Analytic Information Theory:
From Compression to Learning

Michael Drmota and Wojciech Szpankowski

November 18, 2022

To Gabi

vi

Contents

[L1 Source Code and Entropd o o oo

[L2_Prefix Codes and Their Propertied

viii Contents

3.2.1 Proof of Theorem 324 50
3.3 Analysis of the Tunstall Coddo v 52
3.4 Back to Khodak Code with Bounded Phrase Length 54
3.4.1 Proof of Theorem m 60
3.4.2 Proof of Theorem m 62

[4.1 Redundancy of Boncelet’s Codd 67
M%ﬂﬂ_ﬁmm@ 71
........................... 76

4.2.2 Sketch of Proof of Theoremm 78

i -to-Variable Codes and Redundancy Ratd 87

5.2 Redundancy of the Khodak VV Codd 88
e o1
’s Redundancy for Almost All Sources 101

5.4.1 Proof of Lemmam 104

71 Binary Treed o 128
[71.1 Plane Binary Trees . . . « . v v v v oo i 129
[71.2 Entropy Evaluatio 133
7.1.3 A Compression Algorithm for Plane Binary Treed 135
: - inary Treed 137
[7.1.5 A Compression Algorithm for Non-Plane Binary Treed . . 147

Contents ix

7.2 dearv Plane Treed o . o 151
721 d-arv Increasing Treed 151

8.3 0s-Rénvi Graphd 178
R.3.1 Structural Entropv 179

‘ i id .. 183
8.3.3 Proof of Theorem B33 185
8.3.4 Proof of Lemma ﬁ 200
835 Proofof LemmalR3® . . . o o o 204
Ww&mﬁd 205
R.4.1 Graph Entropy H(G) 206
[8.4.2 Structural Entropy H(S(G)Y o oo . 211

ion Algorithm) 226

8.4.4 Proof Lemmal4TIH 229

8.5 BXCICISEY .« o o 231

b'e Contents

10.5.1 Proof of Theorem IO5. MW 295
10.5.2 Proof of Proposition msa 299
10.6 EXOICISES « « o o oo e 304
| Bibliographical noted 307
[Chapter 11 Markov Types and Redundancy for Markov Sources 309
[11.1 Some Preliminaried 309
1.2 Markov Typed o o v o 310
[11.21 Number of Typed 314
i 325
326
331
331
11.3.2 H]gher Order Ma]:h)v Sourced 336
337
343
344

IChapter 12 Non-Markovian Sources: Redundancy of Renewal Processes347
347
350
353
362
363

Contents xi

[(C.1 Analytic Functiond 383
[C.2 Special Functiond o v 386
Asymptotic Methods: Saddle Pointl 390

4 _Ana Depoissonization Lo 0oL 394
Polar and Algebraic Singularitied 397
Bibliographical noted 400

[F.3 Geometry of Numberd o oo oo 428

[Bibliographicalnoted 429

449

Preface

Information and computation are two of the defining concepts in the modern era.
Shannon laid the foundation of information (theory), demonstrating that prob-
lems of communication and compression can be precisely modeled, formulated,
and analyzed. Turing, on the other hand, formalized the concept of computa-
tion, defined as the transformation of information by means of algorithms. In
this book we focus on information (or better learnable/ extractable information)
that we hope to present in its most compact form (i.e., shortest description). To
achieve this goal we need first to understand what information is, and then al-
gorithmically extract it in its most compact form (i.e., find efficient compression
algorithm).

Let us start with a general discussion of information. We adopt here a
definition of information as that which can be used to distinguish one set of data
samples from another. This process of “distinguishing” involves an “observer
function”, that maps a dataset to an observed object. The observer function in
traditional information theory may correspond to a channel. In a more general
setting, the observer function may be an arbitrary function, such as a learning
operator, formulated as an optimization procedure. For example, a given dataset
can be “observed” through a classifier (e.g., a logistic regression function). In
this case, two datasets have the same information content if they yield the same
classifier relative to the learning method that produces that classifier.

Another fundamental question of information theory and statistical inference
probes how much “useful or learnable information” one can actually extract from
a given data set. We would like to understand how much useful information,
structure, regularity, or summarizing properties are in database or a sequence.
We will argue in this book (see Section [[0.4] that learnable information is not
that much related to entropy, the beloved quantity of information theory, but
rather the excess of the shortest database description over the entropy which
is known under the name redundancy of regret. This book is devoted to study
redundancy via some powerful analytic tools that allow us to analyze it with the
utmost precision.

xiv Preface

Source Coding vel Data Compression. The basic problem of source
coding better known as (lossless) data compression is to find a (binary) code that
can be unambiguously recovered with the shortest possible description either on
average or for individual sequences. Thanks to Shannon’s work we know that on
average the number of bits per source symbol cannot be smaller than the source
entropy rate. There are many codes asymptotically achieving the entropy rate,
therefore one turns attention to redundancy. The average redundancy of a source
code is the amount by which the expected number of binary digits per source
symbol for that code exceeds entropy. One of the goals in designing source
coding algorithms is to minimize the redundancy. Redundancy can be viewed as
the rate of convergence to the entropy, and only those compression algorithms
that converge fast enough (with small redundancy) are of interest. In this book,
we discuss various classes of source coding and their corresponding redundancy
for known sources (part I) and some class of unknown sources (part II).

We can view data compression as a probability assignment. Then, source
coding and prediction are special cases of the online learning problems that we
briefly discuss in the second part of this book.

Lossless compression comes in three flavors: fixed-to-variable (FV) length
codes, variable-to-fixed (VF) length codes, and finally variable-to-variable (VV)
length codes. In FV codes a fixed length block (sequence) is mapped into a
variable length code. In VF codes a variable length block is represented by
a fixed length code, usually an entry to a dictionary. The VV codes include
the previous two families of codes and is the least studied among all data com-
pression schemes. Over the years there has been a resurgence of interest in
redundancy rate for fized-to-variable coding as seen in Dembo and Kontoyiannis
(1999, 2001, 2002), Jacquet and Szpankowski (1995), Kontoyiannis (1999, 2000,
2001), Linder, Lugosi, and Zeger (1995), Louchard and Szpankowski (1995),
Rissanen (1984a, 1996), Savari (1997, 1998), Savari and Gallager (1997), Shields
(1996), Shtarkov (1987), Szpankowski (1998, 2000), Weinberger, Merhav, and
Feder (1994), Wyner (1972a), Yang and Kieffer (1998), Xie and Barron (1997,
2000). Surprisingly there are only a handful of results for variable-to-fixed
codes as witnessed by Jelinek and Schneider (1972), Krichevsky and Trofimov
(1981), Merhav and Neuhoff (1992), Savari (1999), Savari and Gallager (1997),
Schalkwijk (1972), Tjalkens and Willems (1992), Visweswariah, Kulkurani, and
Verdu (2001), Ziv (1990). There is almost non-existing literature on variable-to-
variable codes with the exception of a few such as Fabris (1992), Freeman (1993),
Khodak (1972), Krichevsky and Trofimov (1981). While there is some work on
universal VF codes such as Tjalkens and Willems (1992), Visweswariah et al.
(2001), Ziv (1990), to the best of our knowledge redundancy for universal VF
and VV codes were not studied with the exception of some work of the Russian
school Krichevsky and Trofimov (1981), Krichevsky (1994).

Preface XV

Throughout this book, we shall study various intriguing trees describing
Huffman, Tunstall, Khodak and Boncelet codes and other advanced data struc-
tures such as graphs. These data structures are studied in this book by ana-
lytic techniques of analysis of algorithm as discussed in Flajolet and Sedgewick
(2008), Knuth (1997, 1998a, 1998b), Szpankowski (2001). The program of ap-
plying mathematical techniques from analytic combinatorics (that have been
successfully applied to analysis of algorithms) to problems of source coding and
in general to information theory lies at the crossroad of computer science and
information theory. It is also known as analytic information theory, e.g., see
Jacquet and Szpankowski (1999), Szpankowski (2012). We study source coding
algorithms using tools from the analysis of algorithms and analytic combina-
torics to discover precise and minute behavior of such code redundancy.

Let us mention that the interplay between information theory and computer
science/ machine learning dates back to the founding father of information the-
ory, Claude E. Shannon. His landmark paper “A Mathematical Theory of Com-
munication” is hailed as the foundation for information theory. Shannon also
worked on problems in computer science such as chess-playing machines and
computability of different Turing machines. Ever since Shannon’s work on both
information theory and computer science, the research at the interplay between
these two fields has continued and expanded in many exciting ways. In the late
1960s and early 1970s, there were tremendous interdisciplinary research activ-
ities, exemplified by the work of Kolmogorov, Chaitin, and Solomonoff, with
the aim of establishing algorithmic information theory. Motivated by approach-
ing Kolmogorov complexity algorithmically, A. Lempel (a computer scientist),
and J. Ziv (an information theorist) worked together in the late 1970s to de-
velop compression algorithms that are now widely referred to as Lempel-Ziv
algorithms. Analytic information theory is a continuation of these efforts. Fur-
thermore, recently one sees efforts to apply analytic combinatorics to learning
theory, in particular, online regret as witnessed by Jacquet, Shamir, and Sz-
pankowski (2021), Shamir and Szpankowski (2021, 2021).

Contents of the book

We now discuss in some details the content of the book. The preliminary
Chapter [introduces some notation and definitions. Chapter Bl is focused
on fixed-to-variable codes in which the encoder maps fixed length blocks of
source symbols into variable-length binary code strings. Two prominent fixed-
to-variable length coding algorithms are the Shannon code and the Huffman
code. We first discuss precise analyzes of Shannon code redundancy for mem-
oryless and Markov sources. We show that the average redundancy either con-
verges to an explicitly computable constant, as the block length increases, or it
exhibits a very erratic behavior fluctuating between 0 and 1. We also observe

xvi Preface

a similar behavior for the worst case or maximal redundancy. Then we move
to the Huffman code. Despite the fact that Huffman codes have been so well
known for so long, it was only relatively recently that their redundancy was
fully understood. In Abrahams (2001) Abrahams summarizes much of the vast
literature on fixed-to-variable length codes. Here, we present a precise analy-
sis as discussed in Szpankowski (2000) of the Huffman average redundancy for
memoryless sources. We show that the average redundancy either converges to
an explicitly computable constant, as the block length increases, or it exhibits
a very erratic behavior fluctuating between 0 and 1. Then we discuss similar
results for Markov sources.

In Chapter Bl we study variable-to-fixed codes. A VF encoder partitions the
source string into variable-length phrases that belong to a given dictionary D.
Often a dictionary is represented by a complete tree (i.e., a tree in which every
node has maximum degree), also known as the parsing tree. The code assigns a
fixed-length word to each dictionary entry. An important example of a variable-
to-fixed code is the Tunstall (1967) code. Savari and Gallager (1997) present an
analysis of the dominant term in the asymptotic expansion of the Tunstall code
redundancy. In this book we describe a precise analysis of the phrase length
(i.e., path from the root to a terminal node in the corresponding parsing tree)
for such a code and its average redundancy. We also discuss a variant of Tunstall
code known as VF Khodak code.

