is not difficult to analyze the running time of the above
compression algorithms that is polynomial in n. Indeed, in Exercise 7.2 we ask
the reader to prove that the worst case and the average running times of our
algorithm are

T (n) = O(n3 log2 n log log n), A(n) = O(n2 log2 n log logn) (7.28)

respectively.

7.2. d-ary Plane Trees

In this section we discuss d-ary plane trees that are generated recursively. We
derive the entropy and design an arithmetic compression algorithm so that the
average code length exceeds the entropy at most by 2 bits.

7.2.1. d-ary Increasing Trees

We recall that a rooted tree is a plane tree when the left-to-right order is taken
into account. We will also distinguish between labeled trees and unlabeled trees.
More precisely we will start with a recursive process that generates labeled d-ary
plane trees, that is, d-ary plane recursive trees. In a second step we will remove
the labels.

The process that generates unlabeled random d-ary plane increasing trees
starts with an empty tree, that is, with just an external node (leaf). The first
step in the growth process is to replace this external node by an internal one
with d successors that are external nodes (see Figure 7.4). Then with probability
1
d , one of these d external nodes is selected and again replaced by an internal
node with d successors. In each subsequent step one of the external nodes is
replaced (with equal probability) by an internal node with d successors. In this
process the j-th created internal node is by j. Clearly all labels of all internal
successors of any node v are larger than the label of v.

It is clear that this evolution process (without removing the labels) produces
random d-ary plane increasing trees. We now define the size of the d-ary plane
increasing tree by the number of internal nodes. (We need to emphasize here
that unlike in the binary tree case we measure the size of a tree not in term of
leaves.)

Let G denote the set of d-ary increasing trees, that is, the set of d-ary trees,
with successive labels as described above, and Gn set set of d-ary increasing trees
with n interval nodes.

Lemma 7.2.1. The number gn = |Gn| of d-ary increasing increasing trees of

152 Chapter 7. Advanced Data Structures: Tree Compression

(a) (b)

1

(c)

1

2

(d)

1

2

3

(e)

1

2

3

4

(f)

Figure 7.4. Example of the generation process that produces 3-ary plane
tree of size 4 and its unlabeled counterpart.

size n is given by

gn =
n−1∏

j=0

((d− 1)j + 1) = (−1)n(d− 1)n
Γ(2− d

d−1)

Γ(2− d
d−1 − n)

. (7.29)

Furthermore, conditioned on the size n, the evolution process (described above)
generates every element of Gn with equal probability 1/gn.

Proof. Clearly we have g1 = 1. Furthermore, if a d-ary tree with k internal

7.2. d-ary Plane Trees 153

nodes has (d − 1)k + 1 external nodes. Thus, there are precisely (d − 1)k + 1
ways to extend a d-ary tree of size k to a d-ary tree of size k (by replacing one
of the external nodes by a new internal one with label k+ 1 and by attaching d
leaves to it). Thus,

gk+1 = ((d− 1)k + 1)gk

which proved (7.29) immediately. Furthermore this procedure also shows that
every tree in Gn is produces equally likely.

Next let F denote the set of all unlabeled d-ary plane trees and, for each
integer n ≥ 0, let Fn be the subset of F consisting of all trees that contain
exactly n internal nodes. We can consider F from two different points of view.
First, it can be seen as equivalence classes of trees from G, where two trees of
G are considered as equivalent if they represent the same d-ary tree plane tree
after removing the labels. Second, we can also consider the above probabilistic
construction of d-ary plane trees, where we do not put labels (but just choose
uniformly any external node and extend the tree). Clearly both points of view
lead to the same probabilistic model. Let f be a given d-ary plane tree of size
n. In the first case we just set P (Fn = f) = |[f]|/gn, where [f] denotes the
equivalence class of d-ary increasing trees that represent f after deleting the
labels. In the second case we just consider the evolution process and condition
on the size n.

Example 7.2.2. There are
(

3

2, 0, 1

)(
1

0, 1, 0

)
= 3

ways to obtain the resulting tree from Figure 7.4. Thus, the probability of this
tree is 3/g4 = 3/105 = 1/21.

Remark 7.2.3. We note that the number of elements in an equivalence class
[f] can be also determined by the so-called hook length formula. The number of
increasing trees induced by an unlabeled plane rooted tree t is

|t|!∏
s subtree of t |s|

, (7.30)

where | · | corresponds to the tree size measure.
From this we conclude that the probability of an unlabeled plane rooted tree

t obtained by removing labels from a plane increasing rooted tree is

P (F|f | = f) =
|f |!

g|t|
∏

s subtree of t |s|
. (7.31)

In Exercise 7.10 we ask to establish the hook formula.

154 Chapter 7. Advanced Data Structures: Tree Compression

Next we establish a recurrence relation for the probability distribution P (Fn =
f). Suppose that f ∈ Fn has the d subtrees f1, . . . fd of sizes k1, . . . , kd. (Clearly
we have k1 + · · ·+ kd = n− 1.) Furthermore

|[f]| =
(

n− 1

k1, . . . , kd

)
|[f1]| · |[f2]| · · · |[fd]|

since there are precisely
(

n−1
k1,...,kd

)
ways to distributed the labels 2, . . . , n to the

subtrees f1, . . . , fd. Consequently we have

P (Fn = f) =
|[f]|
gn

(7.32)

=
1

gn

(
n− 1

k1, . . . , kd

) d∏

j=1

|[fj]| =
(

n− 1

k1, . . . , kd

)
gk1 · · · gkd

gn

d∏

j=1

P (Fkj = fj).

(7.33)

Thus, we can consider the term

(
n− 1

k1, . . . , kd

)
gk1 · · · gkd

gn

where n − 1 = k1 + · · · kd as the splitting probability, that is, the probability
to split at the root of n internal nodes into subtrees of sizes k1, . . . , kd, respec-
tively. Note that in the binary case d = 2 the splitting probability is uniform:
P (k1, k2) = 1/n.

For later use it will be convenient to define a random vector V
(d)
n as

P
(
V(d)

n = (k1, k2, . . . , kd)
)
=

(
n− 1

k1, . . . , kd

)
gk1 · · · gkd

gn
(7.34)

where k1 + · · ·+ kd = n − 1. The components of V
(d)
n will be denoted by Vn,j ,

1 ≤ j ≤ d:
V(d)

n = (Vn,1, . . . Vn,d).

where Vn,1 + · · ·+ Vn,d = n− 1.

7.2.2. Entropy for d-ary Plane Trees

Next we derive a formula for the entropy H(Fn). If n = 0 we have an empty
tree, and H (F0) = 0. If n = 1, we have one fixed tree and H (F1) = 0, too. By

7.2. d-ary Plane Trees 155

the definition of the trees, for n > 1 there is a bijection between a tree Fn and

a tuple (V
(d)
n , FVn,1 , . . . , FVn,d

). Therefore, for n > 1, we have

H (Fn) = H
(
V(d)

n , FVn,1 , . . . , FVn,d

)
= H

(
V(d)

n

)
+H

(
FVn,1 , . . . , FVn,d

|V(d)
n

)

= H
(
V(d)

n

)
+

∑

k1+···+kd=n−1

H (Fk1 , . . . , Fkd
)P (V(d)

n = k(d)).

Since the subtrees Fk1 , . . . , Fkd
are conditionally independent given their sizes,

we have

H (Fn) = H
(
V(d)

n

)
+ d

n−1∑

k=0

pn,kH (Fk) (7.35)

where
pn,k =

∑

k2+···+kd=n−k−1

P
(
V(d))

n = (k, k2, . . . , kd)
)
. (7.36)

The next lemma gives an explicit formula for pn,k.

Lemma 7.2.4. For k = 0, . . . , n− 1 we have

pn,k =
1

(d− 1)n

n!Γ
(
k + 1

d−1

)

k!Γ
(
n+ 1

d−1

) .

Proof. Using (7.34), we can rewrite (7.36) as

pn,k =
(n− 1)!gk

k!(n− 1− k)!gn
∑

k2+...+kd=n−1−k

(
n− 1− k
k2, . . . , kd

)
gk2 · · · gkd

.

Let us define the exponential generating function G(z) =
∑

n≥0 gn
zn

n! with g0 =
1. In Exercise 7.11 we ask to establish the explicit representation

G(z) = (1 − (d− 1)z)−
1

d−1 . (7.37)

Observe that ∑

k2+...+kd=n−1−k

(
n− 1− k
k2, . . . , kd

)
gk2 · · · gkd

is the (n−1−k)-th coefficient of the function G(z)d−1 (i.e.,
[

zn−1−k

(n−1−k)!

]
G(z)d−1).

156 Chapter 7. Advanced Data Structures: Tree Compression

Hence

pn,k =
(n− 1)!gk

k!(n− 1− k)!gn

[
zn−1−k

(n− 1− k)!

]
G(z)d−1

=
(n− 1)!gk
k!gn

[
zn−1−k

] 1

1− (d− 1)z

=
(n− 1)!gk
k!gn

(d− 1)n−1−k.

For d = 2, we have gn = n! and the result is immediate. For d > 2, from
(7.29) we find (with α = d

d−1)

pn,k =
(α− 1)

n

(−1)nn!Γ(2− α− n)
(−1)kk!Γ(2− α− k) .

We know that Γ(z − n) = (−1)nπ
Γ(n+1−z) sin(πz) , hence

(−1)nΓ(n+ α)Γ (2− α− n) = π · (n− 1 + α)

sin(π(2 − α)) , (7.38)

and then

pn,k =
(α− 1)

n

n!Γ(k + α)(n+ α− 1)

k!Γ(n+ α)(k + α− 1)
.

Since Γ(z + 1) = zΓ(z) we get the desired result.

In summary, by setting α = d
d−1 the entropy xn = H(Fn) satisfies the

recurrence

xn = an +
α

n

n!

Γ(n+ α− 1)

n−1∑

k=0

Γ(k + α− 1)

k!
xk, n ≥ 2

with initial conditions x0 = x1 = 0. Thus, by applying Lemma 7.1.4 we obtain
the explicit representation

xn = an + α(n+ α− 1)
n−1∑

k=0

ak
(k + α− 1)(k + α)

+
n+ α− 1

α+ 1

(
x1 +

x0
α− 1

)
.

This leads us to the following result.

7.2. d-ary Plane Trees 157

Theorem 7.2.5. The entropy of unlabeled d-ary plane tree of size n, generated
according to the d-ary plane increasing tree model, is given by

H (Fn) = H
(
V(d)

n

)
+

d

d− 1

(
n+

1

d− 1

) n−1∑

k=0

H
(
V

(d)
k

)

(
k + 1

d−1

)(
k + d

d−1

) , (7.39)

where

H
(
V(d)

n

)
= −

∑

k1+···kd=n−1

P (V(d)
n = k(d)) log

(
P (V(d)

n = k(d))
)

is the entropy of the random vector V
(d)
n that is defined by the probability distri-

bution (7.34).

Example 7.2.6. Taking a closer look at H
(
V

(d)
n

)
we find

H
(
V(d)

n

)
= log

(
n
gn
n!

)
− d

n−1∑

k=0

pn,k log
(gk
k!

)
.

In particular, H
(
V

(2)
n

)
= log(n− 1), and for d = 3 and n > 0 we have

H
(
V(3)

n

)
= log

(
n

2n

(
2n

n

))
− 3

2n

n−1∑

k=0

(
2k
k

)
22n(

2n
n

)
22k

log

((
2k
k

)

2k

)
.

From Theorem 7.2.5 we can also deduce the asymptotic behavior of H(Fn).

However, we have to know something about the order of magnitude ofH
(
V

(d)
n

)
.

Here we first observe that the range of the random vector V
(d)
n is contained in

the set {0, . . . , n− 1}d. Since the entropy is upper bounded by the logarithm of
the image cardinality we have

H
(
V(d)

n

)
≤ log

(
nd
)
.

Consequently the series

∞∑

k=0

H
(
V

(d)
k

)

(
k + 1

d−1

)(
k + d

d−1

) ,

is certainly convergent and we can formulate it as the following corollary.

158 Chapter 7. Advanced Data Structures: Tree Compression

Corollary 7.2.7. The entropy rate hd,f = limn→∞H (Fn) /n of the unlabeled
d-ary plane trees, generated according to the model of d-ary plane increasing tree
s, is given by

hd,f =
d

d− 1

∞∑

k=0

H (Vk)(
k + 1

d−1

)(
k + d

d−1

) . (7.40)

For example, for d = 2 and d = 3 we have h2,f ≈ 1.73638 and h3,f ≈ 2.470

7.2.3. A Compression Algorithm for d-ary Plane Trees

Next we provide a compression algorithm for unlabeled d-ary plane trees. As in
the previous cases we will use a proper arithmetic coding method.

We first define a total order < on the set of such trees with a given size
n. Having fixed this, we must show how to efficiently compute two quantities,
for a given tree f : the probability of all trees f ′ < f of size n, as well as the
probability of f itself. We, thus, produce a subinterval I(f) of [0, 1), unique
to f , which has length equal to the probability of f and whose left endpoint
is the probability P (Fn < f) of all trees f ′ < f . We than compute the first
⌈− logP (Fn = f)⌉+ 1 binary digits of the mid-point of I(f) and obtain a code
for which the expected code length exceeds the entropy H(Fn) at most by 2 bits.

Definition 7.2.8. The relation < on F is defined as follows: let f1, f2 ∈ F
with subtrees sizes (s1, . . . , sd), (k1, . . . , kd) respectively, then f1 < f2 if and
only if one of the following holds:

• (s1, . . . , sd) ≺ (k1, . . . , kd),

• or if (s1, . . . , sd) = (k1, . . . , kd) and first subtree of f1 < first subtree of f2,

• or if (s1, . . . , sd) = (k1, . . . , kd), first subtree of f1 = first subtree of f2 and
second subtree of f1 < second subtree of f2,

• or if (s1, . . . , sd) = (k1, . . . , kd), first d − 1 subtrees of f1 = first d − 1
subtrees of f2 and dth subtree of f1 < d-th subtree of f2.

It is simple to check that this is a total order. Next, we present an algorithm
which computes the subinterval corresponding to an input tree f ∈ F (see
Algorithm 1).

This does exactly as intuitively described above: it implements a depth-first
search of the input tree f , and at each step refining the current interval based
on the split of vertices among the root subtrees of the current node.

7.2. d-ary Plane Trees 159

Algorithm 1 Unlabeled d-ary Plane Tree Compression

1: function CompressDTree(f ∈ F) ⊲ f tree to be compressed
2: [a, b)← Explore(root of f , [0, 1))
3: return first ⌈− log(b− a)⌉+ 1 bits of (a+ b)/2

4: function Explore(v ∈ f , [l, r) ⊆ [0, 1))
5: visited(v)← true
6: n← size of a subtree of f hanging from node v
7: (s1, . . . , sd)← sizes of subtrees of v
8: a← l + (r − l)· CalculateIntervalBegin(n, s1, . . . , sd)
9: p← (r − l)· CalculateSplitProbability(n, s1, . . . , sd)

10: Inew ← [a, a+ p)
11: for all u descendant of v do
12: if not visited(u) then
13: Inew ← Explore(u, Inew)

14: return Inew

15: function CalculateSplitProbability(n, k1, . . . , kd)
16: return

(
n−1

k1,...,kd

) gk1 ···gkd
gn

17: function CalculateIntervalBegin(n, s1, . . . , sd)
18: return

1

gn

d∑

i=1

(n− 1)!

s1! · · · si−1!

i−1∏

j=1

gsj

 ·

·
si−1∑

k=0

gk
k!

(
n− 2− k −∑i−1

l=1 sl +
d−i
d−1

1−i
d−1

)
(d− 1)n−1−k−

∑i−1
l=1 sl

Now, we explain more precisely the procedures CalculateSplitProbabil-
ity and CalculateIntervalBegin. The former simply calculates the proba-
bility that a d-ary tree of size n has root subtrees of sizes k1, ..., kd (giving the
length of the next subinterval). This is illustrated in Figure 7.5.

The latter gives the probability that such a d-ary tree has a root subtree size

160 Chapter 7. Advanced Data Structures: Tree Compression

0 1

0 1

a a+ p
CalculateIntervalBegin() CalculateSplitProbability()

l rl + a(r − l)

l + (a+ p)(r − l)

scaling and shifting

Figure 7.5. Visualization of lines 8− 10 in the Algorithm 1 listing.

tuple lexicographically less than (s1, ..., sd). That is, it computes the expression

∑

(k1, . . . , kd) ≺ (s1, . . . , sd)
k1 + . . . + kd = n − 1

(
n− 1

k1, . . . , kd

)
gk1 · · · gkd

gn
.

Observe that a naive implementation of this calculation generates all Θ(nd)
integer partitions with d parts of the number n − 1 and calculates the split
probability for each of them. To reduce the time complexity, we rewrite the sum
as follows:

∑

(k1, . . . , kd) ≺ (s1, . . . , sd)
k1 + . . .+ kd = n − 1

(
n− 1

k1, . . . , kd

)
gk1 · · · gkd

gn
=

1

gn

d∑

i=1

gs1 · · · gsi−1

si−1∑

k=0

∑

ji+1+...+jd

(
n− 1

s1, . . . , si−1, k, ji+1, . . . , jd

)
gkgji+1 · · · gjd .

For a given i, the ith term of the outermost sum gives the contribution of
all tuples of the form (s1, ..., si−1, ki, ki+1, ..., kd) with varying ki, . . . , kd. We
can, furthermore, write the multinomial coefficient as a product of two other
multinomial coefficients, one of which can be brought outside the k sum. The

7.3. General Plane Trees 161

kth term of the resulting sum can then be written as follows:

1

(n− 1− k −∑i−1
l=1 sl)!

∑

ji+1+...+jd

(
n− 1− k −∑i−1

l=1 sl
ji+1, . . . , jd

)
gji+1 · · · gjd

=
[
zn−1−k−

∑i−1
l=1 sl

]
(1− (d− 1)z)

− d−i
d−1

=

(
n− 2− k −∑i−1

l=1 sl +
d−i
d−1

1−i
d−1

)
(d− 1)n−1−k−

∑i−1
l=1 sl .

We thus finally find

∑

(k1, . . . , kd) ≺ (s1, . . . , sd)
k1 + . . . + kd = n − 1

(
n− 1

k1, . . . , kd

)
gk1 · · · gkd

gn

=
1

gn

d∑

i=1

(n− 1)!

s1! · · · si−1!

i−1∏

j=1

gsj

si−1∑

k=0

gk
k!

(
n− 2− k −∑i−1

l=1 sl +
d−i
d−1

1−i
d−1

)
(d− 1)n−1−k−

∑i−1
l=1 sl .

Observe that the resulting expression only requires to performO (n) calculations,
where each of them is of the same order as the calculation of the split probability.
An application of Algorithm 1 to a 3-tree is presented in Figure 7.6.

7.3. General Plane Trees

Finally we deal with (general) plane trees, where we do not put any restrictions
on the node degree. In this context we consider the following generation model of
unlabeled plane trees (which is a also known as the plane increasing tree model).
Suppose that the process starts with the root node carrying a label 1. Then we
add a child node with label 2 to the root. The next step is to attach a node with
label 3. However, there are three possibilities: either to add it to the root (as a
left or right sibling of 2) or to the node with label 2. One proceeds further in the
same way, as shown in Figure 7.7. At the end, we remove the labels from the
nodes of the tree. Observe that if a node v already has out-degree outdeg(v) = k
(where the descendants are ordered), then there are k+1 possible ways to add a
new node (this time we do not distinguish between external and internal nodes).
Hence, if a plane tree already has j − 1 nodes then there are j − 2 edges and

162 Chapter 7. Advanced Data Structures: Tree Compression

v1

v2 v3

v4

The following example describes
algorithm CompressDTree
in detail for a given 3-ary tree.
From Equation (7.32), proba-
bility of the given tree equals
to 4!

g44·1·2·1 = 1
35 . Moreover,

consecutive calls of the Ex-
plore procedure for the tree
vertices outputs the follow-
ing intervals: v1 →

[
1
7 ,

8
35

)
,

v2 →
[
1
7 ,

8
35

)
, v3 →

[
6
35 ,

1
5

)
,

v4 →
[

6
35 ,

1
5

)
. In the last step

⌈− log
(
1
5 − 6

35

)
⌉ + 1 = 7 bits

of the 1
2

(
6
35 + 1

5

)
= 13

70 =
0.001011111000101011111... is
returned, i.e. 0010111.

Figure 7.6. Illustration to Algorithm 1

precisely ∑

v

(outdeg(v) + 1) = (j − 2) + (j − 1) = 2j − 3

possibilities to attach the jth node (see Figure 7.7). For example, the probability
of choosing a specific node of out-degree k equals (k+1)/(2j−3). Here we define
the size of the tree as the number of nodes.

7.3.1. Entropy of General Trees

In this section we consider general plane trees as described above (and illustrated
in Figure 7.7). We only present the entropy analysis since the compression
algorithm follows the same steps as for d-ary trees and is left as an exercise. In
what follows we will denote by R the set of rooted labeled plane trees, by T ,
the set of rooted plane trees, and by Rn and Tn the corresponding subsets with
n nodes.

Let rn = |Rn|, the number of labeled plane increasing trees with n nodes.

7.3. General Plane Trees 163

(a)

1

(b)

1

2

(c)

1

2

3

(d)

1

4 2

3

(e)

1

4 2

3

5

(f)

Figure 7.7. Example of the generation process that produces a labeled
general plane tree of size 5 and its unlabeled counterpart.

Clearly there are

rn =

n−1∏

j=2

(2j − 3) = (2n− 3)!! =
n!

n2n−1

(
2n− 2

n− 1

)
(7.41)

different labeled plane oriented increasing trees of size n. Alternatively we could
use the exponential generating function R(z) =

∑
n≥1 rnz

n/n! that satisfies the
differential equation

R′(z) =
1

1−R(z) (7.42)

164 Chapter 7. Advanced Data Structures: Tree Compression

which translates into the recurrence

rn =
∑

d≥1

∑

k1+···kd=n−1

(
n− 1

k1, . . . , kd

)
rk1 · · · rkd

.

Clearly the differential equation (7.42) has the solution

R(z) = 1−
√
1− 2z

that leads to the explicit formula

rn = (−1)n+1n!2n
(1

2

n

)
=

n!

n2n−1

(
2n− 2

n− 1

)
.

As in the case of the d-ary plane increasing trees, let [t] denote the subset of
trees in Rn that have the same structure as a given unlabeled tree t ∈ Tn (i.e.,
[t] is the set of labeled representatives of t). Observe that

P (Tn = t) =
|[t]|
rn

. (7.43)

Suppose that the tree t of size n has d subtrees t1, . . . , tk of sizes k1, . . . , kd.
Then we have

P (Tn = t) =

(
n− 1

k1, . . . , kd

)
rk1 · · · rkd

rn

d∏

j=1

P (Tkj)=tkj
). (7.44)

Observe that (
n− 1

k1, . . . , kd

)
rk1 · · · rkd

rn

is the probability that the root of a plane increasing tree of size n has degree
equal to d and the root’s subtrees are of sizes k1, . . . , kd.

Let Wn the random vector, where its jth componentWn,j denotes the size of
the j-th subtree of a tree of size n. Clearly, Wn is concentrated on those vectors
(k1, k2, . . .), where there exists d ≥ 0 such that k1, . . . , kd > 0, k1+· · ·+kd = n−1,
and kd+1 = kd+2 = · · · = 0. In particular we have

P (Wn = (k1, k2, . . .)) =

(
n− 1

k1, . . . , kd

)
rk1 · · · rkd

rn
. (7.45)

The initial conditions for the entropy are as follows. If n = 1, we have just
a root node, so H (T1) = 0. Similarly, if n = 2, we have one fixed tree, so
H (T2) = 0. We now give the recurrence for n > 2.

7.3. General Plane Trees 165

For k = 1, . . . , n− 1, let q
(d)
n,k be defined as the probability that the root of a

plane increasing tree has degree d and that one specified root subtree is of size
k. Therefore, largely by the same reasoning as was used to derive the recurrence
for d-ary plane trees,

H (Tn) = H (Wn) +

n−1∑

d=1

d

n−d∑

k=1

H (Tk) q
(d)
n,k. (7.46)

We need an expression for the probability q
(d)
n,k which we present in the next

lemma.

Lemma 7.3.1. For k = 1, . . . , n− 1 we have

• q(1)n,n−1 = 1
2n−3 and q

(1)
n,k = 0 if k 6= n− 1,

• for d > 1:

q
(d)
n,k = 2d

d− 1

k(n− 1− k)

(
2k−2
k−1

)(
2(n−1−k)−d

n−2−k

)
(
2n−2
n−1

) .

Proof. If d = 1 then the root has only 1 subtree with all other nodes, so its size
has to be equal to n− 1 and

q
(1)
n,n−1 =

rn−1

rn
=

1

2n− 3
;

moreover, if k 6= n − 1 : q
(1)
n,k = 0. In the case of d > 1, using (7.45), we can

rewrite qnn, k as follows

q
(d)
n,k =

(n− 1)!rk
k!(n− 1− k)!rn

·
∑

k2+...+kd=n−1−k

(
n− 1− k
k2, . . . , kd

)
rk2 · · · rkd

.

We use again the exponential generating function R(z) =
∑

n≥1 rn
zn

n! and ob-
serve that ∑

k2+...+kd=n−1−k

(
n− 1− k
k2, . . . , kd

)
rk2 · · · rkd

is the (n− 1− k)-th coefficient of the exponential generating function R(z)d−1,
that is, [

zn−1−k

(n− 1− k)!

]
R(z)d−1.

166 Chapter 7. Advanced Data Structures: Tree Compression

Therefore,

qn,k =
(n− 1)!rk
k!rn

[
zn−1−k

]
R(z)d−1.

We now use the fact that R(z) = 1−
√
1− 2z, is also the solution of the equation

R(z) =
z

1− R(z)
2

.

Hence, by Lagrange’s inversion formula, we obtain an explicit formula for

[zn−1−k]R(z)d−1 = 2d−n+k d− 1

n− 1− k

(
2(n− 1− k)− d

n− 2− k

)
.

This proves the desired result.

The recurrence found in (7.46) is another one that we need to analyze. Its
general solution is presented next.

Lemma 7.3.2 (Generalized entropy recurrence for unrestricted trees). For given
y1 = b1 and y2 = b2, the recurrence

yn = bn +
n−1∑

d=1

d
n−d∑

k=1

q
(d)
n,k · yk, n > 2 (7.47)

has the following solution for n > 2:

yn =
2(2n− 1)

3
b1 + bn +

1

2

(
n− 1

2

) n−1∑

j=2

bj(
j − 1

2

) (
j + 1

2

) .

Proof. Using Lemma 7.3.1, for n > 2, we find

yn = bn +
yn−1

2n− 3
+

n−1∑

d=2

d(d− 1)2d
n−d∑

k=1

yk
k(n− 1− k)

(
2k−2
k−1

)(
2n−2k−2−d

n−k−2

)
(
2n−2
n−1

) .

Multiplying both sides by
(2n−2

n−1)
n and substituting ŷn =

yn(2n−2
n−1)
n , b̂n =

bn(2n−2
n−1)
n

we find

ŷn = b̂n +
2ŷn−1

n(n− 1)
+

1

n

n−1∑

d=2

d(d − 1)2d
n−d∑

k=1

ŷk
(n− 1− k)

(
2n− 2k − 2− d

n− k − 2

)
.

7.3. General Plane Trees 167

Changing the order of summation gives us

n−1∑

d=2

d(d − 1)2d
n−d∑

k=1

ŷk
(n− 1− k)

(
2n− 2k − 2− d

n− k − 2

)
=

n−2∑

j=1

ŷj
n− j − 1

n−j∑

s=0

s(s− 1)2s
(
2n− 2j − 2− s

n− j − 2

)
.

Since for N > 0:

N∑

s=0

s(s− 1)2s
(
2N − 2− s
N − 2

)
= (N − 1)22N−1,

we obtain

ŷn = b̂n +
2ŷn−1

n(n− 1)
+

1

n

n−2∑

j=1

ŷj2
2n−2j−1.

Dividing both sides by 22n and substituting ỹn = ŷn

22n , b̃n = b̂n
22n we find

ỹn = b̃n +
1

2n

n−1∑

j=1

ỹj .

Solving this recurrence relation by calculating nỹn − (n− 1)ỹn−1 leads to

ỹn = b1
Γ
(
n+ 1

2

)

Γ
(
5
2

)
n!

+ b̃n +
Γ
(
n+ 1

2

)

n!

n−1∑

j=2

b̃j
2j + 1

j!

Γ
(
j + 1

2

) .

Substituting ỹn into yn with ỹn = yn
(2n−2

n−1)
n22n , we find the desired result.

This leads us to the following representation of the entropy H (Tn).

Theorem 7.3.3. The entropy of an unlabeled general plane tree, generated ac-
cording to the model of plane increasing tree, is given by

H (Tn) = H (Wn) +
1

2

(
n− 1

2

) n−1∑

j=2

H (Wj)(
j − 1

2

) (
j + 1

2

) , (7.48)

where

H (Wn) = −
∑

k1,k2,...

P (Wn = (k1, k2, . . .) logP (Wn = (k1, k2, . . .)

and the distribution of Wn is given in (7.45).

168 Chapter 7. Advanced Data Structures: Tree Compression

We conclude this section with the following result.

Corollary 7.3.4. The entropy rate h3 = limn→∞H (Tn) /n of unlabeled gen-
eral plane trees, generated according to the model of plane increasing trees, is
given by

h3 =
1

2

∞∑

j=2

H (Wj)(
j − 1

2

) (
j + 1

2

) . (7.49)

Proof. From Theorem 7.3.3 we just need to prove that

H(Wn) = o(n).

Let us recall that the random vector Wn describes the split at the root of a tree.
Let Dn denote then number of subtrees of the root that has distribution

P (Dn = d) =
(n− 1)!

rn
[zn−1]R(z)d =

d2d

n− 1

(
2(n−1)−d−1

n−2

)
(
2n−2
n−1

) .

If we condition on the event Dn = d then the image set of the random variable
(Wn|Dn = d) is upper bounded by nd. Consequently we have

H(Wn|Dn = d) ≤ log(nd) = d logn

which implies that

H(Wn) =

n−1∑

d=1

P (Dn = d)H(Wn|Dn = d)

≤ logn

n−1∑

d=1

dP (Dn = d).

Observe that E[Dn] =
∑n−1

d=1 dP (Dn = d) is the expected value of the general
plane increasing tree root degree. In Exercise 7.14 we establish that E[Dn] =√
πn+O (1), which gives us the desired result.

Remark 7.3.5. Taking a closer look at H (Wn) we find that

H (Wn|Dn = d) = log
(
n
rn
n!

)
− d

n−d∑

k=1

q
(d)
n,k log

(rk
k!

)
.

This allows us to check numerically that the entropy rate of the unlabeled general
plane trees, generated according to the model of plane increasing trees is h3 ≈
1.68.

7.4. Exercises 169

7.4. Exercises

7.1 The arithmetic coding used for compressing trees runs as follows. The
interval [0, 1) is partitioned into subintervals [a, b) such that every tree
t of size n corresponds to one of these intervals and that P (t) = b − a.
Then we associate to each interval [a, b) a binary string, namely the first
⌈− log(b − a)⌉ + 1 binary bits of the real number (a + b)/2. Show that
this algorithm produces different code-words for different plane binary
trees of size n.

7.2 Show that the worst case and the average case running time of the
non-plane tree compression algorithms proposed in Section 7.1.5 satisfy
(7.28) (see Magner et al. (2018)).

7.3 Analyze the m-ary search tree Un built over n keys. In particular, prove
that the entropy of m-ary search tree is given by

H(Un) = cmn+ o(n)

where

cm = 2φm
∑

k≥0

log
(

k
m−1

)

(k + 1)(k + 2)
;

φm = 1
2Hm−2 is called occupancy constant; Hm is the mth Harmonic

number; see Fill and Kapur (2005).

7.4 Using the functional equation (7.14) derive asymptotics of the Otter
trees for the uniform model (see Bona and Flajolet (2009)).

7.5 Let bn = [zn]C(z) where C(z) satisfies the Riccati differential equation
(7.18). Prove that

bn = ρn
(
6n− 22

5
+O(n−5)

)
(7.50)

where ρ = 0.3183843834378459 . . . (see Chern et al. (2012)).

7.6 Derive (7.24).

7.7 First derive (7.25). Then design a compression algorithm of non-plane
trees using the idea described around equation (7.25).

7.8 The entropy h(s) is related to the Rényi entropy h1(t) of order 1 of
non-plane trees. We define h1(t) as follows, if its exists:

h1(t) = lim
n→∞

− logE[p(Tn)]

n
= lim

n→∞

− log
∑

tn∈Tn
p(tn)

2

n
.

170 Advanced Data Structures: Tree Compression

Note that for large n

bn =
∑

tn∈Tn

p(tn)
2 ∼ exp(−nh1(t)).

By appealing to (7.50) prove that

bn = ρn
(
6n− 22

5
+O(n−5)

)

where ρ = 0.3183843834378459 Thus h1(t) = − log(ρ).

7.9 Prove (7.29) that gives a formula for the number of d-ary plane increasing
trees.

7.10 Prove the hook formula (7.30).

7.11 Define the exponential generating function G(z) =
∑

n≥0 gn
zn

n! with
g0 = 1 as in Section 7.2. Prove that

G(z) = (1− (d− 1)z)−
1

d−1

establishing (7.37).

7.12 Derive (7.41) that counts the number of general trees.

7.13 Design an optimal algorithm for compressing general trees following the
steps presented for d-ary trees.

7.14 Consider general plane trees with n internal nodes. Show that the av-
erage degree Dn is

E[Dn] =
√
πn+O(1)

(see Bergeron, Flajolet, and Salvy (1992)).

Bibliographical notes

Trees are the most popular data structures and have been analyzed from al-
gorithmic, probabilistic, and analytic point of view in many books. There are
different types of trees: plane, non-plane, increasing, digital trees, and so forth.
Here, we focus on analytic approaches to d-ary and general trees which are in-
depth discussed in Drmota (2009) and Bergeron et al. (1992) as well as Flajolet
and Sedgewick (2008). See also Mahmoud (1992), Jacquet and Szpankowski
(2015) and Szpankowski (2001).

There are a few scattered results for non-plane trees in a uniform model, e.g.,
see Bona and Flajolet (2009), Drmota (2009), Flajolet and Sedgewick (2008).
The non-plane trees in the binary search tree-like model were studied by analytic

Bibliographical notes 171

tools in Flajolet, Gourdon, and Martinez (1997) in a different context, and by a
different method in Magner, Turowski, and Szpankowski (2016).

Symmetry in binary trees in the uniform model was first precisely analyzed
Bona and Flajolet (2009). This was extended to a non-uniform model in Ci-
chon, Magner, Turowski, and Szpankowski (2017). We should also point out
that asymptotic analysis involved here is quite sophisticated and presented in
Chern et al. (2012). However, to the best of our knowledge there is no study of
symmetry for d-ary and general trees.

A more thorough studies on the compression of trees from information-
theoretic point of view can be found in Golebiewski, Magner, and Szpankowski
(2018), Kieffer, Yang, and Szpankowski (2009), Zhang, Yang, and Kieffer (2014),
Magner et al. (2018), J. Zhang (2014). For binary plane-oriented trees rigorous
information-theoretic results were obtained in Magner et al. (2018). A univer-
sal grammar-based lossless coding scheme for trees was proposed in J. Zhang
(2014).

This chapter is based on Magner et al. (2018), Cichon et al. (2017), and
Golebiewski et al. (2018). The hook formula can be found in Knuth (1998b)
(page 47).

CHAPTER 8

Graph and Structure

Compression

Another class of advanced data structures that we study in this book are graphs.
Unlike trees, graphs are non-sequential data structure with no clear “beginning”
and “end”. However, like trees graphs can come in two forms: graphs can be
labeled and unlabeled. We often shall call the former simply as graphs while the
latter as unlabeled graphs or better structures.

Our basic question in this chapter is how many bits one needs to describe
succinctly labeled graphs and structures. Formally, the labeled graph compres-
sion problem is as follows: fix a graph Gn or a distribution on (multi)graphs
on n vertices. We would like to exhibit an efficiently computable source code
(Cn,Dn) for Gn, where Cn is a function mapping graphs in the support of Gn

to bit strings, in such a way as to minimize the expected length of the output
bit string when the input is a graph distributed according to Gn, and Dn in-
verts Cn and is efficiently computable. A related problem, and one focus of this
chapter, seeks to compress graph structures: here, the encoding function Cn is
presented with a multigraph G isomorphic to a sample from Gn, and Dn(Cn(G))
is only required to be a labeled multigraph isomorphic to G, that is, the labels
are “discarded”, leaving only the structural information. We again insist on a
source code with the minimum possible expected code length which is given by
the Shannon entropy of the distribution on unlabeled graphs induced by Gn, an
often non-trivial quantity to estimate; we call this the structural entropy of the
model.

The structural compression problem is motivated by scenarios in which one
only cares to transmit or store information about the isomorphism type of a
graph – e.g., its degree sequence, number of occurrences of certain subgraphs,
etc. In such scenarios, one does not care about labeled graph information, such
as the fact that, say, vertex 2 connects to vertex 7. Taking advantage of this

174 Chapter 8. Graph and Structure Compression

fact allows for a more compact description of the relevant information than
would result if we naively encoded the labeled graph. More philosophically,
structural compression allows to quantify and encode the information contained
in the shape of graph-structured data. Structural compression may also answer
questions like: how much information about the labels of a (random) graph is
contained in its structure?

As in the case of trees, graph and/or structural compression depends on the
model of generations or on the graph distribution. However, because graphs
are non-sequential models governing the graph generation is very important.
In this chapter we focus on two models: Erdős-Rényi graphs and preferential
attachment graphs. We also briefly discuss other graphs such as duplication
graph generations.

8.1. Graph Generation Models

We first introduce two graph models. The first one is the static Erdős-Rényi
model G(n, p) while the second is a dynamic preferential attachment model
PA(n,m). We also briefly discuss the duplication-divergence model.

We start with the Erdős-Rényi model G(n, p) with n nodes and parameter
p. In such a model, given n nodes, one selects any pair of nodes and with
probability p puts an edge. The probability P (|E(G(n, p))| = k) of seeing a
graph on k edges is

P (|E(G(n, p))| = k) = pk(1− p)(n2)−k

where E(G(n, p)) is a set of edges. The parameter p may depend on n, however,
in most of the analysis in this chapter we assume that p is fixed.

Next we describe the preferential attachment model PA(n,m). We say that
a multigraph G on vertex set [n] = {1, 2, . . . , n} is m-left regular if the only
loop of G is at the vertex 1, and each vertex v, 2 ≤ v ≤ n, has precisely m
neighbors in the set [v − 1]. The preferential attachment model PA(n,m) is a
dynamic model of network growth which gives a probability measure on the
set of all m-left regular graphs on n vertices, proposed in Albert and Barabási
(2002). More precisely, for a fixed integer parameter m ≥ 1 we define the graph
PA(m;n) with vertex set {1, 2, . . . , n} using recursion on n in the following way:
the graphG1 ∼ PA(1,m) is a single node with label 1 andm self-edges (these will
be the only self-edges in the graph, and we will only count each such edge once
in the degree of vertex 1). Inductively, we obtain a graph Gn+1 ∈ PA(n+ 1,m)
from Gn by adding a vertex n + 1 and by connecting it to m randomly (not
necessarily different) chosen vertices v1, ..., vm of Gn such that for all vertices

8.2. Graphs versus Structures 175

w ≤ n in Gn,

P (vi = w|Gn) =
degn(w)

2mn
,

where we denote by degn(w) the degree of vertex w in Gn (note that Gn has
mn edges so that the sum of all degrees equals 2mn).

There are many modifications and generalizations of the PA(n,m) model,
but we focus here on the basic model with fixed m.

There are also graph models that are structurally different than preferential
models. One such a model is called duplication–divergence model. It works as
follows: Given an undirected, simple, seed graph Gn0 on n0 nodes and a target
number of nodes n, graph Gk+1 with k + 1 nodes evolves from graph Gk using
the following rules: a new vertex v is added to graph Gk, and then: (i) in the
duplication phase a node u from Gk is selected uniformly at random and node v
makes connections to all neighbors of u; (ii) in the divergence phase each of the
newly made connections from v to neighbors of u are deleted with probability
1 − p. Furthermore, for all nodes in Gk to which v is not connected, we create
an extra edge from it to v independently with probability r/k for some r ≥ 0.

8.2. Graphs versus Structures

For any graph G, we denote by S(G) its unlabeled version (i.e., the equivalence
class consisting of all labeled graphs isomorphic to G).

Our first concern will be to derive a fundamental lower bound on the expected
code length for compression of unlabeled graphs. As usual, this is given by the
Shannon entropy of the distribution on unlabeled graphs induced by a graph
model. Thus, we need the entropy H(G) of labeled graphs G and the structural
entropy H(S(G)) of unlabeled graphs or structures S(G).

By the chain rule for the conditional entropy, we have

H(G) = H(S(G)) +H(G|S(G)). (8.1)

The second term, H(G|S(G)), measures our uncertainty about the labeled graph
if we are given its structure. In some cases, for certain graph models (such as
the Erdős-Rényi model and the preferential attachment model PA(n,m)) the
conditional entropy H(G|S(G)) can be computed in terms of the size of the
automorphism group |Aut(G)| and another quantity Γ(G) which is a subset of
permutations that have positive probability of generation. Let us introduce these
two quantities. We start with a graph automorphism Aut(G). An automorphism
of a graph G is an adjacency preserving permutation of the vertices of G. The
collection Aut(G) of all automorphisms of G is called the automorphism group

176 Chapter 8. Graph and Structure Compression

of G. An automorphism is a measure of symmetry in a graph. Indeed, if two
nodes have exactly the same view on the graph topology, then switching them
does not change the adjacency matrix.

We illustrate it in the next example.

Example 8.2.1. In Figure 8.1(a), the graph G on four vertices {v1, v2, v3, v4}
has exactly four automorphisms, that is, in the usual cyclic permutation rep-
resentation: (v1)(v2)(v3)(v4), (v1)(v4)(v2v3), (v1v4)(v2)(v3), and (v1v4)(v2v3).
For example, (v1)(v4)(v2v3) stands for a permutation π such that π(v1) = v1,
π(v4) = v4, π(v2) = v3, and π(v3) = v2. Thus, G has 4!/4 = 6 different labellings
as shown in Figure 8.1(b).

q

q

q

q

❅
❅❅

v3 v4

v1 v2

q q q q q q

q q q q q q

q q q q q q

q q q q q q

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

1 3

4 2

1 2

4 3

1 2

3 4

2 1

4 3

2 1

3 4

3 1

2 4

(a) (b)

Figure 8.1. The six different labeling of a graph.

To count the number of distinct relabeling of a graph we need one more
parameter, namely, the set of feasible permutations Γ(G). As usual Sn denotes
the set of all permutation on {1, 2, . . . , n}.

Definition 8.2.2. Let G be a graph on n vertices. The set of feasible permuta-
tions Γ(G) is a collection of permutations σ ∈ Sn such that the graph σ(G) has
positive probability of generation (in the underlying probability model). Clearly,
Γ(G) ⊆ Sn.

Obviously, the cardinality of Γ(G) is upper bounded by n!, that is |Γ(G)| ≤
n! and the upper bound is achievable. For example, for Erdős-Rényi graphs
|Γ(G)| = n!. But is is not true for preferential attachment graphs PA(n,m) as
illustrated in the example below.

Example 8.2.3. Consider a preferential attachment model PA(4, 3) with n =
4 nodes and m = 3 as shown in Figure 8.2. In this case the last node, node
4 must add three new edges as shown on the left of the figure. If we permute
nodes 2 and 4, then as shown on the right side of the figure the last node 4
would have degree five, which is not allowed by the PA(4, 3) model, hence the
probability of generating such graph is zero.

8.2. Graphs versus Structures 177

Figure 8.2. Preferential attachment graph PA(4, 3) before and after “il-
legal” permutation

Finally, we are able to define a set of admissible graphs.

Definition 8.2.4. The set of admissible graphs Adm(G) for G is defined as

Adm(G) := {σ(G) : σ ∈ Γ(G)} (8.2)

where Γ(G) is the set of feasible permutations.

We observe that by the orbit-stabilizer property of groups we have the fol-
lowing relationship

|Adm(G)| = |Γ(G)|
|Aut(G)| . (8.3)

We are now able to prove the main result of this section connecting the graph
entropy H(G) and H(S(G)), but only for graph models in which every labeled
version of the same structure (unlabeled graph) has the same probability or
more precisely, in such models graphs are invariant under isomorphism.

Lemma 8.2.5. Consider a proper random graph model and assume that all
positive probability labeled graphs G of the same structure S(G) have the same
probability. Then

H(G) = H(S) +E[log |Adm(G)|] (8.4)

= H(S) +E[log |Γ(G)|]− E[log |Aut(G)|]. (8.5)

178 Chapter 8. Graph and Structure Compression

Proof. We recall the relation (8.1) saying that

H(G) = H(G,S) = H(S) +H(G|S).
Under our uniformity assumption (of all label graphs of the same structure) we
have

P (G|S) = 1

|Adm(G)| =
|Aut(G)|
|Γ(G)| ,

hence H(G|S) = E[log |Adm(G)|]. The proof follows from this and (8.3).

It is easy to see that Erdős-Rényi graphs are invariant under isomorphism.
It is also true for the PA(m,n) model, however, it is harder to prove. We ask the
reader to establish it in Exercise 8.5. We should also observe that this property
does not hold for the duplication-divergence model.

8.3. Erdős-Rényi Graphs

We now focus on the structural compression of Erdős-Rényi graphs. Let us recall
that in the Erdős-Rényi random graph model G(n, p), graphs are generated
randomly on n vertices with edges chosen independently with probability 0 <
p < 1. If a graph G in G(n, p) has |E(G(n, p))| = k edges, then

P (|E(G(n, p))| = k) = pkq(
n
2)−k,

where q = 1− p.
It is clear that an Erdős-Rényi graph is uniquely represented by a memo-

ryless 0-1-sequences of length
(
n
2

)
that has entropy

(
n
2

)
h(p). Thus, a (labeled)

Erdős-Rényi graph can be encoded by 0-1-sequences of expected code length(
n
2

)
h(p) +O(1). For example we could use a standard arithmetic encoding that

has expected code length <
(
n
2

)
h(p) + 2. To recall the arithmetic encoder, that

encodes a string x, computes an interval I ⊆ [0, 1) of length P (x) and takes then
the first ⌊− logP (x)⌋ + 2 binary digits of the mid-point of I. The intervals I
form a partition of [0, 1). For example, the first letter of x partitions [0, 1) into
two parts and so on. In the case of a memoryless source with parameter p the
length of these two intervals are just p and 1− p.

Regarding the unlabeled version, or structure S of G, we first observe that
|Γ(G)| = n! so that every permutation is feasible. Hence the cardinalityM(S) :=
|Adm(G)| of the admissible set is therefore M(S) = n!/|Aut(G)| where Aut(G)
is the automorphism group of G. This further implies that the probability of a
given structure S with k edges becomes

P (|E(S)| = k) =M(S) · pk(1− p)(n2)−k.

The next aim is to estimate M(S).

8.3. Erdős-Rényi Graphs 179

8.3.1. Structural Entropy

To compute the structural entropy H(S(G)) by Lemma 8.2.5 one needs, to
estimate the cardinality of Aut(G) for randomly selected G from G(n, p), which
we do next.

A graph is said to be asymmetric if its automorphism group does not contain
any permutation other than the identity, that is, |Aut(G)| = 1; otherwise it is
called symmetric.

Lemma 8.3.1 (Kim, Sudakov, and Vu, 2002). For all p satisfying

logn

n
≪ p and 1− p≫ logn

n
,

a random graph G ∈ G(n, p) is symmetric with probability O (n−w) for any
positive constant w, that is, G ∈ G(n, p) is asymmetric with high probability.

Proof. We follow here Kim, Sudakov, and Vu (2002a). Let G = (V,E) be a
graph and let π : V → V be a permutation of the vertices of G. For a vertex
v ∈ V we define a defect of v with respect to π to be

Dπ(v) = |N(π(v)) ∆ π(N(v))|,

where N(v) is the set of neighbors of v and ∆ denotes the symmetric difference
of two sets, that is, A∆B = (A \B) ∪ (B \A) for two sets A and B. Similarly,
we define a defect of G with respect to π to be

Dπ(G) = max
v

Dπ(v).

Finally, we define a defect of a graph G to be

D(G) = min
π 6=identity

Dπ(G).

It is easy to see that a graph G is symmetric if and only if its graph defect equals
zero, that is, ∃π 6=identity∀vDπ(v) = 0. Thus we only need to show that D(G) > 0
for G ∈ G(n, p) with high probability. But we shall next prove that D(G) is at
least (2 − o(1))np(1− p) with high probability.

Set ε = ε(n, p) such that ε = o(1) and ε2np(1− p)≫ logn. This is possible

for all p’s satisfying the conditions of the lemma (e.g., ε = Θ
(

4

√
log n

np(1−p)

)
.) Fix

an arbitrary 2 ≤ k ≤ n, and let π be a permutation of vertices of G which fixes
all but k vertices. Let U be the set of vertices {u|π(u) 6= u} and

X =
∑

u∈U

Dπ(u).

180 Chapter 8. Graph and Structure Compression

By definition, Dπ(u) is a binomially distributed random variable with expecta-
tion either 2(n−2)p(1−p) or 2(n−1)p(1−p), depending on whether π(π(u)) = u
or not. Therefore,

E[X] =
∑

u∈U

E[Dπ(u)] = (2 − o(1))knp(1− p).

We prove next that X is strongly concentrated around its mean, which im-
plies that for some vertex u ∈ U , Dπ(u) is at least E[X]/k with high probability.
Then we conclude that Dπ(G) is at least E[X]/k with high probability by the
definition of Dπ(G). Finally, we shall prove that, for every possible permutation
π, the minimum of Dπ(G) is still at least E[X]/k with high probability, which
implies that D(G) is at least E[X]/k with high probability by the definition of
D(G).

We start with the observation that X depends only on the edges of the
graph adjacent to the vertices in U . Moreover, adding or deleting any such
edge, say (u, v), can change only the values of at most four terms Dπ(u), Dπ(v),
Dπ(π

−1(u)), and Dπ(π
−1(v)) in the sum, each by at most 1. Here, X can be

seen as a random variable on a probability space generated by a finite set of
mutually independent 0/1 choices, indexed by i. Let pi be the probability that
choice i is 1, and let c be a constant such that changing any choice i (keeping all
other choices the same) can change X by at most c. Set σ2 = c2

∑
i pi(1− pi).

In Exercise 8.2 we ask the reader to show that for all positive t < 2σ/c,

P (|X −E[X]| > tσ) ≤ 2e−t2/4. (8.6)

In this case, c = 4 and σ2 = 16(
(
n
2

)
−
(
n−k
2

)
)p(1−p) = Θ(knp(1−p)). Therefore,

for some positive constant α,

P (|X −E[X]| > εknp(1− p)) ≤ e−αε2knp(1−p).

Thus, with probability at least 1 − e−αε2knp(1−p), there is a vertex in U with
defect at least

1

k
(E[X]− εknp(1− p)) = (2− o(1))np(1− p).

Therefore,

P (Dπ(G) ≤ (2− ε)np(1− p)) ≤ e−αε2knp(1−p) = Pk.

Now we see that the number of permutations which fix n− k vertices is at most(
n
k

)
k!. Therefore, the probability that there exists a permutation such that the

8.3. Erdős-Rényi Graphs 181

defect of G with respect to it is less than (2− ε)np(1− p) is at most

n∑

k=2

(
n

k

)
k!Pk ≤

n∑

k=2

nke−αε2knp(1−p)

=

n∑

k=2

(
e−αε2np(1−p)+lnn

)k

= O
(
e−αε2np(1−p)+lnn

)2

= O
(
e−γ lnn+lnn

)2

= O
(
n1−γ

)2
= O

(
n−w

)

for any positive constant w. We just have to choose γ > 1 and set w = 2γ −
2. Therefore, the probability that G is symmetric is at most O (n−w) for any
positive constant w.

Using Lemmas 8.2.5 and 8.3.1, we next present the structural entropy of
G(n, p) and establish the asymptotic equipartition property, that is, the typical
probability of a structure S.

Theorem 8.3.2. For large n and all p satisfying log n
n ≪ p and 1− p≫ logn

n ,
the following holds:
(i) The structural entropy H(S) of the structure S generated by G(n, p) is

H(S) =

(
n

2

)
h(p)− logn! +O

(
logn

nα

)
, for some α > 0,

(ii) For every ε > 0,

P

(∣∣∣∣∣−
1(
n
2

) logP (S)− h(p) + logn!(
n
2

)
∣∣∣∣∣ < ε

)
> 1− 2ε, (8.7)

where h(p) = −p log p− (1 − p) log (1− p) is the entropy rate of a binary mem-
oryless source.

Proof. Let us first compute the entropy H(G) of G(n, p). In G(n, p), m =
(
n
2

)

distinct edges are independently selected with probability p, and thus there are
2m different labeled graphs. That is, each graph instance can be considered as
a binary sequence X of length m. Thus,

H(G) = −E[logP (Xm)] = −mE[logP (X)] =

(
n

2

)
h(p).

182 Chapter 8. Graph and Structure Compression

By Lemma 8.2.5,

H(S) =

(
n

2

)
h(p)− logn! +A

where
A =

∑

S∈S(n,p)

P (S) log |Aut(S)|

and S(n, p) denotes the structures that are generated by G(n, p).
Now we show that A = o(1) to prove part (i). By applying the upper bound

|Aut(S)| ≤ n! ≤ nn and Lemma 8.3.1 with some w > 1 we obtain

A =
∑

S∈S(n,p) is symmetric

P (S) log |Aut(S)|

+
∑

S∈ S(n,p) is asymmetric

P (S) log |Aut(S)|

=
∑

S∈S(n,p) is symmetric

P (S) log |Aut(S)|

≤
∑

S∈S(n,p) is symmetric

P (S) · n logn

= O

(
logn

nw−1

)

= o(1).

To prove part (ii), we define the typical set T n
ε as the set of structures S on n

vertices having the following two properties: (a) S is asymmetric; (b) for G ∼ S,

2−(
n
2)(h(p)+ε) ≤ P (G) ≤ 2−(

n
2)(h(p)−ε).

Let T n
1 and T n

2 be the sets of structures satisfying the properties (a) and (b),
respectively. Then, T n

ε = T n
1 ∩ T n

2 . By the asymmetry of G(n, p), we know
that P (T n

1) > 1 − ε for large n. As explained above, a labeled graph G can be
viewed as a binary sequence of length

(
n
2

)
. Thus, by the property (b) and the

asymptotic equidistribution property for binary sequences, we also know that
P (T n

2) > 1− ε for large n. Thus, P (T n
ε) = 1−P (T n

1 ∪ T n
2) > 1− 2ε. Now let us

compute P (S) for S in T n
ε . By the property (a), P (S) = n!P (G) for any G ∼= S.

By this and the property (b), we can see that any structure S in T n
ε satisfies the

condition in (8.7). This completes the proof.

8.3. Erdős-Rényi Graphs 183

8.3.2. An Algorithm and Its Analysis

Our algorithm, that we call Szip (Structural zip), is a compression scheme for
unlabeled graphs. In other words, given a labeled graph G, it compresses G
into a codeword, from which one can reconstruct a graph S that is isomorphic
to G. The algorithm consists of two stages. First it encodes G into two binary
sequences (B1 and B2) and then compresses them.

The main idea behind our algorithm is quite simple: We select a vertex,
say v1, and store the number of neighbors of v1 in binary. Then we partition
the remaining n − 1 vertices into two sets: the neighbors of v1 and the non-
neighbors of v1. We continue by selecting a vertex, say v2, from the neighbors
of v1 and store two numbers: the number of neighbors of v2 among each of the
above two sets. Then we partition the remaining n − 2 vertices into four sets:
the neighbors of both v1 and v2, the neighbors of v1 that are non-neighbors of
v2, the non-neighbors of v1 that are neighbors of v2, and the non-neighbors of
both v1 and v2. In each step we create a new child node if there is at least
one graph vertex in that node. Similarly, in the i-th step, we remove one graph
vertex vi from the (level-wise) leftmost node at level i−1. If this removal makes
the node empty, we remove the node. The other graph vertices at level i − 1
move down to the left or to the right depending whether they are adjacent to
vi or not. We repeat these steps until all graph vertices are removed. During
the construction, the number of neighbors of the selected vertex with respect
to each set in the partition is appended either to the sequence B1 or to the
sequence B2 where B2 contains those numbers for singleton sets (i.e., we store
either “0” when there is no neighbor or “1” otherwise). We then compress B2

using, for example, an arithmetic encoder since it dominates the compression
rate and can be viewed as generated by a memoryless source, see Lemma 8.3.4).
The algorithm is illustrated in Figure 8.3.

It is an interesting exercise to reconstruct (decode) the structure of the graph
from the lists B1 and B2 (see Exercise 8.1).

The main result of this section provides an asymptotic formula for the ex-
pected code length.

Theorem 8.3.3. Let L(S) be the length of the codeword generated by our al-
gorithm for Erdős-Rényi graphs G ∈ G(n, p) (with fixed p) isomorphic to a
structure S. Then for large n,

E[L(S)] =

(
n

2

)
h(p)− n logn+ (c+Φ(log n))n+ o(n),

where c is an explicitly computable constant, and Φ(x) is a periodic function.

184 Chapter 8. Graph and Structure Compression

Figure 8.3. Illustration of the Szip algorithm: On the left we show a
graph that encodes to B1 and B2. The first vertex is chosen to be v1 = i.
So it is removed and the vertices {d, f, g, j} are put to the left and the
vertices {a, b, c, e, h} to the right. In particular the number of neighbor
vertices of the root is 4 = (100)2. Thus, B1 starts with 0100 (we use 4
digits since the maximum number of neighbors is 9 that need 4 digits). In
the next step we choose the vertex v2 = f that is removed from the set
{d, f, g, j} and consider the neighbors/non-neighbors {d, g, j}, ∅, {b, c},
{a, e, h}. The neighbor numbers are 3 = (11)2 and 2 = (010)2. Thus,
11010 is appended to B1. In this way we proceed further. In the third
step we choose v3 = d and in the fourth step v4 = j etc. In the fourth step
there are the first singleton sets {g}, {c}, {b}, where only g is neighbor
of j. Thus, B2 starts with 1, 0, 0. Note also that in the fifth level the
neighbor singleton set {g} is removed since v5 = g (similar situations occur
subsequently).

Hence the algorithm Szip is close to an optimal one, since we certainly have

E[L(S)] ≥ H(S) =

(
n

2

)
h(p)− n logn+

n

ln 2
+O(log n).

We also want to mention that the distribution of L(S) has a kind of concentration

8.3. Erdős-Rényi Graphs 185

around its expected value E[L(S)]. In Exercise 8.3 we ask the reader to prove
the following

P (L(S) < E[L(S)] + εn logn) = o(1) (8.8)

for every ε > 0. Also, it is easy to see that our algorithm runs in time O(n2) in
the worst case. We ask the reader to establish it in Exercise 8.2.

8.3.3. Proof of Theorem 8.3.3

We start with a description of two binary trees that better capture the progress
of our algorithm. Recall that our algorithm runs as follows. Given a graph G on
n vertices, a binary tree Tn is built as follows. At the beginning, the root node
contains all n graph vertices, V (G), that one can also visualize as n balls. In the
first step, a graph vertex (ball) v is removed from the root node, and the other
n − 1 graph vertices move down to the left or to the right depending whether
they are adjacent vertices in G to v or not; adjacent vertices go to the left child
node and the others go to the right child node. We create a new child node in
Tn if there is at least one graph vertex in that node. After the first step, the
tree is of height 1 with n− 1 graph vertices in the nodes at level 1. Similarly, in
the i-th step, we remove one graph vertex (ball) v from the (level-wise) leftmost
node at level i− 1. If this removal makes the node empty, we remove the node.
The other graph vertices at level i − 1 move down to the left or to the right
depending whether they are adjacent to v or not. We repeat these steps until
all graph vertices are removed (i.e., after n steps).

The tree structure just described can be generalized to a tree that we call
(n, d)-trie. In such a tree the root contains n balls that are distributed between
the left and the right subtrees according to the following rule. In each step, all
balls independently move down to the left subtree (say with probability p) or
the right subtree (with probability 1−p). A new node is created as long as there
is at least one ball in that node. Furthermore, a nonnegative integer d is given,
and at level d or greater one ball is removed from the leftmost node before the
balls move down to the next level. These steps are repeated until all balls are
removed (i.e., after n+ d steps). Observe that when d =∞ the above tree can
be modeled as a trie that stores n independent sequences generated by a binary
memoryless source with parameter p. Therefore, we coin the name (n, d)-tries
for the tree just described, and to which we often refer simply as d-tries. This
is illustrated in Figure 8.4.

Let Nx denote the number of graph vertices that pass through node x in Tn
(excluding the graph vertex removed at x, if any). In Figure 8.3, for example,
Nx is the number of graph vertices shown next to the node x. Our algorithm
needs to encode, for each node x in Tn, the number of neighbors (of the removed
graph vertex) among Nx vertices. This requires ⌈log(Nx + 1)⌉ bits. Let L(B1)

186 Chapter 8. Graph and Structure Compression

Figure 8.4. A (6, 1)-trie with six balls and d = 1, in which the deleted
ball is shown next to the node where it was removed.

and L(B2) be the lengths of sequences B1 and B2, respectively. By construction,
these lengths are defined as

L(B1) =
∑

x∈Tn and Nx>1

⌈log(Nx + 1)⌉,

L(B2) =
∑

x∈Tn and Nx=1

⌈log(Nx + 1)⌉ =
∑

x∈Tn and Nx=1

1.

In Figure 8.3(b), L(B1) and L(B2) are sums over all circle-shaped nodes and
over all square-shaped nodes, respectively. Here we can observe an important
property of B2 presented next.

Lemma 8.3.4. Given a graph from G(n, p), the sequence B2 constructed by
our algorithm is probabilistically equivalent to a binary sequence generated by a

8.3. Erdős-Rényi Graphs 187

memoryless source(p) with p being the probability of generating a ‘1’.

Proof. Consider any bit b ∈ B2. It represents the number of neighbors of a vertex
u in a subset, which contains only one vertex, say v. Then the probability that
b =‘1’ is the same as the probability that u and v are connected, which is p
in the Erdős-Rényi model. Let us consider any two bits b1 and b2. Assume
that bi corresponds to vertices ui and vi (i.e., bi corresponds to the potential
edge between ui and vi.) These two potential edges are chosen independently
according to the Erdős-Rényi model. This shows the memoryless property.

To set up precise recurrence relations for the analysis, we need to define
a random binary tree Tn,d for integers n ≥ 0 and d ≥ 0, which is generated
similarly to Tn as follows. If n = 0, then it is just an empty tree. For n > 0, we
create a root node, in which we put n balls. In each step, all balls independently
move down to the left (with probability p) or right (with probability 1− p). We
create a new node if there is at least one ball in that node. Thus, after the i-th
step, the balls will be at level i. If the balls are at level d or greater, then we
remove one ball from the leftmost node before the balls move down to the next
level. These steps are repeated until all balls are removed (i.e., after n+d steps).
We observe that, if Tn is generated by a graph from G(n, p), Tn is nothing but
the random binary tree Tn,0. Thus, by analyzing Tn,0, we can compute both
L(B1) and L(B2).

Let us first estimate L(B1). Recall, Nx denotes the number of balls that pass
through node x (excluding the ball removed at x, if any). Let

An,d =
∑

x∈Tn,d and Nx>1

⌈log(Nx + 1)⌉,

and an,d = E[An,d]. Then E[L(B1)] = an,0. Clearly, a0,d = a1,d = 0 and
a2,0 = 0. For n ≥ 2 and d = 0, we observe that

an+1,0 = ⌈log (n+ 1)⌉+
n∑

k=0

(
n

k

)
pkqn−k(ak,0 + an−k,k). (8.9)

This follows from the fact that starting with n + 1 balls in the root node, and
removing one ball we are left with n balls passing through the root node. The
root contributes ⌈log (n+ 1)⌉. Then, those n balls move down to the left or right
subtrees. Let us assume k balls move down to the left subtree (the other n− k
balls must move down to the right subtree, and this happens with probability(
n
k

)
pkqn−k.) At level one, one ball is removed from those k balls in the root of

the left subtree. This contributes ak,0. There will be no removal among n − k
balls in the right subtree until all k balls in the left subtree are removed. This

188 Chapter 8. Graph and Structure Compression

contributes an−k,k. Similarly, for d > 0, we can see that

an,d = ⌈log (n+ 1)⌉+
n∑

k=0

(
n

k

)
pkqn−k(ak,d−1 + an−k,k+d−1). (8.10)

This recurrence is quite complex. We start with the asymptotic behavior of the
solution of the limit

a(n,∞) = lim
d→∞

an,d,

that satisfies the recurrence

a(n,∞) = ⌈log (n+ 1)⌉+
n∑

k=0

(
n

k

)
pkqn−k(a(k,∞) + a(n− k,∞)) (n ≥ 2)

(8.11)
with initial conditions a(0,∞) = a(1,∞) = 0. It is not difficult to show that
this limit actually exists. By induction it follows that an,d+1 ≥ an,d.

Lemma 8.3.5. Let a(n,∞) be defined by the recurrence (8.11) with initial con-
ditions a(0,∞) = a(1,∞) = 0. Then:
(i) If log p/ log q is irrational, then

a(n,∞) =
n

h(p) ln 2
A∗(−1) + o(n), (8.12)

where

A∗(−1) =
∑

b≥2

⌈log(b+ 1)⌉
b(b− 1)

. (8.13)

(ii) If log p/ log q = r/d (rational) with gcd(r, d) = 1, then

a(n,∞) =
n

h(p) ln 2

(
A∗(−1) + Φ1(logp n)

)
+ o(n), (8.14)

where
Φ1(x) =

∑

k 6=0

A∗(−1 + 2kπri/ log p) exp(2kπrxi) (8.15)

is a periodic function, where

A∗(s) =
∑

n≥2

⌈log (n+ 1)⌉
n!

Γ(n+ s)

and Γ(s) is the Euler gamma function.

8.3. Erdős-Rényi Graphs 189

Proof. Define the exponential generating function (EGF) of a(n,∞) as

â(z) =

∞∑

n=0

a(n,∞)
zn

n!

for complex z. Then, by setting cn = ⌈log(n+ 1)⌉ we have for n ≥ 2

a(n,∞)

n!
zn =

cn
n!
zn +

n∑

k=0

1

k!
(zp)

k 1

(n− k)! (zq)
n−k

(a(k,∞) + a(n− k,∞))

=
cn
n!
zn +

n∑

k=0

a(k,∞)

k!
(zp)

k 1

(n− k)! (zq)
n−k

+

n∑

k=0

1

k!
(zp)

k a(n− k,∞)

(n− k)! (zq)
n−k

.

Thus, using the fact that a(0,∞) = a(1,∞) = c0 = c1 = 0,

∞∑

n=0

a(n,∞)

n!
zn =

∞∑

n=0

cn
n!
zn +

∞∑

n=0

n∑

k=0

a(k,∞)

k!
(zp)k

1

(n− k)! (zq)
n−k

+

∞∑

n=0

n∑

k=0

1

k!
(zp)

k a(n− k,∞)

(n− k)! (zq)
n−k

.

Finally, we arrive at

â(z) = ĉ(z) + â(zp)ezq + â(zq)ezp,

where ĉ(z) is the EGF of cn. The Poisson transform (see also Appendix C),

defined as Ã(z) = â(z)e−z, of the above equation satisfies then

Ã(z) = C̃(z) + Ã(zp) + Ã(zq), (8.16)

where C̃(z) = ĉ(z)e−z.
At this stage the Analytic Depoissonization result Theorem C.4.2 (of Ap-

pendix C) suggests that

a(n,∞) ∼ Ã(n)
as n → ∞. However, the conditions of Theorem C.4.2 cannot be directly
checked, since it is not clear how C̃(z) behaves in the complex plane.