In the next Chapter @l we continue analyzing VF codes due to Boncelet
(1993) who used the divide-and-conquer principle to design a practical encod-
ing. Boncelet’s algorithm is computationally fast and its practicality stems from
the divide and conquer strategy: It splits the input (e.g., parsing tree) into
several smaller subproblems, solving each subproblem separately, and then knit-
ting together to solve the original problem. We use this occasion to present a
careful analysis of a divide-and conquer recurrence which is at foundation of sev-
eral divide-and-conquer algorithms such as heapsort, mergesort, discrete Fourier
transform, queues, sorting networks, compression algorithms, and so forth as dis-
cussed in depth in Flajolet and Sedgewick (2008), Knuth (1998a), Szpankowski
(2001). Here we follow Drmota and Szpankowski (2013).

In Chapter [Bl we consider variable-to-variable codes. A variable-to-variable
(VV) code is a concatenation of variable-to-fixed and fixed-to-variable codes.
A variable-to-variable length encoder consists of a parser and a string encoder.
The parser, as in VF codes, segments the source sequence into a concatenation
of phrases from a predetermined dictionary D. Next, the string encoder in a
variable-to-variable scheme takes the sequence of dictionary strings and maps
each one into its corresponding binary codeword of variable length. Aside from
the special cases where either the dictionary strings or the codewords have a
fixed length, very little is known about variable-to-variable length codes, even

Preface xvii

in the case of memoryless sources. Khodak (1972) described a VV scheme with
small average redundancy that decreases with the growth of phrase length. He
did not offer, however, an explicit VV code construction. We will remedy this
situation and follow Bugeaud, Drmota, and Szpankowski (2008) to give an ex-
plicitly construction of the VV code.

In the next Chapter [6] we discuss redundancy of one-to-one codes that are
not necessarily prefix or even uniquely decodable. Recall that non-prefix codes
are such codes which are not prefix free and do not satisfy Kraft’s inequality. In
particular, we analyze binary and non-binary one-to-one codes whose average
lengths are smaller than the source entropy in defiance of the Shannon lower
bound.

The last two Chapters [and [deal with more advanced data structures.
Information theory traditionally deals with “conventional data” almost exclu-
sively represented by sequences, be it textual data, image, or video data. Over
the last decade, repositories of various data have grown enormously. Most of the
available data is no longer in conventional form. Instead, biological data (e.g.,
gene expression data, protein interaction networks, phylogenetic trees), topo-
graphical maps (containing various information about temperature, pressure,
etc.), medical data (cerebral scans, mammogram, etc.), and social network data
archives are in the form of multimodal data structures, that is, multitype and
context dependent structures, often represented by trees and graphs. In Chap-
ter [we present compression algorithms and precise analysis of various trees:
from plane binary trees to non-plane general trees. In Chapter [§] we discuss
a harder problem, namely how many bits are needed to describe a graph. In
fact we focus on non-labelled graphs that we call structures. First we discuss
standard Erd6s-Rényi graphs and after designing a structural compression, we
precisely analyze it using analytic tools such as Mellin transform and analytic
depoissonization. Then we study dynamic graphs in which nodes and vertices
may be added or deleted. We focus on the preferential attachment graphs. We
first discuss in details its symmetry and then derive the graph and structural
entropies. Finally, we present asymptotically optimal structural compression for
such graphs.

The second part of the book is about universal compression and online learn-
ing in which the encoder receive a sequence generated by an unknown source
with potentially additional information known as feature data. We start with a
preliminary Chapter [@ in which we precisely define the worst case and average
minimax redundancy and regret. We then show that the worst case redundancy
can be studied through the so called Shtarkov sum while for the average minimax
redundancy we have to resort to Bayesian methods. Finally, we compare the
worst case and the average minimax redundancies and provide a constructive
method to estimate one from the other.

xviil Preface

The next long Chapter[I0ldeals with the worst case and minimax redundancy
for memoryless class of sources. We first observe that due to the integer nature
of the code length we need to split the redundancy into two parts called the
coding part and the non-integer part. The coding part is studied using tools
developed in Chapter The non-integer part depends on the statistics and
structure of the source. We first consider sources with finite alphabet as well as
constrained sources in which the symbol probability belongs to a bounded set.
For such sources we provide precise asymptotic expansion of the average and
maximal redundancy. We apply here special generating functions called tree-
function and singularity analysis. In the last part of the chapter we consider
sources over unbounded alphabet that may grow with the sequence length. We
also turn our attention to online minimax regret which can be viewed as source
coding with side information.

In Chapter [[1] we study minimax redundancy for Markov sources. We first
discuss Markov types counting the number of sequences of a given type and the
number of Markov type. This allows us to provide a precise asymptotics of the
minimax redundancy, the coding part and the non-coding part.

Finally, in the last Chapter 2] we consider non-Markovian sources with un-
bounded memory. For clarity we only discuss renewal sources introduced by
Csiszar and Shields (1996) and prove precise asymptotics for the worst case
minimax regret for renewal sources of order one. discuss the average minimax
regret, suggesting that they are not asymptotically equivalent.

We end the book with seven Appendixes. They cover probability, generating
functions, special functions as well as more esoteric topics like complex analysis,
Mellin transform, exponential sums, and diophantine approximations.

Acknowledgments

There is a long list of colleagues and friends from whom we benefited through
their encouragement and constructive comments. They have helped us in various
ways during our work on the analysis of algorithms and information theory. We
mention here only a few: Alberto Apostolico, Yongwook Choi, Luc Devroye,
Ananth Grama, H-K. Hwang, Svante Janson, Philippe Jacquet, John Kieffer,
Chuck Knessl, Yiannis Kontoyiannis, Tomasz Luczak, Abram Magner, Arun
Padakandal, Ralph Neininger, Yuriy Reznik, Gil Shamir, Bob Sedgewick, Gadiel
Seroussi, Krzysztof Turowski, Brigitte Vallée, Sergio Verdu, Mark Ward, Marcelo
Weinberger. We are particularly in debt to Philippe Jacquet for his friendship
and collaboration. This book could not happen without herculean job in analytic
combinatorics done by our late friend and mentor Philippe Flajolet. We thank
all of them from the bottom of our hearts.

This book has been written over the last five years, while we have been
traveling around the world carrying (electronically) numerous copies of various
drafts. We have received invaluable help from the staff and faculty of Institute of
Discrete Mathematics and Geometry of TU Wien and the Department of Com-
puter Sciences at Purdue University. The first author thanks Austrian Science
Fund (FWF) for their support. The second author is grateful to the National
Science Foundation, that has supported his work over the last 30 years. We
have also received support from institutions around the world that have hosted
us and our book: INRIA, LINCS, Paris; the Gdansk University of Technology,
Gdansk; Jagiellonian University, Krakéw; the University of Hawaii; and ETH,
Zurich. We thank them very much.

Finally, no big project like this one can be completed without help from our
families. We thank Heidemarie, Johanna, and Peter as well as Mariola, Lukasz,
Paulina, and Ollie from the bottom of our hearts. This book is dedicated to
Gabi who passed away too early.

XX

Acknowledgments

MICHAEL DRMOTA
WOJITEK SZPANKOWSKI

Part 1

KNOWN SOURCES

CHAPTER 1

Preliminaries

In this introductory chapter we introduce some notation, including definitions
and basic properties of source coding, entropy and redundancy. In particular, we
define the average redundancy and the worst case redundancy for prefix codes.

1.1. Source Code and Entropy

Let us start with some notation. Throughout, we write x = x1x2... for a
non-empty sequence of unspecified length over a finite alphabet A. We also
write 2 = z;...x; € AV~ for a consecutive subsequence of length j — i + 1.
Sometimes we use the abbreviation 2™ = 27. Finally, throughout we write Z, Q
and R for integer, rational, and real numbers respectively.

A (binary) code is a one-to-one (or injective) mapping

C:A—{0,1}*

from a finite alphabet A (the source) to the set {0,1}* of non empty binary
sequences (where we use the notation St = U2,.5%) One can extend this concept
to m-ary codes C : A — {0,1,...m—1}7, if needed. We write L(C,x) (or simply
L(z)) for the length of C'(z). Finally, a code is a prefix code if no code word is
a prefix of another code word.

In this book we mostly deal with a sequence of codes

Cp: A, —{0,1}F,

where A,, is a sequence of alphabets. In particular, if this sequence is of the form
A, = A", where A = {0,...,m — 1}, the code is called a fixed-to-variable (FV)
code discussed in Chapter @ If A, C AT and {0,1}* is replaced by {0, 1}* for
some M, we deal with variable-to-fixed (VF) codes; otherwise we have a general
variable-to-variable (VV) code. We discuss VF codes in Chapters B and] and
VV codes in Chapter

4 Chapter 1. Preliminaries

We denote by P a probability distribution on the alphabet A. The elements
of the source can be then interpreted as a random variable X with probability
distribution P(X = z) = P(z). Such a source is also called probabilistic source.
For example the code length L(X) is then a random variable, too, and the
expected code length E[L(X)] is an important parameter of a probabilistic source
code.

The source entropy of a probabilistic source is defined by

H(X):=H(P) = —E[log P(X)] = —= > _ P(x)log P(x
zeA
where we write log for the logarithm of unspecified base, however, throughout
usually the base is equal to 2 unless specified otherwise.

Finally, we introduce a few other concepts related to entropy that we will
use throughout the book.

Definition 1.1.1. (i) Let A and A’ be two finite alphabets and P a probability
distribution on A x A" and (X,Y’) a random vector with P(X =a,Y =d') =
P(a,a’). Then the Joint Entropy h(X,Y") is defined as

H(X,Y)=-E[log P(X,Y)] =~ > Y P(a,a)log P(a,d). (1.1)
acAa’c A’

(ii) The Conditional Entropy h(Y|X) is

H(Y|X) = -E[log P(Y|X)] = Y _ P(a)H(Y| X =a)
acA
=-Y_ Y P(a,a)log P(d|a), (1.2)
acAa’ €A’

where P(a'|a) = P(a,a’)/P(a) and P(a) =), c 4 Pla,a’).
(iii) The Relative Entropy or Kullback Leibler Distance between two distributions
P and @ defined on the same probability space (or finite alphabet A) is

D(PYIQ) =B [tow 33| = X Playton g (1.3
acA

where by convention 0log(0/Q) = 0 and Plog(P/0) = 0o

(iv) The Mutual Information of X and Y is the relative entropy between the joint
distribution of X and Y and the product distribution P(X)P(Y'), that is,

I(X;Y)E{logplz)((} Z Z P(a,d’)log](D() ()) (1.4)

acAa’ €A’

1.2. Prefix Codes and Their Properties 5

(v) Rényi's Entropy of order b (—oo < b < 0o, b # 0) is defined as

log E[P*(X 1
() =~ 2EROL Lo 3 P a), (1.5)
b b
acA
provided b # 0 is finite, and by
H-oo = min{P(i)}, (1.6)
Hog = max{P(i)} (1.7)

Observe that H(X) = lim,0 Hp(X).