In order to overcome this technical problem we can proceed as follows. For
given ε > 0 we define B(ε) such that

∑

b>B(ε)

√
b

b(b− 1)
< ε.

190 Chapter 8. Graph and Structure Compression

We replace then the sequence cn = ⌈log(n+ 1)⌉ by a lower and upper bound:

c(1)n =

{
cn for n ≤ B(ε),
0 for n > B(ε),

c(2)n =

{
cn for n ≤ B(ε),√
n for n > B(ε).

Since c
(1)
n ≤ cn ≤ c(2)n it follows then that the corresponding solutions a(n,∞)(1)

and a(n,∞)(2) satisfy a(n,∞)(1) ≤ a(n,∞) ≤ a(n,∞)(2). On the other hand the

corresponding Poisson transforms C̃(1)(z) and C̃(2)(z) satisfy the assumptions
of Theorem C.4.2 (as we will show later). Hence it follows that

a(n,∞)(1) ∼ Ã(1)(n) and a(n,∞)(2) ∼ Ã(2)(n).

If log p/ log q is irrational we have (as for the sequence cn)

Ã(1)(n) =
n

h(p)

∑

2≤b≤B(ε)

⌈log(b+ 1)⌉
b(b− 1)

and

Ã(2)(n) =
n

h(p) ln 2

 ∑

2≤b≤B(ε)

⌈log(b+ 1)⌉
b(b− 1)

+
∑

b>B(ε)

√
b

b(b− 1)

 .

Consequently it follows

lim sup
n→∞

1

n

∣∣∣∣a(n,∞)− n

h(p) ln 2
A∗(−1)

∣∣∣∣ ≤
ε

h(p) ln 2

Since ε > 0 is arbitrary it finally follows that

a(n,∞) ∼ n

h(p) ln 2
A∗(−1).

Similarly we can argue in the rational case.
In order to solve asymptotically the functional equation (8.16), we apply

the Mellin transform. The reader is referred to Appendix D for an in-depth
discussion of the Mellin transform. In brief, the Mellin transform of a real-
valued function f(x) is defined as

f∗(s) =

∫ ∞

0

f(x)xs−1dx.

It is defined in a strip −α < ℜ(s) < −β when f(x) = O(xα) for x → 0 and
f(x) = O(xβ) for x → ∞. Noting that the Mellin transform of the function
f(ax) is given by

a−sf∗(s),

8.3. Erdős-Rényi Graphs 191

we transform the functional equation (8.16) into the following equation

A∗(s) = C∗(s) + p−sA∗(s) + q−sA∗(s),

where A∗(s) and C∗(s) are the Mellin transforms of Ã(z) and C̃(z), respectively.
This leads to

A∗(s) =
C∗(s)

1− p−s − q−s

for −2 < ℜ(s) < −1, as is easy to see under our assumption on a(0,∞). Observe
also that

C∗(s) =

∫ ∞

0

C̃(z)zs−1dz =
∑

n≥2

cn
n!

∫ ∞

0

zne−zzs−1dz =
∑

n≥2

cn
n!

Γ(n+ s), (8.17)

and for cn = ⌈log(n+ 1)⌉ the series converges for ℜ(s) < 0. The same holds for

c
(1)
n . For c

(2)
n we just have convergence for ℜ(s) < − 1

2 .

In order to find asymptotics of a(n,∞) (as well as for a(n,∞)(1) and a(n,∞)(2),
respectively), we first compute the inverse Mellin transform:

Ã(z) =
1

2πi

∫ c+i∞

c−i∞
A∗(s)z−sds, (8.18)

where −2 < c < −1 is a constant. The goal is to get asymptotics for Ã(n) as
n → ∞ (and then to apply the above described Depoissonization procedure).
For this purpose we will shift the integral to the right. However, we have to
take care of the zeros of 1 − p−s − q−s. By Lemma D.3.1 (from Appendix D).
we know that all zeros satisfy

−1 ≤ ℜ(s) ≤ σ0,

where σ0 is a real positive solution of 1 + q−s = p−s. Furthermore, for every
integer k there uniquely exists a zero sk with

(2k − 1)π/ ln(1/p) < ℑ(sk) < (2k + 1)π/ ln(1/p).

Furthermore, if log q/ log p = ln q/ ln p is irrational, then s0 = −1 and ℜ(sk) >
−1 for all k 6= 0. If log q/ log p = r/d is rational, where gcd(r, d) = 1 for
integers r, d > 0, then ℜ(sk) = −1 if and only if k ≡ 0 mod d. In particular
ℜ(s1), . . . ,ℜ(sd−1) > −1 and

sk = sk mod d +
2(k − k mod d)πi

ln p
,

192 Chapter 8. Graph and Structure Compression

that is, all zeros are uniquely determined by s0 = −1 and by s1, s2, . . . , sd−1,
and their imaginary parts constitute an arithmetic progression.

To compute the integral (8.18) asymptotically we apply the standard ap-
proach. We shift the integral to the right and collect the appearing residues at
s = sk (k ∈ Z). Due to the convergence properties of C∗(s) (due to the Γ-factors
in the representation (8.17)) it is easy to see that the residue theorem gives (for
η > 0 sufficiently small)

Ã(n) =
1

2πi

∫ −η+i∞

−η−i∞
A∗(s) +

∑

k∈Z

nsk log e

− log p p−sk − log q q−sk
C∗(sk).

If log p/ log q is irrational then ℜ(sk) > −1 for all k 6= 0 and so we have

∑

k∈Z

nsk log e

− log p p−sk − log q q−sk
C∗(sk) =

n log e

h(p)
C∗(−1) + o(n)

which gives

Ã(n) ∼ n log e

h(p)
C∗(−1) = n

h(p) ln 2
C∗(−1).

In the irrational case we have a linear progression of k with ℜ(sk) = −1 that
leads to the representation

∑

k∈Z

nsk log e

− log p p−sk − log q q−sk
C∗(sk) =

n log e

h(p)

(
C∗(−1) + Φ1(logp n)

)
+O(n1−ε)

for some ε > 0 and finally we find

Ã(n) ∼ n log e

h(p)

(
C∗(−1) + Φ1(logp n)

)
=

n

h(p) ln 2

(
C∗(−1) + Φ1(logp n)

)
.

All these computations can be done for cn = ⌈log(n + 1)⌉ as well as for

c
(1)
n and c

(2)
n . As mentioned above this leads to asymptotic representations for

Ã(1)(n) and Ã(2)(n).
At the next step we recall that we want to apply Depoissonization, in partic-

ular Theorem C.4.1, in order to obtain a(n,∞)(1) ∼ Ã(1)(n) and a(n,∞)(2) ∼
Ã(2)(n). For this purpose we have to check that the functions C̃(1)(z) and C̃(1)(z)
satisfy the conditions of Theorem C.4.1. Since

C̃(1)(z) = e−z
∑

n≤B(ε)

⌈log(n+ 1)⌉
n!

zn

8.3. Erdős-Rényi Graphs 193

is only a finite sum these conditions are trivially satisfied. Furthermore, C̃(1)(z)
differs from

D̃(z) := e−z
∑

n≥0

√
n

n!
zn =

Γ(3/2)

2πi

∫

C

ez(e
−x−1)(−x)−3/2 dx

just by a finite sum; here C denotes a Hankel contour as in the Hankel integral
representation of 1/Γ(s) (compare with Appendix C). It is an easy exercise that

D̃(z) satisfies the assumptions of Theorem C.4.1 (see Exercise 8.4).
This completes the proof of Lemma 8.3.5.

The next step is to analyze the difference ã(n, d) = a(n,∞)− an,d. First we
note that by definition we have an,1 = an+1,0. We then obtain the (homoge-
neous) recurrence

ã(n, d) =

n∑

k=0

(
n

k

)
pkqn−k [ã(k, d− 1) + ã(n− k, k + d− 1)] (n ≥ 2, d ≥ 1)

(8.19)
with the side and initial conditions

ã(n+ 1, 0)− ã(n, 1) = a(n+ 1,∞)− a(n,∞) (n ≥ 0)

and
ã(0, d) = ã(1, d) = 0 (d ≥ 0).

Lemma 8.3.6. The following upper bound holds

ã(n, d) ≤ A0n
ν+ε(p2 + q2)d; n ≥ 2, d ≥ 0 (8.20)

where ν = log(p2 + q2)/ log p > 0.

Proof. When n = 2 it is easy to see that we have (exactly)

ã(2, d) =

(
1

pq
− 2

)
(p2 + q2)d−1,

so (8.20) clearly holds. Assuming that (8.20) holds for all (N,D) with N +D <
n+ d we can estimate the first sum in the right side of (8.19) by

n−2∑

k=0

(
n

k

)
pkqn−kã(k, d− 1) ≤ A0

n∑

k=0

kν+ε(p2 + q2)d−1pkqn−k

(
n

k

)

≤ A0(np)
ν+ε(p2 + q2)d−1

= A0n
ν+ε(p2 + q2)d,

194 Chapter 8. Graph and Structure Compression

and the second sum (8.19) by

n−2∑

k=0

(
n

k

)
pkqn−kã(n− k, k + d− 1)

≤ A0

n∑

k=0

(n− k)ν+ε(p2 + q2)k+d−1pkqn−k

(
n

k

)

≤ A0n
ν+ε(p2 + q2)d−1

n∑

k=0

(
n

k

)[
p(p2 + q2)

]k
qn−k

= A0n
ν+ε(p2 + q2)d−1

[
q + p(p2 + q2)

]n

which completes the proof of the lemma.

In particular we find

n∑

k=0

(
n

k

)
pkqn−kã(n− k, d) ≤ A0n

ν+ε(p2 + q2)d−1
n∑

k=0

(
n

k

)
pkqn−k(p2 + q2)k

= A0n
ν+ε(p(p2 + q2) + q)n+d−1, (8.21)

that is, the second part in the recurrence (8.19) is bounded by a term that is
exponentially small in n and d. It it therefore convenient to study next the
following recurrence

a∗(n, d) =
n∑

k=0

(
n

k

)
pkqn−ka∗(k, d− 1) (n ≥ 2, d ≥ 1)

with the side and initial conditions

a∗(n+ 1, 0)− a∗(n, 1) = a(n+ 1,∞)− a(n,∞) (n ≥ 0)

and
a∗(0, d) = a∗(1, d) = 0 (d ≥ 0).

The difference adiff (n, d) = ã(n, d)− a∗(n, d) satisfies then

adiff (n, d) =

n∑

k=0

(
n

k

)
pkqn−kadiff (k, d− 1) +

n∑

k=0

(
n

k

)
pkqn−kã(n− k, k + d− 1)

(8.22)
and adiff (n+ 1, 0) = adiff (n, 1). Note that adiff (n, d) is non-negative.

8.3. Erdős-Rényi Graphs 195

Lemma 8.3.7. We have the following upper bound.

adiff (n, d) ≤ A1 (8.23)

for some constant A1.

Proof. Since adiff (n+ 1, 0) = adiff (n, 1) and by (8.21) we have

adiff (n+ 1, 0) =

n∑

k=0

(
n

k

)
pkqn−kadiff (k, 0) +O(γn)

for some γ < 1. This immediately shows that adiff (n, 0) is bounded.
Now we show by induction on d that adiff (n, d) ≤ Cd for proper constants

Cd that are uniformly bounded. By (8.22) and (8.21) we get

sup
n≥0

adiff (n, d) ≤ Cd−1 +O((p2 + q2)d).

Hence, it is clear that we can define inductively constants Cd by Cd = Cd−1 +
O((p2 + q2)d). Clearly, these constants are uniformly bounded.

We finally need an upper bound for a∗(n, d) which is presented next and
prove in Section 8.3.5 since we need some additional results.

Lemma 8.3.8. For every fixed d the numbers a∗(n, d) are bounded by

a∗(n, d) = O((log n)2)

for large n.

Summing up, we have

E[L(B1)] = an,0

= a(n,∞)− ã(n, 0)
= a(n,∞)− a∗(n, 0)− adiff (n, 0)

= a(n,∞) +O((log n)2).

Hence, together with Lemma 8.3.5) we have obtained the precise asymptotic
behavior for E[L(B1)].

Theorem 8.3.9. For large n,

E[L(B1)] =
n

h(p) ln 2
(β +Φ1(logn)) + o(n),

196 Chapter 8. Graph and Structure Compression

where

β =
∑

b≥2

⌈log (b+ 1)⌉
b(b− 1)

= 2.606 · · · ,

and Φ1(log n) is a periodic function for log p/ log q rational and zero otherwise.

Estimate of B2. The next step is to estimate the average length of B2. Let
Sn,d be the total number of nodes x in Tn,d such that Nx = 1, that is,

Sn,d =
∑

x∈Tn,d and Nx=1

1 =
∑

x∈Tn,d and Nx=1

Nx =
∑

x∈Tn,d

Nx −
∑

x∈Tn,d and Nx>1

Nx.

Let Bn,d =
∑

x∈Tn,d,Nx>1Nx. We observe that

L(B2) = Sn,0 =
∑

x∈Tn,0

Nx −Bn,0 =
n(n− 1)

2
−Bn,0. (8.24)

The last equality follows from the fact that the sum of Nx’s for all x at level ℓ
in Tn,0 is equal to n− 1− ℓ.

Let bn,d = E[Bn,d]. For our analysis we only need bn,0. Clearly, b0,d = b1,d =
0 and b2,0 = 0. For n ≥ 2, we can find the following recurrence in a similar way
to an,d:

bn+1,0 = n+

n∑

k=0

(
n

k

)
pkqn−k(bk,0 + bn−k,k), (8.25)

and bn,d = n+

n∑

k=0

(
n

k

)
pkqn−k(bk,d−1 + bn−k,k+d−1) for d > 0. (8.26)

Instead of (8.25) we can just use the boundary condition

bn,1 = bn+1,0, for n ≥ 0. (8.27)

We should point out that this recurrence describes the path length in the
(n, d)-trie discussed in the previous section. We just recall that in such a tree
the root contains n balls that are distributed between the left and the right
subtrees. In each step, all balls independently move down to the left subtree
(say with probability p) or the right subtree (with probability 1 − p). A new
node is created as long as there is at least one ball in that node. Furthermore, a
nonnegative integer d is given, and at level d or greater one ball is removed from
the leftmost node before the balls move down to the next level. These steps
are repeated until all balls are removed (i.e., after n + d steps). Observe that
when d =∞ the above tree can be modeled as a trie that stores n independent

8.3. Erdős-Rényi Graphs 197

sequences generated by a binary memoryless source with parameter p. This is
illustrated in Figure 8.4.

We now study in detail recurrence (8.26) corresponding to the path length
in a (n, d)-trie and show how much the path length of such a d-trie differs from
that of regular tries (in which d =∞).

If we let d → ∞ in (8.26) and assume that bn,d tends to a limit that we
denote as b(n,∞), then (8.26) becomes

b(n,∞) = n+

n∑

k=0

(
n

k

)
pkqn−k [b(k,∞) + b(n− k,∞)] , (8.28)

with b(0,∞) = b(1,∞) = 0. This is the same as the recurrence for the mean

path length in a trie. We recall that the Poisson generating function B̃(z) =
e−z

∑
n≥0 b(n,∞)zn/n! satisfies

B̃(z) = z(1− e−z) + B̃(pz) + B̃(qz).

By inverting the Mellin transform of B̃(z) we obtain (similarly as above):

B̃(z) =
1

2πi

∫ −3/2+i∞

−3/2−i∞
z−s Γ(s+ 1)

1− p−s − q−s
ds, (8.29)

which holds for −2 < ℜ(s) < −1. The integral certainly converges for z real and
positive.

The asymptotic expansion of b(n,∞) as n→∞ can be obtained in the same
way as above by shifting the integral in (8.29) to the right and by collecting
the residues. The only difference to the above analysis is that the function
Γ(s+1)/(1− p−s− q−s) has a double pole at s = −1. Hence, the residue of the
integrand is then

1

h(p)
n logn+

γ

h(p)
+

h2(p)

2h(p)2

where h2(p) = p log2 p + q log2 q and γ is the Euler constant. Together with
the residues at s = sk and by applying the Depoissonization theorem (Theo-
rem C.4.1) we, thus, obtain

b(n,∞) =
1

h(p)
n logn+

1

h(p)

[
γ +

h2(p)

2h(p)
+ Φ2(logp n)

]
n+ o(n), (8.30)

where Φ2(x) is the periodic function

Φ2(x) =
∞∑

k=−∞,k 6=0

Γ

(
−2kπir

log p

)
e2kπrix,

198 Chapter 8. Graph and Structure Compression

provided that log p/ log q = r/s is rational, with r and s being integers with
gcd(r, s) = 1. If log p/ log q is irrational, then the term with Φ2 is absent

Our analysis requires, too, a two term asymptotic estimate of the difference
b(n+ 1,∞)− b(n,∞), whose generating function may be represented, similarly
to (8.30), as the inverse Mellin transform

∑

n≥0

[b(n+ 1,∞)− b(n,∞)]
zn

n!
e−z =

1

2πi

∫ −3/2+i∞

−3/2−i∞

−sΓ(s+ 1)

1− p−s − q−s
z−s−1ds.

(8.31)
This integral has (again) a double pole at s = −1 and we can obtain a two term
approximation for z →∞

b(n+1,∞)−b(n,∞) =
1

h(p)
logn+

1

h(p)

(
γ + 1 +

h2(p)

2h(p)

)
+

1

h(p)
Ψ3(logp n)+o(1)

(8.32)
where Ψ3(·) is the periodic function in Theorem 8.3.10, which again appears
only for rational log p/ log q.

We next set
bn,d = b(n,∞)− b̃(n, d) (8.33)

so that b̃(n, d) = b(n,∞)−bn,d measures how the path lengths in the d-trie differ
from those in a trie. From (8.26) and (8.28), we then obtain

b̃(n, d) =

n∑

k=0

(
n

k

)
pkqn−k

[
b̃(k, d− 1) + b̃(n− k, k + d− 1)

]
, for n ≥ 2, d ≥ 1,

(8.34)
which unlike (8.26) is a homogeneous recurrence. As above we have the boundary
condition

b̃(n+ 1, 0)− b̃(n, 1) = b(n+ 1,∞)− b(n,∞). (8.35)

We also have b̃(0, d) = b̃(1, d) = 0 for d ≥ 0. As in Lemma 8.3.6 we get an

a-priori bound for b̃(n, d):

b̃(n, d) ≤ A0n
ν+ε(p2 + q2)d; n ≥ 2, d ≥ 0 (8.36)

where ν = log(p2 + q2)/ log p > 0.
We further define b∗(n, d) to be the solution of

b∗(n, d) =
n∑

k=0

(
n

k

)
pkqn−kb∗(k, d− 1), for n ≥ 2, d ≥ 1, (8.37)

and
b∗(n+ 1, 0)− b∗(n, 1) = b(n+ 1,∞)− b(n,∞). (8.38)

8.3. Erdős-Rényi Graphs 199

Next set bdiff (n, d) = b̃(n, d)− b∗(n, d). Then (as above) we obtain from (8.34)–
(8.38) that

bdiff (n, d) =

n∑

k=0

(
n

k

)
pkqn−kbdiff (k, d− 1) +

n∑

k=0

(
n

k

)
pkqn−k b̃(n− k, k + d− 1)

(8.39)
with bdiff (n+1, 0) = bdiff (n, 1). Using an inductive argument as in Lemma 8.3.7
we get that

bdiff (n, d) ≤ B1 (8.40)

for some constant B1.
It remains to provide the asymptotic behavior of b∗(n, d) from (8.38).

Lemma 8.3.10. For n → ∞ and d = O(1) the sequence b∗(n, d) is of order
O(log2 n) for n→∞. More precisely

b∗(n, d) =
1

2h log(1/p)
log2 n− d

h
logn

+

[
1

2h
− 1

h log p

(
γ + 1

ln 2
+
h2
2h

+Ψ3(logp n)

)]
logn+ o(log n),

where Ψ3(·) is the periodic function

Ψ3(x) =
1

ln 2

∞∑

k=−∞,k 6=0

[
1 +

2kπir

ln p

]
Γ

(
−2kπir

ln p

)
e2kπirx

and log p/ log q = r/t is rational. If log p/ log q is irrational, the term involving
Ψ3 is absent.

Before proving Lemma 8.3.10 in Section 8.3.4 we just observed that

E[L(B2)] =
n(n− 1)

2
− bn,0

=
n(n− 1)

2
− b(n,∞) + b̃(n, 0)

=
n(n− 1)

2
− b(n,∞) + b∗(n, 0)− bdiff (n, 0)

=
n(n− 1)

2
− b(n,∞) +O((log n)2)

This finally gives us precise estimate for E[L(B2)] leading the the following
theorem.

200 Chapter 8. Graph and Structure Compression

Theorem 8.3.11. For large n,

E[L(B2)] =
n(n− 1)

2
− n

h(p)
logn

− 1

h(p)

[
γ

ln 2
+
h2(p)

2h(p)
+ Φ2(logp n)

]
n+ o(n),

where h2(p) = p log2 p+ q log2 q, γ is the Euler constant, and Φ2(x) is a periodic
function for log p/ log q rational and zero otherwise.

8.3.4. Proof of Lemma 8.3.10

The goal is to analyze the recurrence (8.37). For this purpose we introduce the
exponential generating function

b̃d(z) =

∞∑

n=2

b∗(n, d)
zn

n!
(8.41)

and the corresponding Poisson version

B̃d(z) = e−zb̃d(z),

where b∗(n, d) is defined from (8.37). We find that b̃d(z) = b̃d−1(pz)e
qz or

B̃d(z) = B̃d−1(pz). (8.42)

This can be solved by iteration to yield B̃d(z) = B̃0(p
dz). Then setting

g̃(z) =

∞∑

n=2

b(n,∞)
zn

n!

and noting that
∞∑

n=1

b∗(n+ 1, 0)
zn

n!
=

d

dz
b̃0(z),

(8.38) leads to
d

dz
b̃0(z)− b̃0(z) = −g̃(z) + g̃′(z). (8.43)

If we set G̃(z) = e−zg̃(z), we also have

B̃′
0(z) + B̃0(z)− B̃0(pz) = G̃′(z). (8.44)

8.3. Erdős-Rényi Graphs 201

We recall that by (8.29) the Mellin transform of G̃(z) is given by

∫ ∞

0

G̃(z)zs−1dz =
Γ(s+ 1)

1− p−s − q−s
. (8.45)

Furthermore letM(s) denote the negative Mellin transform of B̃0(z), that is,

M(s) = −
∫ ∞

0

B̃0(z)z
s−1dz. (8.46)

Then by (8.44) we obtain the functional equation

− (s− 1)M(s− 1) + (1− p−s)M(s) =
(s− 1)Γ(s)

1− p1−s − q1−s
. (8.47)

Next we set
M(s) = Γ(s)N (s) (8.48)

with which (8.47) becomes

−N (s− 1) + (1− p−s)N (s) =
s− 1

1− p1−s − q1−s
. (8.49)

To solve (8.49) we let

N (s) =

∞∏

k=0

[
1− pk+2

1 − pk−s

]
N1(s) (8.50)

and then (8.49) becomes

N1(s)−N1(s− 1) =

∞∏

k=1

[
1− pk−s

1− pk+1

]
s− 1

1− p1−s − q1−s
. (8.51)

Now, for s→ −∞ the right side of (8.51) behaves as (s− 1)
∏∞

k=1(1− pk+1)−1,
with an exponentially small error. Letting

N1(s) =
s(s− 1)

2

∞∏

k=1

(
1

1− pk+1

)
+N2(s) (8.52)

the equation for N2(·) becomes

N2(s)−N2(s− 1) =
s− 1∏∞

k=1 (1− pk+1)

[
1

1− p1−s − q1−s

∞∏

k=1

(1 − pk−s)− 1

]

(8.53)

202 Chapter 8. Graph and Structure Compression

whose the right hand side is, unlike that of (8.51), exponentially small for s →
−∞. The solution to (8.53) is

N2(s) = N2(−∞) +

∞∑

i=0

[∏∞
k=1(1− pk−s+i)

1− p1+i−s − q1+i−s
− 1

]
s− 1− i∏∞

k=1(1− pk+1)
. (8.54)

From (8.41) we see that B̃d(z) = O(z2) as z → 0 so that M(s) in (8.46)
must be analytic at s = −1. From (8.48) we then conclude that N (−1) = 0.
From (8.50) we have N1(−1) = 0 and from (8.52) and (8.54) we thus obtain an
expression for N2(−∞):

N2(−∞)

∞∏

k=1

(1− pk+1) + 1−
∞∑

i=0

(i+ 2)

[∏∞
k=1(1− pk+i+1)

1− p2+i − q2+i
− 1

]
= 0. (8.55)

We have thus obtained the final expression forM(s) in (8.48) as

M(s) =
Γ(s)∏∞

L=0(1 − pL−s)
(8.56)

·
(
s(s− 1)

2
+ β +

∞∑

i=0

(s− i − 1)

[∏∞
k=1(1− pk−s+i)

1− p1+i−s − q1+i−s
− 1

])
,

where

β = N2(−∞)

∞∏

k=1

(1 − pk+1)

can be computed from (8.55). Inverting the transform in (8.46) we obtain

B̃d(z) =
−1
2πi

∫ −3/2+i∞

−3/2−i∞
(pdz)−sM(s)ds, (8.57)

where we set z = n is large and positive. The function M(s) in (8.56) has a
triple pole at s = 0, and there are other double poles on the imaginary s-axis if
1− p1−s − q1−s has zeros there, which occurs only if log p/ log q is rational, say
r/t where r and t are integers. First we compute the contribution from s = 0.
Using the expansion Γ(s) = [1− γs+O(s2)]/s as s→ 0, with γ being the Euler

8.3. Erdős-Rényi Graphs 203

constant, (8.56) becomes

M(s) =
1

s
[1− γs+O(s2)](1− p−s)−1

∞∏

L=1

(1 − pL−s)−1

×
(

s− 1

1− p1−s − q1−s

∞∏

k=1

(1− pk−s)− (s− 1) +
s(s− 1)

2
+ β

+

∞∑

i=1

(s− i− 1)

[∏∞
k=1(1− pk−s+i)

1− p1+i−s − q1+i−s
− 1

])
. (8.58)

Now

1− p−s = s ln p− 1

2
s2(ln p)2 +O(s3)

and

1− p1−s − q1−s = −hs ln 2− h2 ln
2 2

2
s2 +O(s3).

Also, using the expression in (8.55) to compute β+1 the expansion of (8.58) for
s→ 0 becomes

M(s) =
1

s3
1− γs
ln p

[
1 +

s

2
ln p+O(s2)

]{ 1− s
h ln 2

[
1− h2 ln 2

2h
s+O(s2)

]
+O(s2)

}

=
1

s3
1

h ln p
+

1

s2

[
− γ

h ln 2 ln p
− 1

h ln p

(
1 +

h2 ln 2

2h ln 2

)
+

1

2h

]
+O

(
1

s

)
.(8.59)

It follows that the integrand p−dsz−sM(s) in (8.57) has the residue

res
(
p−dsz−sM(s), s = 0

)
=

1

2

log2 z

h log p
+
d

h
log z (8.60)

+ log z

[
1

log p

(
γ + 1

h ln 2
+

h2
2h2

)
− 1

2h

]
+O(1)

where the O(1) refers to terms that are O(1) for z → ∞, and these can be
evaluated by explicitly computing the O(s−1) term(s) in (8.59). If log p/ log q is
rational we must also compute the contribution from the double poles along the
imaginary axis at such points p−s = q−s = 1 and p1−s + q1−s = 1. These poles
lead to the oscillatory terms in Lemma 8.3.10, as can be seen by computing their
residues from (8.56).

Finally, we use the Depoissonization Theorem C.4.1 (from Appendix C). We

already used (implicitly) the fact that the function G̃(z) satisfies the assumptions

of Theorem C.4.1 (the proof of Theorem C.4.2 does precisely that), that is, G̃(z)

204 Chapter 8. Graph and Structure Compression

is JS-admissible (see Appendix C). In particular, this property is inherited to

the solution B̃0(z) of the differential equation (8.44) (see again Appendix C).
Hence, Theorem C.4.1 gives

b∗(n, d) ∼ B̃d(n)

and completes the proof of Lemma 8.3.10.

8.3.5. Proof of Lemma 8.3.8

.
We will apply Lemma 8.3.10 regarding b∗(n, d) which establishes that b∗(n, d) =

O((log n)2), where b∗(n, d) is defined by (8.37) and (8.38).
What remains is to show that a∗(n, d) ≤ b∗(n, d). Since they are defined

by the same recurrence we just have to check the initial and side conditions, in
particular the conditions

a∗(n+ 1, 0)− a∗(n, 1) = a(n+ 1,∞)− a(n,∞),

b∗(n+ 1, 0)− b∗(n, 1) = b(n+ 1,∞)− b(n,∞).

Thus, if we can show that

a(n+ 1,∞)− a(n,∞) ≤ b(n+ 1,∞)− b(n,∞) (8.61)

then we are done.
The differences ∆a(n,∞) = a(n + 1,∞) − a(n,∞) and ∆b(n,∞) = b(n +

1,∞)− b(n,∞) satisfy the recurrences

∆a(n,∞) = ⌈log(n+ 2)⌉ − ⌈log(n+ 1)⌉

+

n∑

k=0

(
n

k

)
pkqn−k (p∆a(k,∞) + q∆a(n− k,∞)) ,

∆b(n,∞) = 1 +

n∑

k=0

(
n

k

)
pkqn−k (p∆b(k,∞) + q∆b(n− k,∞)) .

Since ⌈log(n + 2)⌉ − ⌈log(n + 1)⌉ ≤ 1 it follows by induction that (8.61) holds.
This completes the proof of the lemma.

Completion of the Proof of Theorem 8.3.3

We recall that the algorithms first computes two stings B1 and B2, where B1

has expected length of order Θ(n) and B2 has expected length of order
(
n
2

)
−

8.4. Preferential Attachment Graphs 205

Θ(n logn). Furthermore B2 behaves as the initial part of a memoryless source
(with parameter p). For B1 we do not have such a property. Thus it is not clear
how much could be gained by a compression ofB1, and it would be only negligible
compared to B2. Conditioned on the length ℓ of B2, B2 is precisely a memoryless
source with parameter p (all 2ℓ stings appear). Thus, we should encode n (with

Θ(logn) digits), the ℓ of B2 (with Θ(log ℓ) digits) and a compressed string B̃2.
Conditioned on the length ℓ the entropy of B2 is ℓh(p). Hence, if we use, for
example, an arithmetic encoder to encode B2 the expected code length is given
by

E[L(S)] = E[L(B1)] +O(log n) +O

∑

ℓ≥1

qℓ log ℓ

+
∑

ℓ≥1

qℓ (ℓh(p) +O(1))

= E[L(B1)] + h(p)E[L(B2)] +O(E[logL(B2)]) +O(log n),

where qℓ = P [L(B2) = ℓ]. By concavity of log x we have

E[logL(B2)] ≤ log(E[L(B2)]) = O(log n).

Hence, by applying Theorems 8.3.9 and 8.3.11 the asymptotic formula forE[L(S)]
follows.

8.4. Preferential Attachment Graphs

In this section we turn our attention to preferential attachment graphs PA(n,m)
with n nodes and a fixed parameter m. Our ultimate goal is to find an (almost)
optimal structural compression of PA(n,m). However, the problem is much
more intricate than we encountered for Erdős-Rényi graphs.

Let us start by recalling Lemma 8.2.5 in which we proved a relation between
graph entropy and structural entropy, namely

H(S(G)) = H(G) +E[log |Γ(G)|]−E[log |Aut(G)|] (8.62)

providing all relabeling of the underlying graph are equally likely. We recall
that Aut(G) is the set of automorphisms of G and Γ(G) is the set of feasible
permutation. None of these quantities, as well as the graph entropy H(G),
are trivial to evaluate. Therefore, in this section, we first give an overview of
results regarding the above parameters, ending with an asymptotically optimal
algorithm for compressing a structure of PA(n,m).

However, before we start our journey we must assure that (8.62) holds, that
is, all relabeling are equally likely. We prove it in the next lemma.

206 Chapter 8. Graph and Structure Compression

Lemma 8.4.1. For any two graphs g1, g2 having the same structure (i.e., g2 ∈
Adm(g1), we have

P (G = g1) = P (G = g2)

that is, they are equiprobable.

Proof. This can be seen by deriving a formula for the probability assigned to a
given graph g by the model and noting that it only depends on the structure
and admissibility (a graph is said to be admissible if it is in Adm(S) for some
unlabeled graph S). If g is not admissible, then there exists some t ∈ [n] such
that the degree of vertex t at time t is not equal to m. This has probability 0,
so P (G = g) = 0.

Now, if g is an admissible graph on n vertices, then we can write P (G = g)
as a product over possible degrees of vertices at time n: let degg(v) denote the
degree of vertex v in g. We consider the immediate ancestors (i.e., the parents,
the vertices that chose to connect to v) of v in g, denoting the number of edges
that they supply to v by d1(v), ..., dk(v)(v), where k(v) is the number of parents
of v. We also denote by Kg(v) the number of orders in which the parents of v
could have arrived in the graph (which is only a function of its structure). Then
we can write P (G = g) as follows:

P (G = g) =

∏
d≥m

∏
v : degg(v)=dKg(v)

∏kg(v)
j=1

(
m
j

)
[m+ d1(v) + · · · dj−1(v)]

dj(v)

∏n−1
i=1 (2mi)

m

where each factor of the v product corresponds to the sequence of d−m choices
to connect to vertex v, which can be ordered in a number of ways determined by
the structure of g. The innermost product gives the contribution of each such
choice. Since this formula is only in terms of the degree sequence of the graph
and its structure two graphs that are admissible and have the same unlabeled
DAG must have the same probability, which completes the proof.

Now, knowing that (8.62) holds we can now estimate all its terms as a func-
tion of n and m.

8.4.1. Graph Entropy H(G).

Our goal is evaluate the graph entropy of G that are generated by the preferential
attachment rule PA(m;n). While it is easy to see that the leading term should
behave like nm logn, our goal is to find a more precise asymptotic behavior.

8.4. Preferential Attachment Graphs 207

Theorem 8.4.2. Suppose that G ∼ PA(m;n) for fixed m ≥ 1. Then we have

H(G) = mn logn+mn (log 2m− 1− logm!−Am) + o(n), (8.63)

where

Am =
∞∑

d=m

log d

(d+ 1)(d+ 2)
.

Proof. We start by noting that, using the chain rule for entropy, we can write

H(Gn) =

n−1∑

t=1

H(vt+1|Gt), (8.64)

where we denote by vt+1 the multiset of connection choices of vertex t+ 1 (i.e.,
a value for vt+1 takes the form of a multiset of m vertices < t+1). This follows
because Gn corresponds precisely to exactly one n-tuple (v1, v2, ..., vn) of vertex
choice multisets.

To calculate the remaining conditional entropy for each t, we first note that
it would be simpler if vt+1 were a sequence of vertex choices, rather than a
multiset (i.e., an equivalence class of sequences). First, let us denote by ṽt+1 the
sequence of m choices made by vertex t+1. I.e., ṽt+1,1 is the first choice that it
makes, and so on. Then we have the following observation:

H(ṽt+1|Gt) = H(ṽt+1, vt+1|Gt) = H(vt+1|Gt) +H(ṽt+1|vt+1, Gt), (8.65)

where the first equality is because vt+1 is a deterministic function of ṽt+1, and
the second is by the chain rule for conditional entropy. We thus have

H(vt+1|Gt) = H(ṽt+1|Gt)−H(ṽt+1|vt+1, Gt). (8.66)

We first compute H(ṽt+1|Gt). By definition of conditional entropy,

H(ṽt+1|Gt) =
∑

G on t vertices

P (Gt = G)H(ṽt+1|Gt = G).

Next, note that, conditioned onGt = G, them choices that vertex t+1 makes are
independent and identically distributed. So the remaining conditional entropy
is just m times the conditional entropy of a single vertex choice made by t+ 1.
Using the definition of entropy (as a sum over all possible vertex choices, from 1
to t) and grouping together terms corresponding to vertices of the same degree,
we get

H(ṽt+1|Gt) = m
∑

G

P (Gt = G)

t∑

d=m

Nd(G)pt,d log(1/pt,d), (8.67)

208 Chapter 8. Graph and Structure Compression

where Nd(G) denotes the number of vertices of degree d in the fixed graph G,
and we recall pt,d = d

2mt . Note that the d sum starts from d = m, since m is the
minimum possible degree in the graph.

Next, we bring the G sum inside the d sum, and we note that

∑

G

P (Gt = G)Nd(G) = E[Nd(G)], := N t,d.

Thus, we can express H(ṽt+1|Gt) as

H(ṽt+1|Gt) = m

t∑

d=m

N t,dpt,d log(1/pt,d). (8.68)

Plugging this into (8.64), we find

H(Gn) +

n−1∑

t=1

H(ṽt+1|vt+1, Gt) = m

n−1∑

t=1

t∑

d=m

N t,dpt,d log(1/pt,d). (8.69)

Now, we split the inner sum into two parts:

H(Gn) +

n−1∑

t=1

H(ṽt+1|vt+1, Gt) = m

n∑

t=1

⌊t1/15⌋∑

d=m

N t,dpt,d log(1/pt,d)

+m
n−1∑

t=1

t∑

d=⌊t1/15⌋+1

N t,dpt,d log(1/pt,d). (8.70)

The first part provides the dominant contribution, of order Θ(n logn), and we
will show that the second part is o(n), due to the smallness of N t,d.

To estimate the contribution of the first sum, we apply the following estimate
on N t,d that we ask the reader to prove in Exercise 8.10: for t ≥ 1 and 1 ≤ d ≤ t
and for any fixed m ≥ 1,

∣∣∣∣N t,d −
2m(m+ 1)t

d(d+ 1)(d+ 2)

∣∣∣∣ ≤ C, (8.71)

for some fixed C = C(m) > 0. This estimate is good for d = o(t1/3). Further-
more, for t→∞, d ≥ t1/15, and fixed m ≥ 1, we have (see Exercise 8.11)

N t,d = O

(
t

d(d+ 1)(d+ 2)

)
= O

(
t

d3

)
. (8.72)

8.4. Preferential Attachment Graphs 209

Now, with the above estimates we obtain

n−1∑

t=1

⌊t1/15⌋∑

d=m

N t,dpt,d log(1/pt,d) +

n−1∑

t=1

⌊t1/15⌋∑

d=m

Cd

2mt
log(2mt/d)

= 2m(m+ 1)

n−1∑

t=1

t

⌊t1/15⌋∑

d=m

1

d(d+ 1)(d+ 2)

d

2mt
log

(
2mt

d

)
+ o(n)

= (m+ 1)

n−1∑

t=1

⌊t1/15⌋∑

d=m

d(log t+ log 2m− log d)

d(d+ 1)(d+ 2)
+ o(n).

Here, the second sum on the left-hand side is the error in approximation incurred
by invoking (8.71). It is easily seen to be o(n).

Now, the tail sum is

n−1∑

t=1

∞∑

d=⌊t1/15⌋+1

d(log t+ log 2m− log d)

d(d+ 1)(d+ 2)
≤

n−1∑

t=1

∞∑

d=⌊t1/15⌋+1

O(log d)

(d+ 1)(d+ 2)
= o(n),

so we have

n−1∑

t=1

⌊t1/15⌋∑

d=m

N t,dpt,d log(1/pt,d) = logn! + (log 2m−Am)n+ o(n),

where we define Am as in the statement of Theorem 8.4.2.
Our next goal is now to show that the second sum of (8.70), which we denote

by E, is o(n). We apply (8.72) to upper bound N t,d, which yields

E ≤ C
n−1∑

t=1

t∑

d=⌊t1/15⌋+1

t

d3
· d

2tm
log(2tm/d) ≤ C′

n−1∑

t=1

log t
t∑

d=⌊t1/15⌋+1

d−2,

where we canceled factors in the numerator and denominator of each term,
and we upper bounded the expression inside the logarithm using the fact that
d >

⌊
t1/15

⌋
.

The inner sum is easily seen to be O(t−1/15), so that, finally,

E ≤ C′
n−1∑

t=1

t−1/15 log t = o(n),

210 Chapter 8. Graph and Structure Compression

as desired. We thus end up with

n−1∑

t=1

H(ṽt+1|Gt) = m logn! +m(log 2m−A)n+ o(n). (8.73)

The final step is to estimate the contribution of H(ṽt+1|vt+1, Gt). Let Ct
denote the set of multisets of m elements coming from [t] having no repeated
elements. Then we can write

H(ṽt+1|vt+1, Gt) =
∑

G,v∈Ct

P (Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G)

+
∑

G,v/∈Ct

P (Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G).

(8.74)

The first sum can be estimated as follows: we trivially upper boundH(ṽt+1|vt+1 =
v,Gt = G) ≤ logm! and take it outside the sum. This gives

∑

G,v∈Ct

P (Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G)

≤ logm!
∑

G,v∈Ct

P (Gt = G, vt+1 = v)

= logm!P (vt+1 ∈ Ct).
Now we can upper bound the remaining probability in this expression by not-
ing that with high probability, the maximum degree in Gt is O(

√
t(log t)2) as

discussed in Frieze and Karoński (2016: p. 387). Using this fact, we have, for
arbitrarily small fixed ε > 0,

P (vt+1 ∈ Ct) = P (vt+1 ∈ Ct,max. degree of Gt ≤ Ct1/2+ε)

+ P (vt+1 ∈ Ct,max. degree of Gt > Ct1/2+ε). (8.75)

The first term is at most

P (vt+1 ∈ Ct,max. degree of Gt ≤ Ct1/2+ε) ≤ 1−
(
1− Ct1/2+ε

2mt

)m−1

= 1−
(
1−Θ(t−1/2+ε/m)

)m−1

= Θ(t−1/2+ε).

8.4. Preferential Attachment Graphs 211

Now, the second term of (8.75) is at most

P (vt+1 ∈ Ct,max. degree of Gt > Ct1/2+ε) ≤ P (max. degree of Gt > Ct1/2+ε)

= O(e−tε)

and is negligible compared to the first term. Thus, the first sum in (8.74) is at
most

∑

G,v∈Ct

P (Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G) = O(t−1/2+ε). (8.76)

We will now show that the second sum in (8.74), over all multisetsv of size
m with no repeated elements, is (1 + o(1)) logm!. This is trivial, since vertex
t+ 1 is equally likely to have chosen the elements of v in any order. Hence,

H(ṽt+1|vt+1 = v,Gt = G) = logm!. (8.77)

This implies that
∑

G,v/∈Ct

P (Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G) = logm! · P (vt+1 /∈ Ct)

= logm!(1 −O(t−1/2+ε)).

Thus,

H(ṽt+1|vt+1, Gt) = logm!(1 +O(t−1/2+ε)).

Summing over all t yields a total contribution of

−
n−1∑

t=1

H(ṽt+1|vt+1, Gt) = −n logm! + o(n). (8.78)

From (8.69), (8.73), and (8.78), we arrive at

H(Gn) = mn logn+m(log 2m− 1−A− logm!)n+ o(n), (8.79)

where A is as in the statement of Theorem 8.4.2.

8.4.2. Structural Entropy H(S(G))

.
The next goal is to discuss the structural entropy H(S(G)) for graphs in

PA(n,m). By (8.62) it is sufficient to study the expected values E[log |Γ(G)|]
and E[log |Aut(G)|]. Actually, by combining (8.62), Theorems 8.4.2, and the
forthcoming Theorems 8.4.6 and 8.4.7, we arrive at an expression for the struc-
tural entropy.

212 Chapter 8. Graph and Structure Compression

Theorem 8.4.3. Let m ≥ 3 be fixed. Consider G ∼ PA(n,m). We have

H(S(G)) = (m− 1)n logn+R(n), (8.80)

where R(n) satisfies

Cn ≤ |R(n)| ≤ O(n log logn)

for some nonzero constant C = C(m).

The rest of this section is devoted to the proof of Theorem 8.4.3.

Evaluation of Γ(G). First we turn our attention to the evaluation of the
number of feasible permutations |Γ(G)|. We start by introducing a directed
version of graph G that we denote as DAG(G). This is the directed multigraph
defined on [n], with an edge from w to the older node v < w for each edge
between v and w in G. We can partition the vertices of DAG(G) into levels
inductively as follows: L1 consists of the vertices with in-degree 0 (i.e., with
total degree m). Inductively, Lj is the set of vertices incident on edges coming
from vertices in Lj−1. Equivalently, a vertex w is an element of some level ≥ j
if and only if there exist vertices v1 < · · · < vj such with v1 > w and the path
vjvj−1 · · · v1w exists in G. The height of DAG(G) is then defined to be the
number of levels in this partition.

Then it is not too hard to see that any product of permutations that only
permute vertices within levels is a member of Γ(G). Thus, we have, with prob-
ability 1,

|Γ(G)| ≥
∏

j≥1

|Lj|!.

To continue, we will prove in Lemma 8.4.5 below that almost all vertices lie
in low levels of DAG(G). We define X = X(ε, k) to be the number of vertices
w > εn that are at level ≥ k in DAG(G). In other words, w is counted in X if
there exist vertices v1 < v2 < · · · < vk for which w < v1 and the path vk · · · v1w
exists in DAG(G).

We have the following lemma bounding E[X]:

Lemma 8.4.4. For any ε = ε(n) > 0, there exists k = k(ε) for which

E[X(ε, k)] ≤ εn.

In particular, we can take any k satisfying

k ≥ 15
m

ε2
ln(3/ε). (8.81)

8.4. Preferential Attachment Graphs 213

Proof. Suppose that w > εn. We want to upper bound the probability that there
exist vertices v1 < · · · < vk, with w < v1, such that there is a path vk · · · v1w in
G. This probability is upper bounded by

(
n

k

)
· ((5m/ε) ln(3/ε))

k

nk
≤ e ((5m/ε) ln(3/ε))

k

kk
.

Now, it is sufficient to show that we can choose k so that this is ≤ ε. In fact,
we can choose k ≥ 3 · 5mε2 ln(3/ε). This completes the proof.

Now, we define Y = Y (k) to be the number of vertices w ≥ 1 that are at
level ≥ k in DAG(G). The variables X and Y are related by the following
inequalities, which hold with probability 1:

X ≤ Y ≤ X + εn.

Now, to get a bound on Y , we apply Markov’s inequality:

P (Y ≥ δn) ≤ E[Y]

δn
≤ E[X] + εn

δn
,

and provided that (8.81) holds, we can further bound by

P (Y ≥ δn) ≤ 2ε/δ

using Lemma 8.4.4. Then, selecting δ =
√
2ε, we have shown that

P (Y ≥ δn) ≤ δ.

This is summarized in the following lemma.

Lemma 8.4.5. For any δ = δ(n) > 0, there exists ℓ = ℓ(δ) for which the
number of vertices that are not in the first ℓ layers of DAG(G) is at most δn,
with high probability. In particular, we can take

ℓ ≥ 15m

2δ4
ln(3/(2δ2)).

We now use Lemma 8.4.5 to finish our lower bound on E[log |Γ(G)|]. Fix

ε =
1

ln2 n
, δ =

√
2ε = Θ(1/ lnn), ℓ =

15m

2δ4
ln(3/(2δ2)).

214 Chapter 8. Graph and Structure Compression

Then, defining A to be the event that the number of vertices in layers > ℓ is at
most δn = Θ(n/ logn), we have

E[log |Γ(G)|] ≥ E[log |Γ(G)| |A] (1 − δ).

Among the ℓ layers, there are at most ℓ − 1 that satisfy, say, |Li| < log logn,

since
∑ℓ

i=1 |Li| ≥ (1 − δ)n. So we have the following:

ℓ∑

i=1

log(|Li|!) = O(ℓ log logn log log logn) +
∑

i∈B

(|Li| log |Li|+O(|Li|)),

where B = {i ≤ ℓ : |Li| ≥ log logn}, and we used Stirling’s formula to estimate
the terms i ∈ B.

The sum
∑

i∈B O(|Li|) = O((1 − δ)n) = O(n), so it remains to estimate

∑

i∈B

|Li| log |Li|.

Let N =
∑

i∈B |Li|. Then, multiplying and dividing each instance of |Li| by N
in the above expression, it becomes

∑

i∈B

|Li| log |Li| = N
∑

i∈B

|Li|
N

log
|Li|
N

+N
∑

i∈B

|Li|
N

logN.

The first sum is simply −NH(X), where X is a random variable distributed
according to the empirical distribution of the vertices on the levels i ∈ B. Since
|B| ≤ ℓ, we have that | − NH(X)| ≤ N log ℓ. Thus, the first term in the
above expression is O(N log ℓ) = O(n log logn). Meanwhile, the second term is

N logN
∑

i∈B
|Li|
N = N logN = n logn−O(n log log n). Thus, in total, we have

E[log |Γ(G)|] ≥ n logn−O(n log logn).

Compare this with the trivial upper bound on E[log |Γ(G)|]:

E[log |Γ(G)|] ≤ logn! = n logn− n

ln 2
+O(log n).

This leads to our final estimate for E[log |Γ(G)|].

Theorem 8.4.6. For G ∼ PA(n,m) we have the following bounds

n logn−O(n log logn) ≤ E[log |Γ(G)|] ≤ n logn− n

ln 2
+O(log n) (8.82)

as n→∞.

8.4. Preferential Attachment Graphs 215

Asymmetry of PA(n,m). Next we have to discuss the asymmetry of
PA(n,m). In what follows we will focus it for m ≥ 3. In Exercise 8.12 we
ask the reader to prove that PA(n,m) is symmetric for m = 1 and m = 2.

So from now on suppose that m ≥ 3. Let us define first two properties, A
and B of PA(m;n) which are crucial for our argument. Here and below we set

k = k(n) = n∆, k̃ = k̃(n) = n∆′

, and k̃′ = k̃′(n) = n∆′′

for some small enough
0 < ∆ < ∆′ < ∆′′ to be chosen:

(A) PA(m;n) has property A if no two vertices t1, t2, where k < t1 < t2, are
adjacent to the same m neighbors from the set [t1 − 1].

(B) PA(m;n) has property B if the degree of every vertex s ≤ k̃ is unique
in PA(m;n), i.e. for no other vertex s′ of PA(m;n) we have degn(s) =
degn(s

′).

It is easy to see that

P (|Aut(PA(m;n))| = 1) ≥ P (PA(m;n) ∈ A ∩B) , (8.83)

and so

P (|Aut(PA(m;n))| > 1) ≤ P (PA(m;n) /∈ A) + P (PA(m;n) /∈ B) . (8.84)

Indeed, let us suppose that PA(m;n) has both properties A and B, and σ ∈
Aut(PA(m;n)). Let us assume also that σ is not the identity, and let t1 be
the smallest vertex such that t2 = σ(t1) 6= t1. Note that B implies that for all
s ∈ [k] we have σ(s) = s, so that we must have k < t1 < t2. On the other hand
from A it follows that t1 and t2 = σ(t1) have different neighborhoods in the set
[t1− 1] which consists of fixed point of σ. This contradiction shows that σ is the
identity, i.e. |Aut(PA(m;n))| = 1 which proves (8.83).

Theorem 8.4.7. Let G ∼ PA(m;n) for fixed m ≥ 3. Then, with high proba-
bility as n→∞,

|Aut(G)| = 1.

More precisely, for m ≥ 3,

P (|Aut(G)| > 1) = O(n−δ), (8.85)

for some fixed δ > 0 and large n.

216 Chapter 8. Graph and Structure Compression

In order to prove Theorem 8.4.7 it is enough to show that both probabilities
P (PA(m;n) /∈ A) and P (PA(m;n) /∈ B) tend to 0 polynomially fast as n→∞.

We start with a number of results on the degree sequence of preferential
attachment graphs which we will use in the proofs of Theorem 8.4.7.

First, we denote by degt(s) the degree of a vertex s < t after time t (i.e.,
after vertex t has made its choices). We also define dgt(s) = degt(s)−m.

Our first lemma gives a bound on the in-degree of each vertex at any given
time.

Lemma 8.4.8. For any v, w,

P (dgv(w) = d) ≤
(
m+ d− 1

m− 1

)(
1−

√
w

v
+O

(
d√
vw

))d

.

In particular,

P (degv(w) = d) ≤ (2m+ d)m exp

(
−
√
w

v
d+O

(
d2√
vw

))
.

Proof. We estimate this probability as follows. Below we set td+1 = mv + 1.

P (dgv(w) = d) ≤
∑

mw<t1<t2<···<td≤mv

d∏

i=1

m+ i− 1

2ti

ti+1−1∏

j=ti+1

(
1− m+ i

2j

)

≤
∑

mw<t1<t2<···<td≤mv

(m+ d− 1)!

(m− 1)!

d∏

i=1

1 +O(d/ti)

2ti
exp

(
−

ti+1−1∑

j=ti

i

2j

)

=
∑

mw<t1<t2<···<td≤mv

(m+ d− 1)!

(m− 1)!

d∏

i=1

1 +O(d/ti)

2ti
exp

(
−

mv∑

j=ti

1

2j

)

≤
(
d+m− 1

m− 1

)(mv∑

i=mw+1

1 + O(d/ti)

2ti
exp

(
−

mv∑

j=t

1

2j

))d

.

8.4. Preferential Attachment Graphs 217

Note that

mv∑

i=mw+1

1 +O(d/ti)

2ti
exp

(
−

mv∑

j=ti

1

2j

)

≤
mv∑

i=mw+1

1 +O(d/ti)

2ti
exp

(
− 1

2
ln
mv

ti
+O

(1
ti

))

≤
mv∑

i=mw+1

1 +O(d/ti)

2
√
mvti

≤ 1−
√
w/v +O(d/

√
vw) .

Thus, the assertion follows.

The next result gives an upper bound on the probability that two given
vertices are adjacent.

Corollary 8.4.9. Let w < v. Then the probability that v is adjacent to w is
bounded above by 5m

√
1/(vw) ln(3v/w). In particular, each two vertices v, w ≥

εn are adjacent with probability smaller than (5m/ε) ln(3/ε)/n.

Proof. The probability that v and w are adjacent is bounded from above by

∑

d≥0

md

2m(v − 1)
P (dgv−1(w) = d−m) .

When d ≤ d0 = 8m
√
v/w ln(3v/w) the above sum is clearly smaller than d0/2 =

4m
√
1/vw ln(3v/w). If d ≥ d0 one can use Lemma 8.4.8 to estimate this sum

by m
√
1/vw ln(3v/w).

Recall that for t > s, the expectation of degt(s) is O(
√
t/s). We first state

a simple tail bound to the right of this expectation which we asked the reader
to prove in Exercise 8.13 (see also Frieze and Karoński (2016)).

Lemma 8.4.10. Let r < t. Then

P (degt(r) ≥ Aem(t/r)1/2(ln t)2) = O(t−A)

for any constant A > 0 and any t.

We now turn our attention to the left tail which is much harder to establish.
We prove a left tail bound for the random variable degt(s) whenever s ≪ t, as
captured in the following lemma.

218 Chapter 8. Graph and Structure Compression

Lemma 8.4.11. Let v = O(T 1−ε) as T → ∞, for some fixed ε ∈ (0, 1/2).
Then there exist some C,D > 0 such that

P

(
degT (v) < C

(
T

v

)(1−ε)2/(2±0.0001)
)
≤ e−Dε3 ln(T) = T−Dε3 . (8.86)

To prove this, we need the following coarser lemma.

Lemma 8.4.12. Let v < T 1−ε, for some fixed ε > 0. Then there exist con-
stants C,D > 0 independent of ε such that

P (degvT ε(v) < Cε lnT) ≤ T−Dε (8.87)

for T sufficiently large.

Proof. We observe the graph at exponentially increasing time steps: for some
β > 0, let t0 = v, tj = (1 + β)jt0, tk = (1 + β)kt0 = vT ε (so k = ε lnT

ln(1+β)). Note

that degt0(v) = degv(v) = m.
Let us upper bound the probability pj+1 that no connection to vertex v is

made by any vertex in the subinterval (tj , tj+1]:

pj+1 ≤
(
1− m

2mtj+1

)m(tj+1−tj)

=

(
1− 1

2tj+1

)mβtj

, (8.88)

which is at most some positive constant ρ = ρ(mβ), uniform in j, satisfying
ρ < 1. This follows from the inequality 1−x ≤ e−x for all real x. Thus, the total
number of connections to vertex v in all subintervals can be stochastically lower
bounded by a binomial random variable with number of trials k = Θ(ε lnT) and
success probability ρ(mβ): for any d ≥ 0,

P (degtk(v)−m ≥ d) ≥ P (
(

k

1− ρ

)
≥ d). (8.89)

In particular, as T → ∞, this implies (using the Chernoff bound) that with
probability 1− T−Dε, the number of subintervals which contribute at least one
new edge to v is at least Cε lnT , for some C, so that degvT ε(v) ≥ Cε lnT , which
completes the proof.

With the previous lemma in hand, we are now present the proof of our left
tail bound, that is, Lemma 8.4.11. Similar to the proof of Lemma 8.4.12, we
observe the graph at exponentially increasing times: fix a small α > 0, and let

8.4. Preferential Attachment Graphs 219

t0 = vT ε, tj = (1 + α)jt0, tk = (1 + α)kt0 = T , so that k = ln(T/t0)
ln(1+α) . Denote by

dj = degtj (v) and ∆j+1 = dj+1 − dj , for each j.
In the interval (tj , tj+1], conditioned on the graph up to time tj , ∆j+1 is

stochastically lower bounded by a binomially distributed random variable with
parameters (tj+1 − tj)m = αtjm and pj+1 =

dj

2mtj+1
. The former parameter is

simply the interval length (in terms of number of vertex choices). The latter
parameter comes from the fact that the degree of v at any point in the interval
is at least dj , and the total degree of the graph is at most 2mtj+1. I.e.,

∆j+1 |Gtj �st Binomial

(
mαtj ,

dj
2tj+1m

)
, (8.90)

where �st denotes stochastic domination.
This suggests that we define the bad event Bj = [∆j < αtj−1mpj(1− ε)], for

arbitrary ε > 0, and for j ∈ [1, k]. We further define B0 = [d0 < Cε lnT], for
some constant C > 0.

Conditioning on all of the Bj (for j ∈ {0, ..., k}) failing to hold, we have

P

⋂

j<k

[
dj+1 ≥ dj

(
1 +

(1− ε)α
2(1 + α)

)]
|

k⋂

j=0

¬Bj

 = 1, (8.91)

recalling that dj+1 = dj + ∆j+1 by definition. This in particular implies that
(still under the same conditioning)

dk ≥ d0 ·
(
1 +

(1− ε)α
2(1 + α)

)k

= d0 exp

ln(T/t0)

ln(1 + (1−ε)α
2(1+α))

ln(1 + α)

 . (8.92)

Taking α close enough to 0, this becomes

dk ≥ d0 exp
(

1− ε
2(1 + oα→0(1))

ln(T/t0)

)
= d0(T/t0)

1−ε
2±0.0001 , (8.93)

as in the statement of the lemma.
Now, it remains to lower bound the probability P (

⋂k
j=0 ¬Bj). We may write

it as

P

k⋂

j=0

¬Bj

 = P (¬B0)

k∏

j=1

P(¬Bj |¬B0, ...,¬Bj−1)

≥ (1 − T−Dε)

k∏

j=1

P (¬Bj |¬B0, ...,¬Bj−1),

220 Chapter 8. Graph and Structure Compression

where the inequality is by Lemma 8.4.12.
Now, by the stochastic domination (8.90), the conditioning, and the Chernoff

bound, the jth factor of the product is lower bounded as follows:

P (¬Bj |¬B0, ...,¬Bj−1) ≥ P (Bin(αtj−1m, pj) ≥ αtj−1mpj(1 − ε)|¬B0, ...,¬Bj−1)

≥ 1− exp

(
− ε

2αdj−1

2(1 + α)

)
. (8.94)

Under the conditioning, dj−1 is further lower bounded by

(
1 +

(1− ε)α
2(1 + α)

)j−1

Cε lnT ≥
(
1 +

α

4(1 + α)

)j−1

Cε lnT

(using the fact that ε < 1/2), resulting in

P (¬Bj |¬B0, ...,¬Bj−1) ≥ 1− exp

(
−C ε3α

2(1 + α)
·
(
1 +

α

4(1 + α)

)j−1

ln(T)

)
.

(8.95)

This implies

P

k⋂

j=0

¬Bj

 ≥ P (¬B0) (8.96)

·
k∏

j=1

(
1− exp

(
−C ε3α

2(1 + α)
·
(
1 +

α

4(1 + α)

)j−1

ln(T)

))
.

(8.97)

For convenience, set C′ = C α
2(1+α)/D

′ and D′ = 1+ α
4(1+α) . Note that D′ > 1.

So the product in (8.97) can be written (after some simple asymptotic analysis)
as

k∏

j=1

(
1− exp

(
−ε3C′ ·D′j ln(T)

))
= 1−Θ(T−ε3C′D′

).

This implies, after combination with the lower bound on P (¬B0), that we can
write

P

k⋂

j=0

¬Bj

 ≥ (1− T−Dε)(1 −Θ(−T−ε3C′D′

)) ≥ 1− T−D′′ε3 , (8.98)

8.4. Preferential Attachment Graphs 221

for some D′′ > 0 (depending on α), as claimed. Combining this with (8.91)
yields (8.93) with the claimed probability bound as follows:

P (dk ≥ d0(T/t0)
1−ε

2±0.0001) ≥ P

⋂

j<k

[
dj+1 ≥ dj

(
1 +

(1− ε)α
2(1 + α)

)]

≥ P

⋂

j<k

[
dj+1 ≥ dj

(
1 +

(1− ε)α
2(1 + α)

)]
|

k⋂

j=0

¬Bj

 · P

k⋂

j=0

¬Bj

≥ 1 · (1− T−D′′ε3),

as required.

Using Lemma 8.4.11, we can roughly lower bounding the typical minimum
degree of the collection of vertices before a given time.

Corollary 8.4.13. Let ∆ > 0 be fixed. There exists some small enough δ > 0
and positive constant D such that

P

 ⋃

w<T δ

degT (w) < C
(
T 1−∆

)1/2

 ≤ T−D (8.99)

as T →∞.

The next result gives a bound on the probability that early vertices have the
same degree which is need to establish an upper bound on the probability of B.

Lemma 8.4.14. There exist positive constants ∆ < 1 and c such that the
probability that for some s < s′ < k2 = n2∆ we have degn(s) = degn(s

′) is
O(n−c).

Proof. Let s < s′ < k2 = n2∆, for some ∆ > 0 to be chosen. We first estimate
the probability that degn(s) = degn(s

′). In order to do so we set n′ = n0.6 and
define

deg′(s) = degn−n′(s) and deg′′(s) = degn(s)− deg′(s) .

222 Chapter 8. Graph and Structure Compression

Note that

P (degn(s) = degn(s
′)) (8.100)

=
∑

d,d′,d′

P (degn(s) = degn(s
′)|deg′(s) = d, deg′(s′) = d′, deg′′(s′) = d′)

× P (deg′(s) = d, deg′(s′) = d′, deg′′(s′) = d′)

=
∑

d,d′,d′

P (deg′′(s) = d′ + d′ − d|deg′(s) = d, deg′(s′) = d′, deg′′(s′) = d′)

× P (deg′(s) = d, deg′(s′) = d′, deg′′(s′) = d′) . (8.101)

Observe that due to Lemma 8.4.11 (alternatively, Corollary 8.4.13) and
Lemma 8.4.10, with probability 1 − O(n−c), for some appropriate c > 0 and
small enough k = n∆, a vertex s ∈ [k2] has degree e between n0.488 and n0.51

at any time in the interval [n − n′, n]. Importantly, note that if this s holds
with probability 1−O(n−c) for a given choice of ∆, then the same holds for all
smaller choices of ∆, with the same value for c (this is a consequence of the fact
that the probability bound in Lemma 8.4.11 is a function of ε and not of v).

Furthermore, one can estimate the random variable deg′′(s) conditioned on
deg′(s) = d from above and below by binomial distributed random variables and
use Chernoff bound to show that with probability at least 1−O(n−c) we have
∣∣∣ dn

′

2mn
− deg′′(s)

∣∣∣ =
∣∣∣0.5m−1dn−0.4 − deg′′(s)

∣∣∣ ≤
(dn′

2mn

)0.6
≤ n0.08 . (8.102)

Thus, in order to estimate P (degn(s) = degn(s
′)), it is enough to bound

ρ(d′, d′, d) = P (deg′′(s) = d′ + d′ − d|deg′(s) = d, deg′(s′) = d′, deg′′(s′) = d′)

for n0.488 ≤ d, d′ ≤ n0.51 and

|0.5dn−0.4/m− (d′ + d′ − d)| ≤ n0.08 .

In order to simplify the notation set ℓ = d′ + d′ − d. Let us estimate the

probability that deg′′(s) = ℓ conditioned on deg′(s) = d and deg′(s′) = d′. The
probability that some vertex v > n−n′ is connected to s by more than one edge
is bounded from above by

Cn′
(m degn(s)

n− n′

)2
≤ n0.6O(n−0.98) = O(n−0.38)

so we can omit this case in further analysis. The probability that we connect a
given vertex v > n− n′ with s is given by

m degv−1(s)

2m(v − 1)
=
d+O(dn−0.4)

2(n−O(n′))
=

d

2n

(
1 +O(n−0.4)

)
. (8.103)

8.4. Preferential Attachment Graphs 223

Consequently, the probability that deg′′(s) = ℓ conditioned on deg′(s) = d and
deg′(s′) = d′ is given by

(
n′

ℓ

)
ρℓ(1− ρ)n′−ℓ

(
1 +O(n−0.4)

)ℓ(
1 +O(n−0.4d/n)

)n′−ℓ

,

where ρ = d/2n.
If we additionally condition on the fact that deg′′(s′) = d′ (so that we now

have conditioned on deg′(s) = d, deg′(s′) = d′, and deg′′(s′) = d′), it will result

in an extra factor of the order
(
1 + O(d/2n)

)d′

since it means that some d′

vertices already made their choice (and selected s′ as their neighbor). Note
however that, since ℓ, d′ = O(dn′/n) = O(n0.11) we have

(
1 +O(n−0.4)

)ℓ
= 1 +O(n−0.29)

(
1 +O(n−0.4d/n)

)n′−ℓ

= 1 +O(n−0.29)

(
1 +O(d/2n)

)d′

= 1 +O(n−0.48) .

Hence, the probability that deg′′(s) = ℓ conditioned on deg′(s) = d, deg′(s′) =
d′, and deg′′(s′) = d′ is given by

(
n′

ℓ

)
ρℓ(1− ρ)n′−ℓ

(
1 +O(n−0.29)) ,

and so it is well approximated by the binomial distribution. On the other hand,
the probability that the random variable with binomial distribution with param-
eters n′ and ρ takes a particular value is bounded from above by O(1/

√
n′ρ).

Thus, for a given pair of vertices s < s′ < k2 = n2∆ we have

P (degn(s) = degn(s
′)) = O(

√
n/n′d) +O(n−c) = O(n−c) .

Hence, the probability that such a pair of vertices, s < s′ < k2 = n2∆ exists
is bounded from above by O(k4n−c), and, as remarked at the beginning of the
proof, k = n∆ may be chosen small enough so that this yields a bound of the
form O(n−c′), for c′ > 0.

Proof of Theorem 8.4.7. Finally, we are ready to prove Theorem 8.4.7,
that is, asymmetry of P(m,n) for m ≥ 3. We recall that we need to prove that
neither property A nor properly B defined in previous section hold.

224 Chapter 8. Graph and Structure Compression

Let us study first the property A. Our task is to estimate from above the
probability that there exist vertices t1 and t2 such that k < t1 < t2, which select
the same m neighbors (which, of course, belong to [t1 − 1]). Thus we conclude

P (PA(m;n) /∈ A) ≤
∑

k<t1<t2

P (t1, t2 choose the same neighbors in [t1 − 1])

≤
∑

k<t1<t2

∑

1≤r1≤r2...≤rm<t1

P (t1, t2 choose r1, ..., rm) . (8.104)

The event in the last expression is an intersection of dependent events but, if we
condition on the degrees degtℓ(rs) of the chosen vertices rs at times t1, t2, then
the choice events become independent.