If P, is a sequence of probability measures on A™ (for n > 1) we also define
the entropy rate h, if it exists, as

— n n Pn " 1 Pn n
h = lim M:hm > gncan Pn(a™)log P, (z)

n—00 n n—00 n

1.2. Prefix Codes and Their Properties

As discussed, a prefiz code is a code for which no codeword C(z) for z € A
is a prefix of another codeword. For such codes there is a mapping between
a code word C(z) and a path in a tree from the root to a terminal (external)
node (e.g., for a binary prefix code move to the left in the tree represents 0
and move to the right represents 1), as shown in Figure [T We also point out
that a prefix code and the corresponding path in a tree defines a lattice path in
the first quadrant also shown in Figure [Tl Here left L and right R traversals
in the binary tree corresponds to “left” or “up” movement in the lattice. If
some additional constraints are imposed on the prefix codes, this translates into
certain restrictions on the lattice path indicated as the shaded area in Figure[T.1l
(see Section [34] for some embellishments on this topic).

The prefix condition imposes some restrictions on the code length. This fact
is known as Kraft’s inequality discussed next.

Theorem 1.2.1. [Kraft’s Inequality] Let |A| = N. Then for any binary prefix

code C' we have
Z 9-L(Cm) < 1,
zeA
Conversely, if positive integers £1,0s, ..., 0N satisfy the inequality

N

doti< (1.8)

i=1

6 Chapter 1. Preliminaries

y
1

Figure 1.1. Lattice paths and binary trees

then there exists a prefix code with these codeword lengths.

Proof. This is an easy exercise on trees. Let {,.x be the maximum codeword
length. Observe that at level £;,,x some nodes are codewords, some are descen-
dants of codewords, and some are neither. Since the number of descendants at
level £max of a codeword located at level ¢; is 2¢max—%i we obtain

N
E 24max*4i < 2‘€max7
=1

which is the desired inequality. The converse part can also be proved, and the
reader is asked to prove in in Exercise [.71 [|

Using Kraft’s inequality we can now prove the first theorem of Shannon
(which was first established by Khinchin) that bounds from below the average
code length.

Theorem 1.2.2. Let C be a prefiz code on the alphabet A, P a probability
distribution on A, and X a random variable with P(X = a) = P(a). Then the
average code length E[L(C, X)] cannot be smaller than the entropy H(P), that
18,

E[L(C, X)] = H(P)

where the expectation is taken with respect to the distribution P and the loga-
rithms in the definition of H(P) is the binary logarithms.

Proof. Let K =Y 275 <1and L(z) := L(C,). Then by Kraft’s inequality
K < 1. Furthermore by using the inequality —log, z > 15 (1 — z) for z > 0 we

1.2. Prefix Codes and Their Properties 7

get (recall that log = log,)

E[L(C, X)] - H(P)]

> P(z)L(z) + »_ P(z)log P

z€A zeA
L(z) | g
=— Z P(z)log 7/ log K
zeA (x)
1 1 ~L()
2 5 (Z P(x) e 22) log K
€A €A
=—logK >0
as proposed. [|

Observe that above theorem implies the existence of at least one element
Z € A such that
L(z) > —log P(Z). (1.9)

Furthermore, we can complement Theorem [L2.2] by the following property.

Lemma 1.2.3 (Barron). Let C be a prefiz code and a > 0. Then
P(L(C,X) < —logP(X) —a) <277

Proof. We argue as follows (again log = log,):

P(L(X) < —log P(X) —a) = > P(x)
z: P(z)<2-L(@)—a

< Z 2—L(:c)—a

i P(z)<2—L(@)—a
<9 @ 22711(:6) < 270,’

where we have used Kraft’s inequality. |

What is the best prefix code with respect to code length? We are now
in a position to answer this question. As long as the expected code length is
concerned, one needs to solve the following constrained optimization problem

for:
H}Jm; L(z)P(z) subject to Z 2 <1. (1.10)

This optimization problem has an easy real valued solution through Lagrangian
multipliers, and one finds that the optimal code length is L(z) = —log P(x)

8 Chapter 1. Preliminaries

provided the integer character of the length is ignored (see Exercise [[8)). If it
is not ignored, then interesting things happen. First, the excess of the code
length over — log P(z) is called the redundancy and is discussed in this book,
in particular in Chapter 21 Furthermore, to minimize the redundancy, that is,
to make — log P(x) as close to an integer as possible, ingenious algorithms were
designed that we will discussed in Part I of this book, in particular in Chapter Gl

In this book we mostly deal with prefix codes with the exception of Chapter[d]
where we discuss non prefix one-to-one codes.

To start with, we just mention a very simple prefix code, namely the Shannon
code. It assigns to x € A a codeword with code length

L(x) = [~ log P(x)].

By Theorem [[L2.T] such a prefix code always exists, since

> 27T leEPET <N P(r) = 1.

z€A z€A

1.3. Redundancy

In general, one needs to round the length to an integer, thereby incurring some
cost. This cost is usually known under the name redundancy. More precisely,
redundancy is the excess of real code length over its ideal (optimal) code length
which is assumed to be —log P(x). There are several possible specification of
this general definition. For a known distribution P, that we assume throughout
Part I, the pointwise redundancy R () for a code C and the average redundancy

EC are defined as

RO(z) = L(C,x) + log P(x),
R =E[L(C, X)] — H(P)].

Furthermore, we define the mazimal or worst case redundancy R* as

R* = L(C log P(z)] = max R (z).
max[L(C, z) + log P(z)] = max R”(z)
The pointwise redundancy can be negative, but the average and worst case
redundancies cannot due to the Shannon theorem (Theorem [[Z2) and (T3,
respectively.

For example, for the Shannon code we have

0<R<R'= maic[(—logP(xﬂ +log P(x)] < 1.
Te

1.4. Exercises 9

1.4.

1.1

1.2

1.3

1.4

1.5

1.6

Exercises

Establish the following properties
H(X,Y) = H(X) + H(Y|X),
H(X1, Xa, .., Xp) = > H(Xi|Xi1,..., X1),
i=1
I(X;Y) = H(X) - H(X[Y) = H(Y) - HY|X),
I(X;X)=H(X).
Prove that the following inequalities hold

D(P[l|Q) = 0, (1.11)
I(X;Y) >0, (1.12)
H(X) > H(X]Y), (1.13)
H(X1,...,X,) < Zn:H(Xi), (1.14)

with equality in (LIJ)) if and only if P(a) = Q(a) for all a € A, equality
in (LI2) and (LI3) if and only if X and Y are independent, and equality
in (LI4) if and only if X1,..., X,, are independent.
Let Y = g(X) where g is a measurable function. Prove

o h(g(X)) < h(X);

e K(Y|X)=0.
Random variables X,Y, Z form a Markov chain in that order (denoted

by X - Y — Z) if the conditional distribution of Z depends on Y and
is independent of X, that is,

PX=x2Y=yZ=2=PX=x)P(Y =yl X =2)P(Z =z2|Y =y)
for all possible x,y, z. Prove the data processing inequality that states
I(X;Y) > I(X;2)

fX—-Y—Z
Consider a probability vector p = (p1,...,p,) such that >.I" p; = 1.

What probability distribution p minimizes the entropy H(p)?

(Log Sum Inequality) (i) Prove that for non-negative numbers aq, . .., a,
and by,...,b,

a; 10g — =2 ai | 108 =
i=1 i i=1 2im1 bi

10

1.7
1.8

Preliminaries

with equality if and only if §* = const.

(ii) Deduce form (i) that for py,...,p, and q1, . .., g, such that > ;" p; =
> ¢ =1 we have

;pi log% > ;pﬂogia
that is,
min sz log — sz 10g —

(iii) Show that the following (potential) extension of (ii) is not true

o foct] > E ot

where [z] is the smallest integer greater or equal z.
Prove the converse part of the Kraft’s inequality in Theorem [[2.1]

Consider the optimization problem (II0). Show that the optimal length
is L(z) = —log P(x).

Bibliographical notes

Information theory was born in 1948 when Shannon (1948) published his monu-
mental work where he presented three theorems: on source and channel coding
and distortion theory. There are many good books discussing information the-
ory. We recommend Gallager (1968) and Cover and Thomas (1991).

Lemma was first proved by Barron (1985). The worst case redundancy

was introduced by Shtarkov (1987).

CHAPTER 2

Shannon and Huffman FV Codes

We now turn our attention to fixed-to-variable length codes, in particular to
Shannon and Huffman codes. In this chapter, we assume that a known source
with distribution P generates a sequence z" := 27 = x1...x, of fixed length
n, that is, the alphabet A is of the form A, = A", where we write A =
{0,1,...,m — 1}, however, we mostly discuss the binary case (m = 2). The
code words C(2}) may be of a variable length. We first analyze the average
redundancy for Shannon and Huffman codes for memoryless sources. Then we
study the Shannon code redundancy for Markov sources. Finally, we consider a
code that optimizes the worst case redundancy which turns out to be a general-

ized Shannon code.

2.1. Average Redundancy for Memoryless Sources

We now assume that a sequence of fixed length n, denoted ™ = z} is generated
by a binary memoryless source with p being the probability of emitting 0, that
is, P(z™) = p*(1 — p)" %, where k = {1 < j < n:xz; = 0}]. We also write
q := 1—p. WE also obverse that the entropy rate h = —plogp—(1—p) log(1—p).

2.1.1. Shannon Code

Recall that the Shannon code is a prefix code that is as close as possible to the
optimal (real-valued) code word length —log P(2™). It assigns to z" € A,, =
{0,1}™ a codeword with code length

L(a") = [log P(a")].

As mentioned above, Kraft’s inequality (Theorem [[L271]) assures that such a code
always exists

12 Chapter 2. Shannon and Huffman FV Codes

For memoryless source, we have P(z") = p¥q"~* where k is the number of

Os in 2™. Hence, its average redundancy R, is then
=5 _\ k n—k kgn—k kgn—k
R, = -1 1
n kgo (k)p ¢" " ([~ log(p"q")] +logp"q") .

We rewrite it in a slightly different form. We denote by (z) = x — |z| the
fractional part of real number x. It is easy to see that

[—2] + 2= (z) (2.1)

for any real . Hence we have

i()k”kak—l—ﬁn) (2.2)

where

o = log (f;p) and B =1log(l—p). (2.3)

. . . . =5 .
We are interested in the asymptotic behavior of R, given by ([Z2)). In order
to handle the function (z) (that is periodic with period 1) at least heuristically
we start with a Fourier series of, namely with for x € R

1 >\ sin 2rhz
W=yl
h=1
1 2mihx i
- 5 + Z Cpe€ s Cp — ﬂ (24)
hez\{0}

Hereafter, we shall write

h#0 heZ\{0}
Observe that for © = 0 and « = 1 the right-hand and the left-hand sides of (2.4])
do not agree. These are the points of discontinuity of (x).

We now continue our try to evaluate the average redundancy Fi as expressed
in (Z2). Observe that its behavior depends on rationality or irrationality of a.
Indeed, if « is rational, say a = 1/2 and 8 = 0, then (ak + fn) takes only two
values (i.e., 0 or 1/2), and hence the average redundancy oscillates. This is not
the case when « is irrational.