Let us define D as an event that for some ℓ = 1, 2, and s = 1, 2, . . . ,m,

degtℓ(rs) ≤
√
tℓ/rs(ln tℓ)

3 .

Then from Lemma 8.4.10 it follows that

P (PA(m;n) /∈ D) ≤ t−10m/∆
1 .

Consequently, for k < t1 < t2 we get

P (t1, t2 choose r1, ..., rm) ≤ P (t1, t2 choose r1, ..., rm|D) + P (¬D)

≤
2∏

ℓ=1

m∏

s=1

√
tℓ/rs ln

3 tℓ
2tℓ

+ t
−10m/∆
1

≤ (ln t2)
6m

2∏

ℓ=1

m∏

s=1

1√
tℓrs

+ n−10m.

Thus, (8.104) becomes

P (PA(m;n) /∈ A) ≤
∑

k<t1<t2

(ln t2)
6m

∑

1≤r1≤r2...≤rm<t1

2∏

ℓ=1

m∏

s=1

1√
tℓrs

+ n−1

≤
∑

k<t1<t2

(t1t2)
−m/2(ln t2)

6m
∑

1≤r1≤r2...≤rm<t1

m∏

s=1

1

rs
+ n−1

≤
∑

k<t1

t−m+1
1 (ln t1)

9m + n−1

≤ C(m)k2−m(ln k)9m + n−1,

8.4. Preferential Attachment Graphs 225

where C(m) is some positive constant. Hence

P (PA(m;n) /∈ A) ≤ n∆(2.0001−m) , (8.105)

which is polynomially decaying since m ≥ 3. We remark that this holds for
arbitrary ∆ > 0.

Next we show that, with probability close to 1, the k̃ = n∆′

oldest vertices
of PA(m;n) have unique degrees and so these are fixed points of every automor-
phism. The key ingredient of our argument is Lemma 8.4.14.

To estimate the probability that PA(m;n) /∈ B, we reason as follows: from
Lemma 8.4.14 we know that with probability at least 1 − O(n−c), for some

positive constant c, the degrees of all vertices smaller than k̃′2 = n2∆′′

are
pairwise different, for some ∆′′ small enough to satisfy Lemma 8.4.14.

Furthermore, using Corollary 8.4.13, one can deduce that we can choose
∆′ > 0 (playing the role of δ in the corollary) small enough so that, with
probability at least 1−O(n−c) (for another positive constant c > 0) all vertices

s < k̃ = n∆′

have degrees larger than those of all vertices t > k̃′2 (in particular

using the left tail bound to show that vertices < k̃ all have high degree and
the right tail bound to show that vertices > k̃′2 have low degree with high
probability). Let us be more precise here: we can choose ∆ in Corollary 8.4.13
to be some very small constant (say, 0.00001). This ensures the existence of a
choice for ∆′ for which

P

 ⋂

s<k̃=n∆′

degn(s) ≥ Cn(1−0.00001)/2

 ≥ 1− T−c, (8.106)

for some positive constant c. That is, with probability at least 1 − T−c, all
vertices < k̃ have degree larger than Cn0.499995. Note that we can bring the
exponent arbitrarily close to 0.5 by finding a small enough ∆′. We will require,
in fact, that ∆′ is small enough compared to ∆′′.

Now, we can use Lemma 8.4.10 to show that all vertices r > k̃′2 = n2∆′′

have low degree with high probability. In particular, in the lemma statement,
we choose t := n and arbitrary r > k̃′2. This results, for arbitrary A > 0, in the
bound

P (
⋃

r>k̃′2

degn(r) ≥ Aemn(1−2∆′′)/2(lnn)2) ≤ n · O(n−A) = O(n1−A), (8.107)

which is polynomially decaying if we set A sufficiently large (say, A = 2). Note
that we have used the union bound, followed by Lemma 8.4.10. This shows
that, with probability at least 1 − n−c for some c > 0, all vertices r > k̃′2 have

226 Chapter 8. Graph and Structure Compression

degree at most Õ(n(1−2∆′′)/2). Since ∆′′ is some specific (small) constant, we
may choose ∆′ above so small that this is asymptotically smaller than the lower
bound on the degrees of vertices < k̃.

Consequently, with probability 1 − O(n−c) degrees of vertices from [k̃] are
unique, i.e. PA(m;n) /∈ B.

Finally, Theorem 8.4.7 follows directly from (8.84) and our estimates for
P (PA(m;n) /∈ A) and P (PA(m;n) /∈ B), provided that we choose ∆ < ∆′. This
completes the proof.

8.4.3. A Structural Compression Algorithm.

We now present an asymptotically optimal algorithm for compression of unla-
beled graphs (see Theorem 8.4.17 below): that is, given an arbitrary labeled
representative G isomorphic to G′ ∼ PA(m;n), we construct a code from which
S(G′) can be efficiently recovered. The algorithm can be run on general undi-
rected graphs; our optimality guarantee is under the assumption that the input
is generated by PA(m;n).

We state our algorithm and analyze it in the case where the model is pref-
erential attachment with m self-loops on the oldest vertex. Only simple tweaks
are needed to generalize to the case where there are no self-loops (and hence
where one cannot necessarily uniquely identify the oldest vertex).

Our algorithm starts with finding a certain orientation of the edges of the
input graph G to produce a directed, acyclic graph D denoted as DAG(G). In
the case where G is isomorphic to a sample G′ from PA(m;n) (say, G = π(G′)),
we have D = π(DAG(G′)), and all vertices have out-degree m.

We accomplish this by a peeling procedure: at each step, consider the set
Dmin of minimum-degree the graph. We orient the edges incident on those nodes
away from them, and then recurse on the subgraph excluding the nodes in Dmin.
This procedure terminates precisely when there are no remaining vertices. For a
general input graph G, which might not have arisen by preferential attachment,
there may be edges between vertices in Dmin. We orient edges from nodes with
larger labels to those with smaller ones. In general, this yields a directed, acyclic
graph (aside from self-loops) D = π(DAG(G′)).

Hence, we are free to apply our structural results (such as Theorem 8.4.15)
on DAG(G′). We remark that it is not too hard to generalize our algorithm to
tweaks of the model, since the only thing that is required is that the height of
the resulting directed graph be at most O(log n); such an orientating on of the
edges of G exists with high probability (this is granted by Theorem 8.4.15).

With this procedure in hand, the structural compression algorithm works as
follows on input G:

8.4. Preferential Attachment Graphs 227

1. Construct the directed versionD = DAG(G) by the peeling procedure just
described.

2. Starting from the “bottom” vertex (i.e., the vertex with no out-edges ex-
cept for self-loops), we will do a depth-first search (DFS) of D (following
edges only from their destinations to their sources). To the jth vertex
in this traversal, for j = 1, ..., n, we will associate a backtracking number
Bj , which tells us how many steps to backtrack in the DFS process after
visiting the jth node; e.g., when there is at least one in-edge leading to an
unvisited node (so that we do not backtrack), Bj = 0.

Up on visiting vertex w from vertex v in the DFS, we do the following:

(a) Denote by k the maximum out-degree of D (which can be determined
in a preprocessing step, and which is equal to m if the input arises
from preferential attachment). Using ⌈log k⌉ bits, encode the out-
degree dw of w (for preferential attachment, dw = m, but we encode
it for the sake of generality). Encode the names of the dw − 1 vertex
choices made by w, excluding one choice to connect to vertex v. Here,
the name of a vertex is the binary expansion of its index in the
DFS, which we can represent using exactly ⌈logn⌉ bits. These can be
determined in a preprocessing step, by doing an initial DFS to label
the nodes with their names.

(b) We need to know what happens after we visit vertex w: do we go
forward in the search, or is there nowhere left to go along the current
route (i.e., do we need to backtrack)? Suppose w is the jth vertex
to be visited. Then we output an encoding of Bj . We need to more
precisely examine how we encode these numbers, since it would be
suboptimal to simply encode them in Θ(logn) bits. Lemma 8.4.16
below tells us how to more efficiently perform this encoding, that is,
in O(log logn) bits (see below).

3. For the purposes of decoding, we store (once, for the entire graph) the
sequence of code words for the code used for the backtracking numbers.
This can be done in at most O(n log logn) extra bits, at the beginning of
the code. We also store k (the maximum out-degree), which can be done
with at most O(log n) bits.

For the analysis of the algorithms we need the following property on the the
height of DAG(G). (The proof is postponed to Section 8.4.4.)

Lemma 8.4.15. Consider Gn ∼ PA(m;n) for fixed m ≥ 1. Then, with proba-
bility at least 1 − o(n−1), the height of DAG(Gn) is at most Cm lnn, for some
absolute positive constant C.

228 Chapter 8. Graph and Structure Compression

With the help of Lemma 8.4.15 we obtain the following complexity bound.

Lemma 8.4.16. The backtracking numbers B1, ..., Bn can be encoded using a
total of O(n log logn) bits on average.

Proof. Consider a random variableX whose distribution is given by the empirical
distribution of the collection B = {B1, ..., Bn}. That is,

PX(x) =
|{j : Bj = x}|

n
(8.108)

for each x. Note that this empirical distribution is itself a random variable.
We will show that E[n · H(X)] = O(n log logn). Denote by W the event
that the number of levels in D is upper bounded by O(log n) (as considered
in Lemma 8.4.15). Under conditioning on this event, X can take on at most
O(log n) values, which implies that H(X) = O(log log n). Then we have

E[H(X)] ≤ E[H(X)|W] + (1− P (W))E[H(X)|¬W]

≤ E[H(X)|W] + (1− P (W)) log n = O(log logn),

where we have used Lemma 8.4.15 to upper bound 1− P (W).
We can thus construct a prefix code (once, for the entire graph) for the

observed values of Bi, whose empirical average length is given by

∑

x : ∃j,Bj=x

ℓxPX(x) ≤ H(X) + 1,

where ℓx denotes the length of the code word for x. Now, recalling the definition
of PX(x), this implies

E

 ∑

x : ∃j,Bj=x

ℓx|{j : Bj = x}|

 ≤ nE[H(X)] + n = O(n log logn).

This completes the proof.

It is easy to show that the code for S(G) is uniquely decodable. Furthermore,
its expected length is at most (m− 1)n logn+O(n log logn), which recovers the
first term of the structural entropy and bounds the second. Construction of the
Huffman code for the backtracking numbers takes time O(n logn), and each step
of the DFS takes time at most O(m log n), so the running time is O(mn logn).

We have thus proved the following:

8.4. Preferential Attachment Graphs 229

Theorem 8.4.17. The algorithm given above, on input a graph G isomor-
phic to G′ ∼ PA(m;n), runs in time O(mn log n) and outputs a code of ex-
pected length (m − 1)n logn + O(n log logn) from which we can recover S(G)
in time O(mn logn). If self-loops are removed from G′ and G (so that the first
vertex is hard to identify), then the same code length can be achieved in time
O(mn2 logn).

8.4.4. Proof Lemma 8.4.15

We start with the following, surprising at first sight, observation.

Fact 8.4.18. Let w < v. Then the degree degv(w) as well as the probability
that v is adjacent to w does not depend on the structure of the graph induced by
the first w vertices.

Let pm(n, k) denote the probability that DAG(Gn) contains a path of length
k. From Fact 8.4.18 and Corollary 8.4.9, it follows that

pm(n, k) ≤
∑

v0<v1<···<vk

k∏

i=1

P (vi−1 → vi) ≤
∑

v0<v1<···<vk

k∏

i=1

5m ln(3vi/vi−1)√
vi−1vi

≤
n−k∑

v0=1

1√
v0

k∏

i=1

n−k−i∑

vi=vi−1+1

5m ln(3vi/vi−1)

vi
. (8.109)

In order to estimate the above sum we split all the vertices v1, . . . , vk of the path
P into several classes. Namely we say that a vertex vi is of type t in P if t is
the smallest natural number such that vi/vi−1 ≤ (1 + a)t, where a is a small
constant to be chosen later, i.e. t = ⌈ln(vi/vi−1)/ ln(1 + a)⌉. Then, given vi−1,
the contribution of terms related to vi can be estimated from above by

vi−1(1+a)t∑

vi=vi−1(1+a)t−1

5m ln(3vi/vi−1)

vi
≤ 5m ln[(1 + a)] ln[3(1 + a)t] ≤ αt , (8.110)

where, to simplify notation, we put α = 5m ln(1+ a) ln(3(1+ a)). Let st denote
the number of vertices of type t in P . Note that

∏
t≥2

[
(1 + a)t−1

]st ≤ n and

∑

t≥2

tst ≤ 2
∑

t≥2

(t− 1)st ≤
2 lnn

ln(1 + a)
. (8.111)

230 Chapter 8. Graph and Structure Compression

Let us set J = 2 lnn/ln(1 + a). Thus, we arrive at the following estimate for
pm(n, k)

pm(n, k) ≤
n−k∑

v0=1

1√
v0

(
k

s1

)
αs1

∑
∑

t stt≤J

(
k − s1

s2, s3, ..., sk

) k∏

t≥2

(αt)st

≤ 3
√
n

(
k

s1

)
αs1

∑
∑

t stt≤J

(
k − s1

s2, s3, ..., sk

)
exp

∑

t≥2

st ln(αt)

≤ 3
√
n

(
k

s1

)
αs122J max∑

t stt≤J
exp

(∑

t≥2

st ln
(eαt(k − s1)

st

))
.

In order to estimate the expression

σ(J, S) = max∑
t stt≤J

exp
(∑

t≥2

st ln
(eαtS

st

))

where S =
∑

t≥2 st, we split the set of all t’s into two parts. Thus, let
T1 = {t : ln(eαtS/st) ≤ t} and T2 = {2, 3, . . . , k} \ T1 . Then, clearly,

max∑
t stt≤J

exp
(∑

t∈T1

st ln
(eαtS

st

))
≤ max∑

t stt≤J
exp

(∑

t∈T1

stt
)
≤ exp(J) .

Observe that for every t ∈ T2 we have ln(eSαt/st) ≥ t and so st ≤ eαte−tS. It

is easy to check that then st ln
(

eαtS
st

)
≤ 6 · 2−tS , so

max∑
t stt≤J

exp
(∑

t∈T2

st ln
(eαtS

st

))
≤ max∑

t stt≤J
exp

(
6S
∑

t∈T2

2−t
)
≤ exp(3S) ≤ exp(3J) .

Thus, σ(J, S) ≤ exp(4J) , and, since s1 = k − S ≥ k − J ,

pm(n, k) ≤ 3
√
n

(
k

s1

)
αs122Jσ(J, k − s1) ≤ 3

√
n2kαk−J exp(6J)

≤ 3 exp(lnn+ k + (k − J) lnα+ 6J) .

Since for 0 < a < 1 we have a/2 < ln(1 + a) < a, if we set a = 1/(310m),
then α < 1/61 and lnα < −4. Now let us recall that J = 2 lnn/ln(1 + a) and
k = 5000m lnn > 4J . Thus,

pm(n, k) ≤ 3 exp(lnn+ k + (k − J) lnα+ 6J)

≤ 3 exp(lnn+ k − 3k + 3k/2) = exp(lnn− k/2) = o(n−1) .

It is simple to show that with high probability the height is also lower
bounded by Ω(logn). Thus, the height is Θ(logn) with high probability.

8.5. Exercises 231

8.5. Exercises

8.1 Show that the structure of a graph can be uniquely reconstructed from
the lists B1 and B2 that are generated by the algorithm Szip.

8.2 Prove the algorithm Szip runs in O(n2).

8.3 Prove the large deviation result (8.8) for Szip (see Choi and Szpankowski
(2012)).

8.4 Show that the function

D̃(z) := e−z
∑

n≥0

√
n

n!
zn

satisfies the assumptions of Theorem C.4.1, that is, ã(D) = O(|z|β)
uniformly as |z| → ∞ and | arg(z)| ≤ θ, where β > 0 and 0 < θ < π

2 ,

and D̃(z)ez = O(eα|z|) uniformly as |z| → ∞ and θ ≤ | arg(z)| ≤ π,
where α < 1.

8.5 Show that preferential attachment graphs PA(m,n) are invariant under
isomorphism, that is, every distinct relabeling of a graph has the same
probability (see Lemma 8.4.1).

8.6 Prove by induction that (8.20) holds.

8.7 Design an efficient version of algorithm Szip that runs in O(n+ e) time
where n is the number of nodes and e is the number of edges.

8.8 Prove that the numbers b(n,∞) can be explicitly represented by

b(n,∞) =

n∑

ℓ=2

(−1)ℓ
(
n

ℓ

)
ℓ

1− pℓ − qℓ . (8.112)

Furthermore show that the Poisson transform B̃(z) can be represented
by (8.29) (see also Jacquet and Szpankowski (2015)).

8.9 Consider a Gt ∈ PA(m,n) graph. Prove that the maximum degree is in
Gt is O(

√
t) with high probability (see Frieze and Karoński (2016)).

8.10 Prove the following property regarding the average N t,d number of ver-
tices of degree d at time t for PA(n,m) graphs: we have, for t ≥ 1 and
1 ≤ d ≤ t and for any fixed m ≥ 1,

∣∣∣∣N t,d −
2m(m+ 1)t

d(d+ 1)(d+ 2)

∣∣∣∣ ≤ C,

for some fixed C = C(m) > 0.

232 Chapter 8. Graph and Structure Compression

8.11 Prove the following property regarding the average N t,d number of ver-
tices of degree d at time t for PA(n,m) graphs: we have, for t → ∞,
d ≥ t1/15, and fixed m ≥ 1,

N t,d = O

(
t

d(d+ 1)(d+ 2)

)
= O

(
t

d3

)
.

8.12 Prove that a preferential or uniform attachment graph is symmetric for
m = 1 and m = 2. More precisely, prove the following theorem.

Theorem 8.5.1 (Symmetry behavior for m = 1, 2). Let G ∼ PA(n,m).
For m = 1

P (|Aut(G)| > Ω(n))→ 1.

For m = 2
P (|Aut(G)| > 1) > c.

for some constant c > 0.

8.13 Prove Lemma 8.4.10.

8.14 Prove Fact 8.4.18.

8.15 Consider the duplication-divergence model as discussed in Solé, Pastor-
Satorras, Smith, and Kepler (2002), Pastor-Satorras, Smith, and Solé
(2003). In this mode a new node first selects randomly and uniformly
an existing node and then connects to all its neighbors with probability
p. In addition, if the new node is the n-th node, then it connects to
nodes not selected in phase one with probability r/n.
For such a model, find the average degree of a node. Then derive a large
deviations (see Frieze, Turowski, and Szpankowski (2020)).

8.16 For the duplication-divergence model discussed in Exercise 8.15 find the
expected size of the automorphism group This seems to be an open
problem.

8.17 Consider the following small-world-type model, similar to the one intro-
duced in Watts and Strogatz (1998), Kleinberg (2000). It is defined as
follows. Consider the vertex set V = {1, 2, . . . , n} arranged on the circle,
with each vertex connected by an edge to its two nearest neighbors. For
each one of the remaining

(
n
2

)
−n pairs of vertices (u, v), we add an edge

between them with probability p(|u − v|), where |u − v| is the discrete
distance on the circle and pn(k) = cnk

−a, for some a ∈ (0, 1) and with,

cn = bn(1 − a)
(
2

n

)1−a

,

Bibliographical notes 233

where {bn} is a nondecreasing, unbounded sequence of positive real num-
bers, with bn = o(n1−a), as n→∞.
Prove that such a model is asymmetric as long as

bn = o(n1−a), and
bn
lnn
→∞, as n→∞

(see Kontoyiannis, Lim, Papakonstantinopoulou, and Szpankowski (2021)).

Bibliographical notes

There has been some work on compression of labeled graph and tree models
in recent years in both information theory and computer science communities
Zhang et al. (2014), Asadi, Abbe, and Verdú (2017), Abbe (2016), Choi and Sz-
pankowski (2012), Delgosha and Anantharam (2017), Adler and Mitzenmacher
(2001). In 1990, Naor Naor (1990) proposed an efficiently computable represen-
tation for unlabeled graphs (see Turan (1984)). that is optimal up to the first
two leading terms of the entropy when all unlabeled graphs are equally likely.
Naor’s result is asymptotically a special case of Choi and Szpankowski (2012),
where general Erdős-Rényi graphs were analyzed. In fact, Choi and Szpankowski
(2012) seems to be the first article that dealt with structural compression and
where graph automorphism was introduced in the context of graph compression.
This was further extended to the compression of preferential attachment graphs
in Luczak, Magner, and Szpankowski (2019b). Furthermore, in Mohri, Riley,
and Suresh (2015) an automata approach was used to design an optimal graph
compression scheme. Recently, the authors of Delgosha and Anantharam (2017,
2018, 2019) proposed a general universal scheme for lossless graph compression.

There also have been some heuristic methods for real-world graphs com-
pression including grammar-based compression for some data structure, see
Chierichetti, Kumar, Lattanzi, Mitzenmacher, Panconesi, and Raghavan (2009),
Maneth and Peternek (2018), Peshkin (2007). Peshkin Peshkin (2007) proposed
an algorithm for a graphical extension of the one-dimensional SEQUITUR com-
pression method. However, SEQUITUR is known not to be asymptotically op-
timal. A comprehensive survey of lossless graph compression algorithms can be
found in Besta and Hoefler (2018).

It should be mentioned that there are other graph models such as the small-
world model Watts and Strogatz (1998), Kleinberg (2000) and the duplication-
divergence model Solé et al. (2002), Pastor-Satorras et al. (2003) that did not
yet meet with rigorous analysis, at least from the symmetry point of view. Some
recent results in this context can be found in Turowski and Szpankowski (2019),
Frieze et al. (2020), Frieze, Turowski, and Szpankowski (2021), Hermann and

234 Graph and Structure Compression

Pfaffelhuber (2016), Jordan (2018) (duplication-divergence model) and Kon-
toyiannis et al. (2021) (small-world model). More on graph dynamic models
can be read in Frieze and Karoński (2016), van der Hofstad (2016).

Group automorphism for random graphs were discussed in several papers.
Asymmetry of (unlabelled) Erdős-Rényi graph was first proved in Bollobás
(1982), and then strengthen in Kim, Sudakov, and Vu (2002b). Asymmetry
of preferential attachment graphs were discussed and solved in Magner, Janson,
Kollias, and Szpankowski (2014), Luczak, Magner, and Szpankowski (2019a).
Asymmetry of the small-word model was proved recently in Kontoyiannis et al.
2021 (see also Exercise 8.17). However, symmetry behavior for the duplication-
divergence model is unknown.

This chapter is mostly based on Choi and Szpankowski (2012) and Luczak
et al. (2019a).

Part II

UNIVERSAL CODES

CHAPTER 9

Minimax Redundancy and Regret

In the second part of this book, we study universal coding, modeling, and learn-
ing. Universal coding and universal modeling are two driving forces of informa-
tion theory, model selection, and statistical inference. In universal coding one
is to construct a code for data sequences generated by an unknown source such
that, as the length of the sequence increases, the average code length approaches
the entropy of whatever processes in the family has generated the data. Univer-
sal codes are often characterized by the averageminimax redundancy and regret
which are the excess over the best code from a class of decodable codes for the
worst process in the family. In universal learning, however, we rather search for
an unknown distribution so that one ignores integer nature of universal coding
leading to some simplifications. In this chapter we define precisely minimax
redundancy and discuss some of its basic properties.

As pointed out by Rissanen (1996), over years universal coding evolved into
universal modeling where the purpose is no longer restricted to just coding but
rather to finding optimal models. The central question of interest in universal
modeling is to achieve optimality for individual sequences. The burning question
is how to measure it. The worst case minimax redundancy and regret became
handy since they measure the worst case excess of the best code maximized
over the processes in the family. Rissanen also admitted that the redundancy
restricted to the first term cannot distinguish between codes over large alphabets
and that differ by a constant, however large.

In recent years regrets become more popular in machine learning; in partic-
ular in online learning. Here, however, instead of code length we must learn
model parameters from examples whose outcomes are already known to us. For
example, in online setup the training algorithm consumes data in rounds and
the prediction algorithm incurs some loss that we try to estimate. The regret in
online algorithm is defined as the excess loss it incurs over some value of a con-
stant comparator that is used for prediction for the complete sequence. Often,
one does the comparison through the so called regression function.

238 Chapter 9. Minimax Redundancy and Regret

The goal of this part of the book is to derive precise results for redundancy
and regrets, whether in data compression or gambling or machine learning.

9.1. Minimax Redundancy and Regret

Before we proceed, let us recall some notation from Chapter 1. A code Cn :
An → {0, 1}∗ is defined as an injective mapping from the set An of all sequences
of length n over the finite alphabet A of size m = |A| to the set {0, 1}∗ of all
binary sequences. A probabilistic source P is a probability measure on A∗. For
every n this source induces a probability measure on An by setting

P (xn) = P ({y ∈ A∗ : yn = xn}) ,

where xn ∈ An. We write Xn to denote a random variable representing a
message of length n according to the probability measure P , that is P (Xn =
xn) = P (xn). For a given code Cn, we let L(Cn, x

n) be the code length for xn.
Also, recall that the pointwise redundancy Rn(Cn, P ;x

n) and the average
redundancy Rn(Cn, P) for a given source P are defined as

Rn(Cn, P ;x
n) = L(Cn, x

n) + logP (xn),

Rn(Cn, P) = E[Rn(Cn, P ;X
n)] = E[L(Cn, X

n)]−Hn(P)

=
∑

xn

P (xn) [L(Cn, x
n) + logP (xn)]

where Hn(P) = −E logP (Xn) denotes the entropy of the probability distribu-
tion on the source sequences of length n. As pointed out above, the excess of
the code length for individual sequences is a central issue for universal modeling,
therefore we define the maximal or worst case redundancy as

R∗
n(Cn, P) = max

xn
[L(Cn, x

n) + logP (xn)].

As observed in Chapter 1 while the pointwise redundancy can be negative, the
maximal and the average redundancies cannot, by Kraft’s inequality and Shan-
non’s source coding theorem, respectively.

In practice, one can only hope to have some knowledge about a family of
sources S that generates real data. For example, we may often be able to justify
restricting our attention to memoryless sources (see Chapter 10) or Markov
sources (see Chapter 11). Sometimes, however, we must consider a larger class
of non-finitely parameterized sources of unbounded memory such as renewal
sources (see Chapter 12).

9.1. Minimax Redundancy and Regret 239

In several instances we will represent the family of sources S by a parametriza-
tion S = {P θ}θ∈Θ, for example, m-ary memoryless sources can be parametrized
by θ = (θ0, . . . , θm−1) = (p0, . . . , pm−1) with

Θ = {θ : θi ≥ 0 (0 ≤ i ≤ m− 1), θ0 + · · ·+ θm−1 = 1}.

and

P θ(xn) =

m−1∏

i=0

θki

i =

m−1∏

i=0

pki

i

where ki is the number of symbol i ∈ A occurring in xn.
We define the average minimax redundancy Rn(S) and the worst case (max-

imal) minimax redundancy R∗
n(S) for family S as follows

Rn(S) = min
Cn∈C

sup
P∈S

(
∑

xn

P (xn) [L(Cn, x
n) + logP (xn)]

)
, (9.1)

R∗
n(S) = min

Cn∈C
sup
P∈S

max
xn

[L(Cn, x
n) + logP (xn)] , (9.2)

where C denotes the set of all codes satisfying the Kraft inequality. In words,
we search for the best code for the worst source on average and for individual
sequences.

We should also point out that there are other measures of optimality for
coding, learning, and prediction that are used in universal modeling and coding.
We refer here to minimax regret functions defined as follows:

rn(S) = min
Cn∈C

sup
P∈S

∑

xn

P (xn)[L(Cn, x
n) + log sup

P∈S
P (xn)], (9.3)

r∗n(S) = min
Cn∈C

max
xn

[L(Cn, x
n) + log sup

P∈S
P (xn)], (9.4)

and to the maxmin regret

rn(S) = sup
P∈S

min
Cn∈C

∑

xn

P (xn)[L(Cn, x
n) + log sup

P∈S
P (xn)]. (9.5)

We call rn(S) the average minimax regret, r∗n(S) the worst case (maximal)
minimax regret and rn(S) the maxmin regret. Clearly, Rn(S) ≤ rn(S), and, as
easy to establish,

r∗n(S) = R∗
n(S).

Finally, we may link universal modeling and learning with game theory and
statistics by ignoring the integer nature for the coding interpretations: Suppose
nature picks up a distribution P from S and we try to find a distribution Q as

240 Chapter 9. Minimax Redundancy and Regret

the best guess for P . We may then reformulate the above redundancy (average
and maximal) as well as regrets so that L(Cn, x

n) is replaced by its continuous
approximation, namely, log 1/Q(xn). We denote these corresponding continuous

redundancy and regret by placing a tilde over R or r. For example, R̃n(S)
and R̃∗

n(S) denote continuous approximations of the average and the worst case
minimax redundancies. They can be explicitly defined as

R̃n(S) = inf
Q

sup
P∈S

(
∑

xn

P (xn) log
P (xn)

Q(xn)

)
= inf

Q
sup
P∈S

Dn(P ||Q), (9.6)

R̃∗
n(S) = inf

Q
sup
P∈S

max
xn

[log (P (xn)/Q(xn))] , (9.7)

where Dn(P ||Q) is the Kullback divergence between Q and P . The average
minimax regret is defined in a similar manner, namely,

r̃n(S) = inf
Q

sup
P∈S

(
∑

xn

P (xn) log
supP∈S P (x

n)

Q(xn)

)
.

Clearly, the continuous approximation of the redundancy and regrets are within
one bit from the corresponding redundancy and regrets, that is,

Rn(S) ≤ R̃n(S) ≤ Rn(S) + 1, (9.8)

rn(S) ≤ r̃n(S) ≤ rn(S) + 1. (9.9)

Indeed, it suffices to consider the Shannon code for justifying these bounds.

9.2. Operational Expressions for Minimax Redundancy

In this section we derive some useful representation for the average minimax Rn

and the maximal minimax R∗
n.

9.2.1. Average Minimax Redundancy

The average minimax redundancy is almost entirely considered within the frame-
work of Bayes rule and parameterized family of distributions. Let now S =
{P θ}θ∈Θ be a parametrization for the source probability distributions. The
average minimax problem is then reformulated as

R̃n(Θ) = inf
Q

sup
θ∈Θ

Dn(P
θ||Q),

where we restrict P θ to sequences of length n. Note that we use the (simplified)

notation R̃n(Θ) instead of R̃n({P θ}θ∈Θ).

9.2. Operational Expressions for Minimax Redundancy 241

In the Bayesian framework, one assumes also a probability distribution w
on Θ so that the parameter θ ∈ Θ is generated according to this probability
distribution. For fixed n the mixture Mw

n (xn) is defined as

Mw
n (xn) =

∫

Θ

P θ(xn)w(dθ)

and is again a probability distribution on sequences of length n. Observe now

inf
Q

Ew[Dn(P
θ||Q)] = inf

Q

∫

Θ

Dn(P
θ||Q)dw(θ)

= inf
Q

(
∑

xn

Mw
n (xn) log

1

Q(xn)
+

∫

Θ

∑

xn

P θ logP θdw(θ)

)

(A)
=
∑

xn

Mw
n (xn) log

1

Mw
n (xn)

+

∫

Θ

∑

xn

P θ logP θdw(θ)

=

∫
Dn(P

θ||Mw
n)dw(θ)

= I(Θ;Xn),

where Ew denotes the expectation with respect to w. The equality (A) follows
from the fact

min
Q

∑

i

Pi log
1

Qi
=
∑

i

Pi log
1

Pi
, (9.10)

and I(Θ, Xn) is the mutual information between the parameter space and the
source output.

Lemma 9.2.1. The following holds

R̃n(Θ) = inf
Q

sup
θ∈Θ

Dn(P
θ||Q) = sup

w
inf
Q

Ew[Dn(P
θ||Q)] (9.11)

= sup
w

∫
D(P θ||Mw

n)dw(θ) := C(Θ, Xn), (9.12)

that is, the continuous approximation of the average minimax redundancy is
equal to the channel capacity C(Θ, X) between the parameter space and source
output.

Proof. As pointed out by Gallager (1968) (see Exercise 9.2) the minimax theo-
rem of game theory entitles us to conclude (9.12) by replacing the minimax by
maxmin.

242 Chapter 9. Minimax Redundancy and Regret

In view of the above, the average minimax redundancy problem is reduced
to finding the optimal prior distribution w∗(θ) for the Bayes rule. This was
accomplished by Bernardo (1979) who proved that asymptotically w∗(θ) can be
replaced by

w̃∗(θ) =

√
det I(θ)∫ √
det I(x)dx

, (9.13)

where I(θ) is the Fisher information matrix

I(θ) =

{
−E

[
∂2w(θ)

∂θiθj

]}

θi,θj∈Θ

.

For example, for the binary memoryless source with one parameter θ

I(θ) =
1

θ(1 − θ) , w̃∗(θ) =
1

π
√
θ(1− θ)

. (9.14)

The above distribution, called also Jeffrey’s prior, is a special case of the Dirich-
let distribution that will find more applications in this book. To recall, for
nonnegative integer m > 1 the Dirichlet’s distribution is defined by

Dir(x1, . . . , xm;α1, . . . αm) =
1

B(α1, . . . , αm)

m∏

i=1

xαi−1
i , (9.15)

where
∑m

i=1 xi = 1 and

B(α1, . . . , αm) =
Γ(α1) · · ·Γ(αm)

Γ(α1 + · · ·αm)

is the beta function. For notational convenience we write α = (α1, . . . αm) and
x = (x1, . . . xm) with

∑m
i=1 xi = 1. Finally, for

S ⊆ Θ = {(θ1, . . . , θm) :

m∑

i=1

θi = 1}

we set

Dir(S;α) =
1

B(α)

∫

S
xα−1 dx.

Notice that Dir(Θ,α) = 1.
We finally address the optimality of w̃∗ defined in (9.13). As discussed, this

may be only asymptotic optimality with respect to the leading term. It was
Clarke and Barron (1990) who showed that under proper regularity conditions

9.2. Operational Expressions for Minimax Redundancy 243

such as the finiteness of the determinant of Fisher information and S being a
compact subset of the interior of Θ = {(p0, . . . , pm) : pj ≥ 0, p0+· · ·+pm−1 = 1},
the following is true

lim
n→∞

(∫

S
D(P θ‖Mw∗

n)dw∗(θ)− m− 1

2
log

n

2πe

)

= lim
n→∞

(∫

S
D(P θ‖M w̃∗

n)dw̃∗(θ)− m− 1

2
log

n

2πe

)
= log

∫

S

√
det I(θ) dθ.

This discussion leads us to the following notation of the asymptotic average
minimax redundancy

R̃asymp
n (S) =

∫

S
D(P θ‖M w̃∗

n)dw̃∗(θ).

We will use it in the next chapter to provide precise asymptotics for R̃asymp
n (S),

including the case when S ⊂ Θ discussed in Section 10.3.1 (see also Section 10.1.3).

9.2.2. Maximal Minimax

We now present a new characterization of the maximal minimax. Let us define

Dn = Dn(S) :=
∑

xn

sup
P∈S

P (xn)

and

Q∗(xn) :=

sup
P∈S

P (xn)

Dn
. (9.16)

The distributionQ∗ is called themaximum likelihood distribution, while logDn(S)
is also know as the complexity of S.

We start with a simple result that decomposes the maximal minimax re-
dundancy into two terms: the first one depends only on the underlying class of
processes while the second one involves coding.

Lemma 9.2.2. Let S be a set of probability distributions P on An and let Q∗

be the maximum likelihood distribution defined by (9.16). Then

R∗
n(S) = R∗

n(Q
∗) + R̃∗

n(S) = R∗
n(Q

∗) + logDn(S) (9.17)

R̃∗
n(S) = logDn(S) (9.18)

where
R∗

n(Q
∗) = min

Cn∈C
max
xn

[L(Cn, x
n) + logQ∗(xn)]

is the worst case redundancy of a single source S = {Q∗}.

244 Chapter 9. Minimax Redundancy and Regret

Proof. By definition and noting that max and sup commute, we have

R∗
n(S) = min

Cn∈C
sup
P∈S

max
xn

(L(Cn, x
n) + logP (xn))

= min
Cn∈C

max
xn

(
L(Cn, x

n) + sup
P∈S

logP (xn)

)

= min
Cn∈C

max
xn

(L(Cn, x
n) + logQ∗(xn) + logDn)

= R∗
n(Q

∗) + logDn,

which proves the lemma. If we assume that L(Cn, x
n) = − logQ(xn) and set

Q∗ = Q, we establish (9.18).

First, we observe that R∗
n(Q

∗) is the maximal redundancy for the known
distribution Q∗. We studied it in Section 2.3 of Chapter 2 where we found in
Theorem 2.3.1 a precise expression for a given source P . However, the max-
imal likelihood distribution Q∗ needs extra care. We will come back to it in
Chapter 10.

In passing we observe an interesting property of the continuous part R̃∗
n(S)

of the maximal minimax redundancy, namely that it is a non-decreasing function
of n. In this context we assume that S is a set of probability measures on infinite
sequences. Of course this induces naturally probability distributions for finite
sequences by considering them as prefixes of infinite ones. Indeed, we have

R̃∗
n(S) = log

(
∑

xn

sup
P∈S

P (xn)

)

= log

(
∑

xn

sup
P∈S

∑

z∈A
P̃ (xnz)

)

≤ log

(
∑

xn+1

sup
P̃∈S

P̃ (xn+1)

)
= R̃∗

n+1(S),

that is, R̃∗
n(S) ≤ R̃∗

n+1(S).

9.3. Average and Maximal Minimax Relationships

In this section, we aim at finding a relationships between maximal and aver-
age redundancy and regrets. For example, we would like to know under what
conditions the following may hold

R∗
n(S) ∼ Rn(S) ∼ rn(S) ∼ rn(S). (9.19)

9.3. Average and Maximal Minimax Relationships 245

In the first attempt to answer this question, we restrict the class of sources to
those for which the maximum likelihood distribution Q∗ belongs to a convex hull
of S, where the convex hull of S is just the set of all finite convex combinations
of elements of S. (We assume no topology on the set of probability measures.)
We formulate it as the following postulate.

(H) The maximum likelihood distribution Q∗ can be represented as a linear
combination of distributions from S, that is, for P1, P2, . . . , PN ∈ S

Q∗ =
N∑

i=1

αiPi (9.20)

where αi ≥ 0 and
∑N

i=1 αi = 1. In other words, Q∗ can be represented as
a mixture of the distributions of S.

However, hypothesis (H) might be difficult, if at all, to verify. Therefore, we
often relax and adopt another weaker hypothesis:

(H1) There exists a probability distribution Q̃ in the convex hull of S such that

max
xn

∣∣∣∣∣log
Q∗(xn)

Q̃(xn)

∣∣∣∣∣ ≤ C (9.21)

where C is a constant.

In Section 9.3.1 we prove the following crucial lemma that will allow us to
establish some relationships between the maximal redundancy and the average
redundancy and regrets.

Lemma 9.3.1. Let S be a subset of probability distributions P on An. Then
for all probability distributions Q̃ contained in the convex hull of S we have

inf
Q

sup
P∈S

(
∑

x∈X

P (x) log
Q̃(x)

Q(x)

)
= 0. (9.22)

Now we are equipped with all the necessary tools to state and prove our first
main result of this section. We recall that Dn(S) =

∑
xn supP∈S P (x

n) and

R̃∗
n(S) = logDn(S).

Theorem 9.3.2. (i) [Upper Bound] For any set of probability distributions
S on An, we have

R̃n(S) ≤ R̃∗
n(S) − inf

P∈S

∑

xn

P (xn) log

sup
P∈S

P (xn)

P (xn)

 . (9.23)

246 Chapter 9. Minimax Redundancy and Regret

(ii) [Lower Bound] If hypothesis (H) holds, that is, if Q∗ is contained in the
convex hull of S, then

R̃n(S) ≥ R̃∗
n(S) − sup

P∈S

∑

xn

P (xn) log

sup
P∈S

P (xn)

P (xn)

 . (9.24)

If (H1) holds, then one finds the following weaker lower bound

R̃n(S) ≥ R̃∗
n(S)− C − sup

P∈S

∑

xn

P (xn) log

sup
P∈S

P (xn)

P (xn)

 . (9.25)

Proof. For part (i) we just observe trivially

R̃n(S) = inf
Q

sup
P∈S

D(P ||Q) ≤ sup
P∈S

D(P ||Q∗)

= logDn(S) − inf
P∈S

∑

xn

P (xn) log

sup
P∈S

P (xn)

P (xn)

 .

For the lower bound (ii) we need to use Lemma 9.3.1. We have

R̃n(S) = inf
Q

sup
P∈S

D(P ||Q)

= logDn(S) + inf
Q

sup
P∈S

(
∑

xn

P (xn) log
Q∗(xn)

Q(xn)

−
∑

xn

P (xn) log

sup
P∈S

P (xn)

P (xn)

)

Lemma 9.3.1
≥ logDn(S) − sup

P∈S

∑

xn

P (xn) log

sup
P∈S

P (xn)

P (xn)

provided (H) holds.
The proof of (9.25) (under condition (H1)) is a simple extension of the proof

of (9.24). In fact, the maximal deviation can be bounded by

sup
P∈S

∣∣∣∣∣
∑

xn

P (xn) log
Q∗(xn)

Q̃(xn)

∣∣∣∣∣ ≤ C

and this completes the proof.

9.3. Average and Maximal Minimax Relationships 247

In view of the above we notice that (9.19) holds if

cn(S) := sup
P∈S

∑

xn

P (xn) log

sup
P∈S

P (xn)

P (xn)

 = o(logDn(S)). (9.26)

We will verify the above conditions for memoryless source in Section 9.3.2; they
also hold for Markovian sources, see Chapter 11.

Interestingly we have a stronger result for the minimax regret r(S) that
basically shows that the conjecture is true under postulate (H1).

Theorem 9.3.3. Let hypothesis (H) hold. Then

r̃n(S) = logDn(S) = R̃∗
n(S). (9.27)

Under (H1) we have

R̃∗
n(S)− C ≤ r̃n(S) ≤ R̃∗

n(S)
where C is the constant in (9.21).

Proof. We start with an upper bound that actually holds without assumption
(H). We have for any S

r̃n(S) = logDn(S) + inf
Q

sup
P∈S

(
∑

xn

P (xn) log
Q∗(xn)

Q(xn)

)

≤ logDn(S) + sup
P∈S

(
∑

xn

P (xn) log
Q∗(xn)

Q∗(xn)

)

= logDn(S).

For the lower bound we need to use Lemma 9.3.1. We proceed as follows

r̃n(S) = logDn(S) + inf
Q

sup
P∈S

(
∑

xn

P (xn) log
Q∗(xn)

Q(xn)

)
.

If (H) holds, then the second term is zero. Otherwise, under (H1) we can bound
it by a constant C. This proves the theorem.

Finally, for the maxmin regret rn(S) we can also establish a precise result.

248 Chapter 9. Minimax Redundancy and Regret

Theorem 9.3.4. Let Q∗ be defined in (9.16) and let R
H

n (P) be the average
minimax redundancy of the Huffman code for the distribution P . Then

rn(S) = logDn(S) + sup
P∈S

(R
H

n (P)−D(P ||Q∗))

= logDn(S)− inf
P∈S

D(P ||Q∗) +O(1)

= sup
P∈S

∑

xn

P (xn) log

sup
P∈S

P (xn)

P (xn)

+O(1).

If Q∗ ∈ S, then rn(S) = logDn(S) +O(1) = R∗
n(S) +O(1).

Proof. The calculations are straightforward:

rn(S) = sup
P∈S

min
Cn∈C

∑

xn

P (xn)[L(Cn, x
n) + log sup

P∈S
P (xn)]

= logDn(S) + sup
P∈S

min
Cn

∑

xn

P (xn)[L(Cn, x
n) + logQ∗(xn)]

= logDn(S)
+ sup

P∈S
min
Cn

∑

xn

P (xn)[L(Cn, x
n) + logQ∗(xn) + logP (xn)− logP (xn)]

= log

(
∑

xn∈An

sup
P∈S

P (xn)

)
+ sup

P∈S
min
Cn

∑

xn

P (xn)[L(Cn, x
n) + logP (xn)]

−
∑

xn

P (xn) log

(
P (xn)

Q∗(xn)

)

= logDn(S) + sup
P∈S

(R
H

n (P)−D(P ||Q∗))

= logDn(S) − inf
P∈S

D(P ||Q∗) +O(1)

= sup
P∈S

∑

xn

P (xn) log

sup
P∈S

P (xn)

P (xn)

+O(1)

which proves the desired result.

In view of the above results, we just proved that under (H1)

rn(S) = R∗
n(S) +O(1).

Furthermore, we have

rn(S) = cn(S) ≥ R∗
n(S) −Rn(S) +O(1).

If Q∗ ∈ S, then rn(S) = R∗
n(S) +O(1).

9.3. Average and Maximal Minimax Relationships 249

9.3.1. Proof of Lemma 9.3.1

Suppose that P1, . . . , PN are probability distributions on a finite set and Q̃ is a
convex convex combination of P1, . . . , PN , i.e.

Q̃ =
N∑

i=1

αiPi

with αi ≥ 0 and
∑N

i=1 αi = 1. We first show that for every Q 6= Q̃

N∑

i=1

αiD(Pi||Q̃) ≤
N∑

i=1

αiD(Pi||Q). (9.28)

By using the definition of D(P ||Q) it immediately follows that

N∑

i=1

D(Pi||Q) =

N∑

i=1

D(Pi||Q̃) +N D(Q̃||Q) >

N∑

i=1

D(Pi||Q̃).

Hence, (9.28) holds for αi of the form αi = 1/N .
It is clear that the case of rational numbers αi = Mi/M (with a common

denominator M) can be reduced to this case. We just have to set βj = 1/M for
1 ≤M and Qj = Pi for M1 + · · ·+Mi−1 + 1 ≤ j ≤M1 + · · ·+Mi. Then

N∑

i=1

αiD(Pi||Q) =
M∑

j=1

βjD(Qj ||Q),

and the lemma is proved since αi real can be viewed as a limit of the rational
case.

We now prove (9.22). Obviously we have

inf
Q

sup
P∈S

(
∑

x∈X

P (x) log
Q̃(x)

Q(x)

)
≤ 0.

(We only have to choose Q = Q̃.)

The converse inequality can be proved indirectly. Let Q̃ be contained in the
convex hull of S, i.e. there are finitely many P1, . . . , PN ∈ S such that Q̃ is
convex combination of the form

Q̃ =

N∑

i=1

αiPi.

250 Chapter 9. Minimax Redundancy and Regret

Suppose that there exists Q such that for all P

∑

x∈X

P (x) log
Q̃(x)

Q(x)
= D(P ||Q)−D(P ||Q̃) < 0.

Then we also have
N∑

i=1

αiD(Pi||Q) <

N∑

i=1

αiD(Pi||Q̃)

which is of course a contradiction to (9.28). Thus

inf
Q

sup
P∈S

(
∑

x∈X

P (x) log
Q̃(x)

Q(x)

)
≥ 0,

and this proves the lemma.

9.3.2. Hypothesis (H1) for Memoryless Sources

In what follows we show that the boundedness of cn(S) as well as the condition
(H1) are satisfied for memoryless sources. For more on memoryless sources, see
Chapter 10.

Lemma 9.3.5. Suppose thatm ≥ 2. Then we have uniformly for all p0, . . . , pm−1

≥ 0 with p0 + · · ·+ pm−1 = 1 and all n ≥ 1

∑

k0+···+km−1=n

(
n

k0 · · · km−1

)
pk0
0 · · · p

km−1

m−1 ln

(
k0

n

)k0 · · ·
(

km−1

n

)km−1

pk0
0 · · · p

km−1

m−1

≤ m− 1.

Proof. For notational convenience we only consider the binary casem = 2, where
we set p0 = p and p1 = 1− p. (The general case uses precisely the same ideas.)

By using the inequality lnx ≤ x− 1 we get

ln

(
k
n

)k (
1− k

n

)n−k

pk(1 − p)n−k
= k ln

k/n

p
+ (n− k) ln 1− k/n

1− p

≤ k

(
k/n

p
− 1

)
+ (n− k)

(
1− k/n
1− p − 1)

)

= n

(
(k/n)2

p
+

(1− k/n)2
1− p − 1

)
.

9.3. Average and Maximal Minimax Relationships 251

Since

n

n∑

k=0

(
n

k

)
pk(1− p)n−k (k/n)

2

p
= np+ (1− p),

we find

n

n∑

k=0

(
n

k

)
pk(1− p)n−k

(
(k/n)2

p
+

(1− k/n)2
1− p − 1

)

= np+ 1− p+ n(1− p) + p− n = 1,

which completes the proof of the lemma.

In view of this we conclude that that for memoryless sourcesM0

cn(M0) = sup
P∈S

∑

xn
1

P (xn1) log

sup
P∈CM0

P (xn1)

P (xn1)

 = O(1).

On passing we observe that we can be much more precise if we consider just
p with a ≤ p ≤ b, where 0 < a < b < 1. Here we have uniformly for a ≤ p ≤ b
as n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−k log

(
k
n

)k (
1− k

n

)n−k

pk(1− p)k =
1

2 ln 2
+O

(
n−1/2

)
.

Note that this relation is not true if a = 0 or b = 1.
Next we consider condition (H1) which states that Q∗ belongs “almost” to

the convex hull of S. For technical reasons we only consider the case m = 2.

Lemma 9.3.6. Suppose that m ≥ 2 and let S denote the set of all memoryless
sources with parameters p0, . . . , pm−1 ≥ 0 with p0 + · · · + pm−1 = 1. Let Q∗ be
the maximum likelihood distribution corresponding to S, that is,

Q∗(xn) =
kk0
0 · · · k

km−1

m−1∑
ℓ0+···ℓkm−1

=n ℓ
ℓ0
0 · · · ℓ

ℓm−1

m−1

,

where kj = |{1 ≤ k ≤ n : xi = j}, j ∈ {0, 1, . . . ,m − 1}. Then there exists a

convex combination Q̃ of S such that

max
xn

∣∣∣∣∣log
Q∗(xn)

Q̃(xn)

∣∣∣∣∣ = O(1)

as n→∞.

252 Chapter 9. Minimax Redundancy and Regret

Proof. We just consider the binary case m = 2. The general case can be handled
in the same way. Our goal is to show that there exist positive numbers βl such
that the sums

sk :=

n∑

l=0

βll
k(n− l)n−k

satisfy

max
0≤k≤n

∣∣∣∣log
sk

kk(n− k)n−k

∣∣∣∣ = O(1). (9.29)

Then we just have to define Q̃ by normalizing sk.
We now show that we can use

βk :=

(
n∑

l=0

(
l

k

)k (
n− l
n− k

)n−k
)−1

.

Observe that the function l → lk(n− l)n−k has its maximum at l = k and a local

expansion of the form (k+ δ)k(n− k− δ)n−k ∼ kk(n− k)n−k exp
(
− n

2k(n−k) δ
2
)
.

Thus, we obtain

βk =

√
n

2πk(n− k)

(
1 +O

(
n

k(n− k)

))

and after some algebra

sk
kk(n− k)n−k

=
n∑

l=0

βl

(
l

k

)k (
n− l
n− k

)n−k

= 1 +

n∑

l=0

(βl − βk)
(
l

k

)k (
n− l
n− k

)n−k

= 1 +O

(√
n

k(n− k)

)
.

This proves (9.29).

In the binary case it is also possible to cover the case a ≤ p ≤ b with
0 < a < b < 1. We have

sup
p∈[a,b]

pk(1− p)n−k =

ak(1− a)n−k for 0 ≤ k < na,(
k
n

)k (
1− k

n

)n−k
for na ≤ k ≤ nb,

bk(1− b)n−k for nb < k ≤ n.

9.4. Regret for Online Learning 253

Here we show that there exist positive numbers βl (an ≤ l ≤ bn) such that the
sum

sk :=
∑

an≤l≤bn

βll
k(n− l)n−k

satisfies

max
an≤k≤bn

∣∣∣∣log
sk

kk(n− k)n−k

∣∣∣∣ = O(1), (9.30)

max
0≤k<an

∣∣∣∣log
sk

(an)k(n− an)n−k

∣∣∣∣ = O(1), (9.31)

and

max
bn<k≤n

∣∣∣∣log
sk

(bn)k(n− bn)n−k

∣∣∣∣ = O(1). (9.32)

We define βk by

βk :=

{
1/
√
n for ⌈an⌉ < k < ⌊bn⌋,

1 for k = ⌈an⌉ and k = ⌊bn⌋.

First, (9.31) follows from

(an)k(n− an)n−k ≤ (an)k(n− an)n−k +
1√
n

∑

l>an

lk(n− l)n−k

= O((an)k(n− an)n−k)

if k ≤ an. Observe that (9.32) is just the symmetric case. Thus it remains to
show (9.30).

It is clear that the mapping l 7→ ℓk(n − ℓ)n−k attains its maximum for
ℓ = k. A local expansion (around this optimal value) shows that for every fixed
0 < a < b < 1 there exist two positive constants c1, c2 such that

c1
√
nkk(n− k)n−k ≤

∑

an≤k≤bn

lk(n− l)n−k ≤ c2
√
nkk(n− k)n−k

for all k with an ≤ k ≤ bn. Thus, (9.30) follows.

9.4. Regret for Online Learning

Online learning is a popular sequential machine learning approach that has been
used for such tasks as category classification, click-through-rate prediction, and
risk assessment. In this case a model consists of a set of features, whose param-
eters represent their effect on some outcome. In an online setup, such a model

254 Chapter 9. Minimax Redundancy and Regret

is trained to learn these parameters from examples whose outcomes are already
labeled. The training algorithm consumes data in rounds, where at each round
t, it is allowed to predict the label based only on the labels it observed in the
past t − 1 rounds. The prediction algorithm incurs some loss and updates its
belief of the model parameters. The regret of an online algorithm is defined as
the total (excess) loss it incurs over some value of a constant comparator that is
used for prediction for the complete sequence.

More precisely, in machine learning, in particular, in online learning, the
rounds of learning are denoted by t. We adopt it in this subsection. We denote by
xt = (x1,t, . . . , xd,t) a d-dimensional feature vector with xi,t ∈ R for i = 1, . . . , d
and t = 1, . . . , T , and by xT the T × d matrix with rows xt, t = 1, . . . , T .
The label binary vector is written as yT = (y1, . . . , yT). We mostly consider
linear predictors and by wt = (w1,t, . . . , wd,t) we denote a d-dimensional vector
of weights. Notice that T in this section plays the same role as n in previous
sections.

We now phrase our learning problem in terms of a game between nature/
environment and a learner. At each round the learner obtains a d dimensional
input/ feature vector xt and makes prediction ŷt. Then nature reveals the true
output/ label yt. Throughout we assume binary labels yt ∈ Y = {−1, 1} We
also assume that ŷt ∈ Ŷ which is usually some interval. Thus at round t the
learner incurs some loss which we denote as ℓ : Ŷ × Y 7→ R.

In online regret analysis, we are interested in comparing the accumulated loss
of the learner with that of the best strategy within a predefined class of predictors
(experts) denoted as H. More precisely, H is a collection of prediction functions
h : Rd 7→ Ŷ , with input being xt at each time t. Given a learner prediction
function gt : Ŷt−1×Rtd and after T rounds with the realizations (yt,xt)

T
t=1, the

pointwise regret is defined as

R(gT , yT ,H|xT) =

T∑

t=1

ℓ(ŷt, yt)− inf
h∈H

T∑

t=1

ℓ(h(xt), yt),

where ŷt = gt(y
t−1,xt). The first and the second summations above represent

the accumulated loss of the learner and the best predictor in H, respectively.
There are two main perspectives on analyzing the regret, highlighted next.

Fixed Design: This point of view studies the minimal regret for the worst
realization of the label with the feature vector xT known in advance. Let gt, t > 0
be the strategy of the predictor. Then, the fixed design minimax regret is defined
as

r∗T (H|xT) = inf
gT

sup
yT

R(gT , yT ,H|xT). (9.33)

9.4. Regret for Online Learning 255

Further, the fixed design maximal minimax regret is given by

r∗T (H) = sup
xT

inf
gT

sup
yT

R(gT , yT ,H|xT). (9.34)

Sequential Design: In this point of view, the optimization on regret is per-
formed at every time t without knowing in advance xT or yT . Then the sequential
minimax regret is defined as

raT (H|xT) = inf
ŷ1

sup
y1

· · · inf
ŷT

sup
yT

R(ŷT , yT ,H|xT). (9.35)

Moreover, the sequential maximal minimax regret is

raT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

R(ŷT , yT ,H|xT). (9.36)

The sequential regret should be interpreted as follows. At round t = 1, the
adversarial chooses a vector x1 ∈ Rd that gives the worst regret for the best
choice of ŷ1 for the worst choice of y1 and for the interleaved worst, best, worst
choices of xt, h(·) to compute ŷt and yt, respectively. Then, for the given x1, and
subsequent worst/best choices, the player chooses ŷ1, and the adversary chooses
the worst choice of y1 We ask the reader in Exercise 9.9 to compare rT (x

T) to
raT (x

T) and see under what conditions they are equal.
More specifically, we consider a hypothesis (expert) class defined as follows

Hp,w = {h : Rd → R : h(x) = p(〈w,x〉) : w,x ∈ Rd}, (9.37)

where w is a d dimensional weight vector with 〈w,x〉 being the scalar product,
and p(w) with w = 〈w,x〉 is a proper probability function defining the class
Hp. Often p(w) is either the logistic function p(w) = (1 + exp(−w))−1 (see
Section 10.5 in the next chapter) or the probit function p(w) = Φ(−w) where
Φ(w) is distribution function of the normal distribution

In this book we study only logarithmic loss as this is the most relevant for
universal compression. For any h ∈ H, we interpret h(x) = p(〈w,x〉) ∈ [0, 1] as
the conditional probability P (−1|x,w) assigned to y = −1 ∈ Y, that is,

h(x) = p(〈w,x〉) = P (y = −1|x,w). (9.38)

Similarly we have 1− p(〈w,x〉) = P (y = 1|x,w).
This should be seen in connection to the logarithmic loss function ℓ(p, y) =

− log |(1 + y)/2 − p| for y ∈ {−1, 1} (often used in ML) which is related to
− logP (y), also used to define the minimax regret in universal source coding.
This is better justified in the below lemma.

256 Chapter 9. Minimax Redundancy and Regret

Lemma 9.4.1. Let ℓ : [0, 1] × {−1, 1} → R+ be the logarithmic loss function
defined as

ℓ(p, y) = − log

∣∣∣∣
1 + y

2
− p
∣∣∣∣

for all p ∈ [0, 1] and y ∈ {−1, 1}. Then,

ℓ(p, y) =

{
− log p for y = −1,
− log(1 − p) for y = 1.

Proof. If y = −1 then we have

ℓ(p,−1) = − log p

whereas for y = 1
ℓ(p, 1) = − log(1− p)

as proposed.

Hence, we can write

T∑

t=1

ℓ(h(xt), yt) = −
T∑

t=1

logP (yt|xt,w) = − logP (yT |xT ,w),

where P (yT |xT ,w) abbreviates

P (yT |xT ,w) =

T∏

t=1

P (yt|xt,w).

In a similar way we interpret ℓ(ŷt, yt) = ℓ(gt(y
t−1,xt), y) in terms of a con-

ditional probability Q(yt|yt−1,xt):

ℓ(ŷt, yt) = − logQ(yt|yt−1,xt).

Hence,
T∑

t=1

ℓ(ŷt, yt) = − logQ(yT |xT),

since
T∏

t=1

Q(yt|yt−1,xt) = Q(yT |xT),

where Q encodes the algorithmic learning distribution part up to T .

9.4. Regret for Online Learning 257

We should observe that the online learning can be viewed as a generalization
of the universal source coding with side information xt. In this interpretation
H is represented by the class of sources S and Q can be viewed as a universal
distribution.

In view of the above definitions, we can now specifically rewrite the pointwise
regret as

RT (g
T , yT |xT) = − logQ(yT |xT) + sup

w

P (yT |xT ,w)) (9.39)

and then the (maximal) minimax regret studied here is given by

r∗T (x
T) = inf

gT
max
yT

RT (Q, y
T |xT) (9.40)

= inf
Q

max
yT

(
− logQ(yT |xT) + sup

w

P (yT |xT ,w))

)
.

As in universal source coding, in order to study precisely the minimax regret
r∗T (x

T) we need a more succinct and computationally manageable representation
of it. This can be accomplished through a proper generalization of the Shtarkov
sum:

DT (x
T) :=

∑

yT

sup
w∈Rd

P (yT |xT ,w). (9.41)

If we define

P ∗(yT |xT) :=
supw∈Rd P (yT |xT ,w)∑
vT supw∈Rd P (vT |xT ,w)

(9.42)

as the maximum-likelihood distribution, then

r∗T (x
T) = inf

Q
max
yT

(
− logQ(yT |xT) + sup

w

P (yT |xT ,w))

)

= inf
Q

max
yT

(− logQ(yT |xT) + logP ∗(yT |xT)) (9.43)

+ log
∑

yT

sup
w∈Rd

P (yT |xT ,w)

= log
∑

yT

sup
w∈Rd

P (yT |xT ,w) = logDT (x
T)

where we infimum is certainly attained for Q(yT ,xT) = P ∗(yT |xT). Indeed,
since Q and P ∗ are distributions, there is at least one yT such that the first
term in (9.43) is nonnegative if Q 6= P ∗.

258 Chapter 9. Minimax Redundancy and Regret

9.5. Exercises

9.1 Establish (9.10).

9.2 Justify that the minimax theorem of game theory can be used to prove
(9.11).

9.3 Prove that the optimal prior (9.13) is asymptotically optimal (see Bernardo
(1979)). Then for memoryless sources show that the Jeffrey’s prior (9.14)
are optimal.

9.4 Find an efficient algorithm to estimate the maximum likelihood distri-
bution defined in (9.16).

9.5
(MX) The (strongly) ψ-mixing source is defined as follows: Let Fn

m be a σ-
field generated by Xn

m with m ≤ n. The source is called mixing, if there
exists a bounded function ψ(g) such that for all m, g ≥ 1 and any two
events A ∈ Fm

1 and B ∈ F∞
m+g the following holds

(1− ψ(g))P (A)P (B) ≤ P (AB) ≤ (1 + ψ(g))P (A)P (B) (9.44)

If, in addition, limg→∞ ψ(g) = 0, then the source is called strongly
mixing.
In words, model MX postulates that the dependency between Xm

k=1

and X∞
k=m+g is getting weaker and weaker as g becomes larger The

“quantity” of dependency is characterized by ψ(g). We can write the ψ-
mixing condition in an equivalent form as follows: There exist constants
c1 ≤ c2 such that

c1P (A)P (B) ≤ P (AB) ≤ c2P (A)P (B) (9.45)

for all m, g ≥ 1. In some derivations, we shall require that c1 > 0 which
will impose further restrictions on the process For mixing sources deter-
mine whether postulates (H) and/or (H1) hold. Furthermore, estimate
cn(MX) defined in (9.26).

9.6 Using the fact that Γ(x+ 1) = xΓ(x) recover the well known smoothed
add-1/2 estimator also know as the Krichevsky-Trofimov estimator (see
Krichevsky and Trofimov (1981))

Q
(
yt|yt−1

)
=
nt−1 (yt) + 0.5

t
,

where nt−1 (yt) denotes the count of past occurrences of the label yt in
the t− 1 initial labels.

Bibliographical notes 259

9.7 Assume that X = (X1, . . . Xm) is distributed as Dirichlet distribution
Dir(x;α) with parameters α1, . . . , αm. Prove that

E[logXi] = Ψ(αi)−Ψ(
∑

k

αk)

where Ψ is the Euler psi function.

9.8 Prove that if X is distributed according to Dir(x,α), then the entropy
H(X) becomes

H(X) = logB(α) + (α0 −m)Ψ(α0) =

m∑

i=1

(αi − 1)Ψ(αj)

where α0 =
∑

i αi.

9.9 Compare rT (x
T) defined in (9.33) and ra(xT) defined in (9.35) and

establish under what conditions

rT (x
T) = ra(xT)

for all xT (see Wu, Heidari, Grama, and Szpankowski (2022)).

9.10 Consider the following one dimensional logistic function

ℓ(w) = (1 + exp(−w))−1
.

Find a good approximation of this function via the cumulative function
Φ(x) of the standard normal distribution.

9.11 Consider a one-dimensional d = 1 logistic regret as in Section 9.4 with
xt = 1 for all t. Prove that

r∗T =
1

2
logT − 1

2
log(2) +O(1/

√
T).

Bibliographical notes

Universal coding can be traced back to seminal works of Davisson (1973), Davis-
son and Leon-Garcia (1980), Gallager (1968), Rissanen (1984b), Rissanen (1984a)
Krichevsky and Trofimov (1981), and Shtarkov (1987). Rissanen (1996) pointed
out that universal coding evolved into universal modeling and learning. We
should also mention work of Kieffer (1978, 1991) on unified approach to weak
universal coding.

The last 20 years have seen a resurgence of interest in redundancy rates for
lossless coding: Atteson (1999), Drmota and Szpankowski (2004), Csiszar and

260 Minimax Redundancy and Regret

Shields (1996), Louchard and Szpankowski (1995), Barron, Rissanen, and Yu
(1998), Savari (1997), Jacquet and Szpankowski (2004), Szpankowski (1998),
Xie and Barron (1997, 2000), Weinberger et al. (1994), Weinberger, Rissanen,
and Feder (1995), Wyner (1997), Wyner and Ziv (1989), and more Orlitsky,
Santhanam, and Zhang (2004), Orlitsky and Santhanam (2004), Ornstein and
Shields (1990), Shamir (2006b, 2006a, 2013), Shields (1993, 1996). We shall dis-
cuss some of these references in a more detailed way in the next chapters. Some
of them deal with finite alphabets while others such as Orlitsky et al. (2004), Or-
litsky and Santhanam (2004), Shamir (2006b, 2006a, 2013) consider unbounded
alphabets or alphabets with some extra properties such as monotonicity condi-
tion.

Regret for logistic regression has been recently studied in Foster, Kale, and-
Mehryar Mohri, and Sridharan (2018), Hazan, Agarwal, and Kale (2007), Hazan
(2008), Hazan, Koren, and Levy (2014), Kakade and Ng (2005), McMahan and
Streeter (2012), Shamir (2020). The adversarial regret is discussed in Rakhlin
and Sridharan (2014, 2015), Rakhlin, Sridharan, and Tewari (2010), Ben-David,
Pál, and Shalev-Shwartz (2009). See also Wu et al. (2022). Machine learning
problems and techniques are discussed in many book, e.g., Shalev-Shwartz and
Ben-David (2014), Mohri, Rostamizadeh, and Talwalker (2018).

This chapter is mainly based on Drmota and Szpankowski (2004).

CHAPTER 10

Redundancy of Universal

Memoryless Sources

In this chapter we assume that an unknown source from the class S = M0 of
memoryless sources generates a sequence xn over the alphabet A = {0, . . . ,m−
1}. In other words, the empirical probability of xn can be written as

P (xn) = Pθ(xn) =

m−1∏

i=0

θki

i (10.1)

where ki is the number of symbol i ∈ A occurring in xn, and θi is the un-
known probability of generating symbol i.1 Throughout we assume that θ =
(θ0, . . . , θm−1) ∈ Θ where

Θ = {θ : θi ≥ 0 (0 ≤ i ≤ m− 1), θ0 + · · ·+ θm−1 = 1}.

In this chapter we first discuss in Section 10.1 and 10.2 the maximal min-
imax redundancy R∗

n, and then in Section 10.3 the average minimax Rn. In
Section 10.1 we assume that the alphabet size m is finite while in Section 10.2
we deal with alphabets, where the size m = m(n) may depend on n and is not
necessarily bounded. For finite alphabet we analyze in Section 10.1.3 the case
when the unknown probabilities θ are restricted to a subset S ∈ Θ (for example,
in the binary case we could postulate that 0 < a ≤ θ0 ≤ b < 1).

10.1. Maximal Minimax Redundancy for Finite Alphabet

We now assume that the alphabet sizem is finite and fixed (and does not depend
on n) and the unknown probabilities 0 ≤ θi ≤ 1 are not constrained.

1Throughout this chapter we use the notation θi for the probability of the symbol i and
not pi.

262 Chapter 10. Redundancy of Universal Memoryless Sources

In Lemma 9.2.2 of Chapter 9 we derived a useful characterization of the
maximal minimax R∗

n, namely

R∗
n = R∗

n(Q
∗) + R̃∗

n = R∗
n(Q

∗) + logDn

where
Dn :=

∑

xn

sup
P∈M0

P (xn)

and
R∗

n(Q
∗) = min

Cn∈C
max
xn

[L(Cn, x
n) + logQ∗(xn)]

is the redundancy of the generalized Shannon code for distribution Q∗. We
discussed the generalized Shannon code redundancy for a fixed distribution P in
Section 2.3 of Chapter 2. We will use the term “coding redundancy” for R∗

n(Q
∗).

In the next Section 10.1.1 we derive precise asymptotics for the coding re-
dundancy R∗

n(Q
∗). Then in Section 10.1.2 we deal with the main asymptotic

terms of the maximal minimax redundancy, namely R̃∗
n = logDn, finishing this

section with deriving in Section 10.1.3 the maximal minimax redundancy when
the unknown probabilities θi are constrained.

10.1.1. Coding Contribution: Asymptotics of R∗
n(Q

∗)

We now deal with R∗
n(Q

∗). Clearly, it is bounded between 0 and 1, however, we
would like to have a more precise estimate.

In Chapter 2 we discussed the maximal redundancy R∗
n(P) for a given distri-

bution P . In particular, we proved in Theorem 2.3.2 that in the case of a binary
memoryless source we have

R∗
n(P) = −

ln ln 2

ln 2
+ o(1),

provided that log(θ0/(1−θ0)) is irrational. In the rational case R∗
n(P) fluctuates

as shown in (2.80). By the way, for an m-ary alphabet we can prove in a similar
way that

R∗
n(P) =

ln
(

1
m−1 lnm

)

lnm
+ o(1),

in the irrationally related case.
Surprisingly enough, we can show that R∗

n(Q
∗) behaves similarly. For the

sake of brevity we only present the binary case.

10.1. Maximal Minimax Redundancy for Finite Alphabet 263

Theorem 10.1.1. Consider a binary alphabet and fix two numbers a, b with
0 ≤ a < b ≤ 1. Let S denote the set of binary memoryless sources with a ≤ θ =
θ0 ≤ b. Then, as n→∞,

R∗
n(Q

∗) = − ln ln 2

ln 2
+ O

(
logn

n1/9

)
. (10.2)

We prove this theorem in the rest part of this section. We first recall that

sup
θ∈[a,b]

θk(1 − θ)n−k =

ak(1− a)n−k for 0 ≤ k < na,(
k
n

)k (
1− k

n

)n−k
for na ≤ k ≤ nb,

bk(1− b)n−k for nb < k ≤ n
(10.3)

and

Q∗(xn) =
supθ∈[a,b] θ

k(1− θ)n−k

Dn
,

where Dn =
∑

xn supθ∈[a,b] θ
k(1− θ)n−k.

Next, we need to compute R∗
n(Q

∗), as we did in Chapter 2 for a given dis-
tribution. There, we reduced the evaluation of the redundancy R∗

n(Q
∗) to a

verification of the Kraft’s inequality that in our case becomes

∑

xn
1

Q∗(xn1)fs0(〈− logQ∗(xn1)〉)

where fs0(x) = 2−〈s0−x〉+s0 for some 0 ≤ s0 < 1. Thus, the problem is to
evaluate the following sum

n∑

k=0

(
n

k

) sup
θ∈[a,b]

θk(1 − θ)n−k

Dn
fs0

(
− log

(
sup

θ∈[a,b]

θk(1− θ)n−k

)
+ logDn

)

=
1

Dn

∑

k<an

(
n

k

)
ak(1− a)n−kfs0(− log(ak(1 − a)n−k) + logDn)

+
1

Dn

∑

an≤k≤bn

(
n

k

)(
k

n

)k (
1− k

n

)n−k

fs0

(
− log

((
k

n

)k (
1− k

n

)n−k
)

+ logDn

)

+
1

Dn

∑

k>bn

(
n

k

)
bk(1− b)n−kfs0(− log(bk(1− b)n−k) + logDn)

= S1 + S2 + S3.

264 Chapter 10. Redundancy of Universal Memoryless Sources

Since

Dn ≥
∑

an≤k≤bn

(
n

k

)(
k

n

)k (
1− k

n

)n−k

∼
∑

an≤k≤bn

√
n

2πk(n− k)

∼
√
n√
2π

∫ b

a

dx√
x(1 − x)

and fs0(x) = O(1) we directly find

S1 = O(n−1/2) and S3 = O(n−1/2).

Thus, it remains to study S2.
We prove the following lemma.

Lemma 10.1.2. Suppose that 0 ≤ a < b ≤ 1. Then for every Riemann inte-
grable function f : [0, 1]→ R of bounded variation V 1

0 (f) and for every sequence
xn,k, an ≤ k ≤ bn, of the form

xn,k = k log k + (n− k) log(n− k) + cn,

where cn is an arbitrary sequence, we have

1

Dn

∑

an≤k≤bn

(
n

k

)(
k

n

)k (
1− k

n

)n−k

f(〈xn,k〉) =
∫ 1

0

f(x) dx+O

(
V 1
0 (f)

logn

n1/9

)

(10.4)

Proof. We first show that xn,k is Q∗-u.d. sequence modulo 1 as defined in dis-
cussed in Chapter 2 and Appendix E. In particular, we will apply the Koksma-
Hlawka inequality (Theorem E.2.4) to derive the error term in (10.4). For this
purpose we just have to obtain an upper bound for the discrepancy (see Theo-
rem E.2.1 of Appendix E for a precise definition)

D(Q∗)
n (xk) = O

(
logn

n1/9

)
. (10.5)

By the Erdős-Turán-Koksma inequality (Theorem E.2.3) the discrepancy can
be estimated with the help of exponential sums

S̃(h) :=
∑

an≤k≤bn

an,ke
2πihxnk ,

10.1. Maximal Minimax Redundancy for Finite Alphabet 265

where h is an integer and

an,k =

(
n

k

)(
k

n

)k (
1− k

n

)n−k

.

We have (for every integer H ≥ 1)

D(Q∗)
n (xk) ≤

3

2(H + 1)
+

3

An

H∑

h=1

1

h

∣∣∣S̃(h)
∣∣∣ ,

where

An =
∑

an≤k≤bn

an,k ∼
√
n√
2π

∫ b

a

dx√
x(1 − x)

.

First, we consider the following exponential sum

S :=
∑

an≤k≤cn

e2πi(h(k log k+(n−k) log(n−k)),

where c ∈ [a, b], and h is an arbitrary non-zero integer. By Van-der-Corput’s
method (see (E.1) from Appendix E) we know that

S = O

(|F ′(cn)− F ′(an)|+ 1√
λ

)
,

where λ = min
an≤y≤cn

|F ′′(y)| > 0 and

F (y) = h(y log y + (n− y) log(n− y)).

Since |F ′(y)| ≪ h logn, and |F ′′(y)| ≫ h/n (uniformly for an ≤ y ≤ cn) we
immediately find

S = O
(
logn

√
hn
)

and consequently ∑

an≤k≤cn

e2πihxnk = O
(
log n

√
hn
)
.

Note that all these estimates are uniform for c ∈ [a, b].

Next we consider the exponential sum S̃(h). By elementary calculations we
obtain (uniformly for an ≤ k ≤ bn) an,k ≪ min(k, n− k)−1/2 and

|an,k+1 − an,k| ≪ min(k, n− k)−3/2.

266 Chapter 10. Redundancy of Universal Memoryless Sources

Thus, if a > 0 and b < 1 we have an,k ≪ n−1/2 and |an,k+1 − an,k| ≪ n−3/2.
Consequently by partial summation

|S̃(h)| ≤ an,bn

∣∣∣∣∣∣

∑

an≤k≤bn

e2πihxn,k

∣∣∣∣∣∣

+
∑

an≤k<bn

|an,k+1 − an,k|

∣∣∣∣∣∣

∑

an≤ℓ≤k

e2πihxn,ℓ

∣∣∣∣∣∣

= O
(
n−1/2 logn

√
hn+ nn−3/2 logn

√
hn
)

= O
(√

h logn
)
.

Note that the shifting sequence cn does not change the absolute value of the
exponential sums S̃(h).

Next suppose that a = 0 and b < 1. Set ε = (h/n)1/4. Then

|S̃(h)| ≤
∑

k≤εn

an,k +

∣∣∣∣∣∣

∑

εn≤k≤bn

an,ke
2πihxnk

∣∣∣∣∣∣

= O
(√

εn+ n−1/2 logn
√
hn+ n(εn)−3/2 logn

√
hn
)

= O
(
(logn)h1/8n3/8

)
.

The case b = 1 is completely similar to handle.
If 0 < a < b < 1 we set H = n1/3 and find

3

2(H + 1)
+

3

An

H∑

h=1

1

h

∣∣∣S̃(h)
∣∣∣

= O

(
1

H + 1
+

H∑

h=1

1

h

√
h
logn√
n

)

= O

(
logn

n1/3

)

If a = 1 or b = 1 we choose H = n1/9 and obtain the upper bound

1

H + 1
+

H∑

h=1

1

h
h1/8

logn

n1/8
= O

(
log n

n1/9

)
.

10.1. Maximal Minimax Redundancy for Finite Alphabet 267

Thus, in all cases we obtain the upper bound (10.5) for the discrepancy. As
mentioned above, this proves the lemma.

To complete the proof of Theorem 10.1.1 we note that we are now in a similar
situation as in the proof of Theorem 2.3.1 of Chapter 2. We apply (10.4) with
fs0(x), that has variation V

1
0 (fs0) = 2. We thus, obtain

∑

〈−Q∗(xn)〉<s0

Q∗(xn)2〈−Q∗(xn)〉 +
1

2

∑

〈−Q∗(xn)〉≥s0

Q∗(xn)2〈−Q∗(xn)〉

=
1

Dn

∑

an≤k≤bn

an,kfs0(〈xn,k〉) +O
(
n− 1

2

)

=
2s0−1

log 2
+O

(
n− 1

2

)
+O

(
logn

n1/9

)

=
2s0−1

ln 2
+O

(
log n

n1/9

)
.

This implies that t0 (in the sense of Theorem 2.3.1) is given by

t0 = 1+
ln ln 2

ln 2
+O

(
logn

n1/9

)

and consequently (10.41) follows:

R∗(Q∗) = 1− t0 = − ln ln 2

ln 2
+O

(
logn

n1/9

)

and this completes the proof of Theorem 10.1.1.

10.1.2. Unknown Statistics Contribution: Asymptotics of R̃∗
n

We now deal with the main term of the maximal minimax redundancy, namely
with R̃∗

n = logDn where

Dn =
∑

xn
1

sup
P∈M0

P (xn1) . (10.6)

268 Chapter 10. Redundancy of Universal Memoryless Sources

Observe that, with ki being the number of times symbol i ∈ A occurs in a string
of length n, we have

Dn =
∑

xn

sup
θ0+...+θm−1=1

θk0
0 · · · θ

km−1

m−1

=
∑

k0+···+km−1=n

(
n

k0, . . . , km−1

)
sup

θ0+...+θm−1=1
θk0
0 · · · θ

km−1

m−1

=
∑

k0+···+km−1=n

(
n

k0, . . . , km−1

)(
k0
n

)k0

· · ·
(
km−1

n

)km−1

.

We also set D0 = 1.
In summary,

Dn =
∑

k0+···+km−1=n

(
n

k0, . . . , km−1

)(
k0
n

)k0

· · ·
(
km−1

n

)km−1

, (10.7)

which we can re-write as

Dn =
n!

nn

∑

k0+···+km−1=n

(
k0
n

)k0

· · ·
(
km−1

n

)km−1

.

This suggest to define the following so called tree-like generating function

D(z) =

∞∑

n=0

nn

n!
Dnz

n,

which becomes

D(z) =

∞∑

n=0

zn
∑

k0+···+km−1=n

(
k0
n

)k0

· · ·
(
km−1

n

)km−1

.

In view of the above we conclude that D(z) is the m-convolution of sequences
like kk/k!, thus we need to study the following tree-like generating function

B(z) =

∞∑

k=0

kk

k!
zk. (10.8)

But this generating function, in turn, satisfies (see Exercise 10.1)

B(z) =
1

1− T (z) (10.9)

10.1. Maximal Minimax Redundancy for Finite Alphabet 269

for |z| < e−1, where T (z) is the well-known tree function (that enumerates, for
example, all rooted labeled trees), defined as

T (z) =

∞∑

k=1

kk−1

k!
zk, (10.10)

which is also a solution to the implicit equation

T (z) = zeT (z) (10.11)

with |T (z)| < 1. In terms of the standard Lambert-W function, we have T (z) =
−W (−z) (see Appendix C).

In summary, we just established the following lemma.

Lemma 10.1.3. The function D(z) of nn

n! Dn satisfies, for |z| < e−1,

D(z) = B(z)m =
1

(1− T (z))m

and, consequently,

Dn =
n!

nn
[zn]B(z)m. (10.12)

Our next step is to derive asymptotic expansion for Dn. This requires to
understand the singularities of B(z) and T (z). Since Euler it is known that
T (z) has a singularity at z = e−1, and around this point it has the following
expansion (see Corless et al. (1996) for a full asymptotic expansion, the leading
term follows also from Theorem C.5.4 from Appendix C and the functional
equation T = zeT):

T (z) = 1−
√
2(1− ez)+2

3
(1−ez)−11

√
2

36
(1−ez)3/2+ 43

135
(1−ez)2+O((1−ez)5/2) .

Then, B(z) can also be expanded around z = e−1 leading to

B(z) =
1√

2(1− ez)
+

1

3
−
√
2

24

√
(1− ez) + 4

135
(1− ez)

− 23
√
2

1728
(1− ez)3/2 +O((1 − ez)2) .

To extract the coefficients at zn of of B(z)m for finitem we use the transfer prin-
ciple of Lemma C.5.2 (from Appendix C) which allow us to compute separately
the coefficients for every function involved in the asymptotic expansion.

270 Chapter 10. Redundancy of Universal Memoryless Sources

By taking only the first two terms into account we find

B(z)m = (2(1− ez))−m
2 +

m

3
(2(1− ez))−m−1

2 +O
(
(2(1− ez))−m−2

2

)

and consequently

Dn =
n!en

nn

(
2−

m
2

Γ
(
m
2

)nm
2 −1 +

m2−
m−1

2

3Γ
(
m−1
2

)nm
2 − 3

2 +O
(
n

m
2 −2

)
)

=
Γ
(
1
2

)m

Γ
(
m
2

)
(n
2π

)m−1
2

(
1 +

m
√
2Γ
(
m
2

)

3Γ
(
m−1
2

)√
n
+O(n−1)

)
.

This leads directly to

R̃∗
n = logDn =

m− 1

2
log
(n
2π

)
+ log

Γ
(
1
2

)m

Γ
(
m
2

) +
m log e

√
2Γ
(
m
2

)

3Γ
(
m−1
2

)√
n

+O(n−1).

Since we have (in principle) the full singular expansion of B(z) we can be
much more precise and obtain the following result.

Theorem 10.1.4. Consider a class of memoryless sourcesM0 over the alpha-
bet of fixed size m. Then we have the following asymptotic series expansion:

R̃∗
n ∼

m− 1

2
log
(n
2π

)
+ log

Γ
(
1
2

)m

Γ
(
m
2

) +
Γ(m2)m

3 ln 2 Γ(m−1
2)
·
√
2√
n

+

(
3 +m(m− 2)(2m+ 1)

36
− Γ2(m2)m

2

9Γ2(m−1
2)

)
· 1
n

+

∞∑

k=3

ck
nk/2

(10.13)

where ck are explicitly computable constants.

10.1.3. Redundancy for Constrained Distributions

Let us first consider the binary case, where we have now a complete picture. As
above we assume that θ0 ∈ [a, b] for some 0 ≤ a < b ≤ 1.

Theorem 10.1.5. Let 0 < a < b < 1 be given and let Θa,b = {P : a ≤ θ0 ≤ b}.
Then as n→∞

R∗
n(Θ

a,b) =
1

2
log
(n
2π

)
+ log π + log Ca,b −

ln ln 2

ln 2
+O

(
n−1/9 logn

)
, (10.14)

10.1. Maximal Minimax Redundancy for Finite Alphabet 271

where

Ca,b =
1

π

∫ b

a

dx√
x(1 − x)

=
2

π
(arcsin

√
b− arcsin

√
a).

Proof. We already observed that

Dn(Θ
a,b) =

∑

k<na

(
n

k

)
ak(1 − a)n−k +

∑

na≤k≤nb

(
n

k

)(
k

n

)k (
1− k

n

)n−k

+
∑

k>nb

(
n

k

)
bk(1 − b)n−k

=

√
n

2π

∫ b

a

dx√
x(1 − x)

+O(1)

= 2

√
n

2π
(arcsin

√
b− arcsin

√
a) +O(1)

which leads to

R̃∗
n(Θ

a,b) = logDn(Θ
a,b) =

1

2
log
(n
2π

)
+ log π + log Ca,b +O(n−1/2).

By Theorem 10.1.1

R∗
n(Q

∗) = − ln ln 2

ln 2
+O

(
n−1/9 log n

)

and by the general property

R∗
n(Θ

a,b) = R̃∗
n(Θ

a,b) +R∗
n(Q

∗)

which completes the proof.

Now we consider a general but finite alphabet of size m and study the (con-

tinuous) redundancy R̃∗
n in the constrained case S 6= Θ. In the unconstrained

case we know that

sup

m−1∏

i=0

θki

i =

m−1∏

i=0

(ki/n)
ki ,

, that is, we know the optimal θi = ki/n. The situation is more complicated
in the constrained case. For example, if we assume an interval restriction ai ≤
θi ≤ bi, i = 0, . . . ,m− 2, then for ki < nai or ki > nbi the optimal θi may be ai
or bi, respectively. Fortunately, we are able to prove (see Exercise 10.2) that the

272 Chapter 10. Redundancy of Universal Memoryless Sources

main contribution to Dn comes from those k = (k1, . . . , km) for which k/n ∈ S.
So we are led to analyze the following sum

D(S)
n =

∑

k∈nS

(
n

k0, · · · km−1

)m−1∏

i=0

(
ki
n

)ki

which is of order n
m−1

2 as proved below Theorem 10.1.6. By a standard analysis
we find

D(S)
n =

√
n

(2π)
m−1

2

∑

k/n∈S

1√
k0k1 · · · km−1

(
1 +O

(
m−1∑

i=0

1

ki

))

=
(n
2π

)m−1
2

∫

S

dθ√
θ0θ2 · · · θm−1

(
1 +O(1/

√
n)
)

=
(n
2π

)m−1
2

C(S)B(1/2)
(
1 +O(1/

√
n)
)
,

where B(1/2) denotes the Beta-function

B(1/2) = B(1/2, . . . , 1/2) =
Γ
(
1
2

)m

Γ
(
m
2

)

and C(S) abbreviates

C(S) = Dir(S;1/2) = 1

B(1/2)

∫

S

dx√
x0 · · ·xm−1

(10.15)

where Dir(S, ;α) is defined in Section 9.2.1. The contribution of the remaining

terms is only of order O(n
m−2

2) as we will argue below.
With this notation, we can formulate the main result of this section.

Theorem 10.1.6. Consider a memoryless constrained source on an alphabet
of size m ≥ 2 and S ⊂ Θ a convex polytope. Then the worst case redundancy
for S is

R̃∗
n(S) =

m− 1

2
log

n

2π
− log

Γ(1/2)m

Γ(m/2)
+ logC(S) +O(1/

√
n) (10.16)

where C(S) is defined above in (10.15).

To complete the proof, we must show

Dn −D(S)
n =

∑

k 6∈nS

(
n

k0, · · · km−1

)
sup
θ∈S

m−1∏

i=0

θki

i

= O
(
n

m
2 −1

)
. (10.17)

10.2. Maximal Minimax Redundancy for Large Alphabet 273

Then we have logDn = logD
(S)
n +O(1/

√
n) and (10.16) follows.

The proof of (10.17) is very involved (a full proof is given in Drmota, Shamir,
and Szpankowski (2022)). We only give some heuristic arguments. First it is not
difficult to observe that the sum can be replaced by an integral over n(Θ \ S) so
that all variables ki are continuous. Second, by concavity of

∏m−1
i=0 θki

i it follows
that the optimal choice θopt = (θi,opt) has to be on the boundary of S. Actually,
all k = (ki) that correspond to the same θopt are on a line. Set k0 = nθopt. We
have then

(
n

k

)
max

θ∈∂H∩Θ

m−1∏

i=0

θki

i =

(
n

k

)m−1∏

i=0

θki

i,opt

=

(
n

k0

)m−1∏

i=0

θ
ki,0

i,opt

m∏

i=1

Γ(ki,0 + 1)k
ki−ki,0

i,0

Γ(ki + 1)
,

where the last product can be upper bounded by

m∏

i=1

Γ(ki,0 + 1)k
ki−ki,0

i,0

Γ(ki + 1)
= O

(
−c1

m−1∑

i=0

(ki − ki0)2
ki,0

)

for some constant c1 > 0. Since all k ∈ n(Θ \ S) with the same optimal choice
θopt are one a line and all ki,0 are proportional to n the integral over this line
can be upper bounded by O(

√
n). Finally the integral over k0 on the (scaled)

boundary n∂S – recall that k0 = nθopt – is upper bounded by

∫

n∂S

(
n

k0

)m−1∏

i=0

θ
ki,0

i,optdk0 =

∫

n∂S

√
n

k1,0 · · · km,0
dk0

= O
(
n

m−3
2

)
.

So the total contribution is of order O(n
m
2 −1) as proposed.

10.2. Maximal Minimax Redundancy for Large Alphabet

Now we consider the maximal minimax redundancy when m grows with n. In
this case the expression (10.12) of Lemma 10.1.3 for the maximal minimax R̃∗

n

still holds but the singularity analysis does not apply. Instead, the growth of the
coefficient [zn]Bm(z) can be handled with the help of the saddle point method
(see Appendix C).

Our main result of this section is presented next.

274 Chapter 10. Redundancy of Universal Memoryless Sources

Theorem 10.2.1. For the memoryless model familyM0 over an m-ary alpha-
bet, where m → ∞ as n grows, the minimax pointwise redundancy R̃∗

n behaves
asymptotically as follows:

(i) For m = o(n)

R̃∗
n =

m− 1

2
log

n

m
+

m

2 ln 2
+

m

3 ln 2

√
m

n

−1

2
− log e

4

√
m

n
+O

(
m2

n
+

1√
m

)
. (10.18)

(ii) For α = m/n ∈ [a, b], where a < b are positive constants,

R̃∗
n = n logBm/n − log

√
Am/n +O

(
1

n

)
, (10.19)

where

Cα :=
1

2
+

1

2

√
1 +

4

α
, Aα := Cα +

2

α
(10.20)

and
Bα := αCα+2

α e−
1

Cα . (10.21)

(iii) For n = o(m)

R̃∗
n = n log

m

n
+

3

2 ln 2

n(n−1)
m

+O

(
1

n
+
n3

m2

)
(10.22)

for large m.

Before we prove Theorem 10.2.1, we offer some insights. The formulation of
the scenario in which both n and m are large, as a sequence of problems where
m varies with n, is easy to imagine. In a typical application of Theorem 10.2.1,
for a given pair of values n = n0 and m = m0, which are deemed to fall in one
of the three itemized cases, the formulas are used to approximate the minimax
pointwise redundancy R̃∗

n0
. The asymptotic expansion in (10.18) reveals that

the error incurred by neglecting lower order terms may be significant. Consider
the example in which n = 104 and m = 40 (or, approximately, m = n0.4). Then,
the leading term in (10.3) is only 5.5 times larger than the second term, and
131 times larger than the third term. The error from neglecting these two terms
is thus 15.4% (assuming all other terms are negligible). Even for n = 108 (and
m = 1600), the error is still over 8%. It is interesting to notice that (10.18)

10.2. Maximal Minimax Redundancy for Large Alphabet 275

Figure 10.1. Value of the constant logBα in the Θ(n) term of R̃∗

n in case
m = Θ(n).

is a “direct scaling” of (10.13): using Stirling’s approximation to replace Γ(x)
in (10.13) by its asymptotic value

√
2π/x(x/e)x, and further approximating

(1 + 1/x)(x+1)/2 with
√
e (1 + 1/(4x)), indeed yields exactly (10.18), up to the

error terms. Thus, our results reveal that the first two terms of the asymptotic
expansion for fixed m given by (10.13) are in fact a better approximation to R̃∗

n

than the leading term of (10.18).
For the case m = Θ(n), the value of the constant, logBα, where Bα is

specified in (10.21) and (10.20), is plotted against α in Figure 10.1. It is easy
to see that, when α → 0, logBα ≈ (α/2) log(1/α), in agreement with (10.3).
Similarly, when α→∞, logBα ≈ logα, in agreement with (10.22).

Observe that the second order term in (10.18), which is Θ(m), dominates
− log(n/m) whenever m = Ω(na) for some a, 0<a< 1. Hence, the leading term
in the expansion is rather (m/2) log(n/m) than (m − 1)/2 log(n/m). In the
numerical example given for this case, the choice of a growth rate m = o(

√
n) is

due to the fact that, otherwise, the error term O(m2/n) may not even vanish,
and it may dominate the constant, as well as the

√
m/n terms. For any given

growth ratem = O(na), 0<a< 1, an expansion in which the error term vanishes
can be derived; however, no expansion has this property for every possible value
of a. The reason is that, as will become apparent in the proof of the theorem,
any expansion will include an error term of the form O(m(m/n)j/2) for some
positive integer j. The same situation can be observed in (3.19), where one of
the error terms becomes O(n(n/m)j) if a more accurate expansion is used.

276 Chapter 10. Redundancy of Universal Memoryless Sources

We also want to mention that (10.19) can be also applied if m = αn+ ℓ(n)
for some α > 0 and ℓ(n) = o(n). We just observe that

logBm/n = logBα + logCα
ℓ(n)

n
− 1

2 ln 2α2Aα

ℓ(n)2

n2
+O

(
ℓ(n)3

n3

)

and √
2πAm/n =

√
2πAα +O

(
ℓ(n)

n

)

so that

R̃∗
n = n logBα + ℓ(n) logCα − log

√
2πAα

− log e

2α2Aα

ℓ(n)2

n
+O

(
ℓ(n)3

n2
+
ℓ(n)

n
+

1

n

)

as long as ℓ(n) = o(1).

10.2.1. Proof of Theorem 10.2.1

We first describe a roadmap of our proof. Recall from (10.12) that

Dn =
n!

nn
[zn]B(z) =

n!en

nn
[zn][zn][β(z)]m =

n!en

nn

1

2πi

∮
eh(z)dz, (10.23)

where β(z) = B(z/e) and

h(z) = m lnβ(z)− (n+ 1) ln z. (10.24)

We will now apply the saddle point methods, as discussed in depth in Ap-
pendix C. In particular, we first find an explicit normalized real root, z0 = z0/e
(here z0 is defined below) of the saddle point equation h′(z) = 0, which satisfies

z0
β′(z0)

β(z0)
=
n+ 1

m
. (10.25)

Differentiating (10.11), and using (10.9), it is easy to see that

z
β′(z)

β(z)
= β(z)2 − β(z). (10.26)

Thus, (10.25) takes the form

β(z0)
2 − β(z0) =

n+ 1

m
. (10.27)

10.2. Maximal Minimax Redundancy for Large Alphabet 277

m = o(n) m = n n = o(m)

Figure 10.2. Illustration to locations of the saddle point 0 ≤ z0 ≤ 1

By definition of the tree-function T (z), the range of β(z) for 0 ≤ z < 1 is
[1,+∞). The three cases (i)–(iii) discussed in the theorem above correspond
to z0 close to 1 or inside the interval (0, 1) or close to 0. As illustrated in
Figure 10.2.1 when m = o(n) the root z0 ≈ 1, when m = O(n) then 0 < z0 < 1
and for n = o(m) the root z0 ≈ 0.

We now prove Theorem 10.2.1

Case (ii). We start with the case (ii), where m/n ∈ [a, b] for some positive
constants a, b. In this case we can directly apply (C.13) from Appendix C, a
standard saddle point result. For notational convenience we set α = m/n. The
essential observation is that the equation

z0B
′(z0)

B(z0)
=

1

α
(10.28)

has an explicit solution

z0 =
1

e

(
1− 1

Cα

)
e1/Cα ,

where Cα is given by (10.20). Since T (z) satisfies T (z) = zeT (z), the derivative
is given by T ′(z) = T (z)/(z(1− T (z)) and consequently

zB′(z)

B(z)
=

zT ′(z)

1− T (z) =
T (z)

(1− T (z))2 .

278 Chapter 10. Redundancy of Universal Memoryless Sources

It is easy to check that T (z) = 1 − 1/Cα satisfies T (z)/((1 − T (z))2 = 1/α.
Consequently, T (z0) = 1− 1/Cα and, thus,

z0 = T (z0)e
−T (z0 =

1

e

(
1− 1

Cα

)
e1/Cα

as proposed. (Note that B(z0) = Cα.) It also follows that

B(z0)
α

z0
= eBα

and

2πm

(
z20B

′′(z0)

B(z0)
+

1

α
− 1

α2

)
= 2πnAα.

Hence,

Dn =
n!

nn
[zn]B(z)m =

Bn
α√
Aα

(
1 +O

(
1

n

))
,

and so we obtain (10.19).

Case (i). Next we consider the case (i), where m = o(n). We again apply
the saddle point method (as described in Appendix C). We consider λ as the
pair (m,n) and the function g(λ, z) = m lnB(z)−n ln z. Of course this leads to
the same saddle point equation as in (10.28) and consequently to

z0 =
1

e

(
1− 1

Cm/n

)
e1/Cm/n =

1

e

(
1− m

n
+O

(
m3/2

n3/2

))

and

B(z0) = Cm/n =
1

2
+

1

2

√
1 +

4n

m
=

√
n

m

(
1 +

1

2

√
m

n
+

1

8

m

n
+O

(
m2

n2

))
.

Notice that z0 = z0/e ≈ 1/e. This also gives

g(λ, z0) = n+
m

2
ln
n

m
+
m

2
+
m

3

√
m

n
+O

(
m2

n

)

as well as

g′′(λ, z0) =
en

z0

(
2n

m
+ Cm/n

)
= 2e2

n2

m

(
1 + O

(√
m/n

))

and

g′′′(λ, z0) =
nCm/n

z30

(n
m
(8Cm/n − 1)− 5Cm/n + 3

)
= 8e3

n3

m2

(
1 +O

(√
m/n

))
.

10.3. Average Minimax Redundancy 279

Therefore, we find

Dn =
n!

nn

exp
(
n+ m

2 ln n
m + m

2 + m
3

√
m
n +O

(
m2

n

))

1
e

(
1 +O(mn)

)√
4πe2 n2

m

(
1 +O

(√
m/n

))

×
(
1 +O

(
1/
√
m
))

=

√
m

2n
exp

(
n+

m

2
ln
n

m
+
m

2
+
m

3

√
m

n
+O

(
m2

n

))

×
(
1 +O

(√
m/n

)
+O

(
1/
√
m
))

leading to (10.18). Note that we can do slightly better by considering the fourth
derivative which leads to an error term O(1/m) instead of O (1/

√
m). Further-

more note that
√
m/n = O(1/m+m/n2).

Case (iii). Finally we consider the case (iii), where n = o(m) Here we
proceed in completely the same way and obtain

z0 =
n

m

(
1− 3

n

m
+O

(
n2

m2

))
≈ 0

and

B(z0) = 1 +
n

m
+ 2

n2

m2
+O

(
n3

m3

)
.

This leads (after some algebra) to (10.22). Note that g′′(z0) is of order Θ(m2/n),
g′′′(z0) of order Θ(m3/n2), and g′′′′(z0) of order Θ(m4/n3). Therefore we obtain
the error O(1/n) in the saddle point approximation. (Of course we can take even
more terms into account and could find more precise error terms.)

10.3. Average Minimax Redundancy

We now turn to the average minimax R̃n. We first consider the case when
the unknown symbol probabilities are constrained, and then we consider the
unconstrained case but for m = o(n).

10.3.1. Average Minimax with Constrained Distribution

Let S ⊆ Θ = {θ = (θ0, . . . , θm−1) : θj ≥ 0, θ0 + · · · + θm−1 = 1} in the
memoryless case. We now slightly modify Lemma 9.2.1 to derive operational
expression for the average minimax redundancy which we denote as R̃n(S). By
definition we have

R̃n(S) = inf
Q

sup
θ∈S

Dn(P
θ‖Q)

280 Chapter 10. Redundancy of Universal Memoryless Sources

where D(P θ‖Q) is the Kullback-Leibler divergence.
We recall that

R̃n(S) =
∫

S
D(P θ‖Mw∗

n)dw∗(θ) (10.29)

where w∗(θ) is the maximizing prior distribution and

Mw+

n (xn) =

∫

S
P θ(xn)dw∗(θ).

We already mentioned Bernardo (1979) proved that asymptotically the maxi-
mizing density is proportional to the square root of the determinant of the Fisher
information I(θ), the so-called Jeffrey prior. This leads to the density

w̃∗(θ) =
1

C(S) · B(1/2)

1√
θ1 · · · θm

, (10.30)

where C(S) defined in (10.15) and is the probability that the Dirichlet distribu-
tion with αi = 1/2 falls into the subset S.

Thus, we are led to consider the asymptotic average minimax redundancy

R̃asymp
n (S) =

∫

S
D(Pθ‖M w̃∗

n)dw̃∗(θ).

The mixture distribution M w̃∗

n (xn) can be calculated as follows

M w̃∗

n (xn) =
1

C(S) ·B(1/2)

∫

S

m∏

i=1

θ
ki−1/2
i

=
1

C(S) ·B(1/2)
B(k1 + 1/2, · · · , km + 1/2)

· 1

B(k1 + 1/2, · · · , km + 1/2)

∫

S

m∏

i=1

θ
ki−1/2
i

=
1

C(S) ·B(1/2)
B(k1 + 1/2, · · · , km + 1/2) ·Dir(S : k+ 1/2).

Observe again that for the unconstrained case Dir(Θ;k+1/2) = 1. In summary

Dn(P
θ‖M w̃∗

n) = log (C(S)B(1/2)) + (10.31)

+
∑

k

(
n

k

) m∏

i=1

θki

i log

∏m
i=1 θ

ki

i

B(k+ 1/2)Dir(S;k + 1/2)
. (10.32)

The main result of this section is presented next.

10.3. Average Minimax Redundancy 281

Theorem 10.3.1. Consider a memoryless constrained source S ⊂ Θ with fixed
but arbitrarily large m ≥ 2 where S is a convex polytope. Then the asymptotic
average minimax redundancy is

R̃asymp
n (S) = m− 1

2
log

2

2πe
+ log

Γ(1/2)m

Γ(m/2)
+ logC(S) +O(1/

√
n) (10.33)

where C(S) is defined in (10.15).

We postpone the proof till Section 10.3.3 since we will use some ideas and cal-
culations of the proof of the subsequent Theorem 10.3.2.

10.3.2. Unconstrained Case for m = o(n)

In Theorem 10.3.1 we assumed that m is fixed to avoid complications with
constrains Sm that may depend of m. Now we do not impose any constrained
on θ, that is we assume that S = Θ.

Theorem 10.3.2. Consider a memoryless unconstrained source Θ with m =
o(n). Then the unconstrained asymptotic average minimax redundancy becomes

R̃asymp
n (Θ) =

m− 1

2
log

2

2πe
+ log

Γ(1/2)m

Γ(m/2)
+O(m3/2/

√
n) (10.34)

=
m− 1

2
log
(n
m

)
+

1

2
(log e− 1) +O(1/m) +O(m3/2/

√
n).

Proof. The starting point is

R̃asymp
n (Θ) =

1

B(1/2)

∫

Θ

∑

k

(
n

k

)
θ
k−1/2 log

(
θ
kB(1/2)

B(k+ 1/2)

)
(10.35)

where we write θ
k−1/2 :=

∏
i θ

ki−1/2
i . We need to estimate different parts of

the above sum. We first observe that

∑

k

(
n

k

)
B(k+ 1/2) =

∫

Θ

∑

k

(
n

k

)
θ
k−1/2dθ

=

∫

Θ

θ
−1/2dθ = B(1/2).

282 Chapter 10. Redundancy of Universal Memoryless Sources

More importantly we notice that

∫

Θ

∑

k

(
n

k

)
θ
k−1/2 log θkdθ =

∑

k

(
n

k

) m∑

i=1

ki

∫

Θ

θ
k−1/2 log θidθ

=
∑

k

(
n

k

) m∑

i=1

ki
ln 2

∂

∂ki
B(k+ 1/2),

∫

Θ

∑

k

(
n

k

)
θ
k−1/2 logB(k+ 1/2) =

∑

k

(
n

k

)
B(k+ 1/2) logB(k+ 1/2).

Thus

R̃asymp
n (Θ) = logB(1/2)+ (10.36)

+
1

B(1/2)

∑

k

(
n

k

)
·
(

m∑

i=1

ki
∂

∂ki
B(k+ 1/2)−B(k+ 1/2) logB(k+ 1/2)

)
.

To deal with sums like (10.36) we use the relation between the beta function,
the gamma function, and the psi function. For example

∂

∂ki
B(k+ 1/2) = (Ψ(ki + 1/2)−Ψ(n+m/2))B(k+ 1/2),

where Ψ(x) = Γ′(x)/Γ(x). Asymptotically we have

Ψ(x+ 1/2) = lnx+ 1/(12x) +O(1/x3),

Ψ(x+m/2) = lnx+ (m− 1)/(2x) +O(1/x2).

Using this and Stirling’s formula we finally find

ln Γ(x+ 1/2) = x lnx− x+ ln
√
2π − 1

24x
+O(1/x2),

ln Γ(x+m/2) = x lnx− x+
m− 1

2
ln(x+m/2)

+ ln
√
2π +

(
1

12
− m2

8

)
1

x
+O(m3/x2)

10.3. Average Minimax Redundancy 283

leading to

m∑

i=1

ki
ln 2

∂

∂ki
B(k+ 1/2)−B(k+ 1/2) logB(k+ 1/2) =

= B(k+ 1/2)

(
m− 1

2
(log(n+m/2)− 1− log(2π)) +

+ O

(
m2/n+

∑

i

(ki + 1)−1

))
.

It is involved but not very difficult to show that (see Exercise 10.4)

∑

k

(
n

k

)
B(k+ 1/2)

ki + 1
= O

(√
mB(1/2)√

n

)
. (10.37)

In summary, we arrive at

R̃asmp
n (Θ) =

m− 1

2
log(n/2πe) + log

Γm(1/2)

Γ(m/2)
+O(m3/2/

√
n). (10.38)

We now use Stirling’s formula for Γ(m/2) and complete the proof.

10.3.3. Proof of Theorem 10.3.1

To prove the second statement of Theorem 10.3.1, the starting point for the
asymptotic average redundancy is (10.31), however, we rewrite it in terms of
S ⊆ Θ as follows

R̃asympt
n (S) = 1

BS(1/2)

∫

S

∑

k

(
n

k

)
θ
k−1/2 log

(
θ
kBS(1/2)

BS(k + 1/2)

)
, (10.39)

where we use the short hand notation

BS(α) =

∫

S
θ
α−1 dθ = Dir(S;α)B(α).

As in the proof of Theorem 10.3.2 we obtain

R
asympt

n (S) = logBS(1/2)+

1

BS(1/2)

∑

k

(
n

k

)(m∑

i=1

ki
ln 2

∂

∂ki
BS(k + 1/2)−BS(k + 1/2) logBS(k+ 1/2)

)
.

284 Chapter 10. Redundancy of Universal Memoryless Sources

Again we split the summation over k into several parts. If k/n ∈ S−, where
S− denotes all points in the interior of S with distance ≥ n−1/2+ε to the bound-
ary (for some ε > 0), then the saddle point θi = ki/n of the integrand θ

k of
the integral of BS(k+1/2) or ∂

∂ki
BS(k+1/2), respectively, is contained in S−.

The precise statement is as follows.

Lemma 10.3.3. Suppose that k/n ∈ S− then for every fixed integer L ≥ 0 we
have

BS(k + 1/2) = B(k+ 1/2)

(
1 +O

(
m∑

i=1

k−L−1
i

))

and

m∑

i=1

ki
ln 2

∂

∂ki
BS(k + 1/2)−BS(k+ 1/2) logBS(k+ 1/2) =

m∑

i=1

ki
ln 2

∂

∂ki
B(k + 1/2)−B(k + 1/2) logB(k+ 1/2) +O

(
B(k+ 1/2)

m∑

i=1

k−L−1
i

)

for large n.

Before we start with the proof of Lemma 10.3.3 we comment on the relation
between the Beta- and Gamma-function:

B(k + 1/2) =
Γ
(
k1 +

1
2

)
· · ·Γ

(
km + 1

2

)

Γ
(
k1 + · · ·+ km + m

2

) .

First this formula follows from the following substitution on m-dimensional in-
tegrals:

Γ
(
k1 + · · ·+ km +

m

2

)
B(k + 1/2) =

∫ ∞

0

e−zzk1+···+km+−m
2 zm−1 dz

·
∫

Θ

m∏

i=1

θ
ki− 1

2

i dθ

=

∫ ∞

0

∫

Θ

m∏

i=1

(
e−zθi(zθi)

ki− 1
2

)
zm−1 dz dθ

=

m∏

i=1

∫ ∞

0

e−ziz
ki− 1

2

i dzi,

where θm abbreviates θm = 1− (θ1 + · · ·+ θm−1) and the substitution

zi = zθi (1 ≤ i ≤ m− 1), zm = z(1− (θ1 + · · ·+ θm−1)

10.3. Average Minimax Redundancy 285

has determinant zm−1.
Second, we can use Stirling’s formula to obtain the asymptotic formula

B(k+ 1/2) =
(2π)

m−1
2

n
m−1

2

m∏

i=1

(
ki
n

)ki
(
1 +O

(
m∑

i=1

1

ki + 1

))
.

Note that we only have to work with integral that represents the Gamma func-
tion and that can be asymptotically evaluated as

Γ(k + 1/2) =

∫ ∞

0

e−zzk−
1
2 dz

=

∫

|z−k|≤c k
1
2
+ε
e−zzk−

1
2 dz +O

(
e−kkke−c2k2ε/2

)

=
√
2πe−kkk

(
1 +

L∑

ℓ=1

cℓk
−ℓ +O(k−L−1)

)

for every given integer L ≥ 0, for every ε > 0, and for every constant c > 0, and
where cℓ are certain real constants. We just have to use the saddle point z0 = k
of the function e−zzk and the local expansion

e−zzk−
1
2 = e−kkk−

1
2 e−(z−k)2/(2k)

(
1− z − k

2k
+

(z − k)3
3k2

+ · · ·
)
.

In particular, it is sufficient to consider the integral on the interval [k− c kε, k+
c kε]. The remaining part of the integral is negligible.
Proof of Lemma 10.3.3. By using the same substitution as above we have

Γ
(
k1 + · · ·+ km +

m

2

)
BS(k+ 1/2) =

∫ ∞

0

e−zzk1+···+km+−m
2 zm−1 dz

·
∫

S

m∏

i=1

θ
ki− 1

2

i dθ

=

∫ ∞

0

∫

S

m∏

i=1

(
e−zθi(zθi)

ki− 1
2

)
zm−1 dz dθ

=

∫

cone(S)

m∏

i=1

e−ziz
ki− 1

2

i dz1 · · · dzm,

(10.40)

where
cone(S) = {zθ : z ≥ 0, θ ∈ S}.

286 Chapter 10. Redundancy of Universal Memoryless Sources

By assumption k/n ∈ S−, which implies (for a properly chosen constant c > 0)
that

m∏

i=1

[
ki − c n

1
2+ε, ki + c n

1
2+ε
]
⊆ cone(S).

Since ki ≤ n it also follows that

m∏

i=1

[
ki − c k

1
2+ε
i , ki + c k

1
2+ε
i

]
⊆ cone(S).

This implies that

Γ
(
k1 + · · ·+ km +

m

2

)
BS(k+ 1/2) = Γ

(
k1 + · · ·+ km +

m

2

)
B(k+ 1/2)

+O

(
e−k1−...−km

m∏

i=1

kki

i ·
m∑

i=1

k−L−1
i

)

and consequently

BS(k+ 1/2) = B(k+ 1/2) +O

(
n−m−1

2

m∏

i=1

(
ki
n

)ki m∑

i=1

k−L−1
i

)

= B(k+ 1/2)

(
1 +O

(
m∑

i=1

k−L−1
i

))
.

This proves the first part of Lemma 10.3.3.
It remains to consider the second part of Lemma 10.3.3. We start with the

integral representation (10.40) for

Γ
(
k1 + · · ·+ km +

m

2

)
BS(k+ 1/2)

and consider the derivative with respect to ki. By the product rule this leads to
in integral representation for

∂

∂ki
BS(k + 1/2) =

1

Γ
(
n+ m

2

) ∂

∂ki

(
Γ
(
k1 + · · ·+ km +

m

2

)
BS(k+ 1/2)

)

− Γ′ (n+ m
2

)

Γ
(
n+ m

2

)2Γ
(
n+

m

2

)
BS(k + 1/2)

=
1

Γ
(
n+ m

2

)
∫

cone(S)

ln zi

m∏

i=1

e−ziz
ki− 1

2

i dz1 · · · dzm

− Γ′ (n+ m
2

)

Γ
(
n+ m

2

)2
∫

cone(S)

m∏

i=1

e−ziz
ki− 1

2

i dz1 · · · dzm.

10.3. Average Minimax Redundancy 287

Next we consider

m∑

i=1

ki
ln 2

∂

∂ki
BS(k+ 1/2)−BS(k+ 1/2) logBS(k+ 1/2),

where we replace logBS(k+ 1/2) by

logB(k + 1/2) +O

(
m∑

i=1

k−L−1
i

)
.

The appearing integrals over cone(S) can be safely replaced by integrals over
[0,∞)m since the dominating part of the integral is (again) contained in S.
This means that we can switch between S and Θ without changing the leading
asymptotic behavior. Actually the error term from the integration can be upper
bounded by

O

(
B(k+ 1/2) exp

(
−c2

m∑

k=1

kεi

))
.

Together with the error from the approximation of logBS(k+1/2) by logB(k+
1/2) which is of the form

O

(
B(k + 1/2)

m∑

i=1

k−L−1
i

)

we obtain the proposed relation. This completes the proof of Lemma 10.3.3.

Note that k/n ∈ S− implies that ki ≥ c n
1
2+ε for some constant c > 0 and

all i = 1, . . . ,m. Thus, the error term can be also stated in terms of negative
powers of n. With the help of Lemma 10.3.3 we obtain for any large L′ > 0

∑

k/n∈S−

(
n

k

)(m∑

i=1

ki
ln 2

∂

∂ki
BS(k + 1/2)−BS(k + 1/2) logBS(k+ 1/2)

)

=
∑

k/n∈S−

(
n

k

)(m∑

i=1

ki
ln 2

∂

∂ki
B(k+ 1/2)−B(k + 1/2) logB(k+ 1/2)

)
+O(n−L′

)

=
∑

k/n∈S−

(
n

k

)
B(k+ 1/2) ·

(
m− 1

2
log

n

2πe
+O

(
m∑

i=1

1/(ki + 1)

))
+O(n−L′

)

=

(
m− 1

2
log

n

2πe
+O

(
1/
√
n
))

BS(1/2).

288 Chapter 10. Redundancy of Universal Memoryless Sources

Finally, to simplify our presentation, we now explain the other parts of the
summation over k only for m = 2 and S = {(θ, 1− θ) : θ ∈ [a, b]}. Suppose that
|k1 − nb| ≤ n1/2+ε, that is (k1/n, 1 − k1/n) is at distance ≤ n−1/2+ε from the
boundary of S. Here we have

BS(k1 + 1/2, n− k1 + 1/2)

=

√
2π

n

(
k1
n

)k1
(
n− k1
n

)n−k1
(
Φ

(
nb− k1√
nb(1− b)

)
+O(1/

√
n)

)
,

where Φ(u) denotes the normal distribution function. A similar representation
holds for the derivatives ∂

∂ki
BS(k+ 1/2). A standard analysis yields

∑

|k1−nb|≤n1/2+ε

(
n

k

)(2∑

i=1

ki
ln 2

∂

∂ki
BS(k+ 1/2)−BS(k+ 1/2) · logBS(k+ 1/2)

)

= O(1/
√
n).

The summation for nb+ n1/2+ε < k1 ≤ n is much easier to handle.
For dimension m > 2 one has to handle multivariate Gaussian approxi-

mations. This is just technical and more involved but there is no substantial
problem (see Exercise 10.6. Therefore we just add some comments on this case.
If k/n 6∈ S− we can distinguish two cases. The first one is when k/n is not

contained in S and has distance ≥ n− 1
2+ε to S. In this case the box

Q :=

m∏

i=1

[
ki − c n

1
2+ε, ki + c n

1
2+ε
]

is not contained in cone(S) which implies that

BS(k+ 1/2) = O

(
B(k+ 1/2) exp

(
−c2

m∑

k=1

kεi

))
.

Secondly, if k/n has distance ≤ n− 1
2+ε to the boundary of S then the Gaussian

integral

∫

Q∩cone(S)

m∏

i=1

e−ziz
ki− 1

2

i dz1 · · · dzm

∼ e−n
m∏

i=1

k
ki− 1

2

i

∫

Q∩cone(S)

exp

(
−

m∑

i=1

(zi − ki)2
2ki

)
dz1 · · · dzm

10.4. Learnable Information and Minimax Redundancy 289

can be expressed in terms of the distribution function Φ of the standard normal
distribution provided that boundary of S is (locally) a hyperplane. Since we
only need upper bounds in this case the general case can be reduced to this one.

Summing up, in all cases the remainder is of order O(1/
√
n). This completes

the proof of Theorem 10.3.1.

10.4. Learnable Information and Minimax Redundancy

One of the fundamental question of information theory and statistical inference
probes how much “useful or learnable information” one can actually extract from
a given data set. In this section we connect useful information to the minimax
redundancy.

Let us fix n, the length of a sequence xn = x1 . . . xn given to us. We would
like to understand how much useful information, structure, regularity, or sum-
marizing properties are in xn. For example, for a binary sequence the number
of ones is a regularity property, the positions of ones is not. Let S be such a
summarizing property. We can describe it in two parts. First, we describe the
set S, and then the location of xn in S. We denote by I(S) a learnable/useful
information of S; clearly log |S| bits are needed to point out a particular location
in S. Usually, S can be described in many ways, however, one should choose S
so that it extracts all relevant information and nothing else. It means we need
S that minimizes I(S). We denote such a set Ŝ and call is I-sufficient statistics.
It makes sense to call I(Ŝ) the learnable information (log |S| is rather a measure
of complexity of S).

Let us consider two possible measures of learnable information. If we describe
Ŝ as the shortest program on a universal Turing machine (i.e., Kolmogorov
complexity) then I(Ŝ) becomes Kolmogorov-information K(Ŝ), and K(xn) =
K(Ŝ) + log |Ŝ|. For example, if xn is a binary sequence, we first describe the
type of xn (number of ones; see Chapter 11) that requires logn bits (and can be
improved to 1

2 logn), and then the location of xn within the type which requires
log
(
n
k

)
≈ nH(k/n) bits where H(k/n) is the empirical entropy. While this

sounds reasonable, in general the Kolmogorov information is not computable,
so we need another approach.

We now turn our attention to computable learnable information contained
in a sequence xn generated by a source belonging to a class of parameterized
distributionsM(Θ) = {Pθ : θ ∈ Θ}. Let θ̂(xn) be the ML estimator, that is

θ̂(xn) = argmax
θ∈Θ

Pθ(x
n).

Observe that for a given sequence xn, produced either by θ or by θ′, we can use
θ̂(xn) to decide which model generates the data with a small error probability,

290 Chapter 10. Redundancy of Universal Memoryless Sources

Figure 10.3. Illustration to “learnable information”

provided these two parameters are far apart in some distance. If these two
models, θ and θ′ are too close to each others, they are virtually indistinguishable,
and there do not introduce any additional useful information. In view of this,
it is reasonable to postulate that learnable information about xn is summarized
in the number of distinguishable distributions (models). In summary, if there
are Cn(Θ) such distinguishable distributions according to some distance, it is
natural to call

In(Θ) = logCn(Θ)

the useful information. See Figure 10.3 for an illustration.
Let us estimate Cn(Θ) for the memoryless case. As a distance between

distributions/models we first adopt the Kullback-Leibler (KL) divergence. Using

Taylor expansion around θ̂, we find

D(Pθ̂||Pθ) := E[logPθ̂(X
n)]−E[logPθ(X

n)] =
1

2
(θ−θ̂)T I(θ̂)(θ−θ̂)+o(||θ−θ̂||2),

(10.41)

10.4. Learnable Information and Minimax Redundancy 291

where I(θ) = [Iij(θ)]ij is the Fisher information matrix defined as

Iij(θ) = −E
[

∂2

∂θi∂θj
logPθ(X)

]
.

In fact, another related distance is more useful for us, namely the so called
Mahalanobis distance defined as

dI(θ, θ0) =

√
(θ − θ̂)T I(θ̂)(θ − θ̂).

This is a rescaled version of Euclidean distance, and in Exercise 10.5 we ask the
reader to show that (see also (9.14)

dI(θ, θ0) = O(
√
D(θ||θ0)). (10.42)

One property of the dI distance is that the volume V of a ball (ellipsoid) at
center θ and radius ε is

V (BI(θ, ε)) = 1/
√
det I(θ)V (B(ε), (10.43)

where B(ε) is the regular Euclidean ball of radius ε and det I(θ) is the determi-
nant of I(θ).

To proceed, we need to specify the error probability and distinguishibility.
Let

BKL(θ0, ε) = {θ : D(θ||θ0) ≤ ε}
be the KL-ball or radius ε around θ0. Observe that the KL-ball BKL(θ, ε) be-
comes BI(θ,

√
ε) ball in the dI distance. The distingushibility of models depends

on the error probability that can be estimated as follows for some θ ∈ Θ0

Pθ(θ̂ 6= θ) = Pθ(arg min
θ∈Θ0

D(θ̂(Xn)||θ) 6= θ) (10.44)

≈ Pθ(θ(X) 6∈ BKL(θ, ε/n)) ∼ 1−O(εk/2) (10.45)

for some small ε > 0, where we use the fact that for memoryless sources (more
generally, exponential family of distributions)

log
Pθ̂(x

n)

Pθ(xn)
= nEθ̂

[
log

Pθ̂(X)

Pθ(X)

]
= nD(θ̂||θ).

We conclude that the number of distinguishable distributions Cn(Θ) is ap-
proximately equal to the volume VI(Θ) of Θ under distance dI divided by the
volume of the ball size BI(θ,

√
ε/n). In Exercise 10.7 we ask the reader to prove

that

VI(Θ) =

∫

Θ

√
det I(θ)dθ (10.46)

292 Chapter 10. Redundancy of Universal Memoryless Sources

and V (BI(θ,
√
ε) ≈ O(εk/2/

√
det I(θ)).

Setting up the error probability at level O(1/
√
n) as indicated above, we con-

clude that the number of distinguishable distributions Cn(Θ) (i.e., the number
of centers of the balls BI(θ,

√
ε) is

Cn(Θ) =
(n
2π

)k/2 ∫

Θ

√
det I(θ)dθ +O(1) (10.47)

=
∑

xn

sup
θ∈Θ

Pθ(x
n) = inf

θ∈Θ
max
xn

log
Pθ̂

Pθ

= inf
θ∈Θ

D(Pθ̂||Pθ) +O(1)

= R∗
n +O(1) = Rn +O(1). (10.48)

In summary, average or maximal minimax redundancy can be viewed as a
measure of learnable or useful information. Unlike entropy, minimax redundancy
provides information about regularity properties of a sequence.

10.5. Minimax Regret for Online Logistic Regression

In Section 9.4 we introduced online regression and its minimax regret. We
shall analyze precisely the regret for the specific class Hp,w of functions h(x) =
p(〈x,w〉) with the so called logistic function p(w) = (1 + exp(−w))−1 where
w = 〈x,w〉 is the scalar product or x andw. Using machine learning convention,
we write T for n.

We adopt all the notation from Section 9.4. Thus xt = (x1,t, . . . , xd,t) is
a d-dimensional feature vector such that ‖xt‖ ≤ 1 for some norm ‖ · ‖. We
also assume that the set xt spans Rd. The label binary vector is denoted as
yT = (y1, . . . , yT) with yt ∈ {−1, 1} and the prediction is ŷt ∈ [0, 1]. As already
defined in Section 9.4 wt = (w1,t, . . . , wd,t) is a d-dimensional vector of weights.

Our goal is to precisely estimate the minimax regret with the logarithmic loss
for the logistic regression, thus we set ℓ(yt|xt,wt) = log(1 + exp(−yt〈xt,wt〉).
Observe that for the logistic regression

P (yt|xt,wt) = p(yt〈xt,wt〉) =
1

1 + exp(−yt〈xt,wt〉)
is the probability of seeing label yt, and thus

ℓ(yt|xt,wt) = − logP (yt|xt,wt).

Finally, in (9.43) we established that the (fixed-designed) minimax regret
r∗T (x

T) can be computed through the Shtarkov sum, that is,

r∗T (x
T) = logDT (x

T)

10.5. Minimax Regret for Online Logistic Regression 293

where
DT (x

T) =
∑

yT

sup
w

P (yT |xT ,w) (10.49)

and P (yT |xT ,w) abbreviates

P (yT |xT ,w) =
T∏

j=1

P (yt|xt,w). (10.50)

In order to make our analysis simpler we assume that the feature vector xt

takes only finite number of (vector) values, that is, there is a finite set A =
{a1, . . . , aN} of vectors such that xt ∈ A for all t. By Tj we denote the number
of t such that xt = aj so that

T1 + · · ·+ TN = T.

Furthermore also write αj = Tj/T so that α1 + · · ·+ αN = 1.
Next, given yT ∈ {−1, 1}T we denote by kj the number of t with xt = aj

and yt = 1. Then (10.50) simplifies to

P (yT |xT ,w) =

N∏

j=1

p(〈aj ,w〉)kj q(〈aj ,w〉)Tj−kj

=
1

∏N
j=1(1 + e〈aj,w〉)Tj

· exp

N∑

j=1

kj〈aj ,w〉

 .

Under these restrictions we prove in Section 10.5.1 the following result. Recall
that p(w) = (1 + e−w)−1 and q(w) = 1− p(w) = p(−w).

Theorem 10.5.1. Suppose that d and N > d are fixed positive integers and
that A = {a1, . . . , aN} is a finite set of d-dimension real vectors with norms
‖aj‖ ≤ 1 that span Rd. Let xt ∈ A for t = 1, . . . , T and denote by Tj the
number of t with xt = aj . Furthermore suppose that there exists η > 0 such
that Tj ≥ ηT for j = 1, . . . , N . Then the maximal minimax regret becomes
asymptotically, as T →∞,

r∗(xT) =
d

2
logT − d

2
log 2π + log

(∫

Rd

√
det(B̃d(w))dw1 · · · dwd

)
+O(1/

√
T)

(10.51)

where B̃d(w) is a d× d matrix computed as follows

B̃d(w) =

N∑

i=1

αip(〈ai,w〉)q(〈ai,w〉)ai · aτi ,

294 Chapter 10. Redundancy of Universal Memoryless Sources

where αj = Tj/T and Aτ denotes the transpose of a matrix A.

We expect that the asymptotic relation (10.51) should hold in a much more
general context, in particular when the vectors xt are not restricted to a finite
set and d varying with T . In this context the matrix B̃d(w) is to be replaced by

B(w,xT) =
1

T

T∑

t=1

p(〈xt,w〉)q(〈xt,w〉)xt · xτ
t . (10.52)

In such a case, we can study the behavior of B(w,xT) when the vectors xt are
generated randomly by an iid process. By the law of large numbers we find
(almost surely)

B(w,xT)→ B(w) := E (p(〈X,w〉)q(〈X,w〉)X ·Xτ) .

We present an asymptotic analysis of B(w) when the feature vector xt are
generated uniformly on the d-dimensional unit sphere Sd. In this case

B(w) =
1

sd

∫

Sd

p(〈x,w〉)q(〈x,w〉)x · xτ dx

where sd is the area of the sphere of dimension d and radius 1, that is,

sd = 2π(d+1)/2/Γ(
d+ 1

2
).

In Section 10.5.2 we prove the following result.

Proposition 10.5.2. In the case of uniform distribution on the d-dimensional
sphere we have, as d→∞,

∫

Rd

√
det(B(w))dw = (π/8)d/4e3/8(d/4)−d/2 (1 +O(1/d)) . (10.53)

We observe that when features xt are uniformly distributed inside the d-
dimensional unit ball, we need an extra factor

(
d

d− 1

)d/2(
d− 1

d+ 1

) d−1
2

leading to

∫

Rd

√
det(B(w))dw = (π/8)d/4e−1/8(d/4)−d/2 (1 +O(1/d)) . (10.54)

10.5. Minimax Regret for Online Logistic Regression 295

10.5.1. Proof of Theorem 10.5.1

In what follows we sketch the proof of Theorem 10.5.1. The first step is to
understand the behavior of the following optimization problem

sup
w

P (yT |xT ,w).

It is easy to see that there is a uniquely defined weight vector w∗ with

max
w

P (yT |xT ,w) = P (yT |xT ,w∗)

that satisfies the relation

N∑

j=1

ajp(〈aj ,w∗〉)Tj =
N∑

j=1

ajkj . (10.55)

Actually the matrix

N∑

j=1

p(〈ajw〉)q(〈aj ,w〉)Tjaj · aτj

is positive definite (since the vectors aj span Rd) and so we have a convex
optimization problem.

Next we rewrite the Shtarkov sum (10.49) as

DT (x
T) =

∑

kN

N∏

j=1

(
Tj
kj

)
sup
w

P (yT (kN)|xT ,w), (10.56)

where kN denotes kN = (k1, . . . , kN) ∈ [0, T1]×· · ·× [0, TN] and yT (kN) denotes
the corresponding binary vector. We then have

P (yT (kN)|xT ,w∗) =
N∏

j=1

p(〈aj ,w∗〉)kj q(〈aj ,w∗〉)Tj−kj ,

where w∗ = w∗(kN) satisfies (10.55). Let now

B(kN ,w∗) :=
N∏

j=1

(
Tj
kj

)
p(〈aj ,w∗〉)kj q(〈aj ,w∗〉)Tj−kj

for real kj ∈ [0, Tj]. We just replace kj ! and (Tj−kj)! by Γ(kj+1) and Γ(Tj−kj+
1), respectively, and determine w∗ = w∗(kN) by the equation (10.55) for real

296 Chapter 10. Redundancy of Universal Memoryless Sources

valued kj . With the help of Stirling’s formula B(kN ,w∗) can be approximated
by

B(kN ,w∗) ∼ 1∏
j

√
2πp(〈aj ,w∗〉)q(〈aj ,w∗〉)Tj

· exp

−

∑

j

(kj − kj(w))2
2p(〈aj ,w∗〉)q(〈aj ,w∗〉)Tj

where kj(w
∗) = p(〈aj ,w∗〉)kjTj and we assume that |kj−kj(w∗)| ≤ cj

√
Tj logTj

for proper constants cj . By setting

D(w∗) = diag

(
1

p(〈a1,w∗〉)q(〈a1,w∗〉)T1
, . . . ,

1

p(〈aN ,w∗〉)q(〈aN ,w∗〉)TN

)

with kN (w∗) = (k1(w
∗), . . . , kN (w∗)) we find

B(kN (w),w∗) ∼
√
det(D(w∗)/(2π)) (10.57)

· exp
(
−1

2
(kN − kN (w∗))τD(w)(kN − kN (w∗))

)
.

We ask the reader in Exercise 10.13 to show that the sum (10.56) can be
approximated by the integral (note that it will also make use of the Gaussian
approximations (10.57).

D̂T (x
T) :=

∫
∏

[0,Tj]

N∏

j=1

(
Tj
kj

)
p(〈aj ,w∗(kN)〉)kj q(〈aj ,w∗(kn)〉)Tj−kj , (10.58)

that is, DT (x
T) ∼ D̂T (x

T) as T →∞.
We next consider the map that assigns to w∗ ∈ Rd the vector

w∗ 7→ A(w∗) :=
N∑

j=1

ajp(〈ajw∗〉)Tj .

Furthermore let A denote the image of the set A(Rd). This map is bijective and
has a strictly positive Jacobian determinant

J(w∗) = det

N∑

j=1

p(〈ajw∗〉)q(〈ajw∗〉)Tjaj · aτj

= det
(
T B̃d(w)

)
.

10.5. Minimax Regret for Online Logistic Regression 297

We further denote by H(w∗) the set of kN = (k1, . . . , kN) ∈∏N
j=1[0, Tj] with

A(w∗) =
N∑

j=1

ajkj .

Note that

kN (w∗) = (p(〈a1,w∗〉)T1, . . . , p(〈aN ,w∗〉)TN) ∈ H(w∗).

Next we replace the integral D̂T (x
T) into an integral over A and an (N − d)-

dimensional integrals over H(w∗), that is, kN is mapped to

N∑

j=1

ajkj × H̃,

where H̃ denotes the (N − d)-dimensional subspace

H̃ =

z = (z1, . . . , zN) ∈ RN :

N∑

j=1

ajzj = 0

where we apply just the (N − d)-dimensional Lebesgue measure. Actually this
is a linear mapping with determinant

√
det (A ·Aτ).

where A = (a1, . . . , aN).
In the second step we apply the substitution A(w∗) = a to the first compo-

nent a =
∑N

j=1 ajkj . Since this substitution has determinant J(w∗) we find

D̂T (x
T) ∼

∫

Rd

J(w∗)√
det (A ·Aτ)

×
∫

H̃

√
det(D(w∗)/(2π)) exp

(
−1

2
zτD(w)z

)
dzN−d dw

∗.

Let us denote by I(H,D) the following Gaussian integral

I(H̃,D) =
√
det(D/2π)

∫

H̃
exp

(
−〈z

τDz〉
2

)
dz, (10.59)

where we can assume more generally that D is a positive definite symmetric
matrix.

298 Chapter 10. Redundancy of Universal Memoryless Sources

In order to make the following computations more transparent we assume
that d = 1, that is, the vectors aj are just real numbers aj. We also denote by
u the normalized N -dimensional vector

u =
1√∑N
j=1 a

2
j

(a1, . . . , aN)τ .

We know that the integral on the whole space equals 1, since the integrand is a
Gaussian density with D−1 as the covariance matrix. By slicing the whole space
into a folio of hyperplanes parallel to H̃ we find

√
det(D/2π)

∫ +∞

−∞
dt

∫

H̃
exp

(
−〈(z+ tu)τD(z+ tu)〉

2

)
dz = 1.

Let u = p(u) + v where p(u) is the projection of u on H̃ according to the
metric induced by D. Thus in the integrand we have

〈(z + tu)τD(z + tu)〉 = 〈(z + tp(u))τD(z+ tp(u))〉 + t2〈vτDv〉.
For a given t, after a simple change of variable, we find

∫

H̃
exp

(
−〈(z+ tp(u))τD(z+ tp(u))〉

2

)
dz =

∫

H̃
exp

(
−〈z

τDz〉
2

)
dz.

Thus

I(H̃,D)

∫ ∞

−∞
exp(−t2〈vτDv〉/2)dt = 1

and therefore,

I(H̃,D) =

√
〈vτDv〉

2π
.