2.1. Average Redundancy for Memoryless Sources 13

Let’s us first deal with the case when « is irrational. Using (24) in (22)) and
by neglecting the discontinuities of (x) we obtain

n
N\ &k n—k 2mih(ak+pBn)
+ E (k)p q E che
k=0 h#0

+ Z che27rih6n (p€27rima + q)n . (25)
h+£0

R

N~ N

If o is irrational then |[pe?™™® + g| < 1 which implies that (pe?"™® +¢)" —
0. Hence, it is very likely that the infinite sum Zh;éo is o(1) as n — o0, or

equivalently Ei — % as n — oo. Unfortunately, it seems to be cumbersome to
prove this fact directly from the representation (23] since the Fourier series does
not converge absolutely. However, we can deal with the sum (22]) rigorously by
applying the theory of sequences distributed modulo 1 (see Appendix [E]) and
obtain the following result.

—5
Theorem 2.1.1. Let R,, denote the average redundancy of the Shannon code
over a binary memoryless source A, = {0,1}" of length n with parameter p €

(0,1). If p= %, then Ei =0. Ifp# % and o and B are defined in (Z3), then
asn — oo

75 3 +o(1) if irrational
3+ ar ((MnB) — 3) +0(p") ifa={;, ged(N,M)=1

where p < 1.

The rest of this section is devoted to the proof of Theorem 2.T.1l We start
with the irrational case. We set

n _
Pk = (k)pkq" k.

and observe that Y, p,x = (p + ¢)" = 1. We then apply Theorem [E2.1] from
Appendix [E] (see also Exercises 2] and [Z.2)) which says that the condition

n

n n— mih(a n
S (§)ptartemesson oo 26)
k=0

(for all non-zero integers h) implies that

n 1
T];) <Z>pkqn—kf<ak+ﬁn> /O F() dy

14 Chapter 2. Shannon and Huffman FV Codes

for all Riemann-integrable functions f With period 1. We will apply this property
for f(y) = (y) with integral fo ydy = 1
We just have to check the condltlon (m) By the binomial theorem we have

Z (k) pFgnketmik(ak+pn) _ o2mihfn (pe%iha + q)”) (2.7)
k=0

As already observed above we have |pe2”ho‘ + ¢q| < 1if « is irrational. Thus,
([20)) is satisfied for all non-zero integers h. Consequently Theorem [ZI.1] holds
if « is irrational.

Now, we turn our attention to the case when « is rational. Here we use a
discrete Fourier analysis, see also Lemma We assume o« = M/N where
M, N are non-zero integers such that gcd(N,M) = 1. (If &« = 0 — which is

equivalent to p = % — we trivially have Rn = 0.) We proceed as follows

(o i+ o) = 2o (g0

Z P,k <£% + ﬂn>

k=¢ mod M

Z Pk <% +Bn>

0 k=¢ mod M

~ <% + ﬂn> 3 <Z>pk(1 —p)nk, (2.8)

l= k=¢ mod M

R =

|
i

I
i

=

14

SII

e}

To evaluate the last sum we need the following simple lemma. It asserts
that if one picks every Mth term of the binomial distribution, then the total
probability of this sample is “well” approximated by 1/M.

Lemma 2.1.2. For fized M, there exist p <1 such that

S ()pra-prt = g0 =

k=¢ mod M

forall 0 < M.

Proof. Let wy, = e2™ /M for . =0,1,..., M — 1 be the Mth root of unity. It is

well known that M
Il ' . [1lifMn
M l;) “i = {0 otherwise. (2.10)

2.1. Average Redundancy for Memoryless Sources 15

where M|n means that M divides n. In view of this, we can write
n

M-1
Z <Z>pkan _ Z <Z>pkan% Z:O wh
=

k=¢ mod M k=0

1+ (pw1 +q)"wi“ + -+ + (pwrr—1 + @) "wyf

M
1
=—+0(p" 2.11
L opm, e.11)
since |(pw, + q)| = p? + ¢* + 2pgcos(2mr/M) < 1 for r # 0. This proves the
lemma. []

By (Z8) we thus have
| M

=S 4 n
R, =— 2 <—”+ﬁn>+0(p).
Now set

g(y)%Mil<%+y>-
+

Then by definition we have g (y
0<y< % In this case we obtain

<

g(y). So let us assume first that

=0
_ L MM
T 2 Y
11
3o Y

In general we find
1

1 1 1 /1
9(y) =g (M<My>) =5 s taMyY=5-3 (5 - <My>) -
Summing up we arrive at
R =527 (5 - @ean)) + 00"

in the rational case. This completes the proof of Theorem ZT.1l

16 Chapter 2. Shannon and Huffman FV Codes

2.1.2. Huffman Codes

It is known that the following optimization problem over all prefix codes C'
R = min E[L(C, X) + log P(X)]

is solved by the Huffman code. Recall that the Huffman code is a recursive
algorithm built over the associated Huffman tree, in which the two nodes with
lowest probabilities are combined into a new node whose probability is the sum
of the probabilities of its two children.

We assume again that P is a memoryless source on A, = {0,1}" with pa-
rameter p, where we also assume that p < %, and we continue to write

for the probability of generating a binary sequence consisting of k zeros and
n — k ones. The expected code length E[L,] of the Huffman code is

E[Ln] = Z
k=

0

(3)z, (2.12)

where)
L(k) =) Sl
kJ jeSy

with Sy, representing the set of all inputs having probability p*¢"~*, and I; being
the length of the jth code in Sk. By the sibling property of Gallager (1978) we
know that code lengths in Sy, are either equal to [(k) or I(k)+ 1 for some integer
(k). If ng denotes the number of code words in Sy, that are equal to (k) + 1,
then

Clearly, I(k) = |—log(p*q"~%)|. Stubley (1994) analyzed carefully n; and
showed

n
—H n\ j on . .
R, =) <k>qu " (log(p"q" ") + [~ log(p"q" ")) (2.13)
n—1
+2 (n)pkq”_k (1 _ o(log(p*q")+~ log(p"q"”“)J)> +o(1).
k=0

In Exercise [Z3] we ask the reader to establish (ZI3).

2.1. Average Redundancy for Memoryless Sources 17

As before, using (z) = x — || we find
log(p"q" %) + [~ log(p"q")] = —{ak + Bn)

where for convenience we restate (cf. (Z3)

a = log (%) , B =log (ﬁ) . (2.14)

Thus we arrive at the following

" - n —ko—{(a n
=2- Z() g (ak+ Bn) —2) (kz)pkq” Falek i 1o(1). (2.15)
k=0

This is our starting formula for the average Huffman redundancy that can be
asymptotically evaluated. In the rest of this section we prove the following
result.

Theorem 2.1.3 (W. Szpankowski, 2000). Consider the Huffman block code of
length n over a binary memoryless source. Suppose that 0 < p < % and define
a and by (Z17). Then as n — oo the average redundancy is given by

3 L4 o(1) ~ 0.057304, agQ

§ = (B0) ~ 3) — g2 O 4 of1),a =

where Q is the set of rational numbers, and N, M are relatively prime integers,
that is, ged(N, M) = 1.

Before we present a proof, we plot in Figure] the average redundancy
Ef presented in (ZIH) as a function of n for two values of a, one irrational
(Figure 20Ka)) and one rational (Figure 2(b)). The two modes of behavior are
clearly visible. The function in Figure 2I(a) converges to a constant (= 0.057)
for large n as predicted by Theorem 2:1.3] while the curve in Figure ZXI(b) is
quite erratic.

In the rational case, we observe that the redundancy swings from almost zero
to about 0.086. In order to be more precise (and reproving the upper bound of

Gallager (1978)) we set & = (Mnf) and observe that Rf can only be maximal
if M = 1. In this case we, thus, have

Rl(z) ~2—z— 277! (2.16)

18 Chapter 2. Shannon and Huffman FV Codes

o h ﬂ wol | {1 1

007 ‘] |
F] \
“ \H o.os‘\\\\“‘”“\\\‘

0.06 M‘ \ MM‘H‘\H\ \ﬁ\ M“ “‘
-

‘M “ U ‘ | [o
nh “ ERRERR

30 40 50 60 0 10 20 30 40 50 60 70

(a) (b)

Figure 2.1. The average redundancy of Huffman codes (ZI3) versus
block size n for: (a) irrational o = log((1 — p)/p) with p = 1/m; (b)
rational o = log((1 — p)/p) with p = 1/9.

which satisfies

1+Inln2

_ _9—z+1 _ - _
0213?12 x—2 1 o log(2(loge)/e) = 0.08607 ... (2.17)

and corresponds to the Gallager upper bound. We formulate it as a corollary.

Corollary 2.1.4. Let Rf denote the average redundancy of a Huffman block
code of length n over a binary memoryless source. Then

_ 1+Inln2
limsup R < 1— ~ - 22 o6 (2(loge) fe) ~ 0.08607 ..., (2.18)

n—00 In2

Proof of Theorem [. To establish Theorem 2.1.3] we must only deal
with the asymptotics of the followmg sum

- n n— —({x n
T,=> (k>pkq ko~ ({ak+fn), (2.19)

k=0

As above we consider the rational and irrational case. For the irrational case,
we simply use Theorem [E:2.1] from Appendix [El with f(¢) = 27 and 6,, = 8n;
recall that the exponential sums (Z7)) tend to 0 if « is irrational.

2.1. Average Redundancy for Memoryless Sources 19

For the rational case, we can use the next Lemma ETH (with f(y) = 2~®))
from which Theorem 2.1.3] follows. The proof follows the footsteps of our deriva-
tions in (Z8). We ask the reader to prove it in Exercise [Z41

SE

Lemma 2.1.5. Let 0 < p <1 be a fized real number and suppose that o =
is a rational number with gcd(N, M) = 1. Then, for every bounded functi
f:[0,1] = R we have

=)

n

n M-1
S (1)t ortatesn = 3 5 (57 57)
+ O(p")

uniformly for all y € R and some p < 1.

2.1.3. Golomb Code

In this section we give a short account on Golomb’s code that can be viewed

as a special case of Huffman’s code adapted to infinite alphabets. Our analysis

in this section will differ from other sections since we perform asymptotics not

with regard to the block length but rather at the limit of a code parameter.
More precisely, let

P(i)=(1—-0)0", i€ Z>o, (2.20)

be the probability assignment on the set of nonnegative integers where 0 < § < 1.
Golomb (1996) proposed the following optimal binary code. Let ¢ be an integer
such that

¢
0" = 5
which means that we restrict on 6 that are roots of 1/2. In Golomb’s code an
integer 7 is represented as ¢ = ¢j + r, where j = [i/¢] and 0 < r < £. We
encode j by a unary code (i.e., j zeros followed by a one) while r is encoded by
a Shannon code (for a uniform distribution on ¢ symbols).
In Exercise we ask the reader to show that the average Golomb’s code
length E[L] is

(2.21)

olloge]+1

E[L] = [log (] + (2.22)

gt —1 -
Roughly speaking, the first term above corresponds to the Shannon code while
. =G
the second term represents the unary coding. The average redundancy R, of
the Golomb code becomes

RY = E[L] - H(0) (2.23)

20 Chapter 2. Shannon and Huffman FV Codes

A ‘H 7/ N\
oa2 H I [‘ / \\
| \
\ \

0,031

0020

‘ ‘ | | | /
0028 ‘ | | |
0027

‘w | \
noze““\ | | \ \

Figure 2.2. The average redundancy of Golomb codes versus £.

where the entropy H(6) of the geometric distribution (220) can be computed
as

H(9) = —log(1—0) — log 6. (2.24)

1-6

. . -G .
We will estimate R, as{ — oo or equivalently as 6 — 1.
The result on the behavior of the average redundancy is presented next.
—G
Observe that in this case, there is only the oscillatory mode behavior of R, as
illustrated in Figure

Theorem 2.1.6. Consider the Golomb code over the mon-negative integers
generated by a geometric source Geometric(0) such that there exists an inte-

ger ¢ with §° = % Then as £ — oo, so that 0 — 1,

G 217<10gé

— 1
R, =1—{logl) +4-2~ . log(loge) —loge — — + O(¢™2). (2.25)

2¢

Furthermore, the average redundancy Ef oscillates around 2—log(log e)—loge =
0.028538562 . . . with

lim inf Ry = 0.0251005712.. ., (2.26)

—00

limsup Ry = 0.0327344112.. .. (2.27)
{— 00

Proof. We assume that ¢ = 1/2 as in ([222), and estimate the entropy H (6) (cf.
@24)) as ¢ — oo (i.e, # = 271/* — 1). Using the following Taylor expansion

log(1 - 27) = log(In(2)) + log(a) — 1o + 1)

2 3 2.2
5 24x+0(x), x—0, (2.28)

2.2. Shannon Code Redundancy for Markov Sources 21

we arrive at 1

H(0) = log¢ + log(loge) + o7 + o(e=2). (2.29)

The average redundancy Rec = E[L] — H(0), where E[L] is given by ([222),
follows after some simple algebra

log ¢)

1
—log(loge) — loge — Y + 0% (2.30)

as £ — oo or § — 1. This proves ([228)) of Theorem [ZT.61 We should also point

. . . =G
out that using the above approach we can get a full asymptotic expansion of R,
as { — oo.