In order to determine v we notice that if v is orthogonal to H with metric
D then Dv is orthogonal to H̃ with classic metric. Thus Dv is colinear with
u, or equivalently D−1u is colinear with v. Since u− v must belong to H̃ then
〈uτ (u− v)〉 = 0 and

v =
1

〈uτD−1u〉D
−1u,

and consequently 〈vτDv〉 = 1
〈uτD−1u〉 . Finally, we arrive at

I(H̃,D) =

√
1

2π〈uτD−1u〉

=

√
2π
∑N

j=1 a
2
jp(ajw)q(ajw)Tj√∑N

i=1 a
2
i

10.5. Minimax Regret for Online Logistic Regression 299

which gives then

DT (x
T) ∼

∫ ∞

−∞

√√√√2π
N∑

j=1

a2jp(ajw)q(ajw)Tj dw

=
√
2πN

∫ ∞

−∞

√
det(B̃1(w)) dw

as desired. The general case d ≥ 1 can be worked out in a similar fashion (we
ask the reader to do this in Exercise 10.14).

10.5.2. Proof of Proposition 10.5.2

We recall that we consider the case for which the feature xt is uniformly dis-
tributed on the d-dimensional unit sphere. We aim at computing the integral
(10.53) asymptotically.

We first need the following lemma.

Lemma 10.5.3. Let f(x) = p(x)q(x) = [(1+e−x)(1+ex)]−1 and u = w/||w||.
(i) Then B(w) can be represented as

B(w) = λ(w)u · uτ + µ(w)(Id − u · uτ), (10.60)

where Id is the identity matrix and

λ(w) =
sd−1

sd

∫ π

0

cos(θ)2 sin(θ)d−2f(cos(θ)‖w‖)dθ (10.61)

and

µ(w) =
sd−1

sd

∫ π

0

sin(θ)d

d− 1
f(cos(θ)‖w‖)dθ (10.62)

are the eigenvalues of B(w) with multiplicities 1 and d− 1, respectively.

(ii) Furthermore, detB(w) = λ(w) · µd−1(w) and both λ(w) and µ(w) are of
order O(‖w‖−3), thus det(B(w)) is O(‖w‖−3d). More precisely,

det(B(w)) = 2

(
sd−1

3sd
π2‖w‖−3(1 +O(‖w‖−2))

)d

(10.63)

as ‖w‖ → ∞.

300 Chapter 10. Redundancy of Universal Memoryless Sources

Proof. We start with part (i). Let θ be the angle between a and u. We have
the decomposition a = cos(θ)u + b with b ∈ sin θSd−1(u) where Sd−1(u) is
the unit hypersphere orthogonal to u. Since a’s have a spheric symmetry in its
distribution, so it is the case for the b’s in sin θSd−1(u) for any given angle θ.
Thus

B(w) =
1

sd

∫ π

0

f(‖w‖ cos θ)dθ
∫

sin θSd−1(u)

(b+ cos θu) · (b+ cos θu)τdb

=
1

sd

∫ π

0

f(‖w‖ cos θ)dθ
∫

sin θSd−1(u)

(b · bτ + (cos θ)2u · uτ)db

+
1

sd

∫ π

0

f(‖w‖ cos θ)dθ
∫

sin θSd−1(u)

cos θ(b · uτ + u · bτ)db.

Again due to the spheric symmetry of b we also have
∫
sin θSd−1(u)

b = 0 leading
to

B(w) =
1

sd

∫ π

0

f(‖w‖ cos θ)dθ
∫

sin θSd−1(u)

(b · bτ + (cos θ)2u · uτdb

=
1

sd

∫ π

0

f(‖w‖ cos θ)(sin θ)d−1dθ

∫

Sd−1(u)

((sin θ)2b · bτ + (cos θ)2u · uτ)db. (10.64)

The (sin θ)d−1 factor arises from the change of integration domain from sin θSd−1(u)
to Sd−1(u).

The quantity ∫

Sd−1(u)

b · bτ db

is the (d− 1)× (d− 1) matrix whose (i, j) coefficient is
∫
Sd−1

bibjdb. Clearly, by

spheric symmetry of the b vectors
∫

Sd−1

bibj db = 0

when i 6= j. We also have for all i = j:
∫

Sd−1

(bi)
2 db =

∫

Sd−1

(bj)
2 db =

1

d− 1

∫

Sd−1

‖b‖2 db =
sd−1

d− 1
.

Thus ∫

Sd−1(u)

b · bτ db =
sd−1

d− 1
Id−1(u)

10.5. Minimax Regret for Online Logistic Regression 301

and similarly ∫

Sd−1(u)

u · uτ db = sd−1u · uτ

which completes the proof of part (i) of the lemma.
Now we move to part (ii) of Lemma 10.5.3. Both λ(w) and µ(w) are functions

of w = ‖w‖. We write λ(w) = λ(‖w‖) and µ(w) = µ(‖w‖). To capture
the asymptotics of these functions we apply the Mellin transform discussed in
Appendix D.

The Mellin transforms λ∗(s) and µ∗(s) of λ(w) and µ(w) are defined, respec-
tively, as

λ∗(s) =

∫ ∞

0

λ(w)ws−1dw, µ∗(s) =

∫ ∞

0

µ(w)ws−1dw.

Observe now that

λ(w) = 2
sd−1

sd

∫ π/2

0

f(cos(θ)w) cos2(θ) sind−2(θ)dθ

=
2sd−1

sd

∫ 1

0

y2(1− y2)(d−3)/2f(yx)dy

via the change of variable y = cos(θ). Thus we find

λ∗(s) =
2sd−1

sd

∫ 1

0

(1 − y2)(d−3)/2y2dy

∫ ∞

0

f(yx)xs−1dx

=
2sd−1

sd
f∗(s)

∫ 1

0

(1− y2)(d−3)/2y2−sdy

= 2
sd−1

sd
f∗(s)β∗

1 (3− s)

where f∗(s) is the Mellin transform of f(x) = p(x)q(x) and β1(s) is the Mellin
transform of the function (1 − y2)(d−3)/2 defined over [0, 1].

The Mellin transform β∗
1 (s) exists for ℜ(s) > 0 and can be written in terms

of the beta-function (after applying a substitution y2 = z):

β∗
1(s) =

1

2
B((d− 1)/2, s/2) =

Γ((d− 1)/2)Γ(s/2)

2Γ((d+ s− 1)/2)
.

Clearly β∗
1(s) has poles on the negative even integers (by the way they also

correspond to the Taylor expansion of (1− y2)(d−3)/2).

302 Chapter 10. Redundancy of Universal Memoryless Sources

The Mellin transform f∗(s) of function f(x) also exists for ℜ(s) > 0. We
furthermore consider the Mellin transform h∗(s) of the function h(x) = log(1 +
e−x) (which exists for ℜ(s) > 0, too) and is given by

h∗(s) = (1− 2−s)ζ(s+ 1)Γ(s),

where ζ(s) is the Riemann zeta function. By applying partial integration twice
we get for ℜ(s) > 2

h∗(s− 2) =
1

(s− 1)(s− 2)
f∗(s)

or
f∗(s) = (s− 1)(s− 2)h∗(s− 2).

Note that the poles of h∗(s− 2) at s = 1 and s = 2 are are canceled so that this
identity actually holds for ℜ(s) > 0.

Summing up, the product β1(2 − s)f∗(s) (and, thus, λ∗(s)) is defined for
ℜ(s) ∈ (0, 3). At s = 3 there is a pole which has the residue −ζ(2)Γ(3) = −π2/3.

We can make a similar analysis for µ∗(s) and we arrive at

µ∗(s) = 2
sd−1

(d− 1)sd
β∗
2 (1− s)f∗(s),

where β∗
2(s) is the Mellin transform of function function (1−y2)(d−1)/2. Similarly

to the above the Mellin transform µ∗(s) is also defined on ℜ(s) ∈ (0, 3) and has
a simple pole at s = 3 with residue

−ζ(2)Γ(3)d− 1

2
= −π

2(d− 1)

6
.

For both λ∗(s) and µ∗(s) the next pole is at s = 5.
We now apply the inverse Mellin transform

λ(w) =
1

2πi

∫ 1+i∞

1−i∞
λ∗(s)w−sds, µ(w) =

1

2πi

∫ 1+i∞

1−i∞
µ∗(s)w−sds

to extract asymptotics of λ(w) and µ(w) for w →∞. By moving the integration
path over the simple poles at s = 3 and s = 5 and catching the residues we
finally obtain

λ(w) = 2
sd−1

3sd
π2w−3 +O(w−5),

µ(w) =
sd−1

3sd
π2w−3 +O(w−5)

10.5. Minimax Regret for Online Logistic Regression 303

for w →∞. In conclusion

det(B(w)) = 2

(
sd−1

3sd
π2‖w‖−3(1 +O(‖w‖−2))

)d

(10.65)

when ‖w‖ → ∞. This completes the proof of Lemma 10.5.3.

It is now easy to complete the proof of Proposition 10.5.2. We have to
evaluate the quantities λ(w) and µ(w), the eigenvalues of matrix B(w) for large

d. The main contribution of both integrals is for θ around π
2 . For θ =

π
2 +

√
2
dx

we have

sin(θ)d−2 = exp

(
−d− 2

d
(x2 +O(x4))

)
,

cos(θ)2 =
2

d
x2 − 4/(3d2)x4 +O(x6/d3),

f(cos(θ)‖w‖) = 1

4
exp

(
−‖w‖

2

2d
x2
)
· (1 +O(w4x4/d2)

leading to (after dropping the error term which is easy to estimate)

∫ π

0

sin(θ)d−2 cos(θ)2f(cos(θ)‖w‖)dθ

∼ (2/d)3/2
∫ +∞

−∞
exp

(
−(1 + ‖w‖

2 − 4

2d
)x2
)
x2dx

= (2/d)3/2
√
π

2

(
1 +
‖w‖2 − 4

2d

)−3/2

and

∫ π

0

sin(θ)df(cos(θ)‖w‖)dθ ∼ (2/d)1/2
∫ +∞

−∞
exp

(
−(1 + ‖w‖

2

2d
)x2
)
dx

= (2/d)1/2
√
π

(
1 +
‖w‖2
2d

)−1/2

.

In summary

det(B(w)) ∼
(
sd−1

sd

)d

(2/d)d/2
1

d

1

(d− 1)d−1
πd/2 exp

(
−‖w‖

2

4

)
.

304 Chapter 10. Redundancy of Universal Memoryless Sources

To complete the derivation, we need to integrate
√
det(B(w)) over the vec-

tors w. This leads to
∫ √

(det(B(w))dw ∼ 1

2d

(
sd−1

sd

)d/2

(2/d)d/4
1√
d

1
√
d− 1

d−1
πd/4(2

√
2π)d.

(10.66)
The final touch is to estimate of the ratio

sd−1

sd
. But

sd−1

sd
=
√
π

Γ(d/2)

Γ((d− 1)/2)
,

Γ(d/2)

Γ((d − 1)/2)
=

√
d

2
− 1

4
+O(1/d)

so that ∫ √
(det(B(w))dw ∼ (π/8)d/4e3/8(d/4)−d/2 (10.67)

which completes the proof.

10.6. Exercises

10.1 Prove (10.9) using the definitions of T (z) and B(z), that is, prove that

B(z) =
1

1− T (z)
for all z < e−1.

10.2 Prove (10.17), that is,

Sn − S(S)
n = O

(
n

m
2 −1

)
.

10.3 Consider the binary constrained case as discussed in Section 10.3. Prove
that in this case the KT-estimator (see Krichevsky and Trofimov (1981))
can be computed as

M(xn+1|xn) =
Nxn+1(x

n) + 1/2

n+ 1
+(2xn+1−1)

a
N1(x

n)+1/2
1 (1− a1N0(x

n) + 1/2

C(S)(n+ 1)

−(2xn+1 − 1)
b
N1(x

n)+1/2
1 (1 − b1N0(x

n) + 1/2

C(S)(n + 1)

where C(S) is defined in (10.15).

10.4 Prove the estimate (10.37, that is,

∑

k

(
n

k

)
B(k+ 1/2)

ki + 1
= O

(√
mB(1/2)√

n

)

uniformly for all m and n.

10.6. Exercises 305

10.5 Prove (10.42) and (10.43).

10.6 Complete the proof of Theorem 10.3.1 for m > 2 by providing rigorous
derivations.

10.7 Prove (10.46) (see Balasubramaniam (1997), Grunwald (2007)).

10.8 Consider the following recurrence that is related to the maximal mini-
max redundancy of memoryless sources. Under some initial conditions,
a sequence xmn satisfies for n ≥ 1 and m ≥ 1:

xmn = an +

n∑

i=0

(
n

i

)(
i

n

)i(
1− i

n

)n−i

(xm−1
i + xm−1

n−i) , (10.68)

where an is a given sequence (the so called additive term), and m is an
additional parameter. Prove that the following tree generating functions

Xm(z) =

∞∑

k=0

kk

k!
zkxmk , A(z) =

∞∑

k=0

kk

k!
zkak

satisfy the following functional equation

Xm(z) = A(z) + 2B(z)Xm−1(z)

where B(z) is defined in (10.8).

10.9 Consider a memoryless unconstrained source Θ with m = o(n). Using
elementary asymptotics (without complex analysis) prove the following

R∗
n(Θ) =

m− 1

2
log
(e n
m

)
+

1

2
(1− log 2)

+O(1/m) +O(m3/2/
√
n)

for large n.

10.10 Consider the midfield modelM0 denoted as M̃0. In this model family
M̃0 assumes an alphabet A ∪ B, where |A| = m and |B| = M . The
probabilities of symbols in A, denoted by p1, . . . , pm, are allowed to
vary (unknown), while the probabilities q1, . . . , qM of the symbols in B
are fixed (known). Furthermore, q = q1 + · · ·+ qM and p = 1 − q. We
assume that 0 < q < 1 is fixed (independent of the sequence length
n). To simplify our notation, we also write p = (p1, . . . , pm) and q =
(q1, . . . , qM). The output sequence is denoted x := xn1 ∈ (A ∪ B)n.
Let R̃∗

n,m,M (M̃0) denote the redundancy of the model M̃0. Prove the
following

R̃∗
n,m,M =

n∑

k=0

(
n

k

)
pk(1 − p)n−kR̃∗

n,m(M0)

306 Chapter 10. Redundancy of Universal Memoryless Sources

where R̃∗
n,m(M0) is the minimax redundancy of the originalM0.

10.11 Consider the model M̃0 defined in Exercise 10.10. Prove the following
theorem established in Szpankowski and Weinberger (2012).

Theorem 10.6.1. Consider a family of memoryless models M̃0 over
the (m +M)-ary alphabet A ∪ B, with fixed probabilities q1, . . . , qM of
the symbols in B, such that q=q1+ . . .+qM is bounded away from 0 and
1. Let p=1−q. Then, the minimax pointwise redundancy dn,m,M takes
the form:
(i0) If m is fixed, then

R̃∗
n,m,M =

m−1
2

log
(np

2

)
+ log

(√
π

Γ(m2)

)
+O

(
1√
n

)
. (10.69)

(i) Let mn→∞ as n grows, with mn=o(n). Assume:

(a) m(x) := mx is a continuous function, as well as its derivatives
m′(x) and m′′(x).

(b) denote ∆n := mn+1 −mn = O(m′(n)), m′(n) = O(m/n), and
m′′(n)=O(m/n2), where m′(n) and m′′(n) are derivatives of
m(x) at x = n.

If mn = o(
√
n/ logn), then

R̃∗
n,m,M =

mnp − 1

2
log

(
np

mnp

)
+
mnp

2
log e+

− 1

2
+
mnp

3
log e

√
mnp

np
+O

(
1√
mn

+
m2

n log
2 n

n

)
.

Otherwise,

R̃∗
n,m,M =

mnp

2
log

(
np

mnp

)
+
mnp

2
log e+

+
mnp

3
log e

√
mnp

np
+O

(
logn+

m2
n

n
log2

n

mn

)
.

(ii) Let mn = αn + ℓ(n), where α is a positive constant and ℓ(n) is a
monotonic function such that ℓ(n) = o(n). Then,

R̃∗
n,m,M = n log (Bαp+ 1− p)

− log
√
Aα+O

(
ℓ(n)+

1√
n

)

where Aα and Bα are defined in Theorem 10.2.1(ii).

Bibliographical notes 307

(iii) Let n=o(mn) and assumemk/k is a nondecreasing sequence. Then,

R̃∗
n,m,M = n log

(pmn

n

)
+O

(
n2

mn
+

1√
n

)
. (10.70)

for large n.

10.12 Prove rigorously (10.44).

10.13 Prove that the sum (10.56) is asymptotically equal to the integral (10.58)
as T →∞.

10.14 Calculate the integral (10.59) for any dimensions 1 ≤ d < N .

10.15 Suppose that the N vectors a1, . . . , aN ∈ Rd span Rd and suppose that
αj > 0, 0 ≤ j ≤ N . Prove that the integral

∫

Rd

√√√√det

(
N∑

i=1

αip(〈aiw〉)q(〈aiw〉)ai · aτi

)
dw1 · · · dwd

is finite.

Bibliographical notes

Redundancy and regret for memoryless sources are analyzed in many papers.
The leading term of the minimax redundancy was already known to Rissanen
(1984b). A better estimate was provided by Clarke and Barron (1990), and

then Xie and Barron (1997, 2000). The precise asymptotic expansion for R̃∗
n

was presented in Szpankowski (1998), while the coding part R∗
n(Q

∗) was derived
in Drmota and Szpankowski (2004). Finally, the constrained distribution was
first discussed in Drmota and Szpankowski (2004) for the binary case while
the sequential algorithm foe this case was presented in Shamir, Tjalkens, and
Willems (2008). It was recently extended to non-binary alphabet in Drmota
et al. (2022).

Minimax redundancy for large alphabets was tackled in Gyorfi, Pali, and
der Meulen (1994) (see also Kieffer (1978)), but then significantly extended
in Boucheron, Garivier, and Gassiat (2009), Orlitsky et al. (2004), Orlitsky and
Santhanam (2004), Shamir (2006b, 2006a). The leading terms of the asymptotic
expansions in Theorem 10.2.1 for m = o(n) and n = o(m) were also derived
in Orlitsky and Santhanam (2004). The precise maximal minimax redundancy
was for the time established in Szpankowski and Weinberger (2012).

The precise maximal minimax redundancy for finite alphabets presented in
Section 10.1 is based on Drmota and Szpankowski (2004), while minimax re-
dundancy for large alphabets discussed in Section 10.2 follows Szpankowski and

308 Redundancy of Universal Memoryless Sources

Weinberger (2012). The average minimax redundancy described in Section 10.3
come from Drmota et al. (2022). Section 10.4 follows Balasubramaniam (1997),
Grunwald (2007), Rissanen (2007). Finally Section 10.5 is based on Jacquet
et al. (2021) (see also Foster et al. (2018), Shamir (2020)).

Properties of the Lambert W function and tree function T (z) are discussed
in depth in Corless et al. (1996).

CHAPTER 11

Markov Types and Redundancy

for Markov Sources

In this chapter we study Markov sources Mr of order r, however, we usually
assume that they are of order 1. Our goal to to derive precise estimates for
the minimax redundancy and regrets, where our main focus is on the maximal
(worst case) minimax R∗

n.
However, in order to address the minimax redundancy we must understand

Markov types, that is, the number of distinct distributions and the number of
sequences generated by a Markov source of the same distribution type. We shall
discuss Markov types in this chapter, too.

11.1. Some Preliminaries

In Lemma 9.2.2 we showed that the maximal minimax can be partitioned into
the coding part R∗

n(Q
∗) and the part R̃∗

n that represents the class of sources.
That is,

R∗
n = R∗

n(Q
∗) + R̃∗

n

where R̃∗
n = logDn with

Dn =
∑

xn

sup
P∈Mr

P (xn).

In the above xn is generated by an unknown Markov source from Mr with
empirical distribution P (xn) where P ∈Mr.

Let now P ∈ M1, where M1 is a Markov source of order 1. Assume that
the alphabet is A = {0, 1, . . . ,m− 1}, and the unknown transition probabilities
are pij for i, j ∈ A. Then we can write

P (xn) = P (x0)
∏

i,j∈A
p
kij

ij

310 Chapter 11. Markov Types and Redundancy for Markov Sources

where kij is the number of (consecutive) pairs (i, j) ∈ A2 in xn. For example,

P (0101100) = P (0)p00p
2
01p

2
10p11.

Clearly we have ∑

1≤i,j≤m

kij = n− 1.

The matrix k = [kij]i,j∈A is called the frequency matrix and plays a crucial role
in the Markov analysis. It satisfies the so called conservation law which asserts
that the number of pairs (j, i) that ends with symbol i must be equal (with the
possible exception of the first and last symbols)) to the number of pairs (i, j)
that start with symbol i (see (11.6)).

In order to analyze the maximal minimax redundancy we need to find supP (xn)
and Dn(M). Since

sup
P
P (xn) = sup

pij

∏

ij

p
kij

ij =

(
k00
k0

)k00

. . .

(
km−1,m−1

km−1

)km−1,m−1

where ki =
∑m

j=1 kij , one finds

Dn(M) =
∑

k

Mk

(
k00
k0

)k00

. . .

(
km−1,m−1

km−1

)km−1,m−1

, (11.1)

whereMk is is the number of xn generated overA having kij pairs (i, j) in x
n. It

is known under the name frequency count but in fact it is the number of Markov
sequences of a given type that we shall define precisely in the next section.

Thus, in order to study the minimax redundancy R∗
n we first in Section 11.2.1

discuss Markov types. Then we present in Theorem 11.3.4 precise asymptotics
for the maximal minimax redundancy leading to

R̃∗
n ∼

mr(m− 1)

2
logn

for Markov of order r.

11.2. Markov Types

The underlying idea of types is that two sequences xn, yn of the same type
should have the same probabilities: P (xn) = P (yn). This could be used as a
definition of types. However, we use a combinatorial approach.

11.2. Markov Types 311

Suppose that k = [kij]i,j∈A is a frequency matrix of a sequence xn (for some
n ≥ 0). Then the type T (k) is the set of sequences with the frequency matrix
k. Sometimes we will also use the notation T (xn). Clearly we have

⋃

xn

Tn(xn) = An.

Furthermore we denote the set of all types of sequences of length n over an
alphabet of size m as Qn(m).

So our goal it to find asymptotic expressions for the number of (first order)
Markov types |Qn(m)| and number of sequences of type xn, that is, |T (xn)|.

Example 11.2.1. For a memoryless source over the alphabetA = {0, 1, . . . ,m−
1} we can consider the vector k = (ki)i∈A of frequencies of the appearing sym-
bols, that is, a sequence xn is of type k if the symbol i appears ki times in xn,
0 ≤ i < m. Since

P (xn) =
∏

i∈A
pki

i

it follows that two sequences xn, yn of the same type satisfy P (xn) = P (yn).
From a more combinatorial point of view we consider non-negative integers ki,
i ∈ A, with k0+ · · ·+km−1 = n. The corresponding type class T (k) is then fully
described. Accordingly we denote by Qn(m) the set of all types of sequences of
length n. By elementary combinatorial considerations we have

|T (k)| =
(

n

k1, . . . , km

)
and |Qn(m)| =

(
n+m− 1

m− 1

)
.

Let us now return to Markovian types. We recall that

P (xn) := P (x0)
∏

i,j∈A
p
kij

ij , (11.2)

where kij is the number of consecutive occurrences of the pair (i, j) ∈ A2 in xn.
The matrix k = [kij]i,j∈A is the frequency matrix, that defines the Markov type
class. We already mentioned that the frequency matrix k is an integer matrix
satisfying two important properties:

∑

i,j∈A
kij = n− 1, (11.3)

and additionally for any i ∈ A
m∑

j=1

kij =
m∑

j=1

kji + δ(x1 = i)− δ(xn = i), i ∈ A, (11.4)

312 Chapter 11. Markov Types and Redundancy for Markov Sources

where δ(A) = 1 when A is true and zero otherwise. The last property is called
the flow conservation property and is a consequence of the fact that the number
of pairs starting with symbols i ∈ A must be equal to the number of pairs ending
with symbol i ∈ A with the possible exception of the first and last pairs.

In a first step we will neglect this exception by considering artificially the
so called cyclic sequences in which the first element x1 follows formally the last
symbol xn. If we associate to a cyclic sequence xn the cyclic frequency matrix
k = [kij] then these integer matrices k = [kij] satisfy the following two properties

∑

i,j∈A
kij = n, (11.5)

m∑

j=1

kij =

m∑

j=1

kji, i ∈ A. (11.6)

We will call such integer matrices k also balanced frequency matrices or simply
balanced matrices. We shall call (11.6) the conservation law equation or the
balanced boundary condition (BBC). We denote by Fn(m) the set of nonnegative
integer solutions of (11.5) and (11.6).

Accordingly we define cyclic Markov types. Two cyclic sequences have the
same (cyclic) Markov type if they are related to the same balanced frequency
matrix. We denote by Pn(m) the set of cyclic Markov types.

We first study these cyclic Markov types Pn(m). They are more natural
from a combinatorial point of view and they can be handled in an elegant way.
They are also related to other interesting combinatorial objects (e.g., counting
the number of integer solutions of some system of linear equations). In a second
step we will relate them to non-cyclic Markov types.

Example 11.2.2. Consider a binary Markov source over A = {0, 1}. A bal-
anced frequency matrix is of the following form

k =

[
k00 k01
k10 k11

]

where the nonnegative integers kij satisfy

k00 + k01 + k10 + k11 = n and k01 = k10.

Equivalently we have
k00 + 2k01 + k11 = n. (11.7)

11.2. Markov Types 313

k =

[
1 2
2 2

]

Figure 11.1. A frequency matrix and its corresponding Eulerian graph.

The number of nonnegative integer solutions of (11.7) is obviously

|Fn(2)| =
⌊n

2 ⌋∑

k01=0

(n− 2k01 + 1)

=
(⌊n

2

⌋
+ 1
)
(n−

⌊n
2

⌋
+ 1) =

n2

4
+O(n). (11.8)

In general it is easy to show that the elements of Fn(m) can be parametrized
by the m2 −m variables kij , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 2. The remaining
frequencies ki,m−1, 0 ≤ i ≤ m − 1, are then uniquely given by the balance
conditions and the condition

∑
i,j kij = n.

As mentioned above there are close connections between (cyclic) Markov
types and other combinatorial objects. The most prominent example are Eu-
lerian graphs. For example, consider the balanced frequency matrix over A =
{0, 1} given by k00 = 1, k01 = k10 = 2 and k11 = 2, so that n = 7. This
matrix can be related to a directed multi-graph on the vertex set A as depicted
in Figure 11.1, where here kij denotes the number of directed edges from i to
j. Observe that due to the balance property of the frequency matrix k, the
number of edges leaving a node must be equal to the number of edges coming
in. But this defines an Eulerian graph. With that in mind, we observe that the
number of cyclic types is equal to the number of Eulerian graphs on |A| nodes
(see next section and Figure 11.2), while the number of of Eulerian paths gives
us the number of cyclic sequences of type k (see Section 11.2.3).

In the next example we show that the number of Markov types |Pn(m)| is
not necessary equal to the number of nonnegative integer solutions |Fn(m)| of
(11.5) and (11.6).

Example 11.2.3. Suppose that m = 3. The balanced frequency matrix has

314 Chapter 11. Markov Types and Redundancy for Markov Sources

nine elements {kij}i,j∈{0,1,2}, and they satisfy

k00 + k01 + k02 + k10 + k11 + k12 + k20 + k21 + k22 = n

k01 + k02 = k10 + k20

k01 + k21 = k10 + k12

k02 + k12 = k20 + k21.

It is not quite obvious how many integer solutions such a system has. Neverthe-
less, we show later (see the proof of Theorem 11.2.6) that it is asymptotically
n6/(12 · 6!). However, we observe that not every solution of the above system
of equations leads to a legitimate sequence xn. Consider the following example
with n = 5:

k00 = 2, k01 = k02 = 0,

k10 = 0, k11 = 0, k12 = 1,

k20 = 0, k21 = k22 = 1.

There is no sequence of length five that can satisfy the above conditions. Such
a cyclic sequence would have to consist of five elements and contain the sub-
strings 12, 21, 22, and two 00 or one 000, which is impossible. Observe that
the underlying multigraph consists of two connected components that do not
communicate.

11.2.1. Number of Types

We now deal with the set Pn(m) of cyclic Markov types of length n over an
alphabet A of size m.

We first relate the counting problem of cyclic Markov types with the number
of special connected Eulerian di-graphs G = (V (G), E(G)) such that V (G) ⊆ A
and |E(G)| = n, where the number of (directed) edges between the ith node and
jth node in G is equal to kij and k = [kij]i,j∈A is a balanced frequency matrix
satisfying the balance property (11.6). Clearly the balance property assures that
the graphs is Eulerian, that is, the number of incoming edges to node i is equal
to the number of out going edges from node i.

Note that G may be defined over a subset of A, as shown in the first example
in Figure 11.2 (i.e., there may be some isolated vertices).

We denote by En(m) the set of (connected) Eulerian digraphs on A; the
middle of Figure 11.2 shows an example of a graph in this set. Finally, the set
Fn(m) can be viewed as the set of digraphs G with V (G) = A, |E(G)| = n and
satisfying the flow conversation property (in-degree equals out-degree). We call
such graphs conservative digraphs. Observe that a graph in Fn(m) may consist

11.2. Markov Types 315

Figure 11.2. Examples of graphs belonging to P7(5), E11(5) and F9(5) sets.

of several connected (not communicating) Eulerian digraphs, as shown in the
third example in Figure 11.2.

There is a simple relation between |En(m)| and |Pn(m)|. Indeed,

|Pn(m)| =
∑

k

(
m

k

)
|En(k)| (11.9)

since there are
(
m
k

)
ways to choosem−k isolated vertices in Pn(m). This implies

|Pn(m)| ≥ |En(m)|.
Indeed, it is certainly true since every Eulerian graph on A with k ≤ m (by
definition it must be strongly connected and satisfy the flow-conservation law)
belongs to Pn(m). In fact, by the same reasoning we can expand the above
inequality to obtain for any n and m

|Fn(m)| ≥ |Pn(m)| ≥ |En(m)|. (11.10)

Our goal is to find an asymptotic relation between the number of digraphs
|Pn(m)| and the number of solutions |Fn(m)| of the flow conservation equations
(11.5)-(11.6), that is, the number of conservative digraphs.

As a direct consequence of our definition, a conservative digraph may have
several connected components. Each connected component is either a connected
Eulerian digraph or an isolated node without an edge. This leads to

|Fn(m)| = |En(m)|+
m−1∑

i=1

∑

A=A0∪···∪Ai

∑

n0+···+ni=n

i∏

j=0

|Enj (Aj)| (11.11)

316 Chapter 11. Markov Types and Redundancy for Markov Sources

where the sum is over all (unordered) set partitions A = A0 ∪ · · ·∪Ai into i ≥ 1
(nonempty) parts with nj edges in each di-subgraph Enj (Aj) over Aj vertices.
Observe that every set partition A = A0 ∪ · · · ∪ Ai with |Aj | = mj > 0 is a
partition of A into i distinguished subsets of cardinality mj . Notice that there
are

(
m

m0...mi

)
ways of dividing m into i + 1 subsets of size mi when permuting

the subsets does not lead to a new distinct permutation. For example, for
A = {0, 1, 2, 3} and m0 = m1 = 2, we have the following partition of A:

{0, 1}, {2, 3}; {0, 2}, {1, 3}; {1, 2}, {0, 3}.
But there are three additional partitions included in the count

(
4
2,2

)
= 6, namely

{2, 3}, {0, 1}; {1, 3}, {0, 2}; {0, 3}, {1, 2}
that follow from the above by permuting equal subsets. In general, permuting
two subsets of equal size does not lead to a new partition, as seen above. As a
consequence of this we can write (11.11) as

|Fn(m)| ≤ |En(m)|+
m−1∑

i=i

∑

m0+···+mi=m

∑

n0+···+ni=n

(
m

m1 . . .mi

) i∏

j=0

|Enj (mj)|.

(11.12)
Furthermore, since by (11.10) |En(m)| ≤ |Fn(m)| for all n,m ≥ 0 we finally
arrive at

|Fn(m)| ≤ |En(m)|+
m−1∑

i=1

∑

m0+···+mi=m

∑

n0+···+ni=n

(
m

m0 . . .mi

) i∏

j=0

|Fnj (mj)|.

(11.13)

In the proof of Theorem 11.2.6 below we shall show that |Fn(m)| = O(nm2−m)
(and that is actually the correct order or magnitude). By using just this property
we will obtain an upper bound for the difference between |Fn(m)| and |En(m)|,
see Lemma 11.2.4. Together with Theorem 11.2.6, the relation (11.10) and the
upper bound from Lemma 11.2.4, it directly follows that, as n→∞,

|Pn(m)| ∼ |Fn(m)| ∼ |En(m)|.

Lemma 11.2.4. If m ≥ 2 is fixed, then we have for n→∞

|Fn(m)| − |En(m)| = O(nm2−3m+3). (11.14)

Proof. Our starting point is (11.13) where we denote the sum on the right-hand
side by A(m,n), that is,

A(m,n) =
m−1∑

i=1

∑

m0+···+mi=m

∑

n0+···+ni=n

(
m

m0 . . .mi

) i∏

j=0

|Fnj (mj)|.

11.2. Markov Types 317

Since |Fn(m)| − |En(m)| ≤ A(m,n) it is sufficient to show

A(n,m) = O(m3nm2−3m+3). (11.15)

In the proof of Theorem 11.2.6 below we shall prove that |Fn(m)| = O(nm2−m),
thus

i∏

j=0

|Fnj (mj)| = O(nm2
0+···+m2

i−m).

For mj ≥ 1 we have

i∑

j=0

m2
j = m2 −

i∑

j=0

mj(m−mj) ≤ m2 −
i∑

j=0

(m− 1) = m2 − i(m− 1) ,

and consequently

A(m,n)≪
m−1∑

i=1

∑

m0+···+mi=m

∑

n0+···+ni=n

(
m

m0 . . .mi

)
nm2−i(m−1)−m

= nm2−m
m−1∑

i=1

n−i(m−1)
∑

n0+···+ni=n

∑

m0+···+mi=m

(
m

m0 . . .mi

)

= nm2−m
m−1∑

i=1

n−i(m−1)
∑

n0+···+ni=n

im

≪ nm2−m
m−1∑

i=1

n−i(m−1)imni−1

≪ nm2−m−1
m−1∑

i=1

n−i(m−2)im

≪ nm2−m−1m2
m−1∑

i=1

(
i

ni

)m−2

≪ nm2−3m+3,

where the last line follows from the fact that i/ni ≤ 2/n2 for i ≥ 2. This
completes the proof.

In the sequel we concentrate on estimating |Fn(m)|. For this purpose we
introduce certain generating functions over matrices. In general, let gk be a

318 Chapter 11. Markov Types and Redundancy for Markov Sources

sequence of scalars indexed by integer matrices k and consider the generating
function

G(z) =
∑

k

gkz
k,

where the summation is over all non-negative m × m integer matrices k and
z = [zij]i,j∈A is an m × m matrix that we often denote simply as z = [zij]

(assuming the indices i and j run from 0 to m− 1). Here zk =
∏

i,j z
kij

ij .
We associate to G(z) the generating function

FG(z) =
∑

k∈F
gkz

k =
∑

n≥0

∑

k∈Fn(m)

gkz
k (11.16)

over matrices k ∈ Fn(m) satisfying the balance equations (11.5) and (11.6).
The following useful lemma relates G(z) and FG(z). We use the following

short-hand notation. Let [zij
xi

xj
] be the matrix ∆−1(x)z∆(x) where ∆(x) =

diag(x0, . . . , xm−1) is a diagonal matrix with elements x0, . . . , xm−1, that is, the
element zij in z is replaced by zijxi/xj . Similarly we set [zij exp(θj − θi)] =
exp(−∆(θ))z exp(∆(θ)).

Lemma 11.2.5. Let G(z) =
∑

k gkz
k be given. Then

FG(z) :=
∑

n≥0

∑

k∈Fn

gkz
k =

(
1

2πi

)m ∮
dx0
x0
· · ·
∮
dxm−1

xm−1
G([zij

xj
xi

]) (11.17)

=
1

(2π)m

∫ π

−π

dθ1 · · ·
∫ π

−π

dθmG([zij exp((θj − θi)i)]

(11.18)

=
[
x01 · · ·x0m

]
G([zij

xj
xi

]).

Proof. Observe that

G(∆−1(x)z∆(x)) = G([zij
xj
xi

]) =
∑

k

gkz
k

m∏

i=1

x
∑

j kji−
∑

j kij

i . (11.19)

Therefore, FG(z) is the coefficient of G([zij
xj

xi
]) at x01x

0
2 · · ·x0m since

∑
j kji −∑

j kij = 0 for matrices k ∈ F . We write it in short as

FG(z) =
[
x01 · · ·x0m

]
g([zij

xj
xi

]).

The result follows from Cauchy’s formula (see Appendix B).

11.2. Markov Types 319

We consider the number of solutions to (11.5) and (11.6). For this purpose
we start with the generating function

Fm(z) =
∑

k

zk =
∏

ij

(1− zij)−1.

Then applying the above lemma with zij = zxi/xj we conclude that the gener-
ating function F ∗

m(z) of |Fn(m)| is

F ∗
m(z) =

∑

n≥0

|Fn(m)|zn =
1

(1− z)m [x01x
0
2 · · ·x0m]

∏

i6=j

[
1− z xi

xj

]−1

. (11.20)

Thus, by Cauchy’s formula,

|Fn(m)| = [zn]F ∗
m(z) =

1

2πi

∮
F ∗
m(z)

zn+1
dz.

We will use this representation to obtain an asymptotic formula for |Fn(m)|.
As mentioned above, this leads to a corresponding asymptotic formula for the
number of cyclic types |Pn(m)| as stated in our main theorem (the proof will be
given in Section 11.2.1).

Theorem 11.2.6. For fixed m and n→∞ the number of cyclic Markov types
is

|Pn(m)| = d(m)
nm2−m

(m2 −m)!
+O(nm2−m−1) (11.21)

where d(m) is a constant that also can be expressed by the following integral

d(m) =
1

(2π)m−1

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
(m−1)−fold

m−1∏

j=1

1

1 + φ2j
·
∏

k 6=ℓ

1

1 + (φk − φℓ)2
dφ1dφ2 · · · dφm−1.

(11.22)

Remark 11.2.7. It is easy to count the number of matrices k satisfying only
equation (11.5), that is,

∑
ij kij = n. Indeed, it coincides with the number of

integer solution of (11.5), which turns out to be the number of combinations
with repetitions (the number of ways of selecting m2 objects from n), that is,

(
n+m2 − 1

n

)
=

(
n+m2 − 1

m2 − 1

)
∼ nm2−1

(m2 − 1)!

320 Chapter 11. Markov Types and Redundancy for Markov Sources

Table 11.1. Constants at nm
2
−m for fixed m.

m constant in (11.21)

2 2.500000000 10−1

3 1.157407407 10−5

4 2.174662186 10−11

5 4.400513659 10−22

Thus the conservation law equation (6.1) decreases the above by the factor
Θ(nm−1).

The evaluation of the integral (11.22) is quite cumbersome (see next section),
but for small values of m we computed it to find that

|Pn(2)| ∼
1

2

n2

2!
(11.23)

|Pn(3)| ∼
1

12

n6

6!
(11.24)

|Pn(4)| ∼
1

96

n12

12!
(11.25)

|Pn(5)| ∼
37

34560

n20

20!
(11.26)

for large n. The coefficients of nm2−m are rational numbers since F ∗(z) is a
rational generating function.

We now compare the coefficient at nm2−m for fixed m in (11.21)are shown
in Table 11.1. We observe extremely small values of these constants even for
relatively small m.

11.2. Markov Types 321

Proof of Theorem 11.2.6

In this section we prove Theorem 11.2.6. Our starting formula is (11.20) that
we repeat below

F ∗
m(z) =

1

(1− z)m [x01x
0
2 · · ·x0m]

∏

i6=j

[
1− z xi

xj

]−1

. (11.27)

Clearly we just have to provide an asymptotic representation for Fn(m) of the
form (11.21). By Lemma 11.2.4 we, thus, obtain the corresponding asymptotic
representation for Pn(m).

We first compute asymptotic expansions for Fn(m) (and equivalently for
Pn(m)) explicitly for m = 2, 3, 4, 5 as summarized in Table 11.1.

For m = 2, we have

F ∗
2 (z) =

1

(1− z)2 [x
0
0x

0
1]

[
1

1− z x0/x1
1

1− z x1/x0

]
. (11.28)

Let us set A = x0/x1 so we need the coefficient of A0 in (1−Az)−1(1− z/A)−1.
This can be seen at a formal level as the product of two (formal) geometric series
or also from an analytic point of view. In the latter case we just have to assume
that |z| < |A| < |1/z|.

Now, by using a partial fractions expression in A, we have

1

1−Az
1

1− z/A =
1

1− z2
[

1

1−Az +
z

A− z

]
.

Recall that |z| < |A| < |1/z| so that the coefficient of A0 in (1 − Az)−1 is one
and that in z(A− z)−1 is zero. Hence,

F ∗
2 (z) = (1− z)−2(1− z2)−1 = (1 + z)−1(1− z)−3

and consequently

|Fn(2)| = [zn]
1

1 + z

1

(1− z)3

=
n2

4
+ n+

3

4
+

1

8
[1 + (−1)n] = 1

2

n2

2!
+O(n) (11.29)

which agrees with (11.8) of Example 1.
For m ≥ 3 we use recursive partial fractions expansions. When m = 3 we

set x0/x1 = A, x0/x2 = B so that we wish to compute

[A0B0]

(
1

1− zA
1

1− z/A
1

1−Bz
1

1− z/B
1

1−Az/B
1

1−Bz/A

)
. (11.30)

322 Chapter 11. Markov Types and Redundancy for Markov Sources

First we do a partial fractions expansion in the A variable, for fixed B and z.
Thus the factor inside the parentheses in (11.30) becomes

1

1− zA
1

1− z2
1

1−Bz
1

1− z/B
1

1− 1/B

1

1−Bz2

+
1

1− z/A
1

1− z2
1

1−Bz
1

1− z/B
1

1− z2/B
1

1−B

+
1

1−Az/B
1

1−B
1

1− z2/B
1

1−B/z
1

1− z/B
1

1− z2

+
1

1−Bz/A
1

1−Bz2
1

1− 1/B

1

1−Bz
1

1− z/B
1

1− z2 . (11.31)

The coefficient of A0 in the first term in (11.31) is

1

1− z2
1

1−Bz
1

1− z/B
1

1− 1/B

1

1−Bz2 , (11.32)

and that in the third term is

1

1−B
1

1− z2/B
1

1−Bz
1

1− z/B
1

1− z2 , (11.33)

while the coefficients of A0 are zero in the second and fourth terms. Combining
(11.32) and (11.33) we must now compute

[B0]

(
1 + z2

1− z2
1

1−Bz
1

1− z/B
1

1−Bz2
1

1− z2/B

)
. (11.34)

Now expanding (11.34) by a partial fractions expansion in B leads to

1 + z2

1− z2 [B
0]

(
1

1−Bz
1

1− z2
1

1− z
1

1− z2 +
1

1− z/B
1

1− z2
1

1− z3
1

1− z

+
1

1− 1/z

1

1− z3
1

1−Bz2
1

1− z4 +
1

1− z3
1

1− 1/z

1

1− z4
1

1− z2/B

)

=
1 + z2

1− z2
[

1

1− z2
1

1− z
1

1− z3 +
−z

(1− z)
1

1− z3
1

1− z4
]

=
1− z + z2

(1− z)4(1 + z)2(1 + z + z2)
.

Hence,

F ∗
3 (z) =

1− z + z2

(1− z)7(1 + z)2(1 + z + z2)
.

11.2. Markov Types 323

Table 11.2. Poles and their orders for various m.

m\ root 1 –1 e±2πi/3 ±i e±2πi/5 e±4πi/5

2 3 1 – – – –

3 7 2 1 – – –

4 13 5 2 1 – –

5 21 8 4 2 1 1

For z → 1, F ∗
3 (z) ∼ 1

12 (1− z)−7 so that

|Fn(3)| =
1

12

n6

6!
+O(n5), n→∞. (11.35)

In the same way it follows that F ∗
m(z) can be represented as a linear combi-

nation of functions of the form

zr

(1− z)m
L∏

i=1

1

1− zℓi

for some r ≥ 0, L ≥ 0, and ℓi ≥ 1. Actually, a more careful look shows that
L = m2− 2m+1. Hence it follows that F ∗

m(z) has a pole of order ≤ m2−m+1
at z = 1 and other polar singularities at roots of unity that are of order ≤ L.
(For 2 ≤ m ≤ 5 these poles and their orders are given in Table 11.2.)

In order to show that the order of the pole z = 1 is actually m2 −m+ 1 we
consider the limit

d(m) = lim
z→1

[(1− z)m2−m+1F ∗
m(z)].

We will show that this limit actually exists and that it is positive. Consequently

|Fn(m)| = d(m)
nm2−m

(m2 −m)!
+O(nm2−m−1). (11.36)

However, it seems that there is no simple formula for the sequence of constants
d(m). We just characterize d(m) as an (m− 1)-fold integral.

324 Chapter 11. Markov Types and Redundancy for Markov Sources

First consider the simple case m = 2. Setting A = eiΦ and using a Cauchy
integral, we have

[A0]
1

1− z/A
1

1−Az =
1

2π

∫ π

−π

dΦ

1− 2z cosΦ + z2
.

Now set z = 1 − δ and expand the integral for z → 1. The major contribution
will come from where δ ≈ 0 and scaling Φ = δφ and using the Taylor expansion
1− 2(1− δ) cos(δφ) + (1 − δ)2 = δ2[1 + φ2] +O(δ3), we find that

F ∗
2 (z) ∼

1

δ2
1

2π

∫ ∞

−∞

δ

δ2[1 + φ2]
dφ =

1

2

1

δ3
=

1

2
(1− z)−3

as z → 1.
Whenm = 3, we use (11.30) and Cauchy’s formula with A = eiΦ and B = eiΨ

to get

1

(2π)2

∫ π

−π

∫ π

−π

1

1− 2z cosΦ + z2
· 1

1− 2z cosΨ + z2
· 1

1− 2z cos(Φ−Ψ) + z2
dΦdΨ.

Again expanding the above for z = 1 − δ → 1 and Φ = δφ = O(δ), Ψ = δψ =
O(δ), we obtain the leading order approximation

1

δ4
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

1

1 + φ2
1

1 + ψ2

1

1 + (φ− ψ)2 dφdψ =
1

δ4
· 1
12
.

Thus as z → 1, F ∗
3 (z) ∼ 1

12δ
−7 = 1

12 (1− z)−7 which follows also from the exact
generating function.

For generalm a completely analogous calculation shows that as δ = 1−z → 0,
F ∗
m(z) ∼ δm−m2−1d(m), where

d(m) =
1

(2π)m−1

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
(m−1)−fold

m−1∏

j=1

1

1 + φ2j
·
∏

k<ℓ

1

1 + (φk − φℓ)2
dφ1dφ2 · · · dφm−1.

(11.37)
Note that d(m) always exists and that d(m) > 0.

We recall that the upper bound |Fn(m)| = O(nm2−m) was used in Lemma 11.2.4

to prove that |Pn(m)| = |Fn(m)| + O(nm2−3m+3) which finally completes the
proof of Theorem 11.2.6.

We remark that there are other representations for the constant d(m). For
example, if we directly start with the representation (11.13), rewrite it into an

11.2. Markov Types 325

m-fold Cauchy integral, and apply the substitutions xi = eiϑi we obtain

F ∗
m(z) =

δ−m

(2π)m

∫ π

−π

· · ·
∫ π

−π

∏

i6=j

1

1− (1 − δ)ei(ϑi−ϑj)
dϑ0 · · · dϑm−1

∼ δm
2−m−1

(2π)m

∫ ∞

−∞
· · ·
∫ ∞

−∞

∏

i6=j

1

1 + i(θi − θj
dθ0 · · · dθm−1,

where we used the substitutions ϑi = δθi. Thus, we also have the representation

d(m) =
1

(2π)m

∫ ∞

−∞
· · ·
∫ ∞

−∞

∏

i6=j

1

1 + i(θi − θj)
dθ0 · · · dθm−1 (11.38)

for any m ≥ 2.

11.2.2. Counting Non-Cyclic Markov Types.

Finally, we address the issue of Markov types over cyclic strings versus non-
cyclic or linear strings. Recall that Qn(m) denotes the set of Markov types over
non-cyclic (linear) strings. It turns out that there is a simple relation between
|Qn(m)| and |Pn(m)|.

Let a ∈ A and define Pn(a,A) as the set of cyclic types of strings of length
n that contain at least one occurrence of symbol a. Clearly,

|Pn(a,A)| = |Pn(m)| − |Pn(m− 1)|,

and therefore
|Pn(a,A)| = |Pn(m)|(1 −O(n−2m))

by Theorem 11.2.6.
In the same spirit, let Qn(a) be the set of types over linear strings starting

with symbol a, and Qn(a, b) be the set of (non-cyclic) types over strings of
length n that start with symbol a and end with symbol b. Certainly, Qn(a, a) =
Pn−1(a,A) and noticing that

⋃
a∈A Pn(a,A) = Pn(m), we conclude that

Qn(m) =
⋃

(a,b)∈A2

a 6=b

Qn(a, b) ∪
⋃

a∈A
Pn−1(a,A) (11.39)

=
⋃

(a,b)∈A2

a 6=b

Qn(a, b) ∪ Pn−1(m).

Observe also that Qn(a, b) are disjoint for a 6= b and for every a 6= b the set
Qn(a, b) is disjoint from Pn(a,A). Furthermore, the cardinality of Qn(a, b) is

326 Chapter 11. Markov Types and Redundancy for Markov Sources

the same for all pairs (a, b) with a 6= b. In summary, by (11.39) we conclude
that (for a 6= b)

|Qn(m)| = |Pn−1(m)|+ (m2 −m)|Qn(a, b)|. (11.40)

Next we estimate the cardinality of Qn(a, b) by proving the following in-
equalities:

|Pn−2(a,A)| ≤ |Qn(a, b)|, (11.41)

|Qn(a, b)| ≤ |Pn(a,A)|. (11.42)

Indeed, for (11.41) we observe that if k ∈ Pn−2(a,A), then k + eab ∈ Qn(a, b)
where eab is a matrix with all 0’s except at position (a, b) it contains a 1. This
implies (11.41). For (11.42), we notice that if k ∈ Qn(a, b), then k + eba ∈
Pn(a,A) and the inequality follows.

Consequently, since |Pn−2(m)| ∼ |Pn−1(m)| = |Pn(m)|(1 − O(n−m2

)), we
have |Qn(a, b)| = |Pn(m)|(1−O(n−2m)) which by (11.40) leads to the following
conclusion (where we also apply Theorem 11.2.6):

Corollary 11.2.8. The number of (non-cyclic) Markov types |Qn(m)| of stings
of length n satisfies

|Qn(m)| = (m2 −m+ 1)|Pn(m)|(1−O(n−2m))

= d(m)
m2 −m+ 1

(m2 −m)!
nm2−m +O(nm2−m−1)

for large n and finite m.

11.2.3. Number of Sequences of a Given Type

In this section, we tackle a harder problem: we count the number of Markov
sequences of a given type k, that is, we estimate |Tn(k)|. In other words, we
shall enumerate the number of Eulerian paths in the di-graph as introduced in
the previous section (see Figure 11.1).

We start by introducing the following quantity

Bk =
∏

i∈A

ki!∏
j∈A ki,j !

=

(
k0

k00 · · · k0,m−1

)
· · ·
(

km−1

km−1,0 · · · km−1,m−1

)
(11.43)

where ki =
∑

j kij . We will use the concept of the matrix generating functions
as already discussed above. Recall that z = {zij}mij=1 denotes a complex m×m

11.2. Markov Types 327

matrix, k an integer matrix, and that we write zk =
∏

ij∈A2 z
kij

ij . In particular,
we have (see Exercise 11.5)

B(z) =
∑

k

Bkz
k =

∏

a∈A
(1−

∑

b∈A
za,b)

−1. (11.44)

However, we really need to compute the generating function

FB(z) =
∑

k∈F
Bkz

k

as defined in (11.16). We first prove the following lemma.

Lemma 11.2.9. We have

FB(z) = (det(I− z))−1,

where I is the identity m×m matrix.

Proof. Setting gk = Bk in Lemma 11.2.5 and denoting a(z) = (aij(z)) = I − z
we find

FB(z) =

(
1

2πi

)m ∮
dx1 · · ·

∮
dxm

∏

i

∑

j

aij(z)xj

−1

.

By applying the linear change of variables yi =
∑

j aij(z)xj we obtain

(
1

2πi

)m ∮
dx1 · · ·

∮
dxm

∏

i

∑

j

aij(z)xj

−1

= (det(a(z)))−1

(
1

2πi

)m ∮
dy1
y1
· · ·
∮
dym
ym

= (det(a(z)))−1

which completes the proof since we can assume that the matrix a(z) is not
singular.

Throughout we also write BA(z) = FAB(z) to simplify the notation; the
subscript A indicates that the underlying alphabet is A. In particular, from the
above corollary one concludes that

BA−{a}(z) = (detaa(I− z))−1,

328 Chapter 11. Markov Types and Redundancy for Markov Sources

where detij(a) is the determinant of a matrix with the ith row and the jth
column of a deleted.

For a given (cyclic) type k ∈ Fn we defined the frequency counts Nk, N
a
k ,

and N ba
k as follows:

• The frequency count Nk is the number of cyclic strings of type k;

• Na
k is the number of cyclic strings of type k starting with a symbol a ∈ A;

• N b,a
k is the number of cyclic strings of type k starting with a pair of symbols

ba ∈ A2.

These quantities satisfy the following properties:

Theorem 11.2.10. Let k ∈ Fn for n ≥ 1.
(i) The number Na

k of cyclic strings of type k starting with symbol a is

Na
k = [zk]B(z) · detaa(I− z). (11.45)

(ii) The number N ba
k of cyclic strings (of type k) starting with the pair of symbols

ba is
N ba

k = [zk] zbaB(z) · detbb(I− z). (11.46)

(iii) N ba
k is asymptotically given by

N b,a
k =

kba
kb
Bk · detbb(I− k∗) +O

(
Bk (min kij)

−1
)

(11.47)

where k∗ is the matrix whose ij-th element is kij/ki, that is, k
∗ = [kij/ki].

The remaining part of this section is devoted to the proof of Theorem 11.2.10.
We first prove Theorem 11.2.10(i). We first recall that BA(z) = FB(z) with
B(z) defined in (11.44). By Lemma 11.2.9 we also know that

FA−{a}B(z) = BA−{a}(z) = det−1
aa (I− z)

where detaa(I − z) is the determinant of the matrix (I − z) with row a and
column a deleted.

We want to prove that Na
k is the coefficient at zk of B(z)/BA−{a}(z) which

leads then directly to (11.45):

Na
k = [zk]

B(z)

BA−{a}(z)
= [zk]B(z) · detaa(I− z).

The proof proceeds via the enumeration of Euler cycles (paths) in a directed
multigraph Gm over m vertices defined in the previous section. We recall that

11.2. Markov Types 329

in such a graph vertices are labeled by symbols from the alphabet A with the
edge multiplicity given by the matrix k: there are kij edges from vertex i ∈ A
to j ∈ A. The number of Eulerian paths starting from vertex a ∈ A in a such
multigraph is equal to Na

k .
For a given vertex i of Gm with ki = ki,0 + · · ·+ ki,m−1, there are

ki!

ki,0! · · · ki,m−1!
=

(
ki

ki,0 · · · ki,m−1

)
(11.48)

ways of departing from i. Clearly, (11.48) is the number of permutations with
repetitions. Furthermore, Bk defined in (11.43) is the product of (11.48) for i =
1, . . . ,m. Let us define a coalition a set ofm such permutations, one permutation
per vertex, corresponding to a combination of the edges that depart from a
vertex. There are Bk coalitions.

Observe that for a given string, when scanning its symbols we trace an Eu-
lerian path in Gm. However, we are interested in an “inverse” problem: given
an initial symbol a ∈ A and a matrix k satisfying the flow property (with a non
zero weight for symbol a, ka > 0), does a coalition of paths corresponds to a
string xn1 , that is, does it trace an Eulerian path. The problem is that such a
trace may end prematurely at symbol a ∈ A (by exhausting all edges departing
from a) without visiting all edges of Gm (i.e., the length of the traced string
is shorter than n). For example, in Figure 11.1 the following path 001010 of
length six leaves edges 11 and 11 unvisited. Let k′ be the matrix composed of
the remaining non-visited edges of the multigraph (the matrix k − k′ has been
exhausted by the trace). Notice that matrix k′ satisfies the flow property but
the row and column corresponding to symbol a contain only zeros.

Given that k and k′ are members of F∗, let Na
k,k′ be the number of ways

matrix k is transformed into another matrix k′ when the Eulerian path starts
with symbol a. Notice that k′a = 0. We have Na

k,[0] = Na
k , but also the following

Na
k,k′ = Na

k−k′ ×Bk′ , k′a = 0.

Summing over all matrices k′ we obtain
∑

k′ Na
k,k′ = Bk, thus

Bk =
∑

k′,k′
a=0

Na
k−k′ ×Bk′ .

Multiplying by zk and summing now over all zk such that ka 6= 0 it yields

∑

k∈F∗,ka 6=0

Bkz
k =

(
∑

k

Na
kz

k

)
.×

 ∑

k∈F∗,ka=0

Bkz
k

 . (11.49)

330 Chapter 11. Markov Types and Redundancy for Markov Sources

Denoting Na(z) =
∑

k∈F∗
Na

kz
k, we arrive at

BA(z)−BA−{a}(z) = Na(z)BA−{a}(z).

We observe that for any generating functions g(z) and h(z) we have F(gFh)(z) =
Fg(z)Fh(z). Consequently, F(1g)(z) = 1

Fg(z) . Since FB(z) = BA(z) and

FBA−{a}(z) = BA−{a}(z), for all k ∈ F∗ we obtain

[zk]
BA(z)

BA−{a}(z)
= [zk]

FB(z)

BA−{a}(z)

= [zk]F
(

B

BA−{a}

)
(z)

= [zk]
B(z)

BA−{a}(z)
,

which is the last step needed to complete the proof.
Knowing Na

k we certainly can compute the frequency count Nk as

Nk = [zk]B(z)
∑

a∈A
(BA−{a}(z))

−1 = [zk]B(z)
∑

a∈A
detaa(I− z).

Next we establish Theorem 11.2.10 (ii), that is, we prove that for n ≥ 1 and
k ∈ Fn

N ba
k = [zk]

B(z)zb,a
BA−{b}(z)

= zbaB(z) · detbb(I− z).

The proof proceeds in the same way as in the previous proof except that we
have to consider a coalition with the first edge departing from b to a. We let
Bba

k be the number of such coalitions. Observe that Bba
k = Bk

kba

kb
= Bk−[δba],

where [δba] is the matrix with all zeros except the ba-th element which is set to
be one. Let k ∈ F∗. Then, using the same approach as before, we arrive at the
following recurrence

Bba
k =

∑

k′,k′
b=0

N ba
k−k′ ×Bk′ , k′b = 0. (11.50)

Computing the generating function we find

∑

k∈F ,kba 6=0

Bba
k zk =

(
∑

k

N ba
k zk

)
×

 ∑

k∈F∗,kb=0

Bkz
k

 .

11.3. Minimax Redundancy for Markov Sources 331

In other words, ∑

k∈F∗,kba 6=0

Bba
k zk = N ba(z)BA−{a}(z),

where N ba(z) =
∑

kN
ba
k zk. Using the fact that

∑

k∈F∗,kba 6=0

Bba
k zk = FBba(z),

where

Bba(z) =
∑

k,kba>0

Bba
k zk =

∑

k,kba>0

Bk−[δba]z
k = B(z)zba,

we complete the proof.
Finally we prove Theorem 11.2.10 (iii). We recall that Bk is explicitly given

by (11.43). Furthermore, for every (fixed) integer matrix a = [aij] we have

[zk] zaB(z) = Bk−a = (k∗)aBk +O
(
Bk (min kij)

−1
)
.

Consequently if P (z) is a polynomial in z = [zij] we have

[zk]P (z)B(z) = P (k∗)Bk +O
(
Bk (min kij)

−1
)

This immediately implies (11.47).

11.3. Minimax Redundancy for Markov Sources

As discussed in the Chapter 9, the maximal minimax redundancy R∗
n has two

components, the coding part R∗
n(Q

∗) and the non-coding part R̃∗
n which is gov-

erned by the statistics of the underlying class of distributions.
In this section, we first estimate R̃∗

n for Markov sources of order 1, then we
generalize to any order r ≥ 1, and finally we deal with the coding part R∗

n(Q
∗).

11.3.1. Asymptotics of R̃∗
n

In this section we consider the worst case minimax redundancy for Markov
sourcesM1 (of order 1) over a finite alphabetA. We recall that R̃∗

n = logDn(M1)
is given by (11.1). First, we observe that Dn(M)1 = mDa

n(M1), where D
a
n(M1)

denotes the minimax redundancy restricted to all strings starting with symbol
a. Second, we recall that N ba

k represents the number of cyclic strings with fre-
quency matrix k starting with a ∈ A and ending with b ∈ A. But N ba

k is also

332 Chapter 11. Markov Types and Redundancy for Markov Sources

the number of (regular) strings starting with ba ∈ A2 and with frequency matrix
equal to k− [δba].

We can now re-write formula (11.1) for the redundancy of (regular) strings
of length n in terms of cyclic strings. Equation (11.1) rewrites to

Dn(M1) = m
∑

b∈A

∑

k∈Fn,kba>0

N ba
k (k− [δba])

k−[δba](kb − 1)−kb+1
∏

i6=b

(ki)
−ki ,

(11.51)
This formula is the starting point of our asymptotic analysis.

In particular we obtain the following result.

Theorem 11.3.1. Let M1 be the class of Markov sources of order 1 over a
finite alphabet A of size m. Then Dn(M1) is asymptotically given by

Dn(M1) =
(n
2π

)m(m−1)/2

Am ×
(
1 +O

(
1√
n

))
(11.52)

with

Am = m

∫

K(1)

∑

b∈A
detbb(1− y∗)

∏

i∈A

√∑
j∈A yij∏

j∈A
√
yij

∏

ij∈A2

dy

where

K(1) = {yij : yij ≥ 0,
∑

ij

yij = 1, ∀i :
∑

j

yij =
∑

j

yji}

and y∗ is the matrix [yij/
∑

j′ yij′]. Consequently, the worst case minimax re-
dundancy is asymptotically given by

R̃∗
n(M1) = logDn(M1) =

m(m− 1)

2
log

n

2π
+ logAm +O

(
1√
n

)
.

We note that the set K(1) is actually a (m2 −m)-dimensional linear subset
of the m2-dimensional space that can be parametrized by the m2 −m variables
yij , 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 2. Hence, an integral of the form

∫
K(1) F (y)dy

has to interpreted accordingly.
Furthermore we also want to note that the constant Am can be evaluated for

some small values of m. In particular, for a binary alphabet (m = 2) we have

A2 = 2

∫

K(1)

(det00(I− y∗) + det11(I− y∗))

√
y0√

y00
√
y01

√
y1√

y10
√
y11

dy. (11.53)

11.3. Minimax Redundancy for Markov Sources 333

Since det00(I−y∗) = y10

y1
and det11(I−y∗) by symmetry, and since the condition

y ∈ K(1) means y0 + y1 = 1 and y01 = y10 we arrive at, after the change of
variable x = sin2(θ),

A2 = 4

∫

y00+2y01+y11=1

1√
y00
√
y0
√
y11
√
y1
dy.

Therefore,

A2 = 4

∫ 1

0

dx√
(1− x)x

∫ min{x,1−x}

0

dy√
(1 − x− y)(x− y)

= 8

∫ 1/2

0

ln(1 − 2x)− ln(1− 2
√
(1 − x)x)√

(1− x)x
dx

= 16

∫ π/4

0

ln

(
cos(2θ)

1− sin(2θ)

)
dθ

= 16 ·G,

where G is the Catalan constant defined as

G =
∑

i≥0

(−1)i
(2i+ 1)2

≈ 0.915965594.

In the rest of this section we prove Theorem 11.3.1. We start with a contin-
uous version of Lemma 11.2.5. Let K(x) be the set of matrices y = [yij] with
non-negative real coefficients that satisfy the conservation flow property and the
condition

∑
i,j yij = x. Observe that Fn is the set of non-negative integer ma-

trices k that belongs to K(n). Let a(x) be the (m2 −m)-dimensional volume of
K(x). The reader is asked in Exercise 11.6 to prove the following

Lemma 11.3.2. Let g(x) be a function of real m×m matrices x. Let G(t) be
the Laplace transform of g(·), that is,

G(t) =

∫

Rm2

≥0

g(x) exp

−

∑

ij

tijxij

 dx,

and let

G̃(t) =

∫ ∞

0

dy

∫

K(y)

g(x) exp

−

∑

ij

tijxij

 dx.

334 Chapter 11. Markov Types and Redundancy for Markov Sources

Then we have

G̃(t) =
1

(2πi)m

∫ +i∞

−i∞
· · ·
∫ +i∞

−i∞
G([tij + θi − θj])dθ0 · · · dθm−1, (11.54)

where [tij + θi − θj] is a matrix whose the ij-th coefficient is tij + θi − θj.

Next, we compare the size of |Fn(m)|, that is, the number of matrices k
satisfying (11.5)–(11.6), with a(n), the (m2 −m)-dimensional volume of K(n).

Lemma 11.3.3. We have, as n→∞,

|Fn(m)| = a(n) (1 +O(1/n)) .

Proof. Since the asymptotic behavior of |Fn(m)| is known (see the proof of
Theorem 11.2.6), it is sufficient to evaluate a(n). By definition we have

a(y) = ym
2−ma(1). (11.55)

Next, by setting g(x) = 1 in Lemma 11.3.2 we find

∫ ∞

0

a(y)e−tydy = G̃(t[1])

where [1] is the matrix with all coefficients equal to 1. In particular by setting
t = 1 and by using (11.55) we find

G̃([1]) = a(1)

∫ ∞

0

ym
2−me−ydy = a(1)(m2 −m)!.

Since g(x) = 1 we get explicitly

G(t) =

∫
exp(−

∑

ij

tijxij)dx =
∏

ij

1

tij
.

Therefore, by (11.54) and (11.38) we obtain

G̃([1]) =
1

(2πi)m

∫ +i∞

−i∞
· · ·
∫ +i∞

−i∞
G([1 + θi − θj])dθ0 · · · dθm−1

=
1

(2π)
m

∫ ∞

−∞
· · ·
∫ ∞

∞

∏

i6=j

1

1 + i(θi − θj)
dθ0 · · · dθm−1

= d(m).

11.3. Minimax Redundancy for Markov Sources 335

Consequently

a(n) = a(1)nm2−m =
d(m)

(m2 −m)!
nm2−m.

This completes the proof.

Now we can return to the proof of Theorem 11.3.1. It suffices to calculate
the partial redundancy Da

n(M1) restricted to all strings starting with a symbol
a since Dn(M1) = mDa

n(M1). We have from (11.51)

Da
n(M1) =

∑

b∈A

∑

k∈Fn,kba>0

N ba
k (k− [δba])

k−[δba](kb − 1)−kb+1
∏

i6=b

(ki)
−ki

=
∑

b∈A

∑

k∈Fn,kba>0

kba
ka

detbb(I− k∗)Bk(k− [δba])
k−[δba](kb − 1)kb−1

∏

i6=b

(ki)
−ki × (1 +O(1/min kij)) .

Recall that Bk is defined in (11.43). Hence, by Stirling’s formula we obtain for
k ∈ Fn(m)

kba
kb
Bk(k−[δba])k−[δba](kb−1)−kb+1

∏

i6=b

(ki)
−ki =

∏

i

√
2πki∏

j

√
2πkij

(1 +O(1/min kij)) ,

and this yields

Da
n(M1) =

∑

k∈Fn

Fm(k∗)
∏

i

√
2πki∏

j

√
2πkij

(1 +O(1/min kij)) ,

where Fm(x) =
∑

b∈A detbb(I−x∗) and x∗ is the matrix whose (i, j)-th entry is
xij/xi, with xi =

∑
j′ xij′ .

Using standard tools this sum can be approximated by an integral. We recall
that Fn(m) can by parametrized by the m2 −m variables kij , 0 ≤ i ≤ m − 1,
0 ≤ j ≤ m− 2. This leads to

Dn(M1) =
|Fn(m)|
a(n)

∫

K(n)

Fm(y)
∏

i

√
2π
∑

j yij
∏

j

√
2πyij

dy

(
1 + O

(
1√
n

))
. (11.56)

By applying the change of variables y′ = 1
ny, and since Fm(1ny) = Fm(y)

(indeed, yij/yi = y′ij/y
′
i), we find

∫

K(n)

Fm(y)
∏

i

√
2π
∑

j yij
∏

j

√
2πyij

dy =
(n
2π

)(m−1)m/2
∫

K(1)

Fm(y′)
∏

i

√∑
j y

′
ij

∏
j

√
y′ij

dy′.

336 Chapter 11. Markov Types and Redundancy for Markov Sources

Since |Fn|/a(n) = 1 +O(1/n), we obtain our final result, that is,

Dn(M1) =
(n
2π

)(m−1)m/2

Am

(
1 +O

(
1√
n

))
.

This proves Theorem 11.3.1.

11.3.2. Higher Order Markov Sources

Next, we extend Theorem 11.3.1 to Markov sources of order r.

Theorem 11.3.4. Let Mr be the class of Markov sources of order r over a
finite alphabet A of size m. Then we have asymptotically as n→∞

Dn(Mr) =
(n
2π

)mr(m−1)/2

A(r)
m ×

(
1 +O

(
1√
n

))
(11.57)

with

A(r)
m = mr

∫

Kr(1)

F (r)
m (y)

∏

w∈Ar

√
yw∏

j

√
yw,j

dy,

where Kr(1) is the convex set of m
r×m matrices y with non-negative coefficients

such that
∑

w,j yw,j = 1, w ∈ Ar. Furthermore,

F (r)
m (yr) =

∑

w

detww(I− y∗
r),

where y∗
r is themr×mr matrix whose (w,w′) coefficient is equal to yw,a/

∑
i∈A ywi

if there exist a in A such that w′ is a suffix of wa, otherwise the (w,w′)th coeffi-
cient is equal to 0. Consequently, the worst case minimax redundancy satisfies,
as n→∞,

R̃∗
n(Mr) = logDn(Mr) =

mr(m− 1)

2
log

n

2π
+ logA(r)

m +O

(
1√
n

)
.

Proof. We only sketch the proof following the steps of the proof of Theo-
rem 11.3.1 for r = 1. For Markov sources of order r, we define the frequency
matrix k as an mr ×m matrix whose kw,jth coefficient (w ∈ Ar) is the number
of times the string w is followed by symbol j ∈ A in the string xn1 . We can also
view k as a mr ×mr matrix indexed by w,w′ ∈ Ar × Ar with the convention
that nonzero elements of k are for w′ = w2 . . . wrj, j ∈ A, that is, when w′ is
constructed from w by deleting the first symbol and adding symbol j ∈ A at the
end. Then

sup
P∈Mr

P (xn1) =
∏

w,j∈Ar+1

(
kw,j

kw

)kw,j

11.3. Minimax Redundancy for Markov Sources 337

where kw =
∑

j kw,j .
The main combinatorial result that we need is the enumeration of types, that

is, how many strings of length n have type corresponding to the matrix kw,w′ ,
w,w′ ∈ Ar with w′ defined above. As in the previous section, we focus on cyclic
strings in which the last symbol is followed by the first. To enumerate cyclic
strings of type kw,w′ we build a multigraph on mr vertices with edges labeled
by symbols from the alphabet A. The number of Eulerian paths is equal to the
number Nk of strings of type k.

We recall that B
(r)
k is the number of permutations with repetitions, that is,

B
(r)
k =

∏

w∈Ar

(
kw

kw1 · · · kwm

)
.

Its generating function is

B(r)(z) =
∏

w∈Ar

(1−
∑

j∈A
zw,j)

−1

while its F generating function of B
(r)
k is

FBr(z) = (det(I− zr))
−1,

where zr is an mr ×mr matrix whose (w,w′) coefficient is equal to zw,a if there
exist a ∈ A such that w′ is a suffix of wa, otherwise the (w,w′) coefficient is

equal to 0 (as discussed above). Finally, we need to estimate Nw,w′

k the number
of strings of type k starting with ww′ ∈ A2r. As in Theorem 11.2.10(ii) we find
that

Nw,w′

k = [zk]

(
Br(z) detw,w(I− zr)

r∏

i=1

z(ww′)i+r
i

)

where wj
i = wiwi+1 . . . wj (i ≤ j). The rest follows the footsteps of our previous

analysis.

11.3.3. Coding Contribution to the Redundancy

In this section we consider the coding part of the redundancy, namely R∗
n(Q

∗).
As in the memoryless case we expect that for Markov sources Mr of order r
over an alphabet A of size m

R∗
n(Q

∗) = −
ln 1

m−1 lnm

lnm
+ o(1) (11.58)

338 Chapter 11. Markov Types and Redundancy for Markov Sources

as n→∞.
However, for the sake of brevity we only present the binary case of Markov

sources of order 1.

Theorem 11.3.5. For a Markov source of order 1 over a binary alphabet we
have

R∗
n(Q

∗) = − ln ln 2

ln 2
+ o(1) (11.59)

as n→∞.

The proof runs very similarly to the proof of Theorem 10.1.1. The main
step is to provide upper bounds for exponential sums, see Lemma 11.3.6. In
order to simplify our considerations we only consider (binary) stings of length
n that start and end with 0. Then the corresponding (non-cyclic) types k =
(k00, k01, k10, k11) are characterized by the equations

k00 + k01 + k10 + k11 = n− 1, k01 = k10

or just by
k00 + 2k01 + k11 = n− 1.

These types can be parametrized by k00 and k01 by considering

0 ≤ k01 ≤
⌊
n− 1

2

⌋
, 0 ≤ k00 ≤ n− 1− 2k01,

where
k10 = k01 and k11 = n− 1− k00 − 2k01.

We also recall that N00
k is asymptotically given by

N00
k =

k01
k01 + k11

(
k00 + k01
k00

)(
k01 + k11
k11

)(
1 +O

(
1

min kij

))
.

and that Q∗ can be represented as (note that we consider non-cyclic strings)

Q∗(k) =
1

Dn

(
k00

k00 + k01

)k00
(

k01
k00 + k01

)k01
(

k10
k10 + k11

)k10
(

k11
k10 + k11

)k11

,

where

Dn =
A2

2π
n+O(

√
n).

In particular it follows (if all kij are non-zero) that

N00
k Q∗(k) =

1

2πDn

√
k00 + k01

(k10 + k11)k00k11

(
1 +O

(
1

min kij

))
.

11.3. Minimax Redundancy for Markov Sources 339

However, note that the above estimate holds, too, if some of the kij = 0 and we
interpret 1/kij as 1. In what follows we will use this convention to simplify the
notation and to avoid several case studies.

Setting

an,k00,k01 =

√
k00 + k01

(n− 1− k00 − k01)k00(n− 1− k00 − 2k01)

we have

N00
k Q∗(k) =

1

2πDn
an,k00,k01

(
1 +O

(
1

min kij

))
.

Since ∑

k

an,k00,k01

1

min kij
= O

(√
n
)
= O

(
Dn√
n

)

it is sufficient to consider just an,k00,k01 and to neglect the error term.

As already mentioned we need proper estimates for exponential sums.

Lemma 11.3.6. We have uniformly for non-zero integers h with |h| ≤ n/16

S̃ =
∑

k

an,k00,k01e
2πih logQ∗(k) = O

(
|h|1/4n3/4 logn

)
. (11.60)

With the help of Lemma 11.3.6 (and analogue properties for strings that
start with 0 and end at 1 or start with 1 and end with 0 or 1) we can then
proceed in the same way as for the proof of Theorem 10.1.1. The reader is asked
to fill theses details in Exercise 11.10.

Proof. In a first step we consider the exponential sums

S =
∑

a≤k00≤b

e2πih logQ∗(k),

where a ≥ 0 and b ≤ n. We also set

F (k00, k01) = k00 log k00 − (k00 + k01) log(k00 + k01) + 2k01 log k01

+ (n− 1− k00 − 2k01) log(n− 1− k00 − 2k01)

− (n− 1− k00 − k01) log(n− 1− k00 − k01).

Then Q∗(k) = eF (k00,k01)/Dn and, thus, S and

S′ =
∑

a≤k00≤b

e2πih logF (k00,k01).

340 Chapter 11. Markov Types and Redundancy for Markov Sources

have the same absolute value.
By Van-der-Corput’s method (see (E.1) from Appendix E) we know that

S = O

(|h| |Fk00 (b, k01)− Fk00(a, k01)|+ 1√
λ

)
,

where λ = min
a≤y≤b

|h| |Fk00k00(y, k01)| > 0 (and where Fk00 denotes the derivative

with respect to k00). Since

|Fk00 (y, k01| = log(y)− log(y + k01)

+ log(n− 1− y − k01)− log(n− 1− y − 2k01)

≪ logn

and

ln 2 |Fk00k00(y, k01)| =
1

y
− 1

y + k01

− 1

n− 1− y − k01
+

1

n− 1− y − 2k01

=
k01

y(y + k01)
+

k01
(n− 1− y − k01)(n− 1− y − 2k01)

≫ 1

n
.

uniformly for a ≤ y ≤ b, we immediately find

S = O
(√
|h|n logn

)
.

In a next step we will use the following upper bounds (that follow directly
from the definition):

an,k00,k01 ≪
1√

k00k11
+

1√
k01k11

and

|an,k00+1,k01 − an,k00,k01 | ≪
1√
k300k11

+
1√
k00k311

+
1√
k301k11

,

where k11 abbreviates k11 = n− 1− k00 − 2k01.
We will split the sum in S̃ into several parts, where we use a parameter

K ≤ n/4 that will fixed later. First we suppose that

n

2
−K ≤ k01 ≤

n− 1

2
.

11.3. Minimax Redundancy for Markov Sources 341

In this case we only use trivial upper bounds for the corresponding part of the
sum S̃, that is, we apply the relation |e2πix| = 1. Thus, we consider the sum

S̃1 =
∑

n
2 −K≤k01≤n−1

2

∑

0≤k00≤n−1−2k01

an,k00,k01

≪
∑

n
2 −K≤k01≤n−1

2

∑

0≤k00≤n−1−2k01

(
1√

k00k11
+

1√
k01k11

)
.

Since ∑

0≤k00≤n−1−2k01

1√
k00(n− 1− 2k01 − k00

≪ 1

and ∑

0≤k00≤n−1−2k01

1√
k01(n− 1− 2k01 − k00

≪
√
n− 1− 2k01√

n

it immediately follows that

S̃1 ≪ K +
K3/2

√
n
.

Secondly, we consider the case, where 0 ≤ k01 ≤ n
2 −K and

k00 ≤ K.

Here we use again trivial upper bounds and arrive at

S̃2 =
∑

k01≤n
2 −K

∑

0≤k00≤K

an,k00,k01

≪
∑

k01≤n
2 −K

∑

0≤k00≤K

(
1√

k00k11
+ 1
√
k01k11

)

≪ K1/2
∑

k01≤n
2 −K

1√
n− 1− 2k01 −K

+K
∑

k01≤n
2 −K

1√
k01(n− 1− 2k01 −K)

≪
√
Kn+K.

In a similar way we can handle the case, where 0 ≤ k01 ≤ n
2 −K and

k11 = n− 1− 2k01 − k00 ≤ K.

342 Chapter 11. Markov Types and Redundancy for Markov Sources

Here we obtain

S̃3 =
∑

k01≤n
2 −K

∑

n−1−2k01−K≤k00≤n−1−2k01

an,k00,k01

≪
∑

k01≤n
2 −K

∑

n−1−2k01−K≤k00≤n−1−2k01

(
1√

k00k11
+

1√
k01k11

)

≪ K1/2
∑

k01≤n
2 −K

1√
n− 1− 2k01 −K

+K1/2
∑

k01≤n
2 −K

1√
k01

≪
√
Kn.

It remains to consider the case, where 0 ≤ k01 ≤ n
2 − K, k00 ≥ K, and

k11 = n − 1 − 2k01 − k00 ≥ K. Here we apply partial summation for the
following exponential sum:

∑

K≤k00≤n−1−2k01−K

an,k00,k01e
2πihF (h00,h01)

≤ an,K,k01

∣∣∣∣∣∣

∑

K≤k00≤n−1−2k01−K

e2πihF (h00,h01)

∣∣∣∣∣∣

+
∑

K≤k00<n−1−2k01−K

|an,k00+1,k01 − an,k00,k01 |

∣∣∣∣∣∣

∑

K≤y≤n−1−2k01−K

e2πihF (y,h01)

∣∣∣∣∣∣

≪
√
|h|n logn

(
1√

K(n− 1− 2k01 −K)
+

1√
k01(n− 1− 2k01 −K)

)

+
√
|h|n logn

∑

K≤k00<n−1−2k01−K

(
1√
k300k11

+
1√
k00k311

+
1√
k301k11

)

≪
√
|h|n logn

(
1√

K(n− 1− 2k01 −K)
+

1√
k01(n− 1− 2k01 −K)

)

+
√
|h|n logn

(
1√

K(n− 2k01 −K)
+

1√
Kk01

)
.

Finally by summing over k01 ≤ n
2 −K it follows that the remaining sum S̃4 is

11.4. Exercises 343

upper bounded by

S̃4 ≪
√
|h|n logn

√
n

K
=

√
|h|n√
K

logn.

Summing up, we finally arrive at

S̃ ≪ K +
K3/2

√
n

+
√
KN +

√
|h|n√
K

log n

and by choosing K =
√
|h|n we finally obtain (11.60) which completes the proof

of Lemma 11.3.6.

11.4. Exercises

11.1 Compute explicitly the number of types in Example 11.2.3.

11.2 Provide details of the derivation (11.37) of d(m).

11.3 Using similar recursive partial fractions expansions as in Section 11.2.1,
prove that for m = 4 and m = 5

F ∗
4 (z) =

z8 − 2z7 + 3z6 + 2z5 − 2z4 + 2z3 + 3z2 − 2z + 1

(1 − z)13(1 + z)5(1 + z2)(1 + z + z2)2
(11.61)

and

F ∗
5 (z) =

Q(z)

(1− z)21(1 + z)8(1 + z2)2(1 + z + z2)4(1 + z + z2 + z3 + z4)
,

(11.62)
where

Q(z) = z20 − 3z19 + 7z18 + 3z17 + 2z16 + 17z15 + 35z14

+29z13 + 45z12 + 50z11 +

+72z10 + 50z9 + 45z8 + 29z7 + 35z6 +

+17z5 + 2z4 + 3z3 + 7z2 − 3z + 1.

By expanding (11.61) and (11.62) near z = 1 prove then that as n→∞

|Pn(4)| ∼
1

96

n12

12!
, |Pn(5)| ∼

37

34560

n20

20!
. (11.63)

344 Markov Types and Redundancy for Markov Sources

11.4 Prove the following asymptotic extension of Theorem 11.2.6. When
m→∞ we find that

|Pn(m)| ∼
√
2m3m/2em

2

m2m22mπm/2
· nm2−m (11.64)

provided that m4 = o(n).

11.5 Prove (11.44), that is,

B(z) =
∑

k

Bkz
k =

∏

a∈A
(1−

∑

b∈A
za,b)

−1.

11.6 Prove Lemma 11.3.2.

11.7 Establish (11.49) providing all details.

11.8 Derive the recurrence (11.50).

11.9 Prove the following

n∑

k=0

(
n

k

)
pk(1− p)n−k log

(
k
n

)k (
1− k

n

)n−k

pk(1− p)k =
1

2
+O

(
n−1/2

)
.

for large n.

11.10 Deduce Theorem 11.3.5 from Lemma 11.3.6 (and from corresponding
properties for strings that start with 0 and end at 1 or start with 1 and
end with 0 or 1).

Bibliographical notes

The method of types is quite popular and useful technique in information the-
ory and combinatorics. The essence of the method of types was known for some
time in probability and statistical physics. But only in the 1970’s Csiszár and
his group developed a general method and made it a basic tool of information
theory of discrete memoryless systems Csiszar and Korner (1981). However,
earliest work for Markov types are by Goodman (1958) and Billingsley (1968).
See also Biza (1971). Markov types were studied in Jacquet and Szpankowski
(2004), Martin, Seroussi, and Weinberger (2007), Weinberger et al. (1994), Whit-
tle (1955). Types for tree models were discussed in Martin et al. (2007) and
further developed in Cover and Thomas (1991), Csiszar (1998), Drmota and
Szpankowski (2004), Jacquet and Szpankowski (2004), Martin et al. (2007),
Seroussi (2006), Weinberger et al. (1994), Whittle (1955). Non-Markovian types
where developed by Seroussi (2006); see also Knessl and Szpankowski (2005).

Bibliographical notes 345

The minimax redundancy for Markov sources we first discussed in Atteson
(1999), Rissanen (1996), Shields (1993) which was later further improved in
Jacquet and Szpankowski (2004).

Our exposition in this chapter follows Whittle (1955), Jacquet, Knessl, and
Szpankowski (2012) and Jacquet and Szpankowski (2004).

CHAPTER 12

Non-Markovian Sources:

Redundancy of Renewal

Processes

In this chapter, we discuss sources with unbounded memory. In the last two
chapters we showed that the maximal and average minimax redundancy and
regret grow as

d

2
logn+O(1)

where d is the dimension (number of unknown parameters). For sources over
alphabet of size m, we have d = m− 1. Here, we focus on the so called renewal
sources introduced by Csiszar and Shields (1996). Such a process generates
binary sequences as follows. Starting with a 1, there is a run of 0’s of length
governed by a distribution over nonnegative integers. At the end of the run,
we put a 1, and repeat the scheme until we generate a sequence of length n.
Clearly, such a source is not Markovian (unless the distribution of the run has
some extra constraints).

There are few interesting challenges. How does the minimax redundancy
grow? Is it still true that the average minimax redundancy is within O(1) away
from the maximal minimax redundancy? We address these questions in this
chapter.

12.1. Renewal Source

We start with a precise definition of the class R0 of nonstationary renewal pro-
cess and its associated sources. Let T1, T2 . . . be a sequence of i.i.d. positive-
integer-valued random variables with common distribution Q(j) = P (T1 = j).
Throughout we assume that E[T1] < ∞. The process T1, T1 + T2, . . . is called
the (nonstationary) renewal process. With such a renewal process there is an

348 Chapter 12. Non-Markovian Sources: Redundancy of Renewal Processes

associated binary renewal sequence in which the 1’s occur exactly at the renewal
epochs T1, T1 + T2, etc. Accordingly, we start the renewal sequence with a 1
put at the zeroth position. Then we put T1 − 1 run of 0s following by a 1. We
repeat the process until the sequence is of length n+1 (with the zeroth symbol
being a 1). We denote such a source as R0.

In order to estimate the maximal minimax redundancy R̃∗
n := R̃∗

n(R0) we
need to compute the probabilities P (xn) and analyze supP P (x

n) that we dis-
cuss next. Observe that the nonstationary renewal sequence xn0 = 1xn1 can be
represented as

xn = 10α11 · · · 10αl1 0 · · · 0︸ ︷︷ ︸
k∗

where 0 ≤ αi ≤ n for i = 1, . . . , l ≤ n and k∗ is the length of the last “unfinished”
run. Let km be the number of i such that αi = m, where m = 0, 1, . . . , n − 1,
that is, km is the number of runs of zeros of length m. Then

P (xn) = Q(1)k0Q(2)k1 · · ·Q(n)kn−1P{T1 > k∗} (12.1)

subject to Q(1) +Q(2) + · · ·+Q(n) ≤ 1 and

k0 + 2k1 + · · ·+ nkn−1 + k∗ = n. (12.2)

To simplify somewhat the next presentation we set qi = Q(i + 1), that is, qi
describes the distribution of the number of zeros between two renewals. (By
definition, we set q−1 = Q(0) = 0.) In Exercise 12.1 we ask the reader to show
that P (xn) is a distribution, that is,

∑

xn

P (xn) = 1.

Our goal is to estimate

R̃∗
n = log

∑

xn

sup
P
P (xn)

(see Lemma 9.2.2). For this purpose we define a sequence rm as follows (by
convention here 00 = 1):

rm =
m∑

k=0

rm,k,

rm,k =
∑

P(m,k)

(
k

k0 · · · km−1

)(
k0
k

)k0

· · ·
(
km−1

k

)km−1

,

(12.3)

12.1. Renewal Source 349

where P(m, k) denotes the set of partitions of m into k summands, that is, the
collection of tuples of nonnegative integers (k0, k1, . . . , km−1) satisfying

m = k0 + 2k1 + · · ·+mkm−1, (12.4)

k = k0 + k1 + · · ·+ km−1. (12.5)

We first establish the following bounds on the maximal minimax redundancy
R̃∗

n.

Lemma 12.1.1. For all n ≥ 0

rn+1 − 1 ≤
∑

xn

sup
P
P (xn) ≤

n∑

m=0

rm, (12.6)

where rn is defined in (12.3)–(12.5).

Proof. Let, as before, qi = Q(i+ 1) = P (T = i+ 1). By (12.1) we have

P (xn1) = qk0
0 qk1

1 · · · q
kn−1

n−1 (1− q0 − q1 − · · · − qk∗−1) (12.7)

subject to q0 + · · ·+ qn−1 ≤ 1, k∗ ≥ 0, and

k0 + 2k1 + · · ·+ nkn−1 ≤ n. (12.8)

Observe that in (12.8) above we have ≤ n instead of = n (cf. (12.4) where m
is replaced by n). We denote such a set of partitions (i.e., satisfying (12.8) and
(12.5) in which m is replaced by n) as P≤(n, k) =

⋃
m≤n P(m, k).

For the proof of the upper bound we proceed as follows. Suppose that
k0, . . . , kn−1 satisfy P≤(n, k). Then we have

sup
q

qk0

0 qk1

1 · · · q
kn−1

n−1 (1− q0 − q1 − · · · − qk∗−1)

≤ sup
q
qk0
0 qk1

1 · · · q
kn−1

n−1

=

(
k0
k

)k0

· · ·
(
kn−1

k

)kn−1

. (12.9)

The last line of the above follows from solving a simple optimization problem
with the constraints q0 + q1 + · · ·+ qn−1 ≤ 1. It follows that

qi
qj

=
ki
kj

for 0 ≤ i, j ≤ n− 1

350 Chapter 12. Non-Markovian Sources: Redundancy of Renewal Processes

maximizes the product qk0
0 qk1

1 · · · q
kn−1

n−1 . Thus, (12.9) is established. Since P(≤
n, k) =

⋃n
i=0 P(n− i, k), we finally get the upper bound for R̃∗

n.
The lower bound is more intricate. We first observe that the last term of the

probability P (xn1) can be estimated as

(1− q0 − · · · − qk∗−1) = P{T > k∗} ≥ P{T = k∗ + 1} = qk∗ .

In other words, we add an additional 1 at the end of the sequence (making it of
length n + 1), but then the last k∗ zeros fall into the same distribution as the
previous ones, and can be handled by the same optimization technique as in the
upper bound case. A simple calculation reveals that

sup
q

qk0
0 qk1

1 · · · qk
∗+1

k∗ · · · qkn−1

n−1

=

(
k0
k + 1

)k0

· · ·
(
kk∗ + 1

k + 1

)k∗+1

· · · · · ·
(
kn−1

k + 1

)kn−1

.

In Exercise 12.3 we ask the reader to prove the following

R̃∗
n ≥

n∑

k=0

∑

P(n+1,k+1)

(
k + 1

k0 · · ·

)(
k0
k + 1

)k0
(

k1
k + 1

)k1

· · ·

= rn+1 − 1. (12.10)

This proves the lower bound and Lemma 12.1.1.

12.2. Maximal Minimax Redundancy

By Lemma 12.1.1 it follows that

log(rn+1 − 1) ≤ R̃∗
n ≤ log

(
n∑

m=0

rm

)
.

Thus, in order to get bounds for R̃∗
n we need some asymptotic information on

the sequence rn. A difficulty of finding such asymptotics stems from the factor
k!/kk present in the definition (12.3) of rn,k. We circumvent this problem by
analyzing a related pair of sequences, namely sn and sn,k that are defined as

sn =

n∑

k=0

sn,k,

sn,k = e−k
∑

P(n,k)

kk0
0

k0!
· · · k

kn−1

n−1

kn−1!
.

(12.11)

12.2. Maximal Minimax Redundancy 351

The translation from sn to rn is most conveniently expressed in probabilis-
tic terms. Introduce the random variable Kn whose probability distribution is
sn,k/sn, that is,

P (Kn = k) =
sn,k
sn

. (12.12)

Then Stirling’s formula yields

rn
sn

=

n∑

k=0

rn,k
sn,k

sn,k
sn

=

n∑

k=0

k!k−ke−kP (Kn = k)

= E[(Kn)!K
−Kn
n eKn] = E[

√
2πKn] +O(E[K

− 1
2

n]). (12.13)

Thus, the problem of finding rn reduces to asymptotic evaluations of sn, E[
√
Kn]

and E[K
− 1

2
n]. The following lemma provides asymptotic information on sn,

E[Kn], and Var (Kn). (The proof of the lemma is given in the next subsection.)

Lemma 12.2.1. Let µn = E[Kn] and σ2
n = Var (Kn), where Kn has the

distribution defined above in (12.12). The following holds

sn = exp

(
2
√
cn− 7

8
lnn+ d+O(n− 1

4+ε)

)
(12.14)

µn =
1

4

√
n

c
ln
n

c
+ o(
√
n) (12.15)

σ2
n ∼

π2

12c
n = o(µ2

n), (12.16)

where ε > 0, c = π2/6− 1, d = − ln 2 + 3
8 ln c− 3

4 lnπ.

Once the estimates of Lemma 12.2.1 are granted, the moments of order ± 1
2

of Kn follow by a standard argument based on concentration of the distribution
of Kn.

Lemma 12.2.2. For large n

E[
√
Kn] = µ1/2

n (1 + o(1)) (12.17)

E[K
− 1

2
n] = o(1). (12.18)

where µn = E[Kn].

Proof. The upper bound E[
√
Kn] ≤

√
E[Kn] follows from concavity of the func-

tion
√
x and from Jensen’s inequality. The lower bound follows from concentra-

tion of the distribution. Chebyshev’s inequality and (12.16) of Lemma 12.2.1

352 Chapter 12. Non-Markovian Sources: Redundancy of Renewal Processes

entail, for any arbitrarily small ε > 0,

P (|Kn − µn| > εµn) ≤
Var [Kn]

ε2µ2
n

=
δ(n)

ε2

where δ(n) = O(1/(lnn)2) as n→∞. Then

E[
√
Kn] ≥

∑

k≥(1−ε)µn

√
kP (Kn = k)

≥ (1 − ε) 1
2µ1/2

n P (Kn ≥ (1− ε)µn)

≥ (1 − ε) 1
2

(
1− δ(n)

ε2

)
µ1/2
n .

Hence by setting ε = (lnn)−
2
3 we obtain E[

√
Kn] > µ

1/2
n

(
1 +O(lnn)−

2
3

)
pro-

vided n is large enough.
Finally the upper bound (12.18) follows from

E[K
− 1

2
n] ≤ (µn(1− ε))−

1
2 + P (Kn ≤ µn(1− ε)) ≤ (µn(1 − ε))−

1
2 +

δ(n)

ε2
.

By setting ε = 1
2 we, thus, obtain E[K

− 1
2

n] = O(1/(lnn)2). This completes the
proof.

In summary, rn and sn are related by

rn = sn

(
E[
√
2πKn](1 + o(1)) + o(1)

)
= sn

√
2πµn(1 + o(1)),

by virtue of (12.13) and Lemma 12.2.2. This leads to

log rn = log sn +
1

2
logµn + log

√
2π + o(1). (12.19)

At this point it suffices to apply the estimates provided by Lemma 12.2.1 to
present our main result.

Theorem 12.2.3. Consider the class R0 of nonstationary renewal sources.
Then the minimax redundancy R̃∗

n(R0) satisfies

2

ln 2

√
cn − 5

8
logn+

1

2
log lnn (12.20)

≤ R̃∗
n(R0) ≤

2

ln 2

√
cn− 1

8
logn+

1

2
log lnn

where

c =
π2

6
− 1 ≈ 0.645

12.2. Maximal Minimax Redundancy 353

Numerical verifications suggest the claim that the lower bound of Theo-
rem 12.2.3 is an accurate asymptotic expansion up to a constant term. Indeed,
let

ϕ(n) =
2

ln 2

√(
π2

6
− 1

)
n− 5

8
logn+

1

2
log lnn+K,

where

K =
1

8
ln

(
π2/6− 1

212π2

)
≈ −1.99197, (12.21)

In the table below we show the differences ∆(n) = R̃∗
n−ϕ(n), for which a sample

is given by the following table

n: 3 5 10 20 50 100

∆(n): 0.223 0.026 0.128 0.055 0.002 -0.010

In view of this we feel confident to put forward the following conjecture.

Conjecture 12.2.4. The maximal minimax redundancy R̃∗
n becomes asymp-

totically

R̃∗
n = ϕ(n) + o(1) =

2

ln 2

√(
π2

6
− 1

)
n− 5

8
logn+

1

2
log lnn+K + o(1),

where K is defined in (12.21).

12.2.1. Proof of Lemma 12.2.1 and Theorem 12.2.3

The main part of the proof of Theorem 12.2.3 is the proof of Lemma 12.2.1 that
requires complex analytic tools.

The heart of the proof is precise asymptotic estimates for the quantity sn
and for moments of the distribution Kn as expressed in (12.15) and (12.16) of
Lemma 12.2.1. It turns out that the quantities sn,k and sn have generating
functions S(z, u) and S(z, 1), respectively, that are infinite products involving
the tree function defined in (10.10) of Chapter 10. The corresponding coefficient
asymptotics are dictated by the behavior at the singularity of greatest weight
(in the case at hand, the positive real singularity z = 1) so that we start by
investigating asymptotics of S(z, 1) as z → 1. This itself requires a dedicated
analysis by mean of the Mellin transform. Once the dominant singular behaviour
of S(z, 1) near z = 1 has been found, it remains to extract information on the
coefficients sn. This task involves an appeal to the saddle point method, actually

354 Chapter 12. Non-Markovian Sources: Redundancy of Renewal Processes

we can apply Hayman’s method (see Appendix C). Proceeding in this way the
estimate (12.14) of sn in Lemma 12.2.1 is established. Finally, the method
adapts to moment estimates, yielding the other two estimates (12.15), (12.16)
of Lemma 12.2.1.

Generating Functions. The expression of sn,k in (12.11) involves quan-
tities of the form kk/k!. We recall from Section 10.1.2 the tree function T (z)
defined as the solution of

T (z) = zeT (z)

that is analytic at 0. Next we consider the function

β(z) = B(ze−1) =
1

1− T (ze−1)

that has the power series expansion

β(z) =
∞∑

k=0

kk

k!
e−kzk.

The quantities sn and sn,k of (12.11) have generating functions,

Sn(u) =

∞∑

k=0

sn,ku
k, S(z, u) =

∞∑

n=0

Sn(u)z
n.

Then, since equation (12.22) involves convolutions of sequences of the form
kk/k!, we have

S(z, u) =
∑

P(n,k)

z1k0+2k1+···
(u
e

)k0+···+kn−1 kk0
0

k0!
· · · k

kn−1

n−1

kn−1!

=

∞∏

i=1

β(ziu), (12.22)

We also need access to the first moment µn = E[Kn] and the second factorial
moment E[Kn(Kn − 1)]. They are obtained as

sn = [zn]S(z, 1),

µn =
[zn]S′

u(z, 1)

[zn]S(z, 1)
,

E[Kn(Kn − 1)] =
[zn]S′′

uu(z, 1)

[zn]S(z, 1)

12.2. Maximal Minimax Redundancy 355

where S′
u(z, 1) and S′′

uu(z, 1) represent the first and the second derivative of
S(z, u) at u = 1.

In a first step we show that S(z, 1) is Hayman admissible, that is, the two
relations (C.9) and (C.10) hold. We then can apply (C.11) to obtain an asymp-
totic relation for sn. In order to check (C.9) and (C.10) we need the following
two lemmas. (Note that the two lemmas cover the whole range.)

Lemma 12.2.5. We have, as z → 1 with |arg(1− z) < π
2 − ε,

S(z, 1) = a(1− z) 1
4 exp

(
c

1− z

)(
1 +O(|1 − z| 12−ε)

)
, (12.23)

where ε > 0, c = π2

6 − 1, and a = exp(− 1
4 lnπ − 1

2c).

Proof. We consider first positive real z < 1 and set z = e−t. Then, with the
help of the local expansion

β(z) =
1√

2(1− z)
+

1

3
−
√
2

24

√
(1− z) +O(1 − z)

for β(z) (as z → 1), it follows that the function

L(t) = lnβ(e−t)

has the expansion

L(t) = −1

2
ln t− 1

2
ln 2 +O(

√
t)

as t→ 0. Consequently the Mellin transform

Λ(s) =

∫ ∞

0

L(t)ts−1 dt =

∫ ∞

0

lnβ(e−t)ts−1 dt

exists as an absolute convergent integral for ℜ(s) > 0. Since lnβ(e−t) = O(e−t)
the integral

∫∞
1 lnβ(e−t)ts−1 dt represents an entire function. Furthermore the

integrals ∫ 1

0

ln t ts−1 dt = − 1

s2
and

∫ 1

0

ts−1 dt =
1

s

have meromorphic extensions to C \ {0}. Finally the integral
∫ 1

0
O(
√
t)ts−1 dt is

analytic for ℜ(s) > − 1
2 . Hence, the function Λ(s) has a meromorphic extension

to ℜ(s) > − 1
2 with a polar singularity of order 2 at s = 0.

Next we use the scaling property
∫ ∞

0

f(at)ts−1 dt = a−s

∫ ∞

0

f(t)ts−1 dt

356 Chapter 12. Non-Markovian Sources: Redundancy of Renewal Processes

of the Mellin transform to represent the Mellin transform of L(t) = lnS(e−t, 1)
as

L∗(s) =
∑

k≥1

∫ ∞

0

lnβ(e−kt)ts−1 dt

=
∑

k≥1

k−s

∫ ∞

0

ln β(e−t)ts−1 dt

= ζ(s)Λ(s),

that exists for ℜ(s) > 1 and where ζ(s) denotes the Riemann zeta-function (see
Appendix C). We recall that ζ(s) has a meromorphic extension to C \ {1}. The
zeta-function has a pole of order 1 and residue 1 at s = 1. Furthermore, the
local expansion at s = 0 is given by

ζ(s) = −1

2
− s ln

√
2π +O(s2).

Consequently, L∗(s) = ζ(s)Λ(s) has a meromorphic extension to ℜ(s) > − 1
2 ,

with a polar singularity of order 1 and residue Λ(1) at s = 1 and a polar
singularity of order 2 at s = 0 with a singular behavior of the form

L∗(s) = − 1

4s2
− lnπ

4s
+O(1).

By the inverse Mellin transform (see Appendix D) it follows that for every s0 > 0

L(t) =
1

2πi

∫ s0+i∞

s0−i∞

L∗(s)

s
t−s ds.

(Note that we have absolute convergence.) Hence, after shifting the line of
integration to the left to ℜ(s) = − 1

2 + ε and by collecting the corresponding
residues at s = 1 and s = 0 we obtain

L(t) = res
(
L∗(s)t−s/s, 1

)
+ res

(
L∗(s)t−s/s, 0

)
+

1

2πi

∫ − 1
2+ε+i∞

− 1
2+ε−i∞

L∗(s)

s
t−s ds

=
Λ(1)

t
+

1

4
ln t− 1

4
lnπ +O(t1/2−ε), (12.24)

where ε > 0. (Note that we have used implicitly proper – well known – estimates
for ζ(s + it) which implies that the integral of the inverse Mellin transform is
absolutely convergent.)

12.2. Maximal Minimax Redundancy 357

By using the substitution z = e−t = 1− t+O(t2), this translates to

L(z) =
Λ(1)

1− z +
1

4
ln(1 − z)− 1

4
lnπ − 1

2
Λ(1) +O(|1 − z|1/2−ε). (12.25)

We note that Λ(1) can be explicitly computed:

Λ(1) = −
∫ 1

0

ln(1− T (x/e))dx
x

= −
∫ 1

0

ln(1− t) (1 − t)
t

dt (x = te1−t)

=
π2

6
− 1.

This proves (12.23) for real z. However, the formula (12.24), on which (12.23)
rests, holds for complex t only constrained in such a way that −π

2 +ε ≤ arg(t) ≤
π
2 − ε, for any ε > 0. The reason is that (12.24) relies on residues of the inverse
Mellin integral that still converges when t is restricted to such a wedge. Thus,
the expansion (12.23) actually holds true as z → 1 in a sector.

To continue with the Hayman method we need the following technical lemma.

Lemma 12.2.6. Consider the ratio

q(z) =

∞∏

j=1

∣∣∣∣
β(zj)

β(|z|j)

∣∣∣∣ =
∣∣∣∣
S(z, 1)

S(|z|, 1)

∣∣∣∣ .

Then, there exist constants c0, c1 > 0 such that

q(reiθ) = O
(
e−c0(1−r)−1

)
,

uniformly, for 1
2 ≤ r < 1 and c1(1− r) ≤ |θ| ≤ π.

Proof. First, by the triangular inequality, a function like β(z) that has nonneg-
ative Taylor coefficients attains its maximum modulus on the positive real axis.
More precisely, one has

sup
θ
|β(reiθ)| = β(r).

Furthermore, by the converse triangular inequality, the maximum is uniquely at-
tained on |z| = r as soon as the function is aperiodic, which means the following:

There is no β̂(z) analytic at 0 such that β(z) = zaβ̂(zb) for integers a, b and b ≥ 2.
This condition is obviously satisfied here since β(z) = 1+ e−1z+2(e−1z)2+ · · · .

358 Chapter 12. Non-Markovian Sources: Redundancy of Renewal Processes

Fix some small angle parameter φ0, for instance, φ0 = 1
10 , and define

σ(r) = sup
|θ|≥φ0

∣∣∣∣
β(reiθ)

β(r)

∣∣∣∣ . (12.26)

Then σ(r) is continuous on the open interval (0, 1) where it satisfies σ(r) < 1
while it tends to zero when r tends to 1. Actually we have σ(r) = O(

√
1− r)

for r → 1−. As a consequence, for each δ > 0, there exists an Aδ < 1 such that

σ(r) < Aδ for all r satisfying δ ≤ r < 1. (12.27)

Consider the case where z = reiθ with r → 1. Set r = e−τ . The powers zj

form a discrete set of points on a logarithmic spiral that winds about 0. The
number of such powers that have modulus larger than δ is

J =
ln δ−1

τ
+O(1).

The essential observation is now that for 2π/J ≤ |θ| ≤ π a positive fraction will
lie outside of the region | arg(zj)| < φ0 = 1

10 , that is,

#{1 ≤ j ≤ J : | arg(zj)| = |jθ mod 2π| ≥ φ0} ≥ c2J

for some c2 > 0. Hence, (12.27) immediately implies

q(reiθ) ≤ Ac2J
δ = O(e−c3/τ) = O(e−c4/(1−r)) (12.28)

for some positive constants c3, c4. This proves the lemma.

We are now ready to show that S(z, 1) is Hayman admissible, that is, it
satisfies (C.9), (C.10), and b(r) → ∞ as r → R = 1, where we set θ(r) =
(1− r)17/12.

First, by Lemma 12.2.5 we get

a(r) =
rS′(r, 1)

S(r, 1)
=

cr

(1 − r)2 +
r

4(1− r) +O
(
|1− z|− 1

2+ε
)

(12.29)

and

b(r) = ra′(r) =
2cr2

(1 − r)3 +
cr

(1− r)2 +
r2

4(1− r)2 +O
(
|1− z|− 3

2+ε
)
.

Clearly, we have b(r) → ∞ as r → 1. Furthermore by using the representation
S(z, 1) = eL(t), where t = ln(1/z) = ln(1/r) − iθ, and asymptotic expansion
(12.24) for L(t) we obtain for |θ| = O(ln(1/r)) = O(1 − r)

S(reiθ , 1) = S(r, 1)eiθa(r)−
1
2 θ

2b(r)+O(θ3/(1−r)4). (12.30)

12.2. Maximal Minimax Redundancy 359

If |θ| ≤ (1− r)17/12 the error term O(θ3/(1− r)4) = O((1 − r)1/4) is negligible.
This verifies (C.9).

Secondly, (12.30) also proves that

S(reiθ , 1) = O
(
S(r, 1)e−cθ2/(1−r)3

)

for |θ| ≤ (1 − r) and some constant c > 0. Hence, if (1− r)17/12 ≤ |θ| ≤ (1− r)
it follows that

S(reiθ, 1) = O

(
S(r, 1)e−c(1−r)−

1
6

)
= o

(
S(r, 1)√
b(r)

)
.

Finally, if (1− r) ≤ |θ| ≤ π we can apply Lemma 12.2.6 and obtain

S(reiθ, 1) = O
(
S(r, 1)e−c0(1−r)−1

)
= o

(
S(r, 1)√
b(r)

)
.

Hence, we find the asymptotic expansion

sn = [zn]S(z, 1) =
S(rn, 1)

rnn
√
2πb(rn)

(
exp

(
− (a(rn)− n)2

2b(rn)

)
+ o(1)

)

where we choose rn as

rn = 1−
√
c

n
.

In particular, we obtain

a(rn) = n+O
(
n

1
2

)
,

b(rn) =
2√
c
n3/2

(
1 +O(n−1/2)

)
,

S(rn, 1) = a
(c
n

) 1
8

e
√
nc
(
1 +O(n− 1

4+
ε
2)
)

r−n
n = e

√
cn+2c+O(n−1/2)

which gives

sn ∼
ac

3
8

2
√
π
n− 7

8 e2
√
cn+ c

2 = e2
√
cn− 7

8 lnn+d.

360 Chapter 12. Non-Markovian Sources: Redundancy of Renewal Processes

We can do slightly better by taking the integration error explicitly into account
which gives (in our case)

sn = [zn]S(z, 1) =
S(rn, 1)

rnn
√
2πb(rn)

(
exp

(
− (a(rn)− n)2

2b(rn)

)
+O(n−1/4)

)

=
S(rn, 1)

rnn
√
2πb(rn)

(
1 +O(n−1/4)

)
.

This finally leads to (12.14) of Lemma 12.2.1.

Moments. In order to complete the proof of Lemma 12.2.1, it remains to
evaluate µn and σ2

n asymptotically. We follow the same principles as before. For
µn = E[Kn] it is necessary to estimate [zn]S′

u(z, 1) with

S′
u(z, 1) = S(z, 1)

∞∑

k=0

zk
β′(zk)

β(zk)
. (12.31)

Set

D1(z) =

∞∑

k=0

α(zk), where α(z) = z
β′(z)

β(z)
.

We use again Mellin transform techniques. Since α(e−t) behaves (for t → 0+)
as

α(e−t) =
1

2t
−
√
2

6

1√
t
− 1

18
+O(

√
t),

it follows that the Mellin transform

α∗(s) =

∫ ∞

0

α(e−t)ts−1 ds,

that converges for ℜ(s) > 1, has a meromorphic continuation to ℜ(s) > − 1
2 with

simple polar singularities at s = 0, s = 1
2 , and s = 1. The Mellin transform of

D1(e
−t) is, thus, given by

D∗
1(s) =

∫ ∞

0

∞∑

k=0

α(e−kt)ts−1 ds = ζ(s)α∗(s)

and has (again) a meromorphic extension to ℜ(s) > − 1
2 (with a double pole at

s = 1). By inverting the Mellin transform (and by shifting the integral to the
left and after collecting residues) we derive (as above) the asymptotic behavior

12.2. Maximal Minimax Redundancy 361

of D1(e
−t) as t→ 0 that rewrites to (as z → 1)

D1(z) =
1

2

1

1− z ln
1

1− z +
1

2

γ

1− z

− 1

6

√
2ζ(12)√
1− z −

1

4
ln

1

1− z +O(1),

where γ = 0.577 . . . denotes the Euler constant. As above this asymptotic
expansion can be extended to complex z.

By combining this representation with that of S(z, 1) in (12.23) yields

S′
u(z, 1) ∼

z→1

1

2
a exp

(
c

1− z +
3

4
ln

1

1− z + ln ln
1

1− z

)
, (12.32)

where a is the same constant as in (12.23). As for S(z, 1) we can directly check
that S′

u(z, 1) is Hayman admissible. Actually we can use the same value rn as
above and obtain an asymptotic expansion for

[zn]S′
u(z, 1) = µnsn =

S(rn, 1)D1(rn)

rnn

√
2πb(rn)

(
exp

(
− (a(rn)− n)2

2b(rn)

)
+O(n− 1

4)

)
,

where a(r) and b(r) are the corresponding functions for S′
u(z, 1). Note that

a(rn) = a(rn) + O(
√
n) = n + O(

√
n) and b(rn) = b(rn) + O(n). This directly

proves the asymptotic relation

µn = E[Kn] = D1(rn)
(
1 +O(n− 1

4+
ε
2)
)

and, thus, proves (12.15) of Lemma 12.2.1.
Finally, we need to justify (12.16) that represents a bound on the variance of

Kn. The computations follow the same steps as above, so we only sketch them
briefly. One needs to estimate a second derivative,

S′′
uu(z, 1) = S(z, 1)

(
D2(z) +D2

1(z)
)

where

D2(z) =
∞∑

k=0

z2k
β′′(zk)

β(zk)
−
(
zkβ′(zk)

β(zk)

)2

.

The sum D2(z) is (again) amenable to Mellin transform techniques, with the
result that

D2(z) =
ζ(2)

2

1

(1− z)2 +O((1 − z)−3/2).

362 Chapter 12. Non-Markovian Sources: Redundancy of Renewal Processes

Furthermore, the function S′′
uu(z, 1) is Hayman admissible and so we obtain

[zn]S′′
uu(z, 1)

sn
= E[Kn(Kn − 1)] = (D1(rn)

2 +D2(rn))
(
1 +O(n− 1

4+
ε
2)
)
.

Consequently

σ2
n = E[Kn(Kn − 1)] +E[Kn]−E[Kn]

2

=
ζ(2)

2c
n+O

(
n

3
4+ε
)
.

Since ζ(2) = π2/6, this establishes the second moment estimate (12.16) of
Lemma 12.2.1.

To complete the proof of Theorem 12.2.3 we must show how to obtain the
asymptotics for the upper bound on R̃∗

n, that is, rUn =
∑n

i=0 ri. We follow
the footsteps of the analysis for rn, that is, we define sUn , and observe that its
generating function is

SU (z, u) =
S(z, u)

1− z .

In particular, (12.23) implies

SU (z, 1) = eL(z) = a(1− z)− 3
4 exp

(
c

1− z

)
(1 + o(1)) .

Thus

ln sUn = 2
√
cn− 3

8
lnn+O(1).

To establish lnµU
n (where µU

n is the corresponding quantity to µn defined in
Lemma 12.2.1) we just repeat the calculations leading to (12.32) which yield

lnµU
n =

1

2
lnn+ ln lnn+O(1).

This establishes the desired upper bound and proves the main result.

12.2.2. Average vs Maximal Redundancy

Finally, we comment on the average minimax redundancy R̃n. Clearly

R̃n ≤ R̃∗
n ≤ C2

√
n

where

C2 =
2

ln 2

√
π2

6
− 1 = 2.317 . . .

Furthermore, Csiszar and Shields (1996) proved that R̃n ≥ C1
√
n. The question

is whether C1 = C2, and hence R̃n ∼ R̃∗
n. This is still an open problem, however,

we conjecture that C1 < C2. We leave this as an open problem.

12.3. Exercises 363

12.3. Exercises

12.1 Prove that the P (xn0) is a probability distribution, that is,
∑

xn
0
P (xn0) =

1. In other words, prove that for any z the following holds

∞∑

n=0

zn
∑

xn
0

P (xn0) =
1

1− z

for |z| < 1.

12.2 It can also be observed that the quantity rm has an intrinsic meaning
by its own. Let Wm denote the set of all mm sequences of length m
over the alphabet {0, . . . ,m − 1}. For a sequence w, take kj to be the
number of letters j in w. Then each sequence w carries a “maximum
likelihood probability” πML(w) (given by (12.9)): this is the probability
that w gets assigned in the Bernoulli model that makes it most likely.
Prove that

rm =
∑

w∈Wm

πML(w).

12.3 Prove (12.10).

12.4 Consider strongly mixing sources defined in Exercise 9.5. Try to estab-
lish redundancy rates that may depend on the function ψ defined in
(9.44).

12.5 Consider the r-order renewal process in which the renewal sequence
T1, T2, . . . for an r-order Markov process. We call such a process Rr.
Prove that for such processes

R̃∗
n(Rr) = Θ(n

r−1
r).

Find the constant in front of n
r−1
r .

12.6 Consider the average minimax redundancy Rn(Rr) and give a precise
asymptotic expression for it.

Bibliographical notes

Shields (1993) proved that there are no universal rates for redundancy for sta-
tionary ergodic processes. Therefore, Csiszar and Shields (1996) introduced a
restricted class of sources such as renewal sources where they also derived the
rate of growth Θ(

√
n). The current presentation is based on Flajolet and Sz-

pankowski (2002).

364 Non-Markovian Sources: Redundancy of Renewal Processes

Analysis of redundancy or regret for non-Markovian sources is very scarce.
We mention here Boucheron et al. (2009) and Shamir (2013).

In this chapter we used various tools from analytic number theory and an-
alytic combinatorics. For integer partition we refer Andrews (1984). Mellin
transform is well explained in Flajolet et al. (1997) and Flajolet and Sedgewick
(2008). The saddle point method used in this chapter is discussed in Appendix C;
see also Wright (1997) and Odlyzko (1995).

Part III

APPENDICES

CHAPTER A

Probability

In this Appendix we collect facts about probability that are used in this book.

A.1. Preliminaries

A probability space (Ω,S, P) consists of a non-empty sample space Ω, a
system S of events that constitutes a σ-algebra, and a probability measure P :
S → [0, 1]. Recall that a system S is a σ-algebra on Ω if Ω ∈ S, if A ∈ S implies
that its complement Ω \ A ∈ S, too, and if for every countable system Ai ∈ S
(i ∈ N) the union

⋃
i∈N Ai) belongs to S. Furthermore, a probability measure

P satisfies P (Ω) = 1 and P
(⋃

i∈N Ai

)
=
∑

i∈N
P (Ai) for pairwise disjoint sets

Ai ∈ S.
A typical example in the context of coding theory is the space Ω = {0, 1}N

of 0-1-sequences x = x1x2 The system S is the σ-algebra that is generated
by the sets {x = x1x2 . . . ∈ Ω : x1 = b1, . . . , xn = bn} (n ≥ 1, bj ∈ {0, 1}), and
the probability measure P is defined by

P ({x = x1x2 . . . ∈ Ω : x1 = b1, . . . , xn = bn}) = pk(1 − p)n−k,

where
k = #{1 ≤ j ≤ n : bj = 0},

and p ∈ (0, 1) is a given number. Usually we denote this probability space as a
memoryless source (with parameter p).

A.2. Random Variables

A real random variable X is a measurable function X : Ω → R, that is, all
pre-images X−1(−∞, a) = {ω ∈ Ω : X(ω) < a} ∈ S. (This implies that all

368 Appendix A. Probability

pre-images of Lebesgue-measurable sets A ⊆ R satisfy X−1(A) ∈ S). The
probability distribution P of X is then given by

P (X ∈ A) := P (X−1(A)) = P ({ω ∈ Ω : X(ω) ∈ A}).

The distribution function FX is defined by

FX(x) = P (X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}).

The distribution of X has a density fX(t) if we have

FX(x) =

∫ x

−∞
fX(t) dt,

that is, the distribution of X is absolutely continuous with respect to the Les-
begue measure.

There is a natural generalization of random variables X with values in the
so called Polish space. (A Polish space is a separable completely metrizable
topological space, that is, a space homeomorphic to a complete metric space
that has a countable dense subset.) Of course, R is a Polish space, Rn for every
n ≥ 1, as well as any separable Banach spaces. This notion includes naturally
n-dimensional random vectors as well as stochastic processes.

Moments. Let f : R → R be a measurable function and X a real random
variable. Then the expected value E[f(X)] of f(X) is defined by the integral

E[f(X)] =

∫

Ω

f(X(ω)) dP (ω) =

∫

R

f(x) dFX (x)

if it exists. In particular, the expected value of X is given by E[X] and the k-th
moments of X by

E[Xk].

The variance Var[X] of a random variable X is given by

Var[X] = E[(X −E)2] = E[X2]− (E[X])2.

Characteristic and Moment Generating Functions. The character-
istic function ϕX(t) is defined by

ϕX(t) = E[eitX]

and the moment generating function mX(t) by

mX(t) = E[etX].

A.2. Random Variables 369

Since eitx is absolutely bounded, the characteristic function is always well de-
fined. This is not necessarily the case for the moment generating function.
However, if the moment generating function exists for |t| ≤ δ for some δ > 0
then we certainly have ϕX(t) = mX(it) and

mX(t) =
∑

k≥0

E[Xk]

k!
tk.

Inequalities. There are several inequalities related with moments. The
most basic one is Markov’s inequality which says that for every non-negative
random variable X and for every a > 0.

P (X ≥ a) ≤ E[X]

a
.

This inequality is easy to establish since

EX ≥ E[X · 1[X≥a]] ≥ aE[1[X≥a]] = aP (X ≥ a).

A similar inequality is Chebyshev’s inequality:

P (|X −EX | ≥ a) ≤ Var[X]

a2
.

Of course this is just a restatement of Markov’s inequality applied to the random
variable (X −EX)2.

Both inequalities can be used to establish estimates for the tail of a distri-
bution. Actually these tail estimates can be (usually) improved by using the
moment generating function. This leads to Chernoff’s inequality (which is an-
other application of Markov’s inequality):

P (X ≥ a) = P (etX ≥ eta) ≤ mX(t)e−ta.

This inequality can be optimized by choosing t appropriately.

Independent random variables. Suppose that X and Y are real valued
random variables (that are defined on the same probability space). We say that
X and Y are independent if for all measurable functions f, g : R→ R we have

E[f(X)g(Y)] = E[f(X)] ·E[g(Y)].

For example, if f = 1A is the indicator function of a set A and g = 1B the
indicator function of a set B this rewrites to

P (X ∈ A and Y ∈ B) = P (X ∈ A)P (Y ∈ B).

370 Appendix A. Probability

If f(x) = g(x) = eitx then the above relation for independent random vari-
ables X,Y rewrites to a product relation for the characteristic functions of X ,
Y , and X + Y :

ϕX+Y (t) = E[eit(X+Y)] = E[eitXeitY] = ϕX(t)ϕY (t).

Of course, the same holds for the moment generating functions: mX+Y (t) =
mX(t)mY (t).

Similarly to the above notion for random variables we say that two events
A,B ∈ S are independent if

P (A ∩B) = P (A)P (B).

In general, if we have two events A,B ∈ S with P (B) > 0 we define the condi-
tional probability P (A|B) by

P (A|B) =
P (A ∩B)

P (B)
.

Of course, if A and B are independent if and only if P (A|B) = P (A).

Entropy. Suppose that Ω is a finite set and S consists of all subsets of Ω.
Then P is characterized by P (ω) := P ({ω}), ω ∈ Ω. The entropy H(P) of the
probability distribution P is then defined by

H(P) = −
∑

ω∈Ω

P (ω) logP (ω),

where log denotes usually the binary logarithm. Similarly the entropy of a
random variable X : Ω→ R is given by the probability distribution of X ; recall
that P (X = a) = P (X−1({a})):

H(X) = −
∑

a∈X(Ω)

P (X = a) logP (X = a).

We note that the image set H(Ω) is finite, too, in this context. Of course, this
definition can be extended to all random variables with finite image.

The entropy is a kind of uncertainty measure. For example if the distribution
P is concentrated at one value, that is, P (ω0) = 1 for some ω0 ∈ Ω, then
H(P) = 0. On the other hand, if every value in Ω (of size N) is equally likely,
that is P (ω) = 1/N for all ω ∈ Ω, then H(P) = logN . In all other cases the
entropy satisfies 0 < H(P) < logN .

The entropy has many properties. The most important ones are listed in
Chapter 1 (see also the Exercises).

A.3. Convergence of random variables 371

A.3. Convergence of random variables

A sequence X1, X2, . . . of random variables converges weakly (or in distribution)
to a random variable X if

lim
n→∞

FXn(x) = FX(x)

for all continuity points of the distribution function FX . In this case we write

Xn
d−→ X.

By Lévy’s theorem, weak convergence can be checked with the help of the char-

acteristic functions. If Xn
d−→ X then

lim
n→∞

ϕXn(t) = ϕX(t)

for all real t. Conversely if ϕXn(t) converges for every real t to a function ϕ(t)
that is continuous at 0 then ϕ(t) is the characteristic function of a random

variable X and we have Xn
d−→ X.

Note that weak convergence can be defined for arbitrary sequences of random
variables that need not be defined on the same probability space. However, for
all other notions of convergence we assume that the sequence of random variables
X1, X2, . . . as well as the (potential) limit X are defined on the same space.

We say that a sequence of random variables X1, X2, . . . converges in proba-

bility to a random variable X and this is denoted by Xn
P−→ X if

lim
n→∞

P (|Xn −X | > ε) = 0 for all ε > 0.

Similarly we say that a sequence of random variables X1, X2, . . . converges
almost surely to a random variable X and this is denoted by Xn

a.s.−−→ X if

lim
n→∞

P
(
lim
n→∞

Xn = X
)
= 1.

Equivalently, we can define it as

lim
N→∞

P{ sup
n≥N
|Xn −X | < ε} = 1

for any ε > 0.

372 Appendix A. Probability

Finally, we say that a sequence of random variables X1, X2, . . . converges in
Lp to a random variable X (for some p ≥ 1) if the absolute moments E[|Xj|p],
j ≥ 1 and E[|X |p] exist and if

lim
n→∞

E[|Xn −X |p] = 0.

In this case we write
Xn

Lp

−−→ X.

Of course in this case we also have E[|Xn|p]→ E[|X |p].
There are several relations between these notions of convergence that we list

here.

Theorem A.3.1. Let X1, X2, . . . and X random variables that are defined on
the same probability space. Then the following relations hold

1. Xn
P−→ X implies Xn

d−→ X. If X is constant then the converse implication
is also true.

2. Xn
a.s.−−→ X implies Xn

P−→ X.

3. Xn
Lp

−−→ X implies Xn
P−→ X.

Normal random variables. We say that a random variableX is normally
distributed (or Gaussian) N(µ, σ) with mean µ and variance σ2 > 0 if the
distribution of X has a density of the form

f(x) =
1√
2πσ2

e−(x−µ)2/(2σ2).

Clearly we then have

E[X] = µ, Var[X] = σ2, ϕX(t) = eitµ−t2σ2/2.

Sometimes it is convenient to add the case of zero variance, that is, the distri-
bution N(µ, 0) is concentrated at x = µ.

The standard normal distribution is just N(0, 1), the normal distribution
with mean 0 and variance 1. Clearly if X is N(µ, σ)-distributed then the nor-
malized random variable (X − µ)/σ is N(0, 1)-distributed. The density and the
distribution function of the standard normal distribution are given by

fX(x) =
1√
2π
e−x2/2, Φ(x) =

1√
2π

∫ x

−∞
e−t2/2 dt.

A.3. Convergence of random variables 373

If X1, . . . , Xn are independent N(µj , σ
2
j)-distributed, 1 ≤ j ≤ n. Then the

sum Y = X1 + · · ·+Xn is N(µ, σ2)-distributed with

µ = µ1 + · · ·+ µn and σ2 = σ2
1 + · · ·+ σ2

n.

Let µ = (µ1, . . . , µd) a d-dimensional vector and Σ a d× d-dimensional semi-
positive definite matrix. Then a d-dimensional random vector X = (X1, . . . , Xd)
is normally distributed with mean µ and covariance matrix Σ if every projection
Y = a ·X = a1X1 + · · ·+ adXd is N(a · µ, at · Σ · a)-distributed.

The importance of the normal distribution is that it universally appears as
the scaling limit of sums of independent random variables.

Theorem A.3.2 (Central Limit Theorem). Let X1, X2, . . . be a sequence of
identically distributed and independent random variables with mean value E[Xj] =
µ and variance Var[Xj] = σ2. Set Sn = X1 + · · · + Xn. Then the normalized
random variable converges weakly to the standard normal distribution:

Sn − µn√
σ2n

d−→ N(0, 1).

Special distributions. Let X be a random variable with image set {0, 1},
that is we have P (X = 1) = p ∈ [0, 1] and P (X = 0) = q = 1 − p. A random
variable Y has a binomial distribution Bi(n, p) if the distribution of Y is the
same as the distribution of X1+ · · ·+Xn, where Xi, 1 ≤ i ≤ n, are independent
copies of X . The probability distribution is given by

P (Y = k) =

(
n

k

)
pk(1− p)n−k (0 ≤ k ≤ n).

Expected value, variance, and characteristic function are given by

E[Y] = np, Var[Y] = np(1− p), ϕY (t) = (peit + (1− p))n.

Clearly, the central limit theorem implies

Y − np√
np(1− p)

d−→ N(0, 1).

The Poisson distribution Po(λ) with parameter λ > 0 is defined on the
non-negative integers by

P (k) =
λk

k!
e−λ.

374 Probability

If a random variable X is Po(λ)-distributed, then expected value, variance, and
characteristic function are given by

E[X] = Var[X] = λ, ϕX(t) = eλ(e
it−1).

If Xj , 1 ≤ j ≤ n, are independent random variables that are Po(λj)-distributed
then the sum Y = X1+ · · ·+Xn is Po(λ1+ · · ·+λn)-distributed. In particular if
we apply this property for λj = λ for all j it follows that a Po(nλ)-distribution
can be approximated by a normal distribution with mean and variance nλ.
More generally, Po(λ) is approximated by a normal distribution with mean and
variance λ if λ→∞.

The exponential distribution Exp(λ) (with a parameter λ > 0) is a continu-
ous distribution with density

f(x) = λe−λx, x ≥ 0.

Hence, if a random variable X is Exp(λ)-distributed, then P (X ≥ x) = e−λx,
that is, the distribution function is FX(x) = 1 − e−λx (for x ≥ 0). Expected
value, variance, and characteristic function are given by

E[X] =
1

λ
, Var[X] =

1

λ2
, ϕX(t) =

λ

λ− it .

An important property of the exponential distribution is that it is memoryless
in the following sense:

P (X ≥ x+ t|X ≥ x) = P (X ≥ t).

Another interesting property is that the minimum min(X1, . . . , Xn) is Exp(λ1+
· · ·+ λn)-distributed if the random variables Xj are independent and Exp(λj)-
distributed, 1 ≤ j ≤ n.

Bibliographical notes

There are many good books on probability, in particular discrete probability.
For example, Billingsley (1968), Durrett (1991), Chung (1974), Feller (1970).

CHAPTER B

Generating Functions

In this Appendix we recall some facts about generating functions. Generating
functions are not only a useful tool to count combinatorial objects but also an
analytic object that can be used to obtain asymptotics. They can be used to
encode the distribution of random variables that are related to counting prob-
lems. Furthermore, asymptotic methods can be applied to obtain probabilistic
limit theorems like central limit theorems.

B.1. Generating Functions.

The ordinary generating function (ogf) of a sequence (an)n≥0 (of complex num-
bers) is the formal power series

a(x) =
∑

n≥0

anx
n. (B.1)

Similarly the exponential generating function (egf) of the sequence (an)n≥0 is
given by

â(x) =
∑

n≥0

an
xn

n!
. (B.2)

We use the notation
[xn]a(x) = an

to extract the coefficient of xn in a generating function.

Example B.1.1. Let bn denote the number of different binary trees with n
internal vertices (and n + 1 external vertices). Then we have b0 = 1 and the
following recurrence relation

bn+1 =

n∑

k=0

bkbn−k. (B.3)

376 Appendix B. Generating Functions

If a binary tree has n + 1 internal nodes. Then the left and right subtrees are
also binary trees (with k and n− k internal nodes, where 0 ≤ k ≤ n). Thus, by
summing up all such possible combinations we get the total number bn+1.

This recurrence can be solved using the generating function

b(x) =
∑

n≥0

bnx
n.

By (B.3) we find the relation

b(x) = 1 + xb(x)2 (B.4)

and consequently an explicit representation of the form

b(x) =
1−
√
1− 4x

2x
. (B.5)

In summary, we find

bn = [xn]
1−
√
1− 4x

2x

= −1

2
[xn+1](1 − 4x)

1
2

= −1

2

(1
2

n+ 1

)
(−4)n+1

=
1

n+ 1

(
2n

n

)
.

It is clear that certain algebraic operations on sequences have their counter-
part on the level of generating functions. Table B.1 collects some of them.

B.2. Combinatorial Structures.

A useful observation is that generating functions can be viewed as a power series
generated by certain combinatorial objects which we discuss next.

Let C be a (countable) set of objects, for example, a set of graphs and

| · | : C → N

a weight function that assigns to every element c ∈ C a weight or size |c|. We
assume that the sets

Cn := | · |−1({n}) = {c ∈ C : |c| = n} (n ∈ N)

B.2. Combinatorial Structures. 377

sequence ogf

sum cn = an + bn c(x) = a(x) + b(x)

product cn =
n∑

k=0

akbn−k c(x) = a(x)b(x)

partial sums cn =
n∑

k=0

ak c(x) = 1
1−xa(x)

marking cn = nan c(x) = xa′(x)

scaling cn = γnan c(x) = a(γx)

sequence egf

sum cn = an + bn ĉ(x) = â(x) + b̂(x)

product cn =
n∑

k=0

(
n
k

)
akbn−k ĉ(x) = â(x)b̂(x)

binomial sums cn =
n∑

k=0

(
n
k

)
ak ĉ(x) = exâ(x)

marking cn = nan ĉ(x) = xâ′(x)

scaling cn = γnan ĉ(x) = â(γx)

Table B.1. Basic relations between sequences and their generating functions

are all finite. Set cn = |Cn|. Then the ordinary generating function c(x) of the
pair (C, | · |) that we also call combinatorial structure is given by

c(x) =
∑

c∈C

x|c| =
∑

n≥0

cnx
n,

and the exponential generating function ĉ(x) by

ĉ(x) =
∑

c∈C

x|c|

|c|! =
∑

n≥0

cn
xn

n!
.

The choice of ordinary generating functions or exponential generating functions
depends on the problem at hand. As a rule unlabelled (or unordered) structures

378 Appendix B. Generating Functions

should be counted with the help of ordinary generating functions and labelled
(or ordered) structures with exponential generating functions.

For example the ogf of binary trees, where the weight is the number of
internal nodes, is given by

b(x) =
1−
√
1− 4x

2x
.

On the other hand the egf of permutations of finite sets, where the weight is the
size of the finite set, is given by

p̂(x) =
∑

n≥0

n!
xn

n!
=

1

1− x.

Combinatorial Constructions. One major aspect in the use of generating
functions is that certain combinatorial constructions have their counterparts in
relations of the corresponding generating functions.

We again use the notation A,B,C, . . . for sets of combinatorial objects with
corresponding size functions | · |. First suppose that the objects that we con-
sider are (in some sense) unlabelled or unordered. We have the following basic
operations:

1. If A and B are disjoint then C = A +B = A ∪B denotes the union of A
and B.

2. C = A × B denotes the Cartesian product. The size function of a pair
c = (a, b) is given by |c| = |a|+ |b|.

3. Suppose that A contains no object of size 0 and that the sets A, A × A,
A×A×A, . . . are disjoint. Then

C = A∗ := {ε}+A+A×A+A×A×A+ · · ·

is the set of (finite) sequences of elements of A (ε denotes the empty object
of size zero).