To compute the magnitude of the oscillation, let us define C' = log(loge) +
loge =1.971461414 We set

RY =1 (logt) +4-272""

g@)=1-z+4.272"" _C (2.31)
for 0 < z < 1. (Observe that g(z) is asymptotically equal to Rf when
x = (logf).) One derives that g(x) achieves its maximum value g(z1) =
max{g(z)} = .327344112 ... at

—21n(2)
1) 2.32
o108 (W(0.25 1oge)) (2.32)

where W (z) is the Lambert-W function defined as W (z)e"V(*) = z (see Corless,
Gonnet, Hare, Jeffrey, and Knuth (1996) or Appendix[C]). Similarly, the function
g(x) achieves its minimum value g(z2) := min{g(z)} = .251005712... at

_ —21n(2)
vz = log (W(l, —0.25 1oge)) (2:33)

where W(—1,z) is a branch of the Lambert-W function (see Appendix [C]). It
is also easy to see that the average redundancy oscillates around ¢(0) = g(1) =
2 — C' = .0285385862 This proves Theorem 2.T.0l |

We should remark that since (logn) is dense in (0, 1) it follows by (Z30) that

the average redundancy R, asymptotically oscillates within a certain interval
without reaching a limit, as observed in Figure

2.2. Shannon Code Redundancy for Markov Sources

In this section we study the average redundancy of the Shannon code for Markov
sources, that is, the probability distribution on the alphabet A,, = {0,1,...,m—

22 Chapter 2. Shannon and Huffman FV Codes

1}™ is given by a first order Markov process X7, Xo,.... The transition matrix
will be denoted by P = (p(j|kz))?1k_:10 and the initial state probabilities by py =
P(X:=k)(k=0,1,...,m —1). Furthermore we write m; (k=0,1...,m —1)
for the stationary state probabilities. Thus, the probability of a given source

string 2" = (z1,...,2,) € A, = A", under the given Markov source, is
n
P(z") = pa, Hp($t|$t—1)- (2.34)
t=2

The average redundancy of the Shannon code is then

R, =E[[-1log P(X")] +log P(X™)] = E[(log P(X™))]. (2.35)
Our main result in this section is the following theorem.

Theorem 2.2.1. Consider the Shannon code of block length n for a Markov
source with initial state probabilities po,...,pm—_1 and a positive transition ma-
trix P. Define

p(k|0)p(jlk)

Then the average redundancy R, is characterized as follows:
(a) If not all o, are rational, then

ozjkzlog[}, j,ke{0,1,...,m—1}. (2.36)

— 1
Ry =5 +o(l). (2.37)
(b) If all cvjy, are rational, then for every j, k € {0,...,m — 1}, let

Gjk(n) = M[(n — 1)log p(0]0) — log p(;j|0) + log p(k|0) + log p;], (2.38)
and iy
o =3 (1-7) * 37 IPWELAD (2.3)

where M is the smallest common integer multiple of the denominators of {1},
when each one of these numbers is represented as a ratio between two relatively
prime integers. Then

R =, + 0(p") (2.40)

for some p < 1.

2.2. Shannon Code Redundancy for Markov Sources 23

Before we prove Theorem 221 we give some comments. Theorem [2.2.]
tells us that, as in the memoryless case, R,, has two modes of behavior. In the
convergent mode, which happens when at least one a;y, is irrational, R, —1/2.
In the oscillatory mode, which happens when all {c } are rational, R, oscillates
and it asymptotically coincides with €2,,.

The expression of the oscillatory case, €1,,, is not quite intuitive at first glance,
therefore we make an attempt to give some quick insight which captures the
essence of the main points. The arguments here are informal and non-rigorous
(see Section [ZZT] for a rigorous proof). The Fourier series expansion of the

periodic function (u) is given by

+ Z cpemih, (2.41)
h7£0

N =

(u) =

The important fact about the coefficients ¢;, = i/(2mh) is that they are inversely
proportional to h, so that for every two integers k and h, c¢p.p = cn/k. Now,
when computing R,, = E[(log P(X™))], let us take the liberty of exchanging the
order between the expectation and the summation, that is,

Ry =5+ > ep B[t los P, (2.42)
h#£0
It turns out that under the conditions of the oscillatory mode, E[e2™1og P(X™)]
tends to zero as n — oo for all h, except for multiples of M, namely, h = {M,
| =41,£2,.... Thus, for large n, we have

+ Z CeME[GQWMM log P(X”)]
£#0

1 : n
+ M Z CgE[€27”2M10g P(X)]
£#0

+ 57 |Blor10g PO - 5

Q

N~ N

R,

2

N~ N~

1 1 n
<1 M> + ME[(MlogP(X)N (2.43)

Now, consider the set of all 2™ that begin from state 1 = j and end at
state x, = k. Their total probability is about p;m; for large n since X, is
almost independent of X;. It turns out that all these sequences have exactly
the same value of (M log P(z™)), which is exactly ((;x(n)) (or, in other words,
(Mlog P(z™)) = (4,2, (n)) independently of xs,...,x,-1) and this explains

24 Chapter 2. Shannon and Huffman FV Codes

the expression of €,. The reason for this property of (M log P(x™)) is the
rationality conditions (M -) = 0, u,v € {0,1,...,m — 1}, which imply that
(M logp(zil:—1)) = (M loglp(z: 1p(0]0)/p(e 1]0)]), and so,

n
(M log P(z™)) = (M log p,) + Z Mlog p(xi|zi—1)) mod 1
t=2

= (Mlogp;) + Y _ (Mlog[p(x:1)p(0]0)/p(x¢—1|0)]) mod 1

which, thanks to the telescopic summation, is easily seen to coincide with the
fractional part of (jx(n), and of course, ((;x(n)) depends on (;x(n) only via its
fractional part.

We will illustrate Theorem 2.2.1] on one example.

Example 2.2.2. Consider a Markov source for which the rows of P are all
permutations of the first row, which is p = (po,...,Pm-1). Now, assuming
that a; = log(p1/p;) are all rational, let M be the least common multiple of
their denominators (i.e., the common denominator) when each one of them is
expressed as a ratio between two relatively prime integers. Then,

(Gik(n)) = (M(n — 1)log p(0/0) — M log p(j|0) + M log p(k|0)
+M logp;)
= (M(n —1)logpo — Mlogp; + M logpr + M logp;)
= (M(n —1)logpo + M log p)
= (Mnlogpy — M logpo + M log pi)
= (Mnlogpo),

where in the last step, we have used the fact that (M logpo — M logpy) is an
integer and that (u) is a periodic function with period 1. We have

Rn§<1i>+ S G + o)

M) M
j=0 k=0
1 1 1 m—1m—1
=3 <1 — M) + 17 pjme(nM logpr) + o(1)
j=0 k=0
1 1 1
=3 1- AR M(nM log po) + o(1). (2.44)

If not all v are rational, then R,, — 1/2, as predicted by Theorem ZZ11

2.2. Shannon Code Redundancy for Markov Sources 25

To see why the conditions of Theorem 2.2T]lead to the rationality condition
herein, let us denote

ujk = (hlog[p(j0)/p(k|0)]),
vir = (hlog[p(jls)/p(ilk)]) -

Then, the conditions of Theorem 221 mean that w,; + vjx = 0 and for all
pairs j and k. Therefore, the number of constraints here is of the order of m?2,
whereas the number of degrees of freedom that generate these variables, in this
example, is m — 1, i,e., the variables (hlog(p1/p;)), j = 1,2,...,m — 1. Thus,
we can think of this as an overdetermined set of homogeneous linear equations
whose only solution is zero, meaning that all (hlog(p1/p;)), j =1,2,...,m —1,
vanish. Note that the memoryless source is a special case of this example, where
the rows of P are all identical to the first row, (po,...,pm—1). Indeed, (244
coincides with the expression of the memoryless case as discussed in the first
subsection of this chapter.

2.2.1. Proof of Theorem [2.2.7]

The main idea behind the analysis of R,, = E[(log P(X™))] is to approximate
the periodic function (-) by a sequence of trigonometric polynomials, and then to
commute the expectation with the summation and analyze the various terms of
the series. Actually this is the same idea that is used in Appendix [Efor the proof
of Lemma[E.1.3l The main Fourier analytic tool that we use is an approximation
lemma by Vaaler (1985) (see also Theorem [E-1.2in Appendix [E]). The following
analysis is very close to the proof of Lemma [E.1.3
Define the functions ¢z and QE as

01 (y) = Cu(y) — Du(y) (2.45)

and
01 (y) = Cu(y) + Du(y), (2.46)

where the functions Cy(y) and Dy (y) are given as finite Fourier series

Culy) = Y ealH)™, Dpuly) = Y cu(H)e™

|h|<H |h|<H

for which the coefficients satisfy

1
CO(O&,H):§, |Ch(H)|<

26 Chapter 2. Shannon and Huffman FV Codes

As stated in Theorem [E.1.2in Appendix [E] the functions o}, and g}, satisfy

on (W) < () < ofz(y).

We now proceed to establish upper and lower bounds for R,,, however, we
only present details for the lower bound. We have

R, = E[(log P(X"))]
> E [0 (log P(X™))]

— 1 + Ch(H)E |:627rihlogP(X")i|
2 1<|h|<H
—do— Y dy(H)E [e%ihlogf’(x")} . (2.47)
1<|h|<H

We next show that in the irrational case we have

lim E {emhIOgP(X")} =0 (2.48)

n—oo

for all integers h # 0. Clearly, if (Z248]) holds then it follows that

for all integers H > 1 and thus liminf,, . R, > % We ask in Exercise to
complete the derivation and establish an upper bound. Consequently we have
R, =1 +0(1) (as n — 00) in the irrational case.