4. Let C = Pfin(A) denote the set of all finite subsets of A. The size of a subset
{a1, a2, . . . , ak} ⊆ A is given by |{a1, a2, . . . , ak}| = |a1|+ |a2|+ · · ·+ |ak|.

5. Let C =Mfin(A) denote the set of all finite multisets {aj11 , aj22 , . . . , ajkk } of
A, that is, the element ai is taken ji times (1 ≤ i ≤ k). Its size is given by
|{aj11 , aj22 , . . . , ajkk }| = j1|a1|+ j2|a2|+ · · ·+ jk|ak|.

B.2. Combinatorial Structures. 379

combinat. constr. ogf

C = A+B c(x) = a(x) + b(x)

C = A×B c(x) = a(x)b(x)

C = A∗ c(x) = 1
1−a(x)

C = Pfin(A) c(x) = ea(x)−
1
2a(x

2)+ 1
3a(x

3)∓···

C =Mfin(A) c(x) = ea(x)+
1
2a(x

2)+ 1
3a(x

3)+···

C = A(B) c(x) = a(b(x))

Table B.2. Combinatorial structures and their corresponding generating
functions.

6. Suppose thatB has no object of zero size. Then the composition C = A(B)
of A and B is given by

C = A(B) := A0 +A1 ×B +A2 ×B ×B + · · · ,

where An = {a ∈ A | |a| = n}. The size of (a, b1, b2, . . . , bn) ∈ An×B×B×
· · ·×B is defined by |b1|+ |b2|+ · · ·+ |bn|. The combinatorial interpretation
of this construction is that an element a ∈ A of size |a| = n is substituted
by an n-tuple of elements of B.

As already indicated these combinatorial constructions have counterparts in
relations of generating functions shown in Table B.2.

For example, the relation

b(x) = 1 + xb(x)2,

for the generating function of binary trees can be seen as the translation of the
recursive description of binary trees: A binary trees is either just one (external)
vertex or an (internal) root, where two binary trees are attached.

Labelled Combinatorial Constructions. There are similar constructions
of the so called labelled or ordered combinatorial objects with corresponding
relations for their exponential generating functions. We call a combinatorial

380 Appendix B. Generating Functions

object c of size n labelled if it is formally of the form c = c̃ × π, where π ∈
Sn is a permutation. For example, we can think of a graph c̃ of n vertices
and the permutation π represents a labelling of its nodes. We list some of the
combinatorial constructions where we have to take care of the permutations
involved.

1. If A and B are disjoint then C = A +B = A ∪B denotes the union of A
and B.

2. The labelled product C = A ∗ B of two labelled structures is defined as
follows. Suppose that a = ã × π ∈ A has size |a| = k and b = b̃ × σ ∈ B
has size |b| = m. Then we define a∗b as the set of objects ((ã, b̃), τ), where
τ ∈ Sk+m runs over all permutations that are consistent with π and σ in
the following way: there is a partition {j1, j2, . . . , jk}, {ℓ1, ℓ2, . . . , ℓm} of
{1, 2, . . . , k+m} with j1 < j2 < · · · < jk and ℓ1 < ℓ2 < · · · < ℓm such that

τ(1) = jπ(1), τ(2) = jπ(2), . . . , τ(k) = jπ(k) and

τ(k + 1) = ℓσ(1), τ(k + 2) = ℓσ(2), . . . , τ(k +m) = ℓσ(m).

Finally we set

A ∗B =
⋃

a∈A, b∈B

a ∗ b.

The size of ((ã, b̃), τ) is given by |((ã, b̃), τ)| = |a|+ |b|.
3. Suppose that A contains no object of size 0 and that the sets A, A ∗ A,
A ∗A ∗A, . . . are disjoint. Then

C = A∗ := {ε}+ A+A ∗A+A ∗A ∗+ · · ·

is the set of (finite labelled) sequences of elements of A.

4. Similarly we define unordered labelled sequences by

C = eA = {ε}+A+
1

2!
A ∗A+

1

3!
A ∗A ∗A+ · · · ,

where the short hand notation 1
n!A ∗A ∗ · · · ∗A means that we do not take

care of the order of the n elements in the sequence A ∗A ∗ · · · ∗A.
5. Suppose thatB has no object of size zero. Then the composition C = A(B)

of A and B is given by

C = A(B) := A0 +A1 ×B +A2 ×B ×B + · · · ,

where An = {a ∈ A | |a| = n}.

B.2. Combinatorial Structures. 381

combinat. constr. egf

C = A+B ĉ(x) = â(x) + b̂(x)

C = A ∗B ĉ(x) = â(x)b̂(x)

C = A∗ ĉ(x) = 1
1−â(x)

C = eA ĉ(x) = eâ(x)

C = A(B) ĉ(x) = â(b̂(x))

Table B.3. Combinatorial labelled structures and their corresponding
exponential generating functions.

The corresponding relations for the exponential generating functions are
listed in Table B.2.

The only case that has to be explained is the labelled product C = A ∗ B.
If |a| = k and |b| = m then there are exactly

(
k+m
k

)
possible ways to partition

{1, 2, . . . , k +m} into two sets of size k and m. Thus a ∗ b has size
(
k+m
k

)
and

consequently

ĉ(x) =
∑

a∈A,b∈B

(|a|+ |b|
|a|

)
x|a|+|b|

(|a|+ |b|)! =
∑

a∈A

x|a|

|a|! ·
∑

b∈B

x|b|

|b|! = â(x) · b̂(x).

Lagrange Inversion Formula. Next we present a very powerful tool for
generating function. Let a(x) =

∑
n≥0 anx

n be a power series with a0 = 0
and a1 6= 0. The Lagrange inversion formula provides an explicit representa-
tion of the coefficients of the inverse power series a[−1](x) which is defined by
a(a[−1](x)) = a[−1](a(x)) = x.

Theorem B.2.1. Let a(x) =
∑
n≥0

anx
n be a formal power series with a0 = 0

and a1 6= 0. Let a[−1](x) be the inverse power series and g(x) an arbitrary power
series. Then the n-th coefficient of g(a[−1](x)) is given by

[xn]g(a[−1](x)) =
1

n
[un−1]g′(u)

(
u

a(u)

)n

(n ≥ 1).

382 Generating Functions

The following variant is usually more appropriate for combinatorial problems.

Theorem B.2.2. Let Φ(x) be a power series with Φ(0) 6= 0 and y(x) the
(unique) power series solution of the equation

y(x) = xΦ(y(x)).

Then y(x) is invertible and the n-th coefficient of g(y(x)) (where g(x) is an
arbitrary power series) is given by

[xn]g(y(x)) =
1

n
[un−1]g′(u)Φ(u)n (n ≥ 1).

Theorems B.2.1 and B.2.2 are equivalent. If a(x) = x/Φ(x) then a[−1](x) = y(x),
where y(x) satisfies the equation y(x) = xΦ(y(x)).

Example B.2.3. We give an immediate application of Theorem B.2.2. We
have already observed that the generating function b(x) of binary trees satisfies

the functional equation (B.4). If we set b̃(x) = b(x)− 1 then

b̃(x) = x(1 + b̃(x))2.

By Theorem B.2.2 with Φ(x) = (1 + x)2 we obtain (for n ≥ 1)

bn = [xn]̃b(x) =
1

n
[un−1](1 + u)2n

=
1

n

(
2n

n− 1

)
=

1

n+ 1

(
2n

n

)
.

Bibliographical notes

Generating function are discussed in many textbooks. We mention here the
classic monograph by Flajolet and Sedgewick (2008). See also Drmota (2009)
and Szpankowski (2001).

CHAPTER C

Complex Asymptotics

In this appendix we present some powerful asymptotic methods that use com-
plex analysis. In particular, after some introductory remarks about complex
functions, we shall discuss special function, the saddle point method, the polar
asymptotics, and the singularity analysis.

C.1. Analytic Functions

Let G ⊆ C be an open set. A function f : G→ C is an analytic or holomorphic
function if for every z0 ∈ G there exists R > 0 such that f(z) can be represented
for |z − z0| < R as a power series:

f(z) =
∑

n≥0

an(z − z0)n. (C.1)

A function is called entire if it is analytic in C. For example, polynomials or ez

are entire; power series are analytic inside the circle of convergence.
A very important property of analytic functions is that they are differentiable

in the sense that the complex derivative

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

(C.2)

exists for all z0 ∈ G. Actually, from (C.1) we get the power series of the deriva-
tive

f ′(z) =
∑

n≥0

(n+ 1)an+1(z − z0)n.

Hence, f ′(z) is also analytic in G. In the same way it follows that f is infinitely
often differentiable. The coefficients in (C.1) are then given by

an =
f (n)(z0)

n!

384 Appendix C. Complex Asymptotics

and are unique.
Similarly we can define an analytic function F : C → C with F ′(z) = f(z).

We just note that the corresponding power series are

F (z) = F (z0) +
∑

n≥0

an
n+ 1

(z − z0)n+1.

In order to be more precise we consider complex contour integrals

∫

C

f(z) dz =

∫

C

(u dx− v dy) + i

∫

C

(v dx+ u dy),

where z = x+iy, u = u(x, y) = ℜ(f(x+iy)), and v = v(x, y) = ℑ(f(x+iy)) and
C is a path in C. However, since f(z) is differentiable in the sense (C.2) we have
the following relations for u and v (Cauchy-Riemann differential equations):

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

To see this, we take the limit in (C.2) parallel to the real axis and parallel to
the imaginary axis and to compare the results: f ′ = ∂u

∂x + i ∂v∂x = ∂v
∂y − i∂u∂y . In

particular it follows by Green’s theorem that the integrals
∫
C
(u dx − v dy) and∫

C
(v dx+u dy) only depend on the starting and endpoints of the path C. Hence,

the same is true for complex contour integrals over analytic functions. Hence it
makes sense to define the function

F (z) =

∫

z0→z

f(w) dw

which has (as in the real case) the following property

F ′(z) = f(z).

Cauchy Formula. Now let γ be a closed path (in G) with winding number
1 around z0. Then for every analytic function f : G→ C we have

∫

γ

f(z)− f(z0)
z − z0

dz = 0

since the function g(z) = (f(z) − f(z0))/(z − z0) for z 6= z0 and g(z0) = f ′(z0)
is also analytic. Since ∫

γ

dz

z − z0
= 2πi

C.1. Analytic Functions 385

we obtain the representation

f(z0) =
1

2πi

∫

γ

f(z)

z − z0
dz. (C.3)

Now suppose that γ has also winding number 1 around 0 and that |z| > |z0| for
all z ∈ γ. Then by replacing 1/(z − z0) by

∑
n z

n
0 /z

n+1 we further obtain

f(z0) =
1

2πi

∫

γ

∑

n≥0

zn0
zn+1

f(z) dz =
∑

n≥0

(
1

2πi

∫

γ

f(z)

zn+1
dz

)
zn0 .

This is precisely Cauchy’s formula that states that the coefficients an in the
power series expansion of f(z) =

∑
n anz

n are given by

an =
1

2πi

∫

γ

f(z)

zn+1
dz. (C.4)

At this stage we drop the above conditions on γ since the integral on the right
hand side does not depend on γ. We just have to assure that the winding number
around 0 is 1.

The representation (C.3) has another striking application. Suppose that
fk : G → C is a sequence of analytic functions that converges uniformly to a
function f : G→ C for all bounded and closed sets K ⊆ G. Then the limit f is
analytic, too.

This property applies to several special functions discussed in Section C.2.
For example, for the Riemann zeta-function ζ(s) =

∑
n≥1 n

−s that is uniformly
convergent in the half-spaces ℜ(s) ≥ 1 + η (for every η > 0). Another example
is the Gamma function Γ(s) =

∫∞
0 ts−1e−t dt, ℜ(s) > 0. Here we have to apply

this concept in two steps, first to integrals over the finite intervals [1/k, k] (with
Riemann sums) and then the limit k→∞.

Residue Theorem. Before we start with complex asymptotic methods we
also mention the residue theorem. We say that an analytic function f : G\{z0} →
C (where z0 ∈ G) has a polar singularity if there exists a natural number K ≥ 1
such that the function g(z) = (z − z0)Kf(z) has an analytic continuation to G.
In particular g(z) has a power series expansion at z = z0. This implies that
f(z) = (z − z0)−Kg(z) can be locally represented as

f(z) =
a−K

(z − z0)K
+

a−K+1

(z − z0)K−1
+ · · ·+ a−1

z − z0
+ a0 + a1(z − z0) + · · · .

The coefficient a−1 is called residue

a−1 = res(f(z), z0)

386 Appendix C. Complex Asymptotics

and the smallest possible K is the order of the polar singularity.
Suppose now that γ is a closed path (contained in G) and that z1, . . . , zm are

polar singularities of a function f : G \ {z1, . . . , zm} → C such that the winding
number of γ around zj is 1 for all j = 1, . . . ,m, that is, γ goes around z1, . . . , zm
once. Then the residue theorem says that

∫

γ

f(z) dz = 2πi

m∑

j=1

res(f(z), zj). (C.5)

The proof follows (up to proper shifts of the path of integration) from
∫

γ

dz

z − z0
= 2πi, and

∫

γ

(z − z0)k dz = 0, k 6= −1

if γ just goes around z0.

C.2. Special Functions

In this section we collect some results on special functions such as Euler, Gamma,
and Beta functions, the Riemmann zeta function, and the Lambert function.

Gamma Function. The Gamma-function Γ(s) is defined for complex s
with ℜ(s) > 0 by the integral

Γ(s) =

∫ ∞

0

ts−1e−t dt

and is an analytic function there. For example Γ(1) = 1 or Γ(12) =
√
π. Partial

integration leads to the functional equation

Γ(s+ 1) = sΓ(s) (ℜ(s) > 0) (C.6)

which gives
Γ(n+ 1) = n! (n ≥ 0).

Furthermore the functional equation (C.6) can be used to extend Γ(s) meromor-
phically to C \ {0,−1,−2, . . .}. For s = −n (n = 0, 1, 2, . . .) this meromorphic
extension has simple polar singularities with residues

res(Γ(s),−n) = (−1)n
n!

.

By separating the integral from 0 to 1 and from 1 to ∞ one obtains the repre-
sentation

Γ(s) =

∞∑

n=0

(−1)n
n!

1

s+ n
+

∫ ∞

1

ts−1e−tdt

C.2. Special Functions 387

that is valid for all s ∈ C\{0,−1,−2, . . .}. Other important relations are Euler’s
reflection formula

Γ(s) · Γ(1− s) = π

sin(πs)

and the multiplication theorem

Γ
(s
n

)
· Γ
(
s+ 1

n

)
· · ·Γ

(
s+ n− 1

n

)
=

(2π)(n−1)/2

n s−1/2
· Γ(s)

that is valid for all integers n ≥ 1.
We also note that Γ(s) has no zeros so that the reciprocal function 1/Γ(s) is

an entire function (with zeros at s = 0,−1, 2, . . .). Furthermore, the reciprocal
function can be represented by the so-called Hankel integral representation

1

Γ(s)
= − 1

2πi

∫

C

(−t)s−1e−t dt,

where C starts at i +∞, goes around 0 in the positive sense and terminates at
−i+∞ so that the positive real line is not crossed.

It is well known that n! is asymptotically given nne−n
√
2πn. Actually such

an asymptotic relation is also true for the Γ-function. For every δ > 0 we have
uniformly

Γ(s) =
√
2π ss−

1
2 e−s

(
1 +O(s−1)

)

as |s| → ∞ and 0 ≤ | arg(s)| ≤ π − δ (that is, one has to avoid a cone that
contains the negative real axis).

Beta Function. The Beta-function B(x, y), that is defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt (ℜ(x) > 0,ℜ(y) > 0),

is closely related to the Γ-function:

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
.

This formula can also be used to extendB(x, y) meromorphically to C\{0,−1,−2, . . .}
or to obtain asymptotic relations as x, y →∞.

Similarly one defines the multiple Beta-function B(x1, x2, . . . , xn) (with n ≥
2) by

B(x1, x2, . . . , xn) =

∫

∆

tx1−1
1 tx2−1

1 · · · txn−1
n dt,

388 Appendix C. Complex Asymptotics

where

∆ = {t = (t1, t2, . . . , tn) ∈ Rn : t1 ≥ 0, . . . , tn ≥ 0, t1 + t2 + · · ·+ tn = 1}.

As above the multiple Beta-function is related to the Γ-function:

B(x1, x2, . . . , xn) =
Γ(x1)Γ(x2) · · ·Γ(xn)
Γ(x1 + x2 + · · ·+ xn)

.

Multinomial Coefficient. The multinomial coefficients are defined by

(
k1 + k2 + · · ·+ km
k1, k2, . . . , km

)
=

(k1 + k2 + · · ·+ km)!

k1!k2! · · · km!

and generalize the binomial coefficients
(
n
k

)
=
(

n
k,n−k

)
= n!/(k!(n − k)!). They

appear naturally as coefficients of the multinomial

(x1 + x2 + · · ·+ xm)n =
∑

k1+···+km=n

(
n

k1, k2, . . . , km

)
xk1
1 x

k2
2 · · ·xkm

m .

Clearly mn is an upper bound:

(
n

k1, k2, . . . , km

)
≤ mn (n = k1 + k2 + · · ·+ km)

that is actually quite tight if all kj are the same. By Stirling’s approximation
formula we have

(
n

k1, k2, . . . , km

)
∼ 1

(2π)
m−1

2

(
n

k1k2 · · · km

) 1
2

e
n
∑m

j=1

kj
n ln n

kj

1 + O

m∑

j=1

1

kj

 .

Riemann zeta Function. A function that appears frequently with the
Γ-function is the Riemann zeta-function that is defined by

ζ(s) =
∑

n≥1

1

ns
(ℜ(s) > 1)

and represents an analytic function. It turns out that ζ(s) can be meromorphi-
cally extended to C \ {1}. At s = 1 is has a simple pole with res(ζ(s), 1) = 1.

The connection between ζ(s) and Γ(s) is established in the functional equa-
tion

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s) ζ(1 − s),

C.2. Special Functions 389

that is fundamental in analytic number theory.
Special values of ζ(s) are

ζ(2n) =
(−1)n+1B2n(2π)

2n

2(2n)!
(n ≥ 1)

and

ζ(−n) = (−1)nBn+1

n+ 1
(n ≥ 0),

where Bn denote the Bernoulli numbers are defined by the series

∑

n≥0

Bn
xn

n!
=

x

ex − 1
.

For example we have B0 = 1, B1 = − 1
2 , B2 = 1

6 and B2k+1 = 0 for k ≥ 1.
More generally, if cn, n ≥ 1, is a complex sequence, the correspondingDirich-

let series is given by

C(s) =
∑

n≥1

cn
ns
.

There exists always an abscissas of convergence σc ∈ [−∞,∞] with the property
that C(s) is convergent for ℜ(s) > σc, where C(s) is an analytic function. On
the other hand the series representing C(s) is divergent for ℜ(s) < σc (compare
also with Appendix D).

Lambert Function. A function of completely different type it the Lambert
W function that is defined by the relation

W (z)eW (z) = z.

The Lambert function has infinitely many branches Wk(z). However, if z is
real it is sufficient to consider only two branches: W0(z) and W−1(z) that can
only be solved for z ≥ −1/e. More precisely the branch W0(z) exists for all
z ≥ −1/e, it is monontonely increasing and satisfies W0(0) = 0. The other
branch W−1(z) exists only for −1/e ≤ z < 0 and is strictly decreasing with
limz→0−W−1(z) = −∞.

Asymptotically we have

W0(z) = ln z − ln ln z +O

(
ln ln z

ln z

)

as z →∞.
All branches of the Lambert function satisfy the differential equation

zW ′(1 +W) =W (w 6= −1/e).

390 Appendix C. Complex Asymptotics

and for the integral we have

∫
W (z) dz = z

(
W (z)− 1 +

1

W (z)

)
+ C

where C is a constant.
The principal branch W0(z) has an explicit series expansion at z = 0:

W0(z) =
∑

n≥0

(−1)n−1n
n−1

n!
zn.

Moreover, for all integers r we have

W0(z)
r =

∑

n≥r

(−1)n−r rnn−r

(n− r)!z
n.

Both formulas can be easily deduced from Lagrange’s inversion theorem (Theo-
rem B.2.2).

The principal branch of the Lambert function is directly related to the tree
function T (z) that is the power series solution of the function equation

T (z) = zeT (z).

Clearly we have

T (z) = −W0(−z) =
∑

n≥0

nn−1

n!
zn.

The numbers nn−1 count rooted labelled trees with n vertices.
The generalized Lambert Wr(z) function is defined as a solution of

Wr(z)e
Wr(z) + r = z.

To simplify the notation, by Wr(z) we mean the main branch for z real. It is
known that

Wr(x) =
x

r + 1
+O(x2), x→ 0, and Wr(x) = lnx+O(ln ln(x)) x→∞.

C.3. Asymptotic Methods: Saddle Point

Complex contour integrals are used to obtain asymptotic expansions of sequences
and functions. In what follows we collect some standard methods.

C.3. Asymptotic Methods: Saddle Point 391

Example C.3.1. In a first example we use Cauchy’s formula in order to ob-
tain asymptotically the n-th coefficient 1/n! or the exponential function ez =∑

n z
n/n!:

1

n!
=

1

2πi

∫

γ

ez

zn+1
dz,

where γ is a closed path with winding number 1 around 0. More precisely we
will use a circle of radius R for γ and the substitution z = Reit, −π < t ≤ π:

1

n!
=

1

2π

∫ π

−π

eReit

(Reit)n
dt =

eR

Rn

1

2π

∫ π

−π

eR(eit−1)−int dt.

It turns out that R = n is a proper choice for R. The reason is simply that for
R = n we get the minimum value:

en

nn
= min

R>0

eR

Rn
.

Thus, is remains to handle the integral

1

2π

∫ π

−π

e(e
it−1−it)n dt.

We now distinguish between the interval I1 = [−n−1/3, n1/3] and the remaining
part (−π, π] \ I1. For t ∈ I1 we have

eit − 1− it = − t
2

2
+O(t3)

and consequently

∫

I1

e(e
it−1−it)n dt =

∫

I1

e−nt2/2
(
1 +O(n|t|3

)
dt

=

∫

R

e−nt2/2 dt−
∫

R\I1
e−nt2/2 dt+O

(∫

R

e−nt2/2n|t3| dt
)

=

√
2π√
n

+O
(
e−n1/3/2/

√
n
)
+O

(
1

n

)
.

Since ℜ(eit − 1− it) = −(1− cos(t)) ≤ −ct2 for some c > 0 we also get

∫

(−π,π]\I1
e(e

it−1−it)n dt = O
(
e−cn1/3/2

)

392 Appendix C. Complex Asymptotics

which leads to
1

n!
=
en

nn

1√
2πn

(
1 +O(n−1/2)

)

or
n! = nne−n

√
2πn

(
1 +O(n−1/2)

)
.

This is precisely Stirling’s approximation formula for n!. By the way a slightly
more careful analysis the error term improves to

(
1 +O(n−1)

)
.

The above method was a direct application of the saddle point method. The
saddle point method applies generally to integrals of the form

I(λ) =

∫

C

eg(λ,z)h(z) dz,

where C is a proper path of integration (that can be adapted because of the path
independence property) and g(λ, z) is an analytic function in z that depends also
on a parameter λ (that will tend to ∞), and h(z) is an analytic function. In
Example C.5.3 we had

g(λ, z) = z − λ ln z and h(z) =
1

2πiz
.

The saddle point z0(λ) is now defined by the relation

g′(λ, z0(λ)) = 0,

where g′ denotes the derivative with respect to z. We next suppose that the path
C (that will also depend on λ) is parametrized by the curve C(t), 0 ≤ t ≤ 1,
such that for some t0

C(t0) = z0(λ), g′(λ, z0(λ))C
′(t0)

2 < 0,

and ∣∣∣eg(λ,C(t))
∣∣∣ <

∣∣∣eg(λ,z0(λ))
∣∣∣ , (0 ≤ t ≤ 1).

We also assume that

g′′′(λ, z0(λ))

g′′(λ, z0(λ))3/2
→ 0 (λ→∞).

From the local expansion

g(λ, z) = g(λ, z0) +
1

2
g′′(λ, z0)(z − z0)2 +

1

6
g′′′(λ, z0)(z − z0)3 + · · ·

C.3. Asymptotic Methods: Saddle Point 393

it follows that we can expect that the integral I(λ) can be approximated by

I(λ) =

∫ 1

0

eg(λ,C(t))h(C(t))C′(t) dt

∼ eg(λ,z0(λ))h(z0(λ))C
′(t0)

∫ ∞

−∞
e−

1
2 g

′′(λ,z0(λ)C
′(t0)

2(t−t0)
2

dt

= eg(λ,z0(λ))h(z0(λ))

√
2π

|g′′(λ, z0(λ))|

as λ→∞.
In order to make this calculations completely rigorous one has to check that

the appearing error terms (as in Example C.5.3) are actually negligible. Usually
this is an easy task and leads to the following expression:

I(λ) = eg(λ,z0(λ))h(z0(λ))

√
2π

|g′′(λ, z0(λ))|

(
1 +O

(
g′′′(λ, z0(λ))

g′′(λ, z0(λ))3/2

))
. (C.7)

By taking higher order terms into account and by observing that
∫∞
−∞ e−v2/2v3dv =

0 the error term can be (usually) replaced by

O

(
g′′′′(λ, z0(λ))

g′′(λ, z0(λ))2

)
. (C.8)

Of course we have to require that this term tends to 0 for λ→∞ (and that all
other parts are negligible).

As a second example we take the Γ-function Γ(s) =
∫∞
0
ts−1e−t dt. Here the

parameter is s and we take g(s, t) = s ln t− t and h(t) = 1/t. The saddle point
t0(s) is then t0(s) = s and g′′(s, t0(s)) = −1/s. Thus we directly obtain

Γ(s) ∼ es ln s−s 1

s

√
2πs =

√
2πss−

1
2 e−s (s→∞).

Hayman Method. We now consider an analytic functions f(z) and we seek
the asymptotic behavior of the coefficients an or the power series expansion

f(z) =
∑

n

anz
n

at z0 = 0. By Cauchy’s formula (C.4) we know that an can be represented by a
proper complex integral. We apply special approach called the Hayman method
to streamline the saddle point calculations.

394 Appendix C. Complex Asymptotics

We define Hayman-admissible functions as analytic functions f(z), |z| < R,
with the property that there exists a function θ(r) such that

f(reit) ∼ f(r)eita(r)− 1
2 t

2b(r) (C.9)

uniformly for |t| ≤ θ(r) as r → R and

f(reit) = o

(
f(r)√
b(r)

)
(C.10)

uniformly for θ(r) ≤ |t| ≤ π as r → R, where

a(r) =
rf ′(r)

f(r)
, b(r) = ra′(r),

and b(r) satisfies b(r) → ∞ as r → R. By applying the saddle point method
with g(n, z) = ln f(z)− n ln z and h(z) = 1/(2πiz) and saddle point z0(n) that
is given by the equation

a(z0(n)) = n

we immediately get, as n→∞,

an ∼
f(z0(n))

z0(n)n
√
2πb(z0(n))

. (C.11)

More generally we have uniformly for all n and z0 → R:

an =
f(z0)

zn0
√
2πb(z0)

(
exp

(
− (a(z0)− n)2

2b(z0)

)
+ o(1)

)
. (C.12)

Of course, if z0 is chosen in a way that a(z0) = n then this is precisely (C.11).
The advantage of (C.12) is that we can use an approximation z0 for z0(n) and
obtain also a precise information on the asymptotic behavior of an. Note that
due to (C.12) it is not necessary to solve the equation a(z0) = n exactly. We
have control over the error.

Functions like eP (z) with a polynomial P (z) with non-negative coefficient or

functions like e(1−z)−α

(with some α > 0) are Hayman-admissible. Furthermore
products of Hayman-admissible functions are Hayman-admissible, as well as
ef(z) if f(z) is Hayman-admissible.

C.4. Analytic Depoissonization

As we have seen in the last paragraph it is not always necessary to choose the
exact saddle point. This also applies if we have a multiplicative factor A(z) of

C.4. Analytic Depoissonization 395

modest growth. More precisely, we can expect (under suitable assumptions on
A(z)) that

[zn]A(z)F (z) ∼ A(z0(n))[zn]F (z),
where z0(n) is the saddle point of F (z), that is, z0(n)F

′(z0(n))/F (z0(n)) = n. A
very powerful application of this concept is the so-called Analytic Depoissoniza-
tion.

The Poisson transform ã(z) of a sequence an is defined by

ã(z) =
∑

n≥0

an
e−zzn

n!
.

It can be interpreted as the expected valued of the random variable aX , where
X has a Poisson distribution with parameter z: P (X = n) = e−zzn/n!. On the
other hand, ã(z) can be also seen as an analytic function in z, more precisely, it
equals the exponential generating function f(z) =

∑
n≥0 anz

n/n! times e−z.
We are interested in the asymptotic expansion of

an =

[
zn

n!

]
f(z) =

[
zn

n!

]
ã(z)ez.

We already know that the saddle point method applies to the exponential func-
tion ez with saddle point z0(n) = n. If ã(z) is of modest growth compared to ez

(for example of polynomial growth, see Theorem C.4.1 for a precise statement)
then we can expect that

an ∼ ã(n)
[
zn

n!

]
ez = ã(n)

where ã(n) is equal to ã(z) for z = n. This principle is called Analytic Depois-
sonization. There are various sufficient conditions that encode sufficient modest
of A(z), see Jacquet and Szpankowski (1998). We cite here just slightly extended
basic version (Theorem 1 of Jacquet and Szpankowski (1998)).

Theorem C.4.1. Suppose that ã(z) =
∑

n≥0 an
e−zzn

n! is the Poisson transform
of the sequence an that represents an entire function in z. Suppose that

1. ã(z) = O(|z|β) uniformly as |z| → ∞ and | arg(z)| ≤ θ, where β > 0 and
0 < θ < π

2 .

2. ã(z)ez = O(eα|z|) uniformly as |z| → ∞ and θ ≤ | arg(z)| ≤ π, where
α < 1.

396 Appendix C. Complex Asymptotics

Then, as n→∞,

an = ã(n)− n

2
ã′′(n) +O(nβ−2).

We mention that it is also possible to obtain a more precise asymptotic series
expansion for an and there are certain closure properties for functions that satisfy
the assumptions of Theorem C.4.1 (this also leads to the notion of JS-admissible
functions).

A typical application of Theorem C.4.1 is the following situation (Theorem
10 of Jacquet and Szpankowski (1998)):

Theorem C.4.2. Suppose that ã(z) is the Poisson transform of the sequence
an that represents an entire function in z and satisfies the functional equation

ã(z) = γ1(z)ã(pz) + γ2(z)ã((1 − p)z) + t(z),

where 0 < p < 1. Furthermore suppose that the following conditions are satisfied:

1. |γ1(z)|pβ+|γ2(z)|qβ ≤ 1−η and |t(z)| = O(|z|β) uniformly for | arg(z)| ≤ θ
and |z| ≥ R, where β > 0, R > 0, and 0 < θ < π

2 .

2. |γ1(z)|eqℜ(z) ≤ 1
3e

α|z|q, |γ2(z)|epℜ(z) ≤ 1
3e

α|z|p, and |t(z)|eℜ(z) ≤ 1
3e

α|z|

uniformly as |z| ≥ R and θ ≤ | arg(z)| ≤ π, where α < 1.

Then, Theorem C.4.1 applies, that is, we have, as n→∞,

an = ã(n)− n

2
ã′′(n) +O(nβ−2).

Therefore – in this context – it is sufficient to study the asymptotic behavior of
ã(z) as z →∞.

Large Powers. Another application of the saddle point method are powers
of analytic functions. Set f(z)k =

∑
n an,kz

n then

an,k =
1

2πi

∫

γ

f(z)k

zn+1
dz.

Suppose that the coefficients an of f(z) =
∑

n anz
n are aperiodic, that is, f(z)

cannot be represented as f(z) = zrF (zq) for some natural number r, q, where q >
1, and some analytic function F (z). Furthermore suppose that k is proportional
to n, say k = αn for some α > 0. Then we can apply the saddle point method
with g(z) = k ln f(z)− n ln z and h(z) = 1/(2πiz) and obtain

an,k =
f(z0)

k

zn0

√
2πk

(
z2
0f

′′(z0)
f(z0)

+ z0f ′(z0)
f(z0)

− z2
0f

′(z0)2

f(z0)2

)
(
1 +O

(
1

n

))
(C.13)

C.5. Polar and Algebraic Singularities 397

as n→∞, where the saddle point z0 is given by the equation

z0f
′(z0)

f(z0)
=
n

k
=

1

α
.

Note that the aperiodicity condition implies that |f(reit)| ≤ f(r)e−ct2 for some
c > 0 and |t| ≤ π. Furthermore we have used the error term (C.8) (The error
term in (C.7) gives only O(1/

√
n).

C.5. Polar and Algebraic Singularities

The saddle point method applies to Cauchy’s formula usually for entire functions
f(z) or if a function has an essential singularity (such as e1/(1−z)). However, if
f(z) has a polar singularity or a singularity of algebraic nature. Then one uses
the concept of singularity analysis.

Polar Singularities. The first result into this direction is quite simple (but
still quite powerful).

Theorem C.5.1. Suppose that f(z) =
∑

n anz
n is analytic for G = {z ∈

C : |z| < R} \ {z0} such that z0 is a simple polar singularity with residue
res(f(z), z0) = A. Then

an = −A
z0
z−n
0 +O(r−n).

for every r < R.

Proof. Clearly

g(z) = f(z)− A

z − z0
is analytic for |z| < R and, thus, for every fixed r < R the corresponding Cauchy
integral can be estimated by

∣∣∣∣∣
1

2πi

∫

|z|=r

g(z)

zn+1
dz

∣∣∣∣∣ ≤ r
−n max

|z|=r
|g(z)| = O(r−n).

Since
A

z − z0
= −A

z0

∑

n≥0

z−n
0 zn

it follows that

an = −A
z0
z−n
0 +O(r−n)

398 Appendix C. Complex Asymptotics

as needed.

Since we can choose r such that |z0| < r < R it follows that an is (up to
a constant) asymptotically z−n

0 . In other words, the contribution of the term
A/(z − z0) determines the leading asymptotic behavior. Of course, this method
can be extended to finitely many polar singularities (and also to higher order
poles). We just mention that

1

(z − z0)K
=

(−z0)−k

(1− z/z0)k
= (−z0)−k

∑

n≥0

(
n+ k − 1

k − 1

)
z−n
0 zn.

Singularity Analysis. The situation is very similar if there is an singularity
of the form (z− z0)α for some complex α different from a natural number. Here
the central observation is the following one.

Lemma C.5.2 (P. Flajolet and A. Odlyzko, 1990). Suppose that f(z) = (1 −
z)α, where α ∈ C\{0, 1, 2, . . .}. Then f(z) is analytic on C\ [1,∞) and we have

[zn] f(z) =

(
α

n

)
=
n−α−1

Γ(−α)
(
1 +O(n−1)

)
(n→∞).

Furthermore suppose that f(z) is analytic in a so-called Delta-domain

∆ = {z ∈ C : |z| < 1 + ε, | arg(z − 1)| > η}
for some ε > 0 and some 0 < η < π/2 such that

f(z) = O
(
(1− z)ℜ(α)

)
(z ∈ ∆),

then
[zn] f(z) = O

(
n−ℜ(α)−1

)
.

Example C.5.3. As a first application let us consider the generating function
b(z) =

∑
n bnz

n of the Catalan numbers bn = 1
n+1

(
2n
n

)
that is given by

b(z) =
1−
√
1− 4z

2z
= 2− 2

√
1− 4z + 2(1− 4z) +O

(
(1− 4z)3/2

)

for z ∈ {z ∈ C : |z| < 1/2} \
[
1
4 ,

1
2

)
(see Appendix B). The polynomial part

2 + 2(1− 4z) does not contribute for n ≥ 2. Thus, we automatically get

bn = [zn] b(z)

= −2 4n

Γ(− 1
2)
n−3/2

(
1 +O(n−1)

)
+O

(
4nn−5/2

)

=
4n√
πn

n−3/2
(
1 +O(n−1)

)
.

C.5. Polar and Algebraic Singularities 399

Recall that Γ(− 1
2) = −2

√
π. Clearly this asymptotic expansion could be also de-

rived from Stirling’s formula applied to the explicit representation bn = 1
n+1

(
2n
n

)
.

However, in order to obtain just the asymptotic expansion this is not needed.
We just need the local behavior of b(z) around its singularity z0 = 1

4 .

We want to add that singularities of square-root type (as for b(z)) that lead
to an asymptotic leading term c z−n

0 n−3/2 appear very frequently. The reason
is the following Folklore Theorem.

Theorem C.5.4. Suppose that F (z, y) is an analytic function in z, y around
z = y = 0 such that F (0, y) = 0 and that all Taylor coefficients of F around 0
are real and non-negative. Then there exists a unique analytic solution y = y(z)
of the functional equation

y = F (z, y) (C.14)

with y(0) = 0 that has non-negative Taylor coefficients around 0.
If the region of convergence of F (z, y) is large enough such that there exist

positive solutions z = z0 and y = y0 of the system of equations

y = F (z, y),

1 = Fy(z, y)

with Fz(z0, y0) 6= 0 and Fyy(z0, y0) 6= 0, then y(z) is analytic for |z| < z0 and
there exist functions g(z), h(z) that are analytic around z = z0 such that y(z)
has a representation of the form

y(z) = g(z)− h(z)
√
1− z

z0
(C.15)

locally around z = z0. We have g(z0) = y(z0) and

h(z0) =

√
2z0Fz(z0, y0)

Fyy(z0, y0)
.

Moreover, (C.15) provides a local analytic continuation of y(z) (for arg(z−z0) 6=
0).

If we assume that [zn] y(z) > 0 for n ≥ n0, then z = z0 is the only singularity
of y(z) on the circle |z| = z0 and we obtain an asymptotic expansion for [zn] y(z)
of the form

[zn] y(z) =

√
z0Fz(z0, y0)

2πFyy(z0, y0)
z−n
0 n−3/2

(
1 +O(n−1)

)
. (C.16)

400 Complex Asymptotics

We recall that the above generating function b(z) satisfies the functional
equation b(z) = 1 + zb(z)2 (see Appendix B). It we set y(z) = b(z)− 1 and

F (z, y) = z(y + 1)2

we can apply Theorem C.5.4 directly.

Bibliographical notes

There are many good books on complex analysis and analytic function. We
mention here Henrici (1977) and Remmert (1983).

Complex asymptotics are discussed in DeBruijn (1958), Flajolet and Sedgewick
(2008), Drmota 2009, Szpankowski (2001), Wong (1989). Hayman (1956) intro-
duced the Hayman’s method, while the singularity analysis was designed by
Flajolet and Odlyzko (1990). The Folklore Theorem C.5.4 goes back to Bender
Bender (1973), Bender and Richmond (1983), Canfield Canfield 1977 and Meir
and Moon Meir and Moon 1978.

Special functions are discussed in many classical books. We mention here
Abramowitz and Stegun (1964) and Bateman (1955). The Lambert function is
in depth covered in Corless et al. (1996) while the generalized Lambert function
was introduced in Mezo and Baricz (2015).

CHAPTER D

Mellin Transform and Tauberian

Theorems

In this Appendix we collects facts about Mellin transform and Tauberian theo-
rems that we use throughout the book.

D.1. Mellin Transform

Let c(v), v > 0, be a complex valued function of bounded variation. Then the
Mellin transform

c∗(s) :=M[c(v); s]

of c(v) is defined by the integral

c∗(s) =

∫ ∞

0

c(v)vs−1dv.

There is a strip a < ℜ(s) < b, where c∗(s) converges and represents an analytic
function in s. The most prominent example is the Mellin transform of the
exponential function e−v,

∫ ∞

0

e−vvs−1dv = Γ(s),

namely the Γ-function (ℜ(s) > 0), see also Appendix C.
A nice property of the Mellin transform is that there is a simply rule for

scaled versions. For every a > 0 we have

∫ ∞

0

c(av)vs−1dv =
1

as

∫ ∞

0

c(v)vs−1dv =
1

as
c∗(s).

402 Appendix D. Mellin Transform and Tauberian Theorems

Example D.1.1. Let c(v) = 1/(ev − 1). Together with the linearity of the
Mellin transform it follows that the Mellin transform of c(v) is given by

c∗(v) =

∫ ∞

0

1

ev − 1
vs−1dv

=

∫ ∞

0

e−v

1− e−v
vs−1dv

=

∫ ∞

0

∑

n≥1

e−nvvs−1dv

=
∑

n≥1

∫ ∞

0

e−nvvs−1dv

=
∑

n≥1

1

ns

∫ ∞

0

e−vvs−1dv

= ζ(s)Γ(s),

where ζ(s) =
∑

n≥1 n
−s, ℜ(s) > 1 is the Riemann ζ-function. (Note that in all

steps we have absolute convergence if ℜ(s) > 1.)

One important property is that c(v) can be reconstructed from the Mellin
transform. We have the inverse Mellin transform

1

2
(c(v−) + c(v+)) =

1

2πi
lim

T→∞

∫ s+iT

s0−iT

c∗(s)v−s ds

for every s0 with with a < ℜ(s0) < b.

Mellin-Stieltjes transform. A variant of the Mellin-transform is the
Mellin-Stieltjes transform of a function c(v), v > 0, of bounded variation with
c(v) = 0 for 0 < v < 1:

C(s) =

∫ ∞

0

v−sdc(v),

where we assume that for all (complex) s for which the integral converges

lim
v→∞

c(v)v−s = 0.

There is always a half-plane ℜ(s) > a, where the Mellin-Stieltjes transform
converges.

By partial integration we immediately observe that the Mellin-Stieltjes trans-
form equals the mirrored Mellin transform times a factor s:

C(s) =

∫ ∞

0

v−sdc(v) = s

∫ ∞

0

c(v)vs−1dv = s c∗(−s).

D.2. Tauberian Theorems 403

It is sub-optimal that there are these two different conventions that lead to
C(s) = s c∗(−s). However, it is standard to use the above definitions.

In this Appendix we mainly focus on the Mellin-Stieltjes transform. Of course
all results have their counterparts for the Mellin transform.

We note that by applying the inverse Mellin transform we have

1

2πi
lim

T→∞

∫ s0+iT

s0−iT

C(s)

s
vs ds =

1

2
(c(v−) + c(v+))

for every s0 with ℜ(s0) > a.

Dirichlet series. For any complex-valued sequence cn we define the Dirich-
let series as

C(s) =
∑

n≥1

cn
ns

Again these kind of series converge in a half plane ℜ(s) > a and represent
analytic functions there (see Appendix C).

Actually there is an intimate relation between Dirichlet series and the Mellin-
Stieltjes transform (and consequently to the Mellin transform). If we set

c(v) =
∑

n≤v

cn

then we actually have

C(s) =
∑

n≥1

cnn
−s =

∫ ∞

1−
v−s dc(v).

Thanks to the last relation we use the same notation C(s) for the Dirichlet series
and Mellin-Stieltjes transform.

D.2. Tauberian Theorems

The analytic properties of the Mellin-Stieltjes transform (as well as those of
the Mellin transform or of Dirichlet series) can be used to recover asymptotic
properties of c(v) and c(v), respectively. The Wiener-Ikehare Tauberian theorem
is one of the key properties in this context.

Theorem D.2.1 (Wiener-Ikehara). Let c(v), v > 0, be non-negative and non-
decreasing with c(v) = 0 for 0 < v < 1 such that the Mellin-Stieltjes transform

C(s) =

∫ ∞

1−
v−s dc(v) = s

∫ ∞

1

c(v)v−s−1 dv

404 Appendix D. Mellin Transform and Tauberian Theorems

exists for ℜ(s) > 1. Suppose that for some constant A0 > 0, the analytic function

F (s) =
1

s
C(s)− A0

s− 1
(ℜ(s) > 1)

has a continuous extension to the closed half-plane ℜ(s) ≥ 1. Then

c(v) ∼ A0v

as v →∞.

Theorem D.2.1 is quite flexible. For example, it is sufficient to assume that
c(v)(ln v)b is non-decreasing for some real b (and v ≥ 2). Furthermore it is clear
that it generalizes directly to the case when C(s) converges for ℜ(s) > s0 and
has a continuous extension to the closed half-plane ℜ(s) ≥ s0 (for s0 ≥ 0). It
also applies if C(s) behaves like a pole of higher order for s→ s0, however, the
asymptotic result has to be adjusted accordingly.

Theorem D.2.2. Let c(v) be non-negative and non-decreasing on [1,∞) such
that the Mellin-Stieltjes transform C(s) exists for ℜ(s) > s0 for some s0 ≥ 0
and suppose that there exist real constants A0, . . . , AK (with AK > 0) such that

F̃ (s) =
1

s
C(s)−

K∑

j=0

Aj

(s− s0)j+1
(D.1)

has a continuous extension to the closed half-plane ℜ(s) ≥ s0. Then

c(v) ∼ AK

K!
(ln v)Kvs0 (v →∞). (D.2)

Note that corresponding theorems hold for the Mellin transform c∗(s). For
example, if c(v), v > 0, is non-negative and non-decreasing such that the Mellin
transform exists for a < ℜ(s) < b and that the function

F (s) = c∗(s)− A0

b − s

has a continuous extension to the region a < ℜ(s) ≤ b. Then we have

c(v) ∼ A0v
−b (v →∞).

The advantage of a Tauberian theorem of the above form is that it is very
easy to apply. It is only necessary to show that a proper function that is defined

D.2. Tauberian Theorems 405

for ℜ(s) > s0 can be continuously extended to the closed half-plane ℜ(s) ≥ s0.
However, in many cases we know much more.

For example, let us consider the Dirichlet series with coefficients

cn = nσ(lnn)α.

It is clear that the Dirichlet series C(s) =
∑

n≥1 cnn
−s converges (absolutely)

for complex s with ℜ(s) > σ + 1. Interestingly there are analytic continuation
for C(s).

Theorem D.2.3. Suppose that σ and α are real numbers and let C(s) be the
Dirichlet series

C(s) =
∑

n≥2

nσ(lnn)αn−s.

(i) If α is not a negative integer, then C(s) can be represented as

C(s) =
Γ(α + 1)

(s− σ − 1)α+1
+G(s),

where G(s) is an entire function.
(ii) If α = −k is a negative integer, then

C(s) =
(−1)k
(k − 1)!

(s− σ − 1)k−1 ln(s− σ + 1) +G(s),

where G(s) is an entire function.

Note that the above theorem is quite flexible. A variant applies to sequences
of the form cn = an+2 − an+1, where an = na(lnn)b.

Theorem D.2.4. Suppose that an = na(lnn)b, where a and b are real numbers,

and let Ã(s) be the Dirichlet series

Ã(s) =
∑

n≥1

an+2 − an+1

ns
.

(i) If b is not a negative integer, then Ã(s) can be represented as

Ã(s) = a
Γ(b+ 1)

(s− a)b+1
+

Γ(b+ 1)

(s− a)b +G(s),

where G(s) is analytic for ℜ(s) > a− 1.

406 Appendix D. Mellin Transform and Tauberian Theorems

(ii) If b = −k is a negative integer, then we have

Ã(s) = a
(−1)k
(k − 1)!

(s− a)k−1 ln(s− a)

+
k(−1)k
(k − 1)!

(s− a)k ln(s− a) +G(s),

where G(s) is analytic for ℜ(s) > a− 1.

The above two theorem show that we can usually expect more than just
continuous extension to the closed half-plane ℜ(s) ≥ s0. Actually if we can
assume analytic continuation to a larger half plane then we can also obtain
error terms and can handle uniformity questions if an additional parameter is
involved. Furthermore it is not necessary to assume positivity or monotonicity
assumptions.

Theorem D.2.5. Suppose that the Mellin-Stieltjes transform C(s) of a func-
tion c(v) exists for ℜ(s) > s0 and that the function

F (s) =
1

s
C(s) − A0

s− s0
can be analytically continued to the half plane ℜ(s) > s0−η for some η > 0 such
that

lim
T→∞

sup
s0−η<σ<s0+η

|F (σ ± iT)| = 0 (D.3)

and that the integral

I(σ) =

∫ ∞

−∞
|F (σ + it)| dt (D.4)

exists for s0 − η < σ < s0 + η. Then we have for all σ ∈ (s0 − η, s0)
∣∣∣∣
1

2
(c(v−) + c(v+))−A0v

s0

∣∣∣∣ ≤
I(σ)

2π
vσ.

Proof. Clearly the function A0s/(s− s0) is the Mellin-Stieltjes transform of the
function A0v

s0 , v > 1. Consequently sF (s) is the Mellin-Stieltjes transform of
the function

c(v) −A0v
s0

and, thus, we have for all v > 1 and for all σ < s0

1

2
(c(v−) + c(v+))−A0v

s0 =
1

2πi
lim

T→∞

∫ σ+iT

σ−iT

F (s)vs ds

D.3. A Recurrence 407

By (D.4) the integral on the right hand side is absolutely convergent for s0 <
σ < s0 + η. Furthermore, F can be analytically continued and by (D.3) and
(D.4) we can shift the line of integration to ℜ(s) = σ with s0 − η < σ < s0:

1

2
(c(v−) + c(v+))−A0v

s0 =
1

2πi

∫ σ+i∞

σ−i∞
F (s)vs ds

The integral on the right hand side is bounded by

∣∣∣∣
1

2πi

∫ σ+i∞

σ−i∞
F (s)vs ds

∣∣∣∣ ≤
I(σ)

2π
vσ

which proves the theorem.

D.3. A Recurrence

Finally we discuss a slightly more involved example. Let the function c(v) be
given by c(v) = 0 for 0 < v ≤ 1 and by the recurrence

c(v) = 1 +R(c(pv) + c(qv)) (v > 0), (D.5)

where R > 1
2 , 0 < p < 1 and 0 < q < 1 are real numbers. By a direct

computation it follows that the Mellin-Stieltjes transform C(s) is given by

C(s) =

∫ ∞

0

v−s dc(v) =
1

1−R(ps + qs)
(ℜ(s) > s0),

where s0 > 0 is the unique solution of the equation

R(ps0 + qs0) = 1. (D.6)

(Note that R > 1
2 implies s0 > 0. We can also consider the case 0 < R ≤ 1

2 but
then the analysis is slightly different.)

First we observe that the equation (D.6) has actually more (complex) solu-
tions than s = s0. The following lemma will be used several times in this book.
Note that the case p = q reduces to the exponential function, where are the
zeros are periodically lined up parallel to the imaginary axis.

Lemma D.3.1. Suppose that 0 < p < q < 1 and R > 0. Let

Z(R) = {s ∈ C : R(ps0 + qs0) = 1}.

408 Appendix D. Mellin Transform and Tauberian Theorems

(i) All s ∈ Z(R) are simple zeros and satisfy

σ0(R) ≤ ℜ(s) ≤ s0(R),

where s0(R) is the (unique) real solution of ps + qs = 1/R and σ0(R) < s0(R)
is the (unique) real solution of 1/R+ qs = ps. Furthermore, for every integer k
there uniquely exists sk(R) ∈ Z(R) with

(2k − 1)π/ ln p < ℑ(sk(R)) < (2k + 1)π/ ln p

and consequently Z(R) = {sk(R) : k ∈ Z}.
(ii) If ln q/ ln p is irrational, then ℜ(sk(R)) < ℜ(s0(R)) for all k 6= 0 and also
for all real intervals [R1, R2] we have

min
R∈[R1,R2]

(ℜ(s0(R))−ℜ(sk(R))) > 0. (D.7)

(iii) If ln q/ ln p = r/d is rational, where gcd(r, d) = 1 for integers r, d > 0,
then we have ℜ(sk(R)) = ℜ(s0(R)) if and only if k ≡ 0 mod d. In particular
ℜ(s1(R)), . . . ,ℜ(sd−1(R)) < ℜ(s0(z)) and

sk(R) = sk mod d(R) +
2(−k mod d)πi

ln p
,

that is, all s ∈ Z(R) are uniquely determined by s0(R) and by s1(R), s2(R),
. . . , sd−1(R), and their imaginary parts constitute an arithmetic progression.

In particular it follows that we have to distinguish two cases, the irrational
case and the rational case.

In the irrational case the it follows that C(s) has a meromorphic extension
to the complex plane, where on the line ℜ(s) = s0(R) there is only one polar
singularity, namely s0(R). Furthermore there are no singularities in the half
plane ℜ(s) > s0(R), and this actually is the region where C(s) converges. Hence,
by the Wiener-Ikehara Theorem D.2.2 it follows that for every fixed R > 1

2 we
have

c(v) ∼ 1

s0(R)R
(
ps0(R) ln 1

p + qs0(R) ln 1
q

)vs0(R). (D.8)

In the rational case, that is, ln(1/p) = n0L with L being a real number and
ln(1/q) = n1L for coprime integers n0, n1 we just have to analyze the recurrence

Gn = 1 +Gn−n0 +Gn−n1 , (D.9)

D.3. A Recurrence 409

where Gn abbreviates C(eLn). Equivalently we have c(v) = G(⌊ln v⌋/L) (see
Chapter 3). By setting

G(z) =
∑

n≥0

Gnz
n

we obtain from (D.9) the relation

G(z) =
1

(1 − z)(1− zn0 − zn1)
.

This rational function has a dominant simple polar singularity at z0 = e−L < 1.
Since n0 and n1 are coprime there are no other polar singularities on the circle
|z| = e−L. Thus, from the representation

G(z) =
1

(1− z0)(n0z
n0
0 + n1zn1)

1

1− z/z0
+H(z),

where H(z) is analytic for |z| < z0 + κ for some κ > 0, we directly find

Gn =
1

(1− e−L)(n0e−n0L + n1e−n1L)
eLn +O(eLn(1−η))

for some η > 0 and consequently

c(v) =
Le−L〈lnv/L〉

(1− e−L)

v

h
+O(v(1−η)) (D.10)

where h = p ln 1
p + q ln 1

q is formally related to the entropy.
The above analysis is quite simple and direct if R is fixed. However, if we

want to obtain asymptotic relations that are uniform in the parameter R when
R varies (e.g., in an interval [R1, R2]) is much more sophisticated. Actually the
rational case can be directly adapted. We only have to observe that κ and η
can be chosen uniformly if R ∈ [R1, R2] varies. However, this is immediate since
zeros of polynomial depend continuously on the coefficients. Thus, (D.10) holds
also uniformly for R ∈ [R1, R2], where R1 >

1
2 .

Unfortunately, uniformity is not that immediate when we apply a Tauberian
theorem like the Wiener-Ikehara Theorem. In order to overcome this problem
we apply the inverse Mellin transform and observe that

1

2
(c(v−) + c(v+)) =

1

2πi
lim

T→∞

∫ σ+iT

σ−iT

1

s(1−R(ps + qs))
vs ds,

where σ > s0(R). The idea is to shift the integral to the left and to add up the
contributions coming from the polar singularities (with the help of the residue

410 Appendix D. Mellin Transform and Tauberian Theorems

theorem). The only problem with this method is that the integral on the right
hand is not absolutely convergent since the integrand is only of order 1/s.

In order to overcome this problem we apply a so-called smoothing argument.
Instead of c(v) we consider the integral

c1(v) =

∫ v

0

c(t) dt.

The Mellin-Stieltjes transform of c1(v) is then given by

C1(s) =
1

s− 1
C(s− 1) =

1

(s− 1)(1−R(ps−1 + qs−1))

and consequently

c1(v) =
1

2πi

∫ σ+i∞

σ−i∞

1

s(s− 1)(1 −R(ps−1 + qs−1))
vs ds,

where σ > s0(R) + 1. Note that the integral on the right hand side is now
absolutely convergent. With the help of the residue theorem we can shift the
integral to the left and obtain for σ′(R) = 1

2 (s0(R) + σ0(R)) (see Lemma D.3.1)

c1(v) =
∑

ℜ(sk)>σ′(R)

−vsk(R)+1

sk(R)(sk(R) + 1)R(psk(R) ln p+ qsk(R) ln q

+
1

2πi

∫ σ′(R)+1+i∞

σ′(R)+1−i∞

1

s(s− 1)(1−R(ps−1 + qs−1))
vs ds,

Note that we have to be careful if there are k 6= 0 with σ′(R) − κ ≤ ℜsk(R) ≤
σ′(R), where κ > 0 is chosen such that κ ≤ 1

4 (s0(R)−σ0(R)) for all R ∈ [R1, R2].
In this cases we bypass the polar singularity with a small half cycle of radius κ
from the right and assure that we we do not interfere with other zeros sk(R)+1
(this is possible due to the properties listed in Lemma D.3.1). In particular if
σ′(R) ≤ ℜ(sk) ≤ s0(R) we also have that

∣∣∣psk(R) ln p+ qsk(R) ln q
∣∣∣ ≥ η

uniformly for R ∈ [R1, R2] for some η > 0. Hence the infinite sum as well as the
remaining integral are absolutely convergent. Furthermore the last integral can
be trivially estimated by O(vσ

′(R)+1+κ) = O(vs0(R)+1−κ). Recall that s0(R) >
ℜ(sk(R)) for all k 6= 0 and consequently vsk(R)+1 = o(vs0(R)+1) for all k 6= 0.

D.3. A Recurrence 411

Now suppose that ε > 0 is given. By the properties of sk(R) stated in
Lemma D.3.1 it is possible to find an integer K = K(ε) such that uniformly for
all v ≥ 1 and for all R ∈ [R1, R2]

∑

ℜ(sk)>σ′(R), |k|≥K

−vsk(R)+1

sk(R)(sk(R) + 1)R(psk(R) ln p+ qsk(R) ln q
≤ εvs0(R)+1.

Now, if 0 < |k| < K we have

min
R1≤R≤R2

(s0(R)−ℜ(sk(R))) > 0.

Hence, there exists v0 such that for all v ≥ v0 and all R ∈ [R1, R2]

∑

ℜ(sk)>σ′(R), 1≤|k|<K

−vsk(R)+1

sk(R)(sk(R) + 1)R(psk(R) ln p+ qsk(R) ln q
≤ εvs0(R)+1.

Summing up it follows that for v ≥ v0 and all R ∈ [R1, R2]
∣∣∣∣c1(v) +

vs0(R)+1

s0(R)(s0(R) + 1)R(ps0(R) ln p+ qs0(R) ln q

∣∣∣∣ ≤ C1εv
s0(R)+1+C2v

s0(R)+1−κ

for certain positive constants C1, C2. This implies that

c1(v) ∼
1

(s0(R) + 1)s0(R)R
(
ps0(R) ln 1

p + qs0(R) ln 1
q

)vs0(R)+1. (D.11)

which holds uniformly for R ∈ [R1, R2].
We finally have to show that (D.11) also implies (D.8) uniformly for R ∈

[R1, R2]. For this purpose we use the following property.

Lemma D.3.2. Suppose that f(v, λ) is a non-negative increasing function in
v ≥ 0, where λ is a real parameter with λ ∈ Λ, where Λ is a closed and bounded
interval that does not contain −1. Assume that

F (v, λ) =

∫ v

0

f(w, λ) dw

has the asymptotic expansion

F (v, λ) =
vλ+1

λ+ 1
(1 + λ · o(1))

as v →∞ and uniformly for λ ∈ Λ. Then

f(v, λ) = vλ(1 + |λ| 12 · o(1))
as v →∞ and again uniformly for λ ∈ Λ.

412 Mellin Transform and Tauberian Theorems

Proof. By the assumption

∣∣∣∣F (v, λ) −
vλ+1

λ+ 1

∣∣∣∣ ≤ ε|λ|
vλ+1

λ+ 1

for v ≥ v0 and all λ ∈ Λ. Set v′ = (ε|λ|)1/2v. By monotonicity we obtain (for
v ≥ v0)

f(v, λ) ≤ F (v + v′, λ)− F (v, λ)
v′

≤ 1

v′

(
(v + v′)λ+1

λ+ 1
− vλ+1

λ+ 1

)
+

2

v′
ε|λ| (v + v′)λ+1

λ+ 1

=
1

v′(λ+ 1)

(
vλ+1 + (λ+ 1)vλv′ +O(vλ−1(v′)2)− vλ+1

)

+O

(
ε|λ|vλ+1

v′

)

= vλ +O
(
vλε

1
2 |λ| 12

)
+O

(
ε|λ|vλ+1

v′

)
= vλ +O

(
vλε

1
2 |λ| 12

)
.

In a similar way we find the corresponding lower bound (for v ≥ v0 + v
1/2
0), the

result follows.

In order to complete our considerations we just have to apply Lemma D.3.2
for λ = s0(R) and

f(v, λ) =
c(v)

s0(R)R
(
ps0(R) ln 1

p + qs0(R) ln 1
q

)

and obtain (D.8) uniformly for R ∈ [R1, R2].

Bibliographical notes

The Mellin transform was introduced by Finish mathematician Hjalman Mellin
(1854-1933). In the analysis of algorithms it seems that it was used for the first
time by D. E Knuth under the name ”gamma methods” Knuth (1998b). But it
was systematically developed and popularized by P. Flajolet. The best account
on Mellin transform can be found in Flajolet, Gourdon, and Dumas (1995). See
also Flajolet and Sedgewick (2008) and Szpankowski (2001).

An excellent summary and exposition of Tauberian theorems can be found
in Korevaar (2002).

Bibliographical notes 413

Dirichlet series are standard tools, especially in the analytic number theory
and analysis of algorithms. Theorem D.2.3 is from Grabner and Thuswaldner
(1996).

Recurrence (D.5) was discussed in depth in Drmota et al. (2006) and Drmota
et al. (2010). Lemma D.3.1 was first mentioned in Jacquet’s Ph.D. thesis and
fully proved in Schachinger (2001).

CHAPTER E

Exponential Sums and Uniform

Distribution mod 1

E.1. Exponential Sums

Let e(x) denote the exponential function e(x) = e2πix, that is, for real x we have
|e(x)| = 1 and e(x+ 1) = e(x). An exponential sum is a finite sum of the form

S =
∑

k∈K

cke(xk),

where ck is (usually) a sequence of positive real numbers and xk a real sequence.
Sometimes one only considers the case ck = 1. An exponential sum is trivial if
xk are integers, that is, e(xk) = 1 and consequently S =

∑
k ck. Usually one is

interested in non-trivial estimates for exponential sums which means that

∑

k∈K

cke(xk) = o

(
∑

k∈K

ck

)

as the cardinality of K tends to infinity.
The most prominent exponential sum is when xk = αk for all k, that is,

S =

K−1∑

k=0

e(αk) =
e(αK)− 1

e(α)− 1

which can be estimated by
∣∣∣∣∣

K−1∑

k=0

e(αk)

∣∣∣∣∣ ≤ min

(
K,

1

| sin(πα)|

)
.

If α is an integer then this exponential sum is trivial, whereas if α is not an integer
then we get a non-trivial estimate (observe that 2/|e(α)− 1| = 1/| sin(πα)|).

416 Appendix E. Exponential Sums and Uniform Distribution mod 1

A very general method for handling exponential sums is due to Van der
Corput (see Theorem 2.7 from Kuipers and Niederreiter (1974)) that applies to
exponential sums of the form

S =

B∑

k=A

e(f(n)),

where f is twice differentiable on [A,B]. Here we have

|S| ≤ (|f ′(B)− f ′(A)|+ 2)

(
4√
λ
+ 3

)
(E.1)

with
λ = min

A≤x≤B
|f ′′(x)|.

Example E.1.1. Let f(x) = x ln x. Here we have f ′(x) = lnx+1 and f ′′(x) =
1/x and, thus,

K∑

k=1

e(k ln k) = O(
√
K lnK).

Case xk = ky. If xk is of the form xk = ky then exponential sums can be
considered as finite Fourier series in the variable y. By the Weierstrass theorem
we know that every continuous periodic function can be uniformly approximated
by finite Fourier sums. Unfortunately the functions we want to approximate are
usually not continuous, for example indicator functions. There is, however, a
very strong theorem by Vaaler (1985) that allows to approximate such discontin-
uous functions by finite Fourier series, where the error term is (again) a proper
Fourier series.

For 0 < α < 1 we denote by χα(y) the indicator function of the interval
[0, α) which is periodically extended with period 1. Furthermore we recall that
〈y〉 = y − ⌊y⌋ denotes the fractional part of y.

Theorem E.1.2 (Vaaler, 1985). For every 0 < α < 1 and for every integer
H ≥ 1 there exist finite Fourier series

Aα,H(y) =
∑

|h|≤H

ah(α,H)e(hy), Bα,H(y) =
∑

|h|≤H

bh(α,H)e(hy)

where the coefficients ah(α,H), bh(α,H) satisfy

a0(α,H) = α, |ah(α,H)| ≤ min

(
α,

1

π|h|

)
, |bh(α,H)| ≤ 1

H + 1

E.1. Exponential Sums 417

and (for real y)
|χα(y)−Aα,H(y)| ≤ Bα,H(y). (E.2)

Furthermore (for every integer H ≥ 1) there exist finite Fourier series

CH(y) =
∑

|h|≤H

ch(H)e(hy), DH(y) =
∑

|h|≤H

ch(H)e(hy)

where the coefficients ch(H), dh(H) satisfy

c0(α,H) =
1

2
, |ch(H)| ≤ 1

2π|h| , |dh(H)| ≤ 1

2H + 2

and (for real y)
|〈y〉 − CH(y)| ≤ DH(y). (E.3)

As a first application of this property we state the following general relation.

Lemma E.1.3. Suppose that pn,k are positive real numbers with

n∑

k=0

pn,k = 1

and suppose that xk is a real sequence such that for all integers h 6= 0

n∑

k=0

pn,ke(hxk) = o(1)

as n→∞. Then we have uniformly for all 0 < α < 1 and for all real sequences
δn

lim
n→∞

n∑

k=0

pn,kχα(xk + δn) = α

and (also uniformly for all real sequences δn)

lim
n→∞

n∑

k=0

pn,k〈xk + δn〉 =
1

2
.

Proof. We present the proof of the second case. The proof of the first case is
analogue. By (E.3) we have

CH(y)−DH(y) ≤ 〈y〉 ≤ CH(y) +DH(y)

418 Appendix E. Exponential Sums and Uniform Distribution mod 1

and consequently

〈y〉 ≤ 1

2
+

∑

06=|h|≤H

ch(H)e(hy) +
∑

|h|≤H

dh(H)e(hy).

(We just consider the upper bound. The corresponding lower bound can be
handled similarly.) Hence we obtain

n∑

k=0

pn,k〈xk + δn〉 ≤
1

2
+

∑

06=|h|≤H

ch(H)e(hδn)

n∑

k=0

pn,ke(hxk)

+ d0 +
∑

06=|h|≤H

dh(H)e(hδn)
n∑

k=0

pn,ke(hxk).

By assumption we know that the exponential sums on the right hand side con-
verge to 0. This implies that

lim sup
n→∞

n∑

k=0

pn,k〈xk + δn〉 ≤
1

2
+

1

2H + 2
.

Since H can be arbitrarily chosen it also follows that the lim sup is upper
bounded by 1

2 . By using the corresponding lower bound it follows that the
lim inf is lower bounded by 1

2 , too. Thus, the limit exists and equals 1
2 . Note

that this limit is uniform in the sequence δn.

E.2. Uniformly Distributed Sequences mod 1

The most prominent case, where this concept applies, is the Theory of Uniformly
Distributed Sequences mod 1. Here pn,k = 1

n . By defining the discrepancy
Dn(xk) of a real sequence (xk) by

Dn(xk) = sup
0<α<1

∣∣∣∣∣
1

n

n∑

k=0

χα(xk)− α
∣∣∣∣∣ (E.4)

we say that a sequence (xk) is uniformly distributed mod 1 if Dn(xk) → 0 as
n→∞. Informally this means that the number of k ≤ n with xk mod 1 ∈ [0, α)
is asymptotically αn. Lemma E.1.3 then says that the exponential sum condition

n∑

k=1

e(hxk) = o(n)

E.2. Uniformly Distributed Sequences mod 1 419

(for non-zero integers h) implies that the sequence (xk) is uniformly distributed
mod 1. Actually the two conditions are equivalent and the exponential sum
condition is called the Weyl criterion.