In order to show (248) in the irrational case, we define the m x m complex
matrix A, whose entries are

ajk(h) = p(klj) exp [2mihlogp(klj)], j,k=0,....m—1. (2.49)
We also define the m—dimensional column vectors
cn = (po exp[2mihlog po)], . . ., pm—1 exp[2mih log pm—_1])", (2.50)

and 1 = (1,1,...,1)T, where the superscript 7" denotes vector/matrix transpo-
sition. Then, according to ([234)) it follows that

E |:e27rihlog P(X™)| C,}I;Azill- (251)

Let 15, and r; 5, be, respectively, the left eigenvector and the right eigenvector
pertaining to the eigenvalue X;, (j = 0,1,...,m — 1) of the matrix A,. Here,

2.2. Shannon Code Redundancy for Markov Sources 27

we index the eigenvalues of A; according to a non—increasing order of their
modulus, that is,
ALl 2 [A2nl = - 2> [Amnl- (2.52)

Since P is a stochastic matrix (so, its maximum modulus eigenvalue is 1) and its
elements are the absolute values of the corresponding elements of Ay, it follows
from from Theorem 8.4.5 of Noble and Johnson (1985) that |A1 x| < 1 (and
hence |Aj 5| <1forall j=0,1,...,m—1). Also, the systems of left— and right
eigenvectors form a bi-orthogonal system, i.e., lihrk,h =0,5,k=0,1,...,m—1,
Jj # k. We scale these vectors such that I?jhrj,h =1forall j =0,1,...,m —1.
For a quadratic matrix A the spectral radius is denoted by p(A).
By the spectral representation of matrices, we have

m—1
Apr = A L, (2.53)
j=0
and so,
m—1
A=Y N T el (2.54)
§=0

Now the following lemma, that appears in Noble and Johnson (1985) (with minor
modifications in its phrasing), is useful to show that |\ | < 1 in the irrational
case.

Lemma 2.2.3 (see Theorem 8.4.5, Noble and Johnson (1985)). Let F' = {fi;}
and G = {gx;j} be two m x m matrices. Assume that F is a real, non-negative
and irreducible matriz, G is a complex matriz, and fr; > |gk;| for all k,j €
{0,1,...,m—1}. Then, p(G) > p(F) with equality if and only if there exist real
numbers s, and wo, ..., Wm—1 such that G = €™ DF D™, where

. 2mwiw 2T LWy —
D:dlag(e °...,e 1).

The proof of the necessity of the condition G = e*"**DFD~! appears in
Noble and Johnson (1985). The sufficiency is obvious since the matrix DF D!
is similar to F' and hence has the same set of eigenvalues.

We wish to apply Lemma [2.2.3]in order to distinguish between the two afore-
mentioned cases concerning the spectral radius of Ay. Consider the state tran-
sition probability matrix P in the role of F of Lemma 223 (i.e., fr; = p(j|k))
and the matrix Ay in the role of G. Since P is assumed positive in this part,
then it is obviously non—negative and irreducible. Since it is a stochastic ma-
trix, its spectral radius is, of course, p(P) = 1. Also, by definition of Ay, as the
matrix {p(j|k)-exp[2mihlogp(j|k)]}, it is obvious that the elements of P are the

28 Chapter 2. Shannon and Huffman FV Codes

absolute values of the corresponding elements of Ay, and so, all the conditions
of Lemma clearly apply. The lemma then tells us that p(Ap) = p(P) =1
if and only if there exist real numbers s and wo,...w,,_1 such that for some
integer h:

hlogp(jlk) = (s + wy —w;) mod 1, j,k=0,...,m—1, (2.55)

where x = y mod 1 means that the fractional parts of x and y are equal, that
is, (2) = (1),

To find a vector w = (wyp,...,wn—1) and a number s with this property
(if exists), we take the following approach: Consider first the choice k = j in
@2XE5). This immediately tells us that s, if exists, must be equal to hlogp(j|j)
(mod 1) for every j =0,...,m — 1. In other words, one set of conditions is that
hlogp(j|j) are all equal (mod 1), or equivalently,

p(jlj)> :
hlog PN _ —0,1,...,m—1, 2.56
< B 1 (010) J (2.56)

and then s is taken to be the common value of all (hlogp(j|j)). Thus, (255
becomes

 hloe PUL)
ilog TRy

and it remains to find the vector w if possible. To this end, observe that if w
satisfies (Z.57), then for every constant ¢, w + ¢ also satisfies (Z57). Taking
¢ = —wy, the first component of w, is arbitrary. It is apparent that if (Z57) can
hold for some w, then there is such a vector whose first component vanishes,
and then by setting £ = 0 in ([Z.57), we learn that

= (wp —wj)mod 1, jk=0,...,m—1, (2.57)

p(j|0)> ,
w; = (—hlog——+=), j=0,....m—1, 2.58
’ < p(jls) (25
is a legitimate choice. Thus, (Z57) becomes
p(10)p(ils) } > :
hlog[i_ =0 4,k=0,...,m—1. 2.59
S (259

Note that by setting £ = 0 in ([Z359), we get ([Z50) as a special case, which
means that (Z359), applied to all j,k € {0,1,...,m — 1}, are all the necessary
and sufficient conditions needed for p(Ay) = 1. Now, a necessary and sufficient
condition for ([Z59) to hold for some integer h, is that the numbers

p(4[0)p(il7)]

P(El0)pGTE) (2.60)

aj = log [

2.2. Shannon Code Redundancy for Markov Sources 29

would be all rational.

Summing up, it follows that p(Ay) < 1 if at least one ay, is irrational. Hence,
as explained above, it follows in this case that R,, ~ % + o(1). This establishes
the first part of Theorem 2211

If all a3 are rational, then we have to argue in a different way. We have
already did some heuristic calculations indicating what kind of result we can
expect. Actually, we can use a method similarly to the calculations of (2.8) and
Lemma 212 properly adapted to Markov sources, that covers the rational case.

In order to simplify the presentation, we consider just the binary case m = 2.
The general case is just notationally more involved. First, we split up the sum
according to the initial and final states

E [(log P(X™)) Z P(z")(log P(z"))

=33 Y PE"logPE)).

7=0 k=021=j,z,=k

Let us consider (first) the case j = k = 0 and denote by k;; is the number of
pairs (i7) in ™. Clearly, koo + ko1 + k10 + k11 = n — 1. But also ko1 = ki since
the number of pairs ending at 1 must be equal to the number of pairs starting
with 1 (for in depth discussion of Markov types see Section [[T.2] of Chapter [TT]).
We then can write P(z™) as

P(a") = poP(0]0)* P(0[1)** P(1]0)" P(1[1)™,

B o [POPA)T™ TP
= po[P(0]0)] [p(0|0)p(0|0)} [P(Olo)] '

Hence, using (236)), we can represent log P(z") as
log P(z") = (n — 1)log P(0]0) + log po — korcvo1 + kr1co.

By assumption, we can write agy = Lo/M and a9 = Li/M assuming that
ged(Lg, L1, M) = 1. Thus, (log P(z™)) is constant if —ko1 Lo+ ko1L1 is in a fixed
residue class mod M. With the help of the following lemma, which generalizes
Lemma 212 to Markov sources, we are then able to evaluate asymptotically the

S P(a")(log P(a")).
r1=2,=0

Lemma 2.2.4. Suppose that M > 1 and that Lo and Ly satisfy ged(Lo, L1, M) =
1. Then, for every 0 < ¢ < M and 0 < j,k <1 there exists p < 1 such that

3 Py =Y L opr). (2.61)

_ M
z1=j, xn=Kk, —ko1 Lo+ko1 L1=¢ mod M

30 Chapter 2. Shannon and Huffman FV Codes

Proof. We start with the case j = k = 0. Let Goo(z) and Go1(z) be the
generating function

Goo(z) = Z Z P(z™)z", Go(z) = Z Z P(z™)z".

n>1x1=,=0 n>1x1=0,z,=1
Then these generating function satisfy the following system of linear equations:

Goo(2) = Goo(2)p(0]0)z + Go1(2)p(1]0)z + poz,
Goi(z) = Goo(2)p(0[1)z + Go1(2)p(11)=.
In particular it follows that
poz —p(1]0)z
0 1-p(11)z
1—=p(0]0)z —p(1]0)z
—p(0[1)z 1 —p(1[1)z
) po(1 — p(1[1)2)
1= (p(0]0) + p(1[1))z + (p(00)p(1[1) — p(0[1)p(10))z>"

Note that this identity is also true if the p(j|k) are treated as formal variables.
However, if we assume that p(0]|0) + p(0]1) = p(1|0) + p(1]1) = 1 then we have

poz(1 —p(1]1)2)
(1 =2)(1 = (p(0[0) + p(1[1) — 1)z)

Goo(z) = ‘

GOO (Z) =

which implies that

. B D (1 —p(1|1))
[2"]Goo(2) = 2 70p(0|0) —p(1]1)

for p=|1—-p(0/0) = p(1[1)] <1.
Furthermore, by setting w, = €2™/M and by using (ZI0), we have

+O(|1 = p(0[0) = p(1[1)[") = pomo + O(p")

1 M-—1
P(") =[2"]52 > w (2.62)
z1=j, xn=k, —ko1 Lo+ko1 L1=¢ mod M r=0
poz(1 — p(1[1)w; 2)
1= (p(0]0) + p(1|1)wr*)z + (p(0[0)p(1[1)wr* — p(0[1)wr p(1]0))z2’

that is, we replace p(0|1) by p(0|1)wEe and p(1|1) by p(0|1)wkr, r =0,..., M 1.
Note that for r = 0 we already observed that [2"](1/M)Goo(z) = (1/M)pemo +

2.2. Shannon Code Redundancy for Markov Sources 31

O(p™). Thus it remains to show that the corresponding contributions for r =
1,..., M — 1 are negligible. For this purpose we consider the matrix

) _ { p(0[0) p(O[1)wko
4 _(p(1|0)p(1|1)w£1)'

For r = 0 we clearly have p(A(®) = 1 for the spectral radius. If we can show
that p(A(™) <1 for r =1,..., M — 1 then the following polynomial

‘ 1—p(0[0)z —p(0[1)wkoz
—p(1]0)z 1 —p(11)wf' =
=1—(p(0]0) + p(1]1)wr)z +

+(p(0[0)p(1[1)wf* — p(0]1)w;°p(1]0))z° (2.63)

has no zeros of modulus |z| < 1 (see Exercise 2:9)). Hence both poles of the
corresponding generating function have modulus > 1 which implies that the
n-th coefficient can be bounded by O(p") for some p < 1.

In order to show that p(A(™) < 1 we just have to apply (again) Lemma 223
and directly observe that p(A(7')) = 1 would imply that wk® = w* = 1 which can
only occur for r = 0 (here we have to use the assumption ged(Lg, L1, M) = 1).

The other cases (where j = 1 or k = 1) can be handled in completely the
same way. |

Summing up, this shows that
11 M-1

- 1 C+Gr(n) n
R, = E Eﬁ PiTk 37 ego <T +O0(p").

§=0 k=0

We should observe that the term p;;, is approximately the probability of X; = j
and X, = k since for large n X; and X,, are almost independent. Thus we
immediately obtain (2:40) completing the proof of Theorem 2211

2.2.2. Extension to Irreducible Aperiodic Markov Sources

We now discuss some extensions of Theorem 221l In particular, we drop the
assumption that all transition probabilities must be strictly positive and assume
that P corresponds to an irreducible aperiodic Markov source.

When some of the entries of the matrix P vanish, then obviously, Theo-
rem [22.]] cannot be used as the corresponding parameters o are no longer
well defined. Lemma 2.2.3] which stands at the heart of the proof of Theo-
rem [Z.2.]] can still be used as long as P is irreducible, but more caution should

32 Chapter 2. Shannon and Huffman FV Codes

be exercised. The key issue is still to determine whether there exist parameters
s and w that satisfy

hlogp(jlk) = (s + wg —w;) mod 1, (2.64)

but now these equations are imposed only for the pairs (4, k) for which p(jlk) > 0
(as for the other pairs aji(h) = p(jlk) = 0 satisfy the conditions of Lemma 2.2.3]
automatically anyway).

For example, if one or more diagonal element of P is positive, and for all
positive p(j|j), the numbers (hlogp(j|j)) are equal, then s can still be taken
to be the common value of all these numbers. If, in addition, at least one
row of P is strictly positive, say, row number /, then w; can be taken to be
(—hlogp(l|)/p(3]1)]), and then the rationality condition of Theorem 221] is
replaced by the condition that

M] (2.65)

p(k[0)p(jlF)

must be rational for all (j, k) with p(j|k) > 0.

For a general non-negative matrix P, however, it may not be a trivial task to
determine whether (Z:64]) has a solution, and if so, what this solution is. In fact,
it may be simpler and more explicit to check directly if A;, has an eigenvalue on
the unit circle (which thereby dictates s) and then to find w using Lemma [Z2.3]
This leads to the following generalized version of Theorem 2211

oy, = log [

Theorem 2.2.5. Consider the Shannon code of block length n for an irre-
ducible aperiodic Markov source. Let M be defined as the smallest positive inte-
ger h such that

p(An) = [Arpl =1 (2.66)

and set M = oo if (2.60) does not hold for any positive integer h. Then, R, is
characterized as follows:
(a) If M = oo, then

R, = % +o(1). (2.67)

(b) If M < oo, then the asymptotic representation of Theorem [ZZ1), part (b),
holds with ;i (n) being redefined according to

Ciw(n) = —M[(n —1)s + w; —wy — logpj], (2.68)

where Oar)
arglAr, m
= ——7 2.
N 27 (2:69)

2.2. Shannon Code Redundancy for Markov Sources 33

and (z;)
arg(x,
= g
x; being the j—th component of the right eigenvector x of Aps, which is associated
with the dominant eigenvalue Ai .

j=0,1,...,m—1, (2.70)

The proof of Theorem is very similar to that of Theorem 221l and hence
we will not provide it here. In a nutshell, we observe that the Perron—Frobenius
Theorem and Lemma [2.2.3] are still applicable. Then, we use the necessity of
the condition Ay, = e?>™*DPD~! and the fact that once this condition holds,
the vector

x=D-1= (627riw07 o e27rz'wm,1)T

is the right eigenvector associated with the dominant eigenvalue A1 ,,, = €27%.
We again have to prove a corresponding analogue of Lemma 2.2.4]

Finally, we present an example with a reducible Markov source for which our
results do not apply. In particular, in this case there is only one convergent
mode of behavior.

Example 2.2.6. Consider the case m = 2, where p(0|]1) = 0 and « := p(1|0) €

(0,1), ie.,
P:(loa?). (2.71)

Assume also that pg = 1 and p; = 0. Since this is a reducible Markov source
(once in state 1, there is no way back to state 1), we cannot use Theorems [Z2.1]
and ZZZ.F] but we can still find an asymptotic expression of the redundancy in
a direct manner: Note that the chain starts at state ‘0’ and remains there for
a random duration, which is a geometrically distributed random variable with
parameter (1 —). Thus, the probability of k 0’s (followed by n — k 1’s) is about
(1 — a)* - a (for large n) and so the argument of the function (-) should be the
logarithm of this probability. Taking the expectation w.r.t. the randomness of
k, we readily have

R, = i (1 — a)*(loga + klog(l — a)) + o(1). (2.72)
k=0

We see then that there is no oscillatory mode in this case, as R,, always tends
to a constant that depends on «, in contrast to the convergent mode of Theo-
rems Z.2T] and 2275 where the limit is always 1/2, independently of the source
statistics. To summarize, it is observed that the behavior here is very different
from that of the irreducible case, characterized by Theorems 2.2.1] and

34 Chapter 2. Shannon and Huffman FV Codes

2.3. Maximal Redundancy for a Generalized Shannon Code

In this section we switch from the average redundancy to the worst case or
maximal redundancy. For a given probability distribution P on an alphabet A,
we are looking for a prefix code that minimizes the maximal redundancy R*(P),
that is,
R*(P) = min max[L(C, z) + log P(x)]. (2.73)
C zcA
To solve this optimization problem we introduce a generalized Shannon code
denoted as C“°. We write the code length of a generalized Shannon code as

logl/P(x)]if z€L
L(z,C%%) = { log 1/P(e)] if € U,

where LUU = A is a partition of the alphabet A. In addition, we shall postulate
that Kraft inequality holds, that is, we have (for the binary case)

1

(—log P(z)) - (—log P(z))

g P(x)2'~ 08 +2 E P(x)2'~ 8 <1
zeL zeU

Our main result of this section is to prove that there exists a generalized
Shannon code that is optimal with respect to the maximal redundancy as for-

mulated in (Z73).

Theorem 2.3.1 (M. Drmota and W. Szpankowski, 2004). If the probability dis-
tribution P is dyadic, i.e. log P(x) € Z for all x € A, then R:(P) = 0. Other-
wise, let tg € T = {(—log P(x)) : © € A} be the largest t such that

D P(x)2f sy +% D P(x)2t s Pl <, (2.74)
x€Ly x €Uy
where
Ly:={zxeA:{—logP(x)) <t}
and
U :={z € A: (—log P(x)) > t}.
Then

R*(P)=1—1, (2.75)

and the optimum is obtained for a generalized Shannon code with £ = Ly, and
Z/[= Uto.

2.3. Maximal Redundancy for a Generalized Shannon Code 35

Proof. If P is dyadic then the numbers I(z) := —log P(x) are positive integers

satisfying
PP

Kraft’s inequality holds and consequently there exists a (prefix) code C' with
L(C,z) = l(x) = —log P(z) for all z € A, and this R*(P) = 0.
Now assume that P is not dyadic and let C* denote the set of optimal codes,
ie.
c*={CeC:R"(C,P)=R*(P)}.
The idea of the proof is to establish several properties of an optimal code. In

particular, we will show that there exists an optimal code C* € C* with the
following two properties:

(i) For all
[—log P()] < L(C*,z) < [~ log P(x)] (2.76)

(ii) There exists so € (0,1] such that
L(C*,z) = |log1/P(x)] if (logl/P(zx)) < so (2.77)

and
L(C*,z) = [log1/P(x)] if (logl/P(x)) > so. (2.78)

Observe that without losing generality we may assume that so = 1 — R*(P).
Thus, in order to compute R*(P) we just have to consider codes satisfying (Z77)
and ([278). As already mentioned, (Z74) is just Kraft’s inequality for codes of
that kind. The optimal choice is ¢ = ¢y which also equals syg. Consequently
R*(P)=1—to.

In view of the above, it suffices to prove properties (i) and (ii). Assume
that C* is an optimal code. First of all, the upper bound in ([Z76]) is obviously
satisfied for C*. Otherwise we would have

mjx[L(C*,:c) +log P(z)] > 1

which contradicts a simple bound applied to a regular Shannon code. Second,
if there exists = such that L(C*,z) < [logl/P(z)], then (in view of Kraft’s

inequality) we can modify this code to a code C* with
L(C*,z) = [log1/P(x)] if L(C*,z) = [log1/P(x)],
L(é’*,z) = |logl/P(z)| if L(C*,x) < |logl/P(z)].

36 Chapter 2. Shannon and Huffman FV Codes

By construction, R*(é*7 P) = R*(C*, P). Thus, C* is optimal, too. This proves
(i).

Now consider an optimal code C* satisfying (Z70) and let £ € A with
R*(P) = 1 — (—log P(Z)). Thus, L(C*,z) = |logl/P(x)] for all = with
(—log P(z)) < (—log P(Z)). This proves ZT17) with so = (—log P(Z)). Fi-
nally, if (2278)) is not satisfied, then (in view of Kraft’s inequality) we can modify
this code to a code C* with

L(C*,z) = [log1/P(x)] if (log1/P(x)) > so,

L(C*,z) = [log1/P(z)] if (log1/P(z)) < so.
By construction, R*(é*, P) = R*(C*, P). Thus, C* is optimal, too. This proves
(i) and the lemma. u

We apply the above now to a binary memoryless source on the alphabet
A, = {0,1}" with parameter p.

Theorem 2.3.2. Let P be a binary Bernoulli source on the alphabet A, =
{0,1}"™ with parameter p and let RY(p) denote the corresponding mazimal re-
dundancy.

(i) If log 1%]” 15 1rrational then, as n — oo,

Inln2
In2

Ry (p) = — +0(1) = 0.5287 ...+ o(1). (2.79)

(i) If logl—;ﬂ = & (for some coprime integers M,N € Z) is rational and
non-zero, then as n — oo
Ry, (p) = o(1)+
[M log(M(2"/™ — 1)) — (Mnlog1/(1 —p))| + (Mnlog1/(1 - p))
_ o .
Finally, zflog— =0 then p= 5 and R} (1/2) = 0.

(2.80)

Proof. As before we set

1
a =log p’ 8 =log
P 1 -

Then

—log(p"(1 —p)" ") = ak + pn.
Since « is irrational, we know from the previous section that for any Riemann
integrable function f

nIEEOZ<))" f((ak + Bn)) / flx (2.81)

2.3. Maximal Redundancy for a Generalized Shannon Code 37

Now set fs, (1) = 2% for 0 <z < sg and fs,(z) = 2271 for sp < o < 1. We find

n 5071
n k
Jdim > () Fualfetk 4+ Bn)) = = —.
k=0
In particular, for
Inln 2
so=1+4——= =04712...
In2

we obtain fol f(z)dx =1, so that the Kraft’s inequality becomes equality. This
implies that
lim R} (p) =1—s9=0.5287...

n—o0

which proves ([279).
Now we establish the second part of Theorem 232, that is, log lp%p = %

is rational and non-zero (with coprime integers N, M). We use Lemma 217
applied to fs,(z) and obtain

S (D)ot Attt) = 5 g ({220) ot

= % jz_:fso (%) + o(1).