We make this precise in a more general context.

Theorem E.2.1. Suppose that pn,k are positive real numbers with

n∑

k=0

pn,k = 1

and suppose that xk is a real sequence. Then the following three properties are
equivalent:

1. For all integers h 6= 0

n∑

k=0

pn,ke(hxk) = o(1) (E.5)

as n→∞.

2. The discrepancy

D
(pn,k)
n (xk) = sup

0<α<1

∣∣∣∣∣

n∑

k=0

pn,kχα(xk)− α
∣∣∣∣∣

satisfies

D
(pn,k)
n (xk) = o(1) (E.6)

as n→∞.

3. For all Riemann integrable periodic function f(y) (with period 1) we have

lim
n→∞

n∑

k=0

pn,kf(xk + δn) =

∫ 1

0

f(y) dy (E.7)

uniformly for all real sequences δn.

Proof. We prove (E.7). Next suppose that (E.6) holds and that f is a Riemann
integrable periodic function f(y) (with period 1). Then for every ε > 0 there
are two periodic step function S1(y), S2(y) with

S1(y) ≤ f(y) ≤ S2(y) and

∫ 1

0

(S2(y)− S1(y)) dy < ε.

420 Appendix E. Exponential Sums and Uniform Distribution mod 1

Next we observe that step functions S(y) are just finite linear combinations of χα

functions. Since
∫ 1

0
χα(y) dy = α it follows from (E.6) that for all step functions

S(y)

lim
n→∞

n∑

k=0

pn,kS(xk) =

∫ 1

0

S(y) dy.

Consequently

lim sup
n→∞

∣∣∣∣∣

n∑

k=0

pn,kf(xk)−
∫ 1

0

f(y) dy

∣∣∣∣∣ ≤ ε.

Since this holds for all ε > 0 we also obtain (E.7). Note everything is uniform
in possible shifts δn.

Finally, we apply we show (E.7) for f(y) = cos(2πhy) and f(y) = sin(2πhy)
for non-zero integers h. Since they have zero integral we immediately obtain
(E.5)

Example E.2.2. We provide a second application (that is also used in Chapter
2). Suppose that 0 < p < 1 is given and that pn,k are defined by

pn,k =

(
n

k

)
pk(1− p)n−k.

Suppose further that xk = αk for some real number α. Then the correspond-
ing exponential sums can be directly computed with the help of the binomial
theorem:

n∑

k=0

(
n

k

)
pk(1 − p)n−ke(hαk) = (pe(hα) + 1− p)n.

Clearly if hα is an integer then (pe(hα) + 1− p)n = 1. However, if hα is not an
integer then |pe(hα) + 1 − p| < 1 and it follows that (pe(hα) + 1 − p)n → 0 as
n→∞.

Erdős-Turán-Koksma inequality. In the theory of uniformly distributed
sequences there are two fundamental inequalities, the Erdős-Turán-Koksma in-
equality and the Koksma-Hlawka inequality. We close this part of the Appendix
with the presentation of these results.

Let d ≥ 1 be a fixed integer and x0,x1, . . . ,xn be points in the d-dimensional
space Rd, and pn,k be positive numbers with

∑n
k=0 pn,k = 1. Then the d-

dimensional discrepancy with respect to pn,k is defined by

D
(pn,k)
n (xk) = sup

0<α1,...,αd<1

∣∣∣∣∣

n∑

k=0

pn,kχ(α1,...,αd)(xk)− α1 · · ·αd

∣∣∣∣∣ ,

E.2. Uniformly Distributed Sequences mod 1 421

where χ(α1,...,αd)(y1, . . . yd) =
∏d

j=1 χαj (xj).

Theorem E.2.3. (Erdős-Turán-Koksma inequality) Let x0,x1, . . . ,xn be points
in the d-dimensional space Rd and H an arbitrary positive integer. Then

D
(pn,k)
n (xk) ≤

(
3

2

)d

 2

H + 1
+

∑

0<‖h‖∞≤H

1

r(h)

∣∣∣∣∣

n∑

k=0

pn,ke(h · xk)

∣∣∣∣∣

 , (E.8)

where r(h) =
d∏

i=1

max{1, |hi|} for h = (h1, . . . , hd) ∈ Zd.

This theorem is a quantitative version of the major part of Theorem E.2.1
(even in a d-dimensional version.)

In order to state the Koksma-Hlawka inequality we need the notation of the
variation of a function (in d variables). By a partition P of [0, 1]d we mean a set

of d finite sequences η
(0)
i , . . . , η

(mi)
i , i = 1, . . . , d, with 0 = η

(0)
i ≤ η

(1)
i ≤ · · · ≤

η
(mi)
i = 1. In connection with such a partition we define for each i = 1, . . . , d an
operator ∆i by

∆if(x1, . . . , xi−1, η
(j)
i , xi+1, . . . , xd) = f(x1, . . . , xi−1, η

(j+1)
i , xi+1, . . . , xd)

(E.9)

− f(x1, . . . , xi−1, η
(j)
i , xi+1, . . . , xd)

for 0 ≤ j < mi. Operators with different subscripts obviously commute and
∆i1,...,il will stand for ∆i1 · · ·∆il .

For a function f : [0, 1]d → R we set

V (d)(f) = sup
P

m1−1∑

j1=0

· · ·
md−1∑

jk=0

∣∣∣∆1,...,kf(η
(j1)
1 , . . . , η

(jd)
k)

∣∣∣ ,

and

V (f) =

d−1∑

l=0

∑

Fℓ

V (k−ℓ)(f |Fℓ)),

where the (d− ℓ)-dimensional faces Fℓ of the form xi1 = · · · = xiℓ = 1.
we say that f is of bounded variation in the sense of Hardy and Krause if

V (f) <∞. For example, if the partial derivative

∂lf |(Fl)

∂xi1 · · ·∂xil

422 Exponential Sums and Uniform Distribution mod 1

is continuous on the (d− ℓ)-dimensional face Fℓ of [0, 1]
d, defined by xi1 = · · · =

xiℓ = 1, the variation can be computed by the integral

V (d−ℓ)(f |(Fℓ)) =

∫

Fℓ

∣∣∣∣∣
∂ℓf |(Fl)

∂xi1 · · ·∂xiℓ

∣∣∣∣∣ dxi1 · · · dxiℓ .

Theorem E.2.4. (Koksma-Hlawka inequality) Let f be of bounded variation
on [0, 1]d in the sense of Hardy and Krause. Then we have for all sequences
x0,x1, . . . ,xn ∈ [0, 1)d

∣∣∣∣∣

n∑

k=0

pn,kf(xk)−
∫

[0,1]d
f(x) dx

∣∣∣∣∣ ≤ V (f)D
(pn,k)
n (xk)

for every n.

Bibliographical notes

Exponential sums and uniform distributions mod 1 (including the Erdős-Turán-
Koksma inequality etc.) are discussed in depth in Kuipers and Niederreiter
(1974), Drmota and Tichy (1997), Huxley (1996), Niederreiter (1992), Korobov
(1992), Kowalski (2021), Walfisz (1963). Theorem E.1.2 is proved in Vaaler
(1985).

CHAPTER F

Diophantine Approximation

In this appendix we collect some facts about Diophantine approximations of
irrational numbers through continued fractions and some facts about geometry
of numbers.

F.1. Dirichlet’s Approximation Theorem

Let α be a real number. Clearly α can be approximated by rational numbers:
∣∣∣∣α−

p

q

∣∣∣∣ < ε

to arbitrary precision ε > 0. A slightly stronger question is, whether we can find
integers p, q, q 6= 0, such that

|qα− p| < ε

for every given ε > 0. This is actually true, and moreover this question can be
answered in an optimal way.

Theorem F.1.1. [Dirichlet’s Approximation Theorem] Let α be a real number.
Then for every integer N ≥ 1 there exist integers p, q with 1 ≤ q ≤ N and

|qα− p| < 1

N
.

Proof. Consider the N + 1 numbers

xk = kα− ⌊kα⌋ = 〈kα〉 ∈ [0, 1), 0 ≤ k ≤ N.

Next we partition the unit interval [0, 1) into N subintervals Ij = [j/N, (j +
1)/N), j = 0, . . . , N − 1. By the pigeon principle there exists j0 and k1 < k2

424 Appendix F. Diophantine Approximation

(with 0 ≤ k1, k2 ≤ N) such that xk1 , xk2 ∈ Ij0 . Since the length of Ij0 equals
1/N we also have |xk2 − xk1 | < 1/N ′ or

|(k2 − k1)α− (⌊k2α⌋ − ⌊k1α⌋)| <
1

N
.

Setting q = k2 − k1 (that satisfies 1 ≤ q ≤ N) and p = ⌊k2α⌋ − ⌊k1α⌋ completes
the proof of the lemma.

A direct consequence of Dirichlet’s Approximation Theorem is the following
property.

Lemma F.1.2. Suppose that α is an irrational number. Then there are in-
finitely many coprime integer pairs p, q with q > 0 and

|qα− p| < 1

q

Proof. Suppose that there are only finitely many integer pairs p, q with this
property and set

µ = min |qα− p| ,
where the minimum is taken over this finite set of integer pairs. Since α is
irrational this minimum µ is positive. Now choose an integer N > 1/µ and
apply Theorem F.1.1. Then we have |Qα − P | < 1

N for integers P,Q with
1 ≤ Q ≤ N . Without loss of generality we can assume that P,Q are coprime.
Since Q ≤ N we also have

|Qα− P | < 1

Q
.

However, |Qα − P | < 1
N < µ which leads to a contradiction. This proves the

lemma.

F.2. Continued Fractions

With the help of the continued fraction expansion of an irrational number α it is
easy to find explicitly an infinite sequence of integer pairs p, q with |qα−p| < 1

q .
A finite continued fraction expansion is a rational number of the form

a0 +
1

a1 +
1

a2+
1

. . .+ 1
an

,

F.2. Continued Fractions 425

where a0 is an integer and aj are positive integers for j ≥ 1. We denote this
rational number as

[a0, a1, . . . , an].

Such continued fractions appear naturally in the context of the Euclidean
algorithm.

Example F.2.1. If we start with the integers 25 and 7 we have

25

7
= 3 +

4

7
,

7

4
= 1 +

3

4
,

4

3
= 1 +

1

3

or
25

7
= 3 +

1
7
4

= 3 +
1

1 + 3
4

= 3 +
1

1 + 1
1+ 1

3

.

In other terms
25

7
= [3, 1, 1, 3].

More generally this procedure shows that every rational number can be repre-
sented as a (finite) continued fraction.

Furthermore, if aj is a given sequence of integers (that are positive for j > 0)
then we can consider the sequence of rational numbers

rn =
pn
qn

= [a0, a1, . . . , an].

It follows easily by induction that the numerators pn = pn(a0, a1, . . . , an) and
denominators qn = qn(a0, a1, . . . , an) satisfy the recurrences

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2. (F.1)

Furthermore we have the relation

pnqn−1 − qnpn−1 = (−1)n−1.

In particular the pairs pn, qn are coprime, they grow exponentially, and we have

rn − rn−1 =
pnqn−1 − qnpn−1

qnqn−1
=

(−1)n−1

qnqn−1
.

Thus, the sequence rn is a Cauchy sequence and has a limit. This limit is denotes
an infinite continued fraction expansion

[a0, a1, a2, . . .] = lim
n→∞

[a0, a1, . . . , an].

426 Appendix F. Diophantine Approximation

Actually every real number α has a finite or infinite continued fraction ex-
pansion that is (essentially) unique. If α is rational then its continued fraction is
finite (and unique up the last entry; for example 25

7 = [3, 1, 1, 3] = [3, 1, 1, 2, 1]).
Conversely, if α is irrational then we recursively set

α0 = α, aj = ⌊αj⌋, αj+1 = 1/(αj − aj),

and obtain recursively

α = a0 +
1

a1 +
1

a2+
1

. . .+ 1

an−1+ 1
αn

= [a0, a1, . . . , an−1, αn].

Note that an ≤ αn < an + 1. Thus, it immediately follows that

α = [a0, a1, a2, . . .]

and it is another simple observation that this continued fraction expansion is
unique.

The corresponding finite continued fraction expansions

pn
qn

= [a0, a1, . . . , an]

are called convergents of α.
For example, it is an easy exercise to show the following two relations for

(infinite) continued fraction expansion hold:

√
5 + 1

2
= [1, 1, 1, . . .],

√
2 = [1, 2, 2, 2, . . .].

These are very easy examples of numbers with a so-called periodic continued
fraction expansion. It is nice to observe (but this is not completely trivial) that
an irrational number α has an ultimately periodic continued fraction expansion
if and only if α a quadratic irrational number (that is, a root of an integer
polynomial Ax2 +Bx+ C with, where AC 6= 0 and B2 6= 4AC).

Similarly to the recurrences of pn and qn it follows that

α = [a0, a1, . . . , an−1, αn] =
αnpn−1 + pn−2

αnqn−1 + qn−2

and
(αnpn−1 + pn−2)qn−1 − (αnqn−1 + qn−2)pn−1 = (−1)n.

F.2. Continued Fractions 427

Hence

α−pn−1

qn−1
=

(αnpn−1 + pn−2)qn−1 − (αnqn−1 + qn−2)pn−1

qn−1(αnqn−1 + qn−2)
=

(−1)n−1

qn−1(αnqn−1 + qn−2)
.

Since αn ≥ an we also have αnqn−1 + qn−2 ≥ anqn−1 + qn−2 = an and conse-
quently ∣∣∣∣α−

pn−1

qn−1

∣∣∣∣ <
1

qn−1qn
<

1

q2n−1

.

This means that the pairs pn, qn form an infinite sequence of integer pairs p, q
with |qα− p| < 1

q .

It turns out that the approximation of the kind |qα − p| < 1
q cannot be

sharpened in general. An irrational number α is called badly approximable if
there exists a constant c > 0 such that

|qα− p| ≥ c

q

holds for all integers p, q with q > 0.
With the help of continued fraction expansions badly approximable number

can be classified.

Lemma F.2.2. An irrational number α is badly approximable if and only if its
continued fraction expansion

α = [a0, a1, a2, . . .]

is bounded, that is, there exists C > 0 with aj ≤ C for all j ≥ 1.

It turns out that the condition that the continued fraction expansion is
bounded is quite restrictive. Of course there are many examples with this prop-
erty (for example quadratic irrational numbers), however, from a global perspec-
tive there are only very few numbers with this property. It turns out that the
set of badly approximable real numbers has zero Lebesgue measure. In other
terms, almost all real numbers are not badly approximable. These leads us to
the question which approximation behavior we can expect typically.

For this purpose we introduce the following notation. Suppose that Ψ is non-
increasing positive function on the positive integers. We say that a real number
α is Ψ-approximable if there exist infinitely many integer pairs p, q with q > 0
and

|qα− p| < Ψ(q).

The following theorem by Khinchin provides a complete answer whether such a
situation is typical or not.

428 Appendix F. Diophantine Approximation

Theorem F.2.3. (Khinchin) Suppose that Ψ is non-increasing positive func-
tion on the positive integers. If the series

∑
q Ψ(q) diverges then almost all real

numbers (in the sense of Lebesgue) are Ψ-approximable. Conversely, if the series∑
q Ψ(q) converges then almost all real numbers are not Ψ-approximable.

We apply this theorem for Ψ(q) = 1/q1+ε for some ε > 0. Then the series∑
q Ψ(q) converges. Thus, for almost all real numbers the inequality

|qα− p| < 1

q1+ε

has only finitely many solutions. Consequently there exists a constant c > 0
such that

|qα− p| ≥ c

q1+ε
(F.2)

holds in all cases. If we replace ε by 0 this is not true anymore. This means
that typically we have (F.2) whereas the inequality |qα− p| < 1/q has infinitely
many solutions.

Khinchin’s theorem is the start of a whole theory, namelymetric Diophantine
approximation. This is in particular highly non-trivial if several real numbers
shall be approximated simultaneously.

F.3. Geometry of Numbers

A complete lattice Γ of the space Rn is the linear image A(Zn) of the integer
points Zn, where A is a invertible n× n-matrix, that is

Γ = {k1a1 + · · ·+ knan : k1, . . . , kn ∈ Z},
where the (basis) vectors a1, . . . , an ∈ Rn are linearly independent. (Actually
they form the columns of the matrix A.) Note that the matrix A is not unique.
We can replace A by A′ = CA, where C is an integer matrix with detC = ±1.

The set
D = {x1a1 + · · ·+ xnan : x1, . . . , xn ∈ [0, 1)},

is called fundamental domain of Γ related to the lattice basis a1, . . . , an. Note
that D + Γ = Rn. The volume of D

d(Γ) = Vol(D) = |detA|
is independent of the choice of the basis and called the lattice constant.

If B is any (measurable) set of Rn then it is expected that B contains
Vol(B)/d(G) lattice points of Γ, however, in general it is not granted that B
contains any lattice points. Nevertheless, if K is convex and centrally symmet-
ric then Minkowski’s first theorems gives an answer.

Bibliographical notes 429

Theorem F.3.1 (Minkowski’s First Theorem). Suppose that Γ is a complete
lattice in Rn and K a convex and centrally symmetric body. If

Vol(K) > 2nd(Γ)

then K contains a non-zero element of Γ.

For example, Minkowski’s theorem implies the Dirichlet approximation theo-
rem. Suppose that α ∈ (0, 1) is a real number and N ≥ 1 is an integer. Consider
the convex and centrally symmetric body

K = {(x, y) ∈ R2 : |x| ≤ N + 1/2, |αx − y| ≤ 1/N}

with volume Vol(K) = 2(2N +1)/N > 22. Hence K contains a non-zero integer
point (q, p) in Γ = Zn. Clearly we have |q| ≤ N and |αq − p| ≤ 1/N .

Minkowski’s First Theorem has a very important generalization. Suppose
again that K is a convex and centrally symmetric body. Then the so-called
successive minima λk = λk(K), 1 ≤ k ≤ n, with respect to a complete lattice Γ
are defined by

λk = inf{λ > 0 : λK contains k linearly independent lattice points of Γ}.

Theorem F.3.2 (Minkowski’s Second Theorem). Suppose that Γ is a complete
lattice in Rn, K a convex and centrally symmetric body, and λk = λk(K),
1 ≤ k ≤ n, the successive minima of K with respect to Γ. Then we have

2n

n!
d(Γ) ≤ λ1 · · ·λnVol(K) ≤ 2nd(Γ).

In order to show that Minkowski’s second theorem implies the first one we
consider a convex and centrally symmetric body K with Vol(K) > 2nd(Γ). Since
λ1 ≤ λ2 ≤ · · · ≤ λn it follows that

2nd(Γ) < Vol(K) ≤ (2/λ1)
nd(Γ)

and consequently λ1 ≤ 1. Thus K contains (by definition of λ1) a non-zero
lattice point.

Bibliographical notes

Diophantine approximations are discussed in Schmidt (1980, 1991), Sprindzuk
(1979), Bernik and Dodson (1999), Allouche and Shallit (2008), Beck (2014),
Bugeaud (2012).

Bibliography

Abbe, E. (2016). Graph compression: the effect of clusters, In Proc. of the
fifty-fourth annual Allerton conference.

Abrahams, J. (2001). Code and parse trees for lossless source encoding, Com-
munications in Information and Systems, 1, 113–146.

Abramowitz, M. and Stegun, I. (1964). Handbook of Mathematical Functions.
Dover, New York.

Adler, M. and Mitzenmacher, M. (2001). Towards Compressing Web Graphs,
In Proceedings of the Data Compression Conference, DCC ’01, pp. 203–.
IEEE Computer Society, Washington, DC, USA.

Akra, M. and Bazzi, L. (1998). On the Solution of Linear Recurrence Equations,
Computational Optimization and Applications, pp. 195–201.

Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex net-
works, Rev. Mod. Phys, 74, 47–97.

Aldous, D. J. and Ross, N. (2014). Entropy of some models of sparse random
graphs with vertex-names, Probability in the Engineering and Informa-
tional Sciences, 28 (2), 145–168.

Allouche, J. and Shallit, J. (2008). Automatic Sequences. Cambridge University
Press.

Alon, N. and Orlitsky, A. (1994). A Lower Bound on the Expected Length of
One-to One Codes, IEEE Trans. Information Theory, pp. 1670–1672.

Andrews, G. E. (1984). The theory of partitions. Cambridge University Press.

Apostol, T. (1976). Introduction to analytic number theory. Springer.

432 Bibliography

Asadi, A. R., Abbe, E., and Verdú, S. (2017). Compressing data on graphs with
clusters, In 2017 IEEE International Symposium on Information Theory
(ISIT), pp. 1583–1587.

Atteson, K. (1999). The Asymptotic Redundancy of Bayes Rules for Markov
Chains, IEEE Trans. on Information Theory, pp. 2104–2109.

Baker, R. C. (1978). Dirichlet’s Theorem on Diophantine Approximation, Cam-
bridge Philos., pp. 37–59.

Balasubramaniam, V. (1997). Statistical Inference, Occam’s Razor, and Statis-
tical Mechanics on the Space of Probability Distributions, Natural Com-
putation, 9, 349 – 368.

Barron, A. (1985). Logically Smooth Density Estimation, Ph.D. Thesis, pp.
Stanford, CA.

Barron, A., Rissanen, J., and Yu, B. (1998). The Minimum Description Length
Principle in Coding and Modeling, IEEE Trans. Information Theory, pp.
2743–2760.

Bateman, H. (1955). Higher transcendental functions. McGraw-Hill, New York.

Beck, J. (2014). Probabilistic diophantine approximation. Randomness in lattice
point counting. Springer Monogr. Math. Cham: Springer.

Ben-David, S., Pál, D., and Shalev-Shwartz, S. (2009). Agnostic Online Learn-
ing., In COLT, Vol. 3, p. 1.

Bender, E. (1973). Central and local limit theorems applied to asymptotic enu-
meration,. 15, 91–111.

Bender, E. and Richmond, B. (1983). Central and Local Limit Theorems Applied
to Asymptotic Enumeration II: Multivariate Generating Functions, J.
Combinatorial Theory, 34, 255–265.

Bergeron, F., Flajolet, P., and Salvy, B. (1992). Varieties of increasing trees,
pp. 24–48. Springer Berlin Heidelberg, Berlin, Heidelberg.

Bernardo, J. (1979). Reference Posterior distributions for Bayesian Inference, J.
Roy. Stat. Soc. B., pp. 113–147.

Bernik, V. and Dodson, M. (1999). Metric Diophantine approximation on man-
ifolds. Cambridge University Press.

Bibliography 433

Besta, M. and Hoefler, T. (2018). Survey and taxonomy of lossless graph com-
pression and space-efficient graph representations, arXiv:1806.01799.

Billingsley, P. (1968). Convergence of Probability Measures, John Wiley and
Sons, p. New York.

Biza, L. (1971). Asymptotically Optimal Tests for Finite Markov Chains, Ann.
Math. Statistics, pp. 1992–2007.

Bollobás, B. (1982). The asymptotic number of unlabelled regular graphs, Jour-
nal of the London Mathematical Society, 26, 201–206.

Bona, M. and Flajolet, P. (2009). Isomorphism and symmetries in random
phylogenetic trees, Journal of Applied Probability, pp. 1005–1019.

Boncelet, C. (1993). Block arithmetic coding for source compression, IEEE
Trans. Information Theory, pp. 1546–1554.

Boucheron, S., Garivier, A., and Gassiat, E. (2009). Coding on countably infinite
alphabets, IEEE Trans. Information Theory, pp. 358–373.

Bugeaud, Y. (2012). Distribution modulo one and Diophantine approximation,
Vol. 193 of Camb. Tracts Math. Cambridge: Cambridge University Press.

Bugeaud, Y., Drmota, M., and Szpankowski, W. (2008). On the Construction
of (Explicit) Khodak’s code and Its Analysis, IEEE Trans. Information
Theory, pp. 5073–5086.

Campbell, L. (1965). A Coding Theorem and Rényi’s Entropy, Information and
Control, 8, 423–429.

Canfield, E. R. (1977). Central and Local Limit Theorems for the Coefficients
of Polynomials of Binomial Type, J. Combinatorial Theory, 23, 275–290.

Capocelli, E. and Santis, A. de (1989). Tight Upper bounds on the Redundancy
of Huffman Codes, IEEE Transactions on Information Theory, 35, 1084–
1091.

Capocelli, E. and Santis, A. de (1991). New Bounds on the Redundancy of
Huffman Codes, IEEE Transactions on Information Theory, 37, 1095–
1104.

Cassels, J. W. S. (1957). An Introduction to Diophantine Approximation, Cam-
bridge University Press.

434 Bibliography

Chern, H.-H., Fernandez-Camacho, M., Hwang, H.-K., and Martinez, C. (2012).
Psi-series method for equality of random trees and quadratic convolution
recurrences, Random Structures & Algorithms, 44, 67–108.

Cheung, Y., Flajolet, P., Golin, M., and Lee, C. (2008). Multidimensional
Divide-and-Conquer and Weighted Digital Sums, In ANALCO.

Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., and
Raghavan, P. (2009). On Compressing Social Networks, In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mi ning, KDD ’09, pp. 219–228. ACM, New York, NY, USA.

Choi, V. and Golin, M. J. (2001). Lopsided Trees, I. Analyses., pp. 240–290.

Choi, Y. and Szpankowski, W. (2012). Compression of Graphical Structures:
Fundamental Limits, Algorithms, and Experiments, IEEE Trans. Inform.
Theory, 58 (2), 620–638.

Chung, K. L. (1974). A Course in Probability Theory. 2nd edition.

Cichon, J. and Golebiewski, Z. (2012). On the Bernoulli Sums and Bernstein
Polynomials, In AofA, pp. 179–190.

Cichon, J., Magner, A., Turowski, K., and Szpankowski, W. (2017). On sym-
metries of non-plane trees in a non-uninform model, In ANALCO.

Clarke, B. and Barron, A. (1990). Information-theoretic Asymptotics of Bayes
Methods, IEEE Trans. Informational Theory, pp. 453–471.

Corless, R., Gonnet, G., Hare, D., Jeffrey, D., and Knuth, D. (1996). On the
Lambert W function, Adv. Computational Mathematics, 5, 329–359.

Cormen, T., Leierson, C., and Rivest, R. (1990). Introduction to Algorithms.
MIT Press, Cambridge.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory, John
Wiley and Sons.

Csiszar, I. (1998). The method of Types, IEEE Trans. Information Theory, 44,
2505 – 2523.

Csiszar, I. and Korner, J. (1981). Information Theory: Coding Theorems for
Discrete Memoryless Systems, Academic Press.

Csiszar, I. and Shields, P. (1996). Redundancy Rates for Renewal and Other
Processes, IEEE Trans. Information Theory, 42, 2065–2072.

Bibliography 435

Davisson, L. (1973). Universal Noiseless Coding, IEEE Trans. Inform. Theory,
pp. 783–795.

Davisson, L. and Leon-Garcia, A. (1980). A Source Matching Approach to
Finding Minimax Codes, IEEE Trans. Inform. Theory, pp. 166–174.

DeBruijn, N. G. (1958). Asymptotic methods in Analysis. Dover, New York.

Delange, H. (1954). Généralisation du théorème de Ikehara, Ann. Sci. Éc. Norm.
Supér., 71, 213–242.

Delange, H. (1975). Sur la fonction sommatoire de la fonction ”Somme des
Chiffres, Enseignement Math., 21, 31–47.

Delgosha, P. and Anantharam, V. (2017). Universal lossless compression of
graphical data, In Proc. of the International Symposium on Information
Theory (to appear).

Delgosha, P. and Anantharam, V. (2018). Distributed Compression of Graphical
Data, In Proc. of the International Symposium on Information Theory (to
appear).

Delgosha, P. and Anantharam, V. (2019). Universal Lossless Compression of
Graphical Data, arXiv:1909.09844.

Dembo, A. and Kontoyiannis, I. (1999). The Asymptotics of Waiting Times Be-
tween Stationary Processes Allowing Distortion, Annals of Applied Prob-
ability, pp. 413–429.

Dembo, A. and Kontoyiannis, I. (2001). Critical Behavior in Lossy Coding,
IEEE Trans. Inform. Theory, pp. 1230–1236.

Dembo, A. and Kontoyiannis, I. (2002). Source Coding Large Deviations and
Approximate Pattern Matching, IEEE Trans. Information, pp. 1590–1615.

Dickinson, H. and Dodson, M. M. (2000). Extremal Manifolds and Hausdorff
Dimension, Duke Math, pp. 271–281.

Drmota, M. (2009). Random Trees. Springer, Wien-New York.

Drmota, M., Hwang, H. K., and Szpankowski, W. (2002). Precise Average
Redundancy of an Idealized Arithmetic Coding, Proc. Data Compression
Conference, pp. 222–231.

Drmota, M., Reznik, Y., Savari, S., and Szpankowski, W. (2006). Precise Asymp-
totic Analysis of the Tunstall Code, 2006 International Symposium on
Information Theory, pp. 2334–2337.

436 Bibliography

Drmota, M., Reznik, Y., and Szpankowski, W. (2010). Tunstall Code, Khodak
Variations, and Random Walks, IEEE Trans. Inform. Theory, pp. 2928–
2937.

Drmota, M., Shamir, G. I., and Szpankowski, W. (2022). Sequential Universal
Compression for Non-Binary Sequences with Constrained Distributions,
Comminications in Information and Systems, 22.

Drmota, M. and Szpankoski, W. (2002). Generalized Shannon Code Minimizes
the Maximal Redundancy, In LATIN’02, pp. 306–318.

Drmota, M. and Szpankowski, W. (2004). Precise Minimax Redundancy and
Regrets, IEEE Trans. Information Theory, pp. 2686–2707.

Drmota, M. and Szpankowski, W. (2007). On the exit time of a random walk
with the positive drift, 2007 Conference on Analysis of Algorithms Juan-
les-Pins France and Proc. Discrete Mathematics and Theoretical Computer
Science.

Drmota, M. and Szpankowski, W. (2013). A Master Theorem for Discrete Divid
and Conquer Recurrences, J. of the ACM, pp. 16:1–16:49.

Drmota, M. and Tichy, R. (1997). Sequences Discrepancies and Applications,
Springer Verlag Berlin Heidelberg.

Durrett, R. (1991). Probability: Theory and Examples. Wadsworth, Belmont.

Erdös, P., Hildebrand, A., Odlyzko, A., Pudaite, P., and Reznick, B. (1987).
The Asymptotic Behavior of a Family of Sequences, Pacific Journal of
Mathematics, 126, 227–241.

Fabris, F. (1992). Variable-Length-to-Variable-Length Source Coding: A Greedy
Step-by-Step Algorithm, IEEE Trans. Information Theory, pp. 1609–1617.

Feller, W. (1970). An Introduction to Probability Theory and its Applications,
Vol. I.

Fill, J. A. and Kapur, N. (2005). Transfer theorems and asymptotic distribu-
tional results for m-ary search trees, Random Structures & Algorithms,
26 (4), 359–391.

Flajolet, P. (1999). Singularity Analysis and Asymptotics of Bernoulli Sums,
Theoretical Computer Science, pp. 371–381.

Flajolet, P. and Golin, M. (1954). Mellin Transforms and Asymptotics: The
Mergesort Recurrence, Acta Informatica, 31, 673–696.

Bibliography 437

Flajolet, P., Gourdon, X., and Dumas, P. (1995). Mellin Transforms and Asymp-
totics: Harmonic Sums, Special Volume on Mathematical Analysis of Al-
gorithms, pp. 3–58.

Flajolet, P., Gourdon, X., and Martinez, C. (1997). Patterns in random binary
search trees, Random Structures & Algorithms, 11, 223–244.

Flajolet, P. and Sedgewick, R. (2008). Analytic Combinatorics. Cambridge
University Press.

Flajolet, P. and Szpankowski, W. (2002). Analytic Variations on Redundancy
Rates of Renewal Processes, IEEE Trans. Information Theory, pp. 2911–
2921.

Flajolet, P. H. and Odlyzko, A. M. (1990). Singularity Analysis of Generating
Functions, Discrete Math., pp. 216–240.

Foster, D. J., Kale, S., Mohri, H. L. andMehryar, and Sridharan, K. (2018).
Logistic regression: The importance of being improper, In COLT - Con-
ference on Learning Theory.

Freeman, G. H. (1993). Divergence and the Construction of Variable-to-Variable-
length Lossless Codes by Source-word Extensions, Data Comnpression
Conference 1993, pp. 79–88.

Frieze, A. and Karoński, M. (2016). Introduction to Random Graphs. Cambridge
University Press.

Frieze, A., Turowski, K., and Szpankowski, W. (2020). Degree Distribution for
Duplication-Divergence Graphs: Large Deviations, In WG2020 : Algo-
rithms and Complexity.

Frieze, A., Turowski, K., and Szpankowski, W. (2021). The concentration of the
maximum degree in the duplication-divergence models, In COCOON.

Gallager, R. (1968). Information Theory and Reliable Communications, New
York Wiley.

Gallager, R. (1978). Variations on the Theme by Huffman, IEEE Trans. Infor-
mation Theory, pp. 668–674.

Gallager, R. and Voorhis, D. van (1975). Optimal Source Codes for Geomet-
rically Distributed Integer Alphabets, IEEE Trans. Information Theory,
pp. 228–230.

438 Bibliography

Golebiewski, Z., Magner, A., and Szpankowski, W. (2018). Entropy and optimal
compression of some general trees, ACM Transaction on Algorithms, 15.

Golomb, S. (1996). Run-length Coding, IEEE Trans. Information Theory, pp.
399–401.

Goodman, L. (1958). Exact Probabilities and Asymptotic Relationships for
Some Statistics from m-th Order Markov Chains, Ann. Math. Stat., pp.
476 – 490.

Grabner, P. and Hwang, H. K. (2005). Digital sums and divide-and-conquer re-
currences: Fourier expansions and absolute convergence, Constr. Approx.,
21, 149–179.

Grabner, P. and Thuswaldner, J. M. (1996). Analytic Continuation of a Class
of Dirichlet Series, Abh. Math. Sem. Univ. Hamburg, 66, 281–287.

Grunwald, P. (2007). The Minimum Description Length Principle. MIT Press.

Gyorfi, L., Pali, I., and Meulen, E. der (1994). There is no universal source
code for an infinite source alphabet, IEEE Trans. Information Theory,
pp. 267–271.

Hayman, W. K. (1956). A Generalization of Stirling’s Formula, J. Reine Angew.
Math., 196, 67–95.

Hazan, E. (2008). Extracting certainty from uncertainty: Regret bounded by
variation in costs, In COLT.

Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for
online convex optimization, Mach. Learn., 69, 169–192.

Hazan, E., Koren, T., and Levy, K. Y. (2014). Logistic regression: Tight bounds
for stochastic and online optimization, In The 27th Conference on Learning
Theory, COLT 2014, pp. 197–209. MIT press.

Henrici, P. (1977). Applied and Computational Complex Analysis. John Wiley,
New York.

Hermann, F. and Pfaffelhuber, P. (2016). Large-scale behavior of the partial
duplication random graph, ALEA, 13, 687–710.

Hofstad, R. van der (2016). Random Graphs and Complex Networks: Volume 1.
Cambridge University Press.

Bibliography 439

Huffman, D. (1952). A Method for the Construction of Minimum Redundancy
Codes, Proc. IRE, 40, 1089–1101.

Huxley, M. N. (1996). Area, lattice points, and exponential sums, Vol. 13 of
Lond. Math. Soc. Monogr., New Ser. Oxford: Clarenton Press.

Hwang, H. K. (2000). Distribution of the number of factors in random ordered
factorizations of integers, Journal of Number Theory, 81, 61–92.

Hwang, H. K. and Janson, S. (2011). A central limit theorem for random ordered
factorizations of integers, Electronic J. Probab., 16, 347–361.

J. Zhang, E.-H. Yang, J. C. K. (2014). A Universal Grammar-Based Code for
Lossless Compression of Binary Trees, IEEE Transactions on Information
Theory, 60, 1373–1386.

Jacquet, P., Knessl, C., and Szpankowski, W. (2012). Counting Markov Types,
Balanced Matrices, and Eulerian Graphs, IEEE Trans. Information The-
ory, pp. 4261–4272.

Jacquet, P., Milioris, D., and Szpankowski, W. (2020). Joint String Complexity
for Markov Sources: Small Data Matters, Theoretrical Computer Science,
844, 46–80.

Jacquet, P., Shamir, G., and Szpankowski, W. (2021). Precise Minimax Re-
gret for Logistic Regression with Categorical Feature Values, In ALT’21:
PMLR, Vol. 128.

Jacquet, P. and Szpankowski, W. (1995). Asymptotic Behavior ofhte Lempel-Ziv
Parsing Scheme and Digital Search Trees, Theoretical Computer Science,
pp. 161–197.

Jacquet, P. and Szpankowski, W. (1998). Anaylytical Depoissonization and Its
Applications, Theoretical Computer Science, pp. 1–62.

Jacquet, P. and Szpankowski, W. (1999). Entropy Computations via Analytic
Depoissonization, IEEE Trans. Information Theory, pp. 1072–1081.

Jacquet, P. and Szpankowski, W. (2004). Markov Types and Minimax Redun-
dancy for Markov Sources, IEEE Trans. Information Theory, pp. 1393–
1402.

Jacquet, P. and Szpankowski, W. (2015). Analytic Pattern Matching: From
DNA to Twitter. Cambridge University Press, Cambridge.

440 Bibliography

Janson, S. (1986). Moments for first passage and last exit times the minimum
and related quantities for random walks with positive drift, Adv. Appl.
Probab., pp. 865–879.

Jelinek, F. and Schneider, K. S. (1972). On Variable-length-to-block Coding,
Trans. Information Theory, pp. 765–774.

Jordan, J. (2018). The connected component of the partial duplication graph,
ALEA – Latin American Journal of Probability and Mathematical Statis-
tics, 15, 1431–1445.

Kakade, S. M. and Ng, A. Y. (2005). Online Bounds for Bayesian Algorithms,
In Saul, L. K., Weiss, Y., and Bottou, L. (Eds.), Advances in Neural
Information Processing Systems 17, pp. 641–648. MIT Press.

Katona, G. and Tusnady, G. (1967). The principle of conservation of entropy in
a noiseless channel, Studia Sci. Math., pp. 20–35.

Khodak, G. L. (1969). Connection Between Redundancy and Average Delay of
Fixed-Length Coding, All-Union Conference on Problems of Theoretical
Cybernetics.

Khodak, G. L. (1972). Bounds of Redundancy Estimates for word-based En-
coding of Sequences Produced by a Bernoulli Source, Problemy Peredachi
Informacii, pp. 21–32.

Kieffer, J., Yang, E., and Szpankowski, W. (2009). Structural complexity of
random binary trees, In IEEE Intl. Symposium on Information Theory,
pp. 635–639.

Kieffer, J. C. (1978). A Unified Approach to Weak Universal Source Coding,
IEEE Trans. Information Theory, pp. 340–360.

Kieffer, J. C. (1991). Sample Converses in Source Coding Theory, IEEE Trans.
Information Theory, pp. 263–268.

Kim, J. H., Sudakov, B., and Vu, V. (2002a). On the asymmetry of random
regular graphs and random graphs, Rand Structures and Algorithms, 21 (3-
4), 216–224.

Kim, J. H., Sudakov, B., and Vu, V. H. (2002b). On the asymmetry of random
regular graphs and random graphs, Random Structures & Algorithms,
21 (3-4), 216–224.

Kleinberg, J. (2000). Navigation in a small world, Nature, 406 (6798), 845–845.

Bibliography 441

Knessl, C. and Szpankowski, W. (2005). Enumeration of Binary Trees Lempel-
Ziv ’78 Parsings and Universal Types, Proc. the Second workshop on An-
alytic Algorithmics and Combinatorics, p. Vancouver.

Knuth, D. E. (1997). The Art of Computer Programming. Fundmental Algo-
rithms, Addison-Wesley Reading, p. Third Edition.

Knuth, D. E. (1998a). The Art of Computer Programming. Seminumerical
Algorithms, Addison Esley Reading, p. Third Edition.

Knuth, D. E. (1998b). The Art of Computer Programming Sorting and Search-
ing, Addison-Wesley Reading, p. Second Edition.

Kontoyiannis, I. (1999). An Implementable Lossy Version of the Lempel-Ziv
Algorithm-Part I: Optimality for Memoryless Sources, IEEE Trans. In-
formation Theory, pp. 2285–2292.

Kontoyiannis, I. (2000). Pointwise Redundancy in Lossy Data Compression and
Universal Lossy Data Compression, IEEE Trans. Information Theory, pp.
136–152.

Kontoyiannis, I. (2001). Sphere-covering measure Concentration and Source
Coding, IEEE Trans. Information Theory, pp. 1544–1552.

Kontoyiannis, I., Lim, Y., Papakonstantinopoulou, K., and Szpankowski, W.
(2021). Compression and Symmetry of Small-World Graphs and Struc-
tures, Comminication in Information and Systems.

Kontoyiannis, I. and Verdu, S. (2014). Optimal Lossless Data Compression:
Non-asymptotics and Asymptotics, IEEE Trans. Information Theory, pp.
777–795.

Korevaar, J. (2002). A Century of Complex Tauberian Theory, Bull. Amer.
Soc., pp. 475–531.

Korobov, N. M. (1992). Exponential sums and their applications. Transl. from
the Russian by Yu. N. Shakhov, Vol. 80 ofMath. Appl., Sov. Ser. Dordrecht
etc.: Kluwer Academic Publishers.

Kosut, O. and Sankar, L. (2017). Asymptotic and non-asymptotics for uni-
versal fixed-to-variable source coding, IEEE Transactions on Information
Theory, 63 (6), 3757–3772.

Kowalski, E. (2021). An introduction to probabilistic number theory, Vol. 192 of
Camb. Stud. Adv. Math. Cambridge: Cambridge University Press.

442 Bibliography

Krichevsky, R. (1994). Universal Compression and Retrieval, Kluwer Dordrecht.

Krichevsky, R. and Trofimov, V. (1981). The Performance of Universal Coding,
IEEE Trans. Information Theory, pp. 199–207.

Kuipers, L. and Niederreiter, H. (1974). Uniform Distribution of Sequences,
John Wiley and Sons.

Linder, T., Lugosi, G., and Zeger, K. (1995). Fixed-Rate Universal Lossy Source
Coding and Rates of Convergence for Memoryless Sources, IEEE Infor-
mation Theory, pp. 665–676.

Louchard, G. and Szpankowski, W. (1995). Average Profile and Limiting Dis-
tribution for a Phrase Size in the Lempel-Ziv Parsing Algorithm, IEEE
Trans. Information Theory, pp. 478–488.

Luczak, T., Magner, A., and Szpankowski, W. (2019a). Asymmetry and struc-
tural information in preferential attachment graphs, Random Structures
&Algorithms, 55 (3), 696–718.

Luczak, T., Magner, A., and Szpankowski, W. (2019b). Compression of Pref-
erential Attachment Graphs, In IEEE International Symposium on Infor-
mation Theory.

MacMillan, B. (1956). Two inequalities implied by unique decipherability, IEEE
Transactions on Information Theory, 2, 115–116.

Magner, A., Janson, S., Kollias, G., and Szpankowski, W. (2014). On symme-
tries of uniform and preferential attachment graphs, Electronic Journal of
Combinatorics, 21.

Magner, A., Turowski, K., and Szpankowski, W. (2016). Lossless Compression
of Binary Trees with Correlated Vertex Names, In IEEE Intl. Symposium
on Information Theory.

Magner, A., Turowski, K., and Szpankowski, W. (2018). Lossless Compression of
Binary Trees with Correlated Vertex Names, IEEE Trans. Inform. Theory,
64, 6070–6080.

Mahmoud, H. (1992). Evolution of Random Search Trees. John Wiley and Sons.

Maneth, S. and Peternek, F. (2018). Grammar-based graph compression, Infor-
mation Systems, 76.

Manstetten, D. (1980). Tight Upper Bounds on the Redundancy of Huffman
Codes, IEEE Transactions on Information Theory, 38, 220–222.

Bibliography 443

Martin, A., Seroussi, G., andWeinberger, M. (2007). Type classes of tree models,
In IEEE Intl. Symposium on Information Theory.

Massey, J. (1983). The entropy of a rooted tree with probabilities, In Interna-
tional Symposium on Information Theory.

McMahan, H. B. and Streeter, M. J. (2012). Open problem: Better bounds
for online logistic regression, In Journal of Machine Learning Research-
Proceedings Track, 23.

Meir, A. and Moon, J. (1978). On the Altitude of Nodes in Random Trees,
Canadian J. Mathematics, 30, 997–1015.

Merhav, N. and Neuhoff, D. (1992). Variable-to-Fixed Length Codes Provided
Better Large deviations Performance Than Fixed-to-Variable Codes, IEEE
Trans. Information Theory, pp. 135–140.

Merhav, N. and Szpankowski, W. (2013). Average Redundancy of the Shannon
Code for Markov Sources, IEEE Trans. Information Theory, pp. 7186–
7193.

Merhave, N., Seroussi, G., and Weinberger, M. (2000). Optimal Prefix Codes
for Sources with Two-Sided Geometric Distributions, IEEE Transactions
on Information Theory, 46, 121–135.

Mezo, I. and Baricz, A. (2015). On the generalization of the LambertW function,
arXiv:1408.3999v2.

Mohri, M., Riley, M., and Suresh, A. T. (2015). Automata and graph compres-
sion, In IEEE International Symposium on Information Theory.

Mohri, M., Rostamizadeh, A., and Talwalker, A. (2018). Foudation of Machine
Learning. press.

Naor, M. (1990). Succinct representation of general unlabeled graphs, Discrete
Applied Mathematics, 28, 303–307.

Nath, P. (1975). On a Coding Theorem Connected with Rényi’s Entropy, In-
formation and Control, 29, 234–242.

Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo
methods, Vol. 63 of CBMS-NSF Reg. Conf. Ser. Appl. Math. Philadelphia,
PA: SIAM.

Noble, R. and Johnson, C. (1985). Matrix Analysis. Cambridge University Press,
Cambridge.

444 Bibliography

Odlyzko, A. (1995). Asymptotic Enumeration, Handbook of Cominatorics, pp.
1063–1229.

Orlitsky, A. and Santhanam, P. (2004). Speaking of Infinity, IEEE Trans.
Information Theory, pp. 2215–2230.

Orlitsky, A., Santhanam, P., and Zhang, J. (2004). Universal Compression of
Memoryless Sources over Unknown Alphabets, IEEE Trans. Information
Theory, pp. 1469–1481.

Ornstein, D. and Shields, P. (1990). Universal Almost Sure Data Compression,
Ann. Probab., pp. 441–452.

Park, G., Hwang, H., Nicodeme, P., and Szpankowski, W. (2009). Profile in
Tries, SIAM J. Computing, pp. 1821–1880.

Parker, D. S. (1980). Conditions for Optimiality of the Huffman Algorithm,
iSIAM J. Computing, 9, 470–489.

Pastor-Satorras, R., Smith, E., and Solé, R. V. (2003). Evolving protein inter-
action networks through gene duplication, Journal of Theoretical Biology,
222 (2), 199–210.

Peshkin, L. (2007). Structure induction by lossless graph compression, In Data
Compression Conference.

Rakhlin, A. and Sridharan, K. (2014). Online Nonparametric regression with
general loss function, In COLT.

Rakhlin, A. and Sridharan, K. (2015). Sequential probability assignment
with binary alphabets and large classes of experts, arXiv preprint
arXiv:1501.07340.

Rakhlin, A., Sridharan, K., and Tewari, A. (2010). Online learning: Random
averages, combinatorial parameters, and learnability,.

Remmert, R. (1983). Theory of Complex Functions. Springler, New York.

Rissanen, J. (1984a). Complexity of Strings in the Class of Markov Sources,
IEEE Trans. Information Theory, pp. 526–532.

Rissanen, J. (1984b). Universal Coding and Information and Prediction and
Estimation, IEEE Trans. Information Theory, pp. 629–636.

Rissanen, J. (1996). Fisher Information and Stochastic Complexity, IEEE Trans.
Information Theory, pp. 40–47.

Bibliography 445

Rissanen, J. (2003). Complexity and Information Data, Princeton University
Press.

Rissanen, J. (2007). Information and Complexity in Statistical Modeling.

Roura, S. (2001). Improved Master Theorems for Divide-and-Conquer Recur-
rences, Journal of the ACM, 48, 170–205.

Savari, S. (1997). Redundancy of the Lempel-Ziv Incremental Parsing Rule,
IEEE Trans. Information Theory, pp. 9–21.

Savari, S. and Gallager, R. (1997). Generalized Tunstall Codes for Sources with
Memory, IEEE Trans. Information Theory, pp. 658–668.

Savari, S. A. (1998). Variable-to-Fixed Length Codes for Predictable Sources,
Proc Ieee Data Compresion Conference, pp. 481–490.

Savari, S. A. (1999). Variable-to-Fixed Length Codes and the Conservation of
Enthropy, Trans. Information Theory, pp. 1612–1620.

Schachinger, W. (2001). Limiting distributions for the costs of partial match
retrievals in multidimensional tries, Random Structures and Algorithms,
17, 428–459.

Schalkwijk, J. (1972). An Algorithm for Source Coding, IEEE Information
Theory, pp. 395–399.

Schmidt, W. M. (1980). Diophantine Approximation. Springer.

Schmidt, W. M. (1991). Diophantine approximations and diophantine equations,
Vol. 1467 of Lect. Notes Math. Berlin etc.: Springer-Verlag.

Seroussi, G. (2006). On Universal Types, IEEE Transactions on Informatoin
Theory, pp. 171–189.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning:
From theory to algorithms. Cambridge university press.

Shamir, G. (2006a). On the MDL Principle for i.i.d. Sources With Large Alpha-
bets, IEEE Trans. Information Theory, pp. 1939–1955.

Shamir, G. (2006b). Universal lossless compression with unknown alphabets:
The average case, IEEE Trans. Information Theory, pp. 4915 – 4944.

Shamir, G. and Szpankowski, W. (2021). A General Lower Bound for Regret in
Logistic Regression, In ISIT.

446 Bibliography

Shamir, G., Tjalkens, T., and Willems, F. (2008). Low-Complexity Sequential
Probability Estimation and Universal Compression for Binary Sequences
with Constrained Distributions, In IEEE Intl. Symposium on Information
Theory.

Shamir, G. I. (2013). Universal source coding for monotonic and fast decaying
monotonic distributions, IEEE Trans. Inform. Theory, 59 (11), 7194–7211.

Shamir, G. I. (2020). Logistic Regression Regret: What’s the Catch?,.

Shamir, G. I. and Szpankowski, W. (2021). Low Complexity Approximate
Bayesian Logistic Regression for Sparse Online learning, In ArXiv:
http://arxiv.org/abs/2101.12113.

Shannon, C. (1948). A Mathematical Theory of Communication, Bell System
Technical Journal, pp. 379–423 623–656.

Shields, P. (1993). Universal Redundancy Rates Do Not Exist, IEEE Informa-
tion Theory, pp. 520–524.

Shields, P. (1996). The Ergodic Theory of Discrete Sample Path, American
Mathematical Society.

Shtarkov, Y. (1987). Universal Sequential Coding of Single Messages, Problems
of Information Transmission, pp. 175–186.

Solé, R., Pastor-Satorras, R., Smith, E., and Kepler, T. (2002). A model of
large-scale proteome evolution, Advances in Complex Systems, 5 (01), 43–
54.

Sprindzuk, V. G. (1979). Metric Theory of Diophantine Approximations. Wiley.

Stubley, P. (1994). On the Redundancy of Optimum Fixed-to=Variable Length
Codes, Proc. Data Compression Conference, pp. 90–97.

Szpankowski, W. (1998). On Asymptotics of Certain Recurrences Arising in
Universal Coding, roblems of Information Transmission, pp. 55–61.

Szpankowski, W. (2000). Asymptotic Redundancy of Huffman (and Other)
Block Codes, IEEE Trans. Information Theory, pp. 2434–2443.

Szpankowski, W. (2001). Average Case Analysis of Algorithms on Sequences.
Wiley New York, New York.

Szpankowski, W. (2008). A one-to-One Code and its Anti-redundancy, IEEE
Trans. Information Theory, pp. 4762–4766.

Bibliography 447

Szpankowski, W. (2012). Algorithms, Combinatorics, Information, and Beyond,
IEEE Information Theory Society Newsletter, 62, 5 – 20.

Szpankowski, W. and Verdu, S. (2011). Minimum Expected Length of Fixed-to-
Variable Lossless Compression without Prefix Constraints, IEEE Trans.
Information Theory, pp. 4017–4025.

Szpankowski, W. and Weinberger, M. (2012). Minimax Poitwise Redundancy
for Memoryless Models over Large Alphabets, IEEE Trans. Information
Theory, pp. 4094–4104.

Tjalkens, T. and Willems, F. (1992). A Universal Variable-to-Fixed Length
Source Code Based on Lawrence’s Algorithm, IEEE Trans. Information
Theory, pp. 247–253.

Tunstall, B. P. (1967). Synthesis of Noiseless Compression Codes, Ph.D. disser-
tation.

Turan, G. (1984). On the succinct representation of graphs, Discrete Applied
Mathematics, 8, 289–294.

Turowski, K. and Szpankowski, W. (2019). Towards
Degree Distribution of Duplication Graph Models,.
https://www.cs.purdue.edu/homes/spa/papers/random19.pdf.

Vaaler, J. D. (1985). Some extremal functions in Fourier analysis, Bull. Amer.
Math. Soc., pp. 183–216.

Visweswariah, K., Kulkurani, S., and Verdu, S. (2001). Universal Variable-
to-Fixed Length Source Codes, IEEE Trans. Information Theory, pp.
1461–1472.

Walfisz, A. (1963). Weylsche Exponentialsummen in der neueren Zahlentheorie,
Mathematische Forschungsberichte. 16. Berlin: VEB Deutscher Verlag der
Wissenschaften. 231 S. (1963).

Watts, D. and Strogatz, S. (1998). Collective dynamics of ‘small-world’ networks,
Nature, 393 (6684), 440–442.

Weinberger, M., Merhav, N., and Feder, M. (1994). Optimal Sequential Prob-
ability Assignments for Individual Sequences, IEEE Trans. Information
Theory, pp. 384–396.

Weinberger, M., Rissanen, J., and Feder, M. (1995). A Universal Finite Memory
Sources, IEEE Trans. Information Theory, pp. 643–652.

https://www.cs.purdue.edu/homes/spa/papers/random19.pdf

448 Bibliography

Whittle, P. (1955). Some Distribution and Moment Formulae for Markov Chain,
J. Roy. Stat. Soc., pp. 235–242.

Wong, R. (1989). Asymptotic Approximations of Integrals. Academic Press,
Boston.

Wright, E. M. (1997). The coefficients of certain power series, J. London Math-
ematical Society, 43, 1439–1465.

Wu, C., Heidari, M., Grama, A., and Szpankowski, W. (2022). Sequential vs
Fixed Design Regrets in Online Learning, In ISIT.

Wyner, A. and Ziv, J. (1989). Some Asymptotic Properties of the Entropy of a
Stationary Ergodic Data Source with Applications to Data Compression,
IEEE Trans. Information Theory, pp. 1250–1258.

Wyner, A. D. (1972a). An Upper Bound on the Entropy Series, Information
and Control, pp. 176–181.

Wyner, A. D. (1972b). An Upper Bound on the Entropy Series, Informiationa
nd Control, pp. 176–181.

Wyner, A. J. (1997). The Redundancy and Distribution of the Phrase Lengths
of the Fixed-Database Lempel-Ziv Algorithm, IEEE Trans. Information
Theory, pp. 1439–1465.

Xie, Q. and Barron, A. (1997). Minimax Redundancy for the Class of Memory-
less Souces, IEEE Trans. Information Theory, pp. 647–657.

Xie, Q. and Barron, A. (2000). Asymptotic Minimax Regret for Data Compres-
sion and Gambling and Prediction, IEEE Trans. Information Theory, pp.
431–445.

Yang, E. H. and Kieffer, J. (1998). On the Performance of Data Compression Al-
gorithms Based upon String Matching, IEEE Trans. Information Theory,
p. 44.

Zhang, J., Yang, E.-H., and Kieffer, J. C. (2014). A universal grammar-based
code for lossless compression of binary trees, IEEE Transactions on In-
formation Theory, 60 (3), 1373–1386.

Ziv, J. (1990). Variable-to-Fixed Length Codes are Better than Fixed-to-
Variable Length Codes for Markov Sources, IEEE Trans. Information
Theory, pp. 861–863.

Index

admissible graph, 177
analytic depoissonization, 394
analytic function, 383
automorphism, 175

Balance equation, 312
Barron lemmas, 7
Bernoulli numbers, 389
Beta function, 387
binary tree, 128

compression, 135
entropy, 133
generating function, 376
non-plane, 137
plane, 129

binomial distribution, 373
Boncelet code, 67

CLT, 82

Cauchy formula, 319, 384
Cauchy-Riemann equations, 384
central limit theorem, 373
characteristic function, 368, 371
Chebyshev inequality, 369
Chernoff inequality, 369
code, 3

fixed-to-variable, 3
generalized Shannon code, 34
Golomb, 19
Huffman, 16
Khodak VF code, 41
Khodak VV code, 87
non prefix, 111

prefix, 5
Shannon, 11
Tunstall code, 41
variable-to-fixed, 3
variable-to-variable, 3

combinatorial construction, 378, 380
combinatorial object, 376
complex integral, 384
conservation law, 312
conservation property, 312
continued fraction, 96
continued fraction expansion, 424

infinite, 425
periodic, 426

convergent, 426
convex hull, 245
covariance matrix, 373
cyclic sequences, 312

Data processing inequality, 9
depoissonization, 191
diophantine approximation, 423
Dirichlet approximation theorem, 89,

423
Dirichlet distribution, 242
Dirichlet series, 78, 389, 403
discrepancy, 418, 419

d-dimensional, 420
dispersion, 89
distribution function, 368
divide-and-conquer recurrence, 71

examples, 76

450 Index

duplication-divergence graph, 175

entropy, 4, 11, 20, 370
conditional, 4
Erdős-Rényi graph, 178
general plane tree, 162
increasing tree, 154
joint, 4
preferential attachment graph,
211
Rényi, 5
relative, 4

Erdős-Turán-Koksma inequality, 420
Erdős-Rényi graph, 174

entropy, 178
structural entropy, 179
SZIP algorithm, 183

Eulerian graph, 313
Eulerian path, 313
exponential distribution, 374
exponential sum, 265, 415

Fisher information, 241
fixed-to-variable code, 11
Fourier series, 12
frequency matrix, 312

Gamma function, 386
Hankel integral representation,
387

general plane tree, 161
entropy, 162

generalized Shannon code, 34
redundancy, 34

generating function, 354, 377
coefficient, 375
exponential, 375
ordinary, 375

geometry of numbers, 428
Minkowski’s first theorem, 428
Minkowski’s second theorem, 429

successive minima, 429
Golomb code, 19

redundancy, 20
graph

duplication-divergence, 175
Erdős-Rényi, 174
preferential attachment, 174

Hayman admissible function, 394
Hayman method, 393
holomorphic function, 383
Huffman code, 16

increasing tree, 151
algorithm, 158
entropy, 154

inequalities
data processing, 9
log sum, 9

integer partition, 349

Khinchin coding theorem, 6
Khinchin theorem, 427
Khodak VF code, 41, 42

bounded phrase length, 54
Khodak VV code, 87

algorithm, 96, 97
redundancy, 88

Koksma-Hlawka inequality, 264, 422
Kraft inequality, 6, 34–37, 89, 94,

102
Kullback–Leibler distance, 4

Lagrange inversion formula, 381, 390
Lambert function, 269, 389

generalized, 390
lattice, 428

fundamental domain, 428
lattice constant, 428

learnable information, 289
memoryless source, 290

logistic function, 259

Index 451

logistic regression, 253

Mahalanobis distance, 291
Markov inequality, 369
Markov source

redundancy, 331
redundancy of higher order, 336

Markov types, 310
non-cyclic, 325
number of sequences, 326
number of types, 314

maxmin regret, 239
Mellin transform, 45, 63, 190, 197,

301, 355, 401
inverse, 402

Mellin-Stieltjes transform, 402
Memoryless source

minimax redundancy, 261
memoryless source, 250, 251
minimax redundancy, 238

asymptotic average, 243
average, 238, 240, 279
large alphabet, 281

constrained distribution, 270, 272
large alphabet, 273
Markov Source, 336
Markov source, 331
memoryless source, 262, 267
renewal source, 350
worst case, 238

minimax regret, 239, 253
adversarial, 253
fixed design, 253

Minkowski second theorem, 107
mixing source, 258
moment generating function, 368
moments, 368
multinomial coefficient, 388
mutual information, 4

non-plane binary tree, 137

non-plane tree
entropy, 147

one-to-ne code
non-binary, 119

one-to-one code
binary, 112
redundancy, 114, 120

online learning, 253

permutation
generating function, 378

Poisson distribution, 373
Poisson transform, 395
polar singularity, 385, 397
power series, 383
preferential attachment graph, 174

algorithm, 226
asymmetry, 215
entropy, 205
structural entropy, 211

prefix code, 5
probability measure, 367
probability space, 367
Psi function, 259

Rényi entropy, 5
random variable, 367

Lp convergence, 372
almost sure convergence, 371
convergence in probability, 371
Gaussian, 372
independent, 369
normal, 372
weak convergence, 371

redundancy, 8, 12, 43, 70, 88, 113,
238
Tunstall code, 48
Boncelet code, 70
generalized Shannon code, 34
Huffman code, 17

452 Index

Khodak VF code, 48, 78
Khodak VV code, 88, 101
oneto-one code, 114
Shannon code, 13

regret, 239
logistic regression, 292

renewal process
minimax redundancy, 350

renewal sequence, 348
renewal source, 347
residue theorem, 385
Riccati differential equation, 140
Riemann zeta function, 356, 388

Saddle point method, 276
saddle point method, 61, 116, 390,

392
Hayman method, 355

sequences modulo 1, 13
Shannon code, 11

redundancy, 21
Shtarkov sum, 267
singularity analysis, 398
ssmall-world graph, 232
Stirling approximation formula, 392,

393
structural entropy, 173, 175

Tauberian theorem, 403
tree function, 354, 390
tree-function, 277
trie, 185
Tunstall code, 41, 52

uniform distribution modulo 1, 418

Vaaler, 416
Van der Corput method, 415
Van-der-Corput’s method, 265, 340
variable-to-fixed code, 41
variation of a function, 421

Weyl criterion, 38, 419
Wiener-Ikehara theorem, 403

	Preface
	Acknowledgments
	I KNOWN SOURCES
	Preliminaries
	Source Code and Entropy
	Prefix Codes and Their Properties
	Redundancy
	Exercises
	Bibliographical notes

	Shannon and Huffman FV Codes
	Average Redundancy for Memoryless Sources
	Shannon Code
	Huffman Codes
	Golomb Code

	Shannon Code Redundancy for Markov Sources
	Proof of Theorem 2.2.1
	Extension to Irreducible Aperiodic Markov Sources

	Maximal Redundancy for a Generalized Shannon Code
	Exercises
	Bibliographical notes

	Tunstall and Khodak VF Codes
	Variable-to-Fixed Codes
	Redundancy of the Khodak VF Code
	Proof of Theorem 3.2.4.

	Analysis of the Tunstall Code
	Back to Khodak Code with Bounded Phrase Length
	Proof of Theorem 3.4.1
	Proof of Theorem 3.4.2

	Exercises
	Bibliographical notes

	Divide-and-Conquer VF Codes
	Redundancy of Boncelet's Code
	Divide-and-Conquer Recurrence
	Examples
	Sketch of Proof of Theorem 4.2.1

	Central Limit Law for Boncelet's Algorithms
	Exercises
	Bibliographical notes

	Khodak VV Codes
	Variable-to-Variable Codes and Redundancy Rate
	Redundancy of the Khodak VV Code
	Explicit Construction of a Khodak VV Code
	Khodak's Redundancy for Almost All Sources
	Proof of Lemma 5.4.1

	Exercises
	Bibliographical notes

	Non Prefix One-to-One Codes
	Binary One-to-One Code
	Non-binary One-to-One Code
	Exercises
	Bibliographical notes

	Advanced Data Structures: Tree Compression
	Binary Trees
	Plane Binary Trees
	Entropy Evaluation
	A Compression Algorithm for Plane Binary Trees
	Non-Plane Binary Trees
	A Compression Algorithm for Non-Plane Binary Trees

	d-ary Plane Trees
	d-ary Increasing Trees
	Entropy for d-ary Plane Trees
	A Compression Algorithm for d-ary Plane Trees

	General Plane Trees
	Entropy of General Trees

	Exercises
	Bibliographical notes

	Graph and Structure Compression
	Graph Generation Models
	Graphs versus Structures
	Erdos-Rényi Graphs
	Structural Entropy
	An Algorithm and Its Analysis
	Proof of Theorem 8.3.3
	Proof of Lemma 8.3.10
	Proof of Lemma 8.3.8

	Preferential Attachment Graphs
	Graph Entropy H(G).
	Structural Entropy H(S(G))
	A Structural Compression Algorithm.
	Proof Lemma 8.4.15

	Exercises
	Bibliographical notes

	II UNIVERSAL CODES
	Minimax Redundancy and Regret
	Minimax Redundancy and Regret
	Operational Expressions for Minimax Redundancy
	Average Minimax Redundancy
	Maximal Minimax

	Average and Maximal Minimax Relationships
	Proof of Lemma 9.3.1
	Hypothesis (H1) for Memoryless Sources

	Regret for Online Learning
	Exercises
	Bibliographical notes

	Redundancy of Universal Memoryless Sources
	Maximal Minimax Redundancy for Finite Alphabet
	Coding Contribution: Asymptotics of Rn*(Q*)
	Unknown Statistics Contribution: Asymptotics of R"0365Rn*
	Redundancy for Constrained Distributions

	Maximal Minimax Redundancy for Large Alphabet
	Proof of Theorem 10.2.1

	Average Minimax Redundancy
	Average Minimax with Constrained Distribution
	Unconstrained Case for m=o(n)
	Proof of Theorem 10.3.1

	Learnable Information and Minimax Redundancy
	Minimax Regret for Online Logistic Regression
	Proof of Theorem 10.5.1
	Proof of Proposition 10.5.2

	Exercises
	Bibliographical notes

	Markov Types and Redundancy for Markov Sources
	Some Preliminaries
	Markov Types
	Number of Types
	Counting Non-Cyclic Markov Types.
	Number of Sequences of a Given Type

	Minimax Redundancy for Markov Sources
	Asymptotics of R"0365Rn*
	Higher Order Markov Sources
	Coding Contribution to the Redundancy

	Exercises
	Bibliographical notes

	Non-Markovian Sources: Redundancy of Renewal Processes
	Renewal Source
	Maximal Minimax Redundancy
	Proof of Lemma 12.2.1 and Theorem 12.2.3
	Average vs Maximal Redundancy

	Exercises
	Bibliographical notes

	III APPENDICES
	Probability
	Preliminaries
	Random Variables
	Convergence of random variables
	Bibliographical notes

	Generating Functions
	Generating Functions.
	Combinatorial Structures.
	Bibliographical notes

	Complex Asymptotics
	Analytic Functions
	Special Functions
	Asymptotic Methods: Saddle Point
	Analytic Depoissonization
	Polar and Algebraic Singularities
	Bibliographical notes

	Mellin Transform and Tauberian Theorems
	Mellin Transform
	Tauberian Theorems
	A Recurrence
	Bibliographical notes

	Exponential Sums and Uniform Distribution mod 1
	Exponential Sums
	Uniformly Distributed Sequences mod 1
	Bibliographical notes

	Diophantine Approximation
	Dirichlet's Approximation Theorem
	Continued Fractions
	Geometry of Numbers
	Bibliographical notes

	Bibliography
	Index