We suppose that sg is of the form

~ mg + (Mpn)
0=

and choose mp maximal such that

M-1 mo—1 M—1
7 mZ‘of< e eyl DIEAAE DD

m=0 m=mgo

9((MBn)+mo) /M~1

M(2U/M 1)
<1

Thus
mo = M + M log(M(2"/™ — 1)) — (Mnlog 1/(1 - p))),

38

Chapter 2. Shannon and Huffman FV Codes

and consequently

Ry (p) =1 —s0+o(1)
mo + (Mfn)

=1- % +o(1)
[M log(M (2'/™ — 1)) — (Mnlog1/(1 —p))] + (Mnp)
- _ +o(1).
M
This completes the proof of Theorem]
2.4. Exercises
2.1 We say that a real-valued sequence z, is B-uniformly distributed if
D%)”'k)(:cn) — 0 for pyr = (})p"(1 —p)"~*. Provide a detailed proof of
the following theorem.
Theorem 2.4.1. Let 0 < p < 1 be a fized real number and suppose
that the sequence x, is B-uniformly distributed modulo 1. Then for
every Riemann integrable function f:[0,1] — R we have
n k
nlggoz () F((ar + 1)) / £() (2.82)
where the convergence is uniform for all shifts y € R.
See Appendix [E] for more details.
2.2 Prove the Weyl criteria presented below.
Theorem 2.4.2 (Weyl’s Criterion). A sequence x,, is B-u.d. mod 1
if and only if
" /n
. k n—k 2mwimx), __
nlgrxgoz (k)p (1—p)""e k=0 (2.83)
k=0
holds for all m € Z \ {0}.
2.3 Provide all details to prove Stubley’s formulas [Z12) and [ZI3]).
2.4 Prove Lemma which we repeat here.

Bibliographical notes 39

2.5

2.6
2.7
2.8
2.9

2.10
2.11

2.12

Lemma 2.4.3. Let 0 < p < 1 be a fixed real number and suppose
that o = % is a rational number with ged(N, M) = 1. Then, for every
bounded function f :[0,1] — R we have

;(Z)pk(l—p)n—kmkaw :MMZ (_+Ly>)
+O(")

uniformly for all y € R and some p < 1.

Establish the following formula
ollog £]+1

E[L] = [log (] + 1

6t =1/2,

for the average length of the Golomb code.

Derive the corresponding upper bound to (Z47).

Prove Lemma

Provide details for the derivation of (Z.62]).

Prove that the polynomial defined in (ZG3) has no zeros of modulus
2| < 1.

Provide a proof of Lemma

Consider the following generalization of the average and worst case re-
dundancy. Let r be a real number and define the r-redundancy as follows

1/r
R.(P)= = max <ZP x) + log P(x)]") .

Notice that » = 1 it reduces to the average redundancy while for » = oo
it comes the worst case redundancy. Find the optimal code.

Extend Theorem [2.3.2] to Markov sources.

Bibliographical notes

Since the appearance in 1952 of Huffman’s classical paper Huffman (1952) on
optimal variable length source coding, Huffman coding still remains one of the
most familiar topics in information theory. A good survey on this topic can
be found in Abrahams (2001). Over more than sixty years, insightful, elegant
and useful constructions have been set up to determine tighter bounds on the
Huffman code redundancy: see Capocelli and de Santis (1989, 1991), Gallager

40 Shannon and Huffman FV Codes

(1978), Manstetten (1980), Stubley (1994). Formulas (ZI2) and ZI3)) were
first derived in Stubley (1994). To the best of our knowledge the first precise
asymptotics of the Huffman redundancy was presented in Szpankowski (2000).
We base our presentation of the Huffman redundancy on this work. The Markov
case discussed in Section [22]is based on Merhav and Szpankowski (2013).

The worst case (maximum) redundancy was introduced by Shtarkov 1987.
The optimization problem (Z73]) was likely for the first time presented in Drmota
and Szpankoski (2002) (see also Drmota and Szpankowski (2004)), however,
some earlier work can also be found in Campbell (1965), Nath (1975), Parker
(1980) where conditions for optimality of the Huffman and other codes were
given for a class of weight function and cost criteria.

Golomb code was introduced in Golomb (1996), however, we follow here the
description form Gallager and van Voorhis (1975) and Merhave, Seroussi, and
Weinberger (2000).

The theory of sequences distributed modulo 1 is well explained in Kuipers
and Niederreiter (1974), Drmota and Tichy (1997). See also Appendix [El

CHAPTER 3

Tunstall and Khodak VF Codes

In this and the next chapter we study variable-to-fixed (VF) length codes. Recall
that in the VF scenario, the source string x, say over an m-ary alphabet A4 =
{0,1,...,m — 1}, is partitioned into non-overlapping (unique) phrases, each
belonging to a given dictionary D. In what follows we will assume that D is
prefix free (no sting of D is prefix of another string in D) that guarantees the
uniqueness of the partioning. Such a dictionary D can be represented by a
complete m-ary parsing tree 7. The dictionary entries d € D correspond to the
leaves of the associated parsing tree, and, of course, the tree represention of D
can be directly algorithmically used to partition the source string. The encoder
represents then each element of D by a fixed length binary code word If the
dictionary D has M entries, then the code word for each phrase has [log M| bits
(recall that log denotes the binary logarithm). The code C' is, thus, a mapping
C :D — {0,1}M°8 M1 Since the average length of this code is (trivially) [log M]
the redundancy can be only small if the dictionary D has the property that all
d € D have almost the same probability P(d) ~ ;.

The best known variable-to-fixed length code is the Tunstall code that is
(almost) the same as the independently discovered Khodak code. Since the
Khodak code can be mathematically described in a more direct way we focus
our analysis mainly on the Khodak code. At the end of the chapter we study
also a Khodak code variant with phrase length constraints.

3.1. Variable-to-Fixed Codes

We start with a description of the Tunstall code for an m-ary memoryless source.
In such a code, edges in the m-ary parsing tree correspond to letters from the
source alphabet A = {0,1,...,m—1} and are labeled by the alphabet probabil-
ities, say pg,- - .,Pm—1- Every vertex in such a tree is assigned the probability of
the path leading to it from the root, as shown in Figure Bl This is, of course,
consistent with the assumption that we consider a memoryless source, the prob-

42 Chapter 3. Tunstall and Khodak VF Codes

@ p=06 g=04

Tunstall’s construction
04 06 s
Khodak's construction

v=4

29 2

Figure 3.1. Tunstall’s and Khodak’s Codes for M = 5, v = 4, binary
source with p = 0.6 (and ¢ = 1 — p). Here the resulting dictionary is
D = {00, 01, 10,110, 111}.

ability of a vertex is the product of probabilities of edges leading to it. Clearly
the probabilities of the leaves — that correspond to the dictionary D — add up to
1. The goal of the following algorithm is to construct a parsing tree such that
the probabilities of the leaves are as close as possible, that is, the distribution on
D is close to uniform. The algorithms starts with the trivial tree that contains
just the root (corresponding to the empty word and) that is labeled by the prob-
ability 1. At each iteration one selects a (current) leaf of highest probability, say
Ppax, and grows m children out of it with probabilities poPmax; - - - s Prm—1Pmax-
Clearly all these probabilities are smaller than Pp.,. After J iterations, the
parsing tree has J non-root internal nodes and M = (m — 1)J + m leaves, each
representing a distinct dictionary entry.

Another algorithm was proposed by Khodak (1969) who independently dis-
covered the Tunstall code using a rather different approach. Let us define ppin =

min{po, ..., pm-1}. Khodak suggested to choose a real number v > 1/pmi, and
to grow a complete parsing tree until all leaves d € D satisfy
Pmin/v < P(d) < 1/v. (3.1)

Khodak’s and Tunstall’s algorithms are illustrated in Figure B with the dic-
tionary D = {00,01,10,110,111} corresponding to strings represented by the
paths from the root to all terminal nodes.

3.2. Redundancy of the Khodak VF Code 43

It is known (see Exercise B.I) that the parsing trees for the Tunstall and
Khodak algorithms are — in most instances — exactly the same, however, they
react differently to the probability tie when expanding a leaf. More precisely,
when there are several leaves with the same probability, the Tunstall algorithm
selects one leaf and expands it, then selects another leaf of the same probability,
and continues doing it until all leaves of the same probability are expanded. The
Khodak algorithm expands all leaves with the same probability simultaneously,
in parallel; thus there are “jumps” in the number of dictionary entries M when
the parsing tree grows. For example, in Figure Bl two nodes marked “0.24” will
be expanded simultaneously in the Khodak algorithm, and one after another by
the Tunstall algorithm.

Our goal is to present a precise analysis of the Khodak and Tunstall re-
dundancy as well as to provide some insights into the behavior of the parsing
tree (i.e., the path length distribution). In particular, we consider the average
redundancy rate 7 which is defined as

log M
E[D]

T= h, (3.2)
where E[D] = > ,.p |d|P(d) is the average phrase length of the dictionary D

and
m—1

h:=hg=Y_ pilog(1/p:)
i=0

is the entropy rate of the source; we recall again that log denotes the binary log-
arithm. We note that E[D] is also known as the average delay, which is actually
the average path length from the root to a terminal node in the corresponding
parsing tree.

In passing we should mention here the Conservation of Entropy Property
which states that the entropy of the dictionary hp is related to the source entropy

hs as follows
hp = hsE[D]. (3.3)

We ask the reader in Exercise to establish this relation.

3.2. Redundancy of the Khodak VF Code

For Khodak’s code, it follows from (B that if y is a proper prefix of one or
more entries of D (that is, y corresponds to an internal node of the parsing tree
T), then

P(y) > 1/v. (3.4)

44 Chapter 3. Tunstall and Khodak VF Codes

It is therefore easier to describe the internal nodes of the parsing tree T rather
than its leaves. We shall follow this approach when analyzing the phrase length
D of Khodak’s code.

In what follows we always fix some v > 0 and will denote by D, the dictionary
of the corresponding Khodak code, by M, the cardinality of D,, and by D, the
phrase lengths |d| of d € D,, considered as a random variable with probability
distribution P on D,,.

As mentioned above, our goal is to understand the behavior of the dictio-
nary size M, and the probabilistic behavior of the phrase length D, (when the
source is memoryless). We present our results for a general source alphabet
A=1{0,1,...,m—1} of size m with probability p; for 0 < i < m; however, most
proofs are for a binary source alphabet with pg =p and p1 =¢=1—p.

We first deal with M, and provide a simple relation between it and parameter
v. To find an expression for M, we introduce a new function A(v) defined as
the number of source strings with probability at least 1/v, that is,

Aw) = > 1L (3.5)

y:P(y)>1/v

Observe that A(v) represents the number of internal nodes in Khodak’s con-
struction with parameter v of a Tunstall tree. Equivalently, A(v) counts the
number of strings y with the self-information — log P(y) < logwv. The function
A(v) satisfies the following recurrence

0 v <1,

Al) = {1 T A(wpo) + -+ Alwpn1) v > 1. 30

Indeed, by definition we have A(v) = 0 for v < 1. Now suppose that v > 1.
Since every m-ary string is either the empty string or a string starting with
a source letter j where 0 < j < m, we directly find the recurrence A(v) =
14+ A(vpg) + -+ + A(vpm—1).

Since A(v) represents the number of internal nodes in Khodak’s construction
with parameter v it follows that the dictionary size is given by

M, =|Dy| = (m—1)A(v) + 1.

Therefore, it is sufficient to obtain asymptotic expansions for A(v) for v — oco.
To present these results succinctly, we need to introduce the concept of ra-
tionally related numbers.

Definition 3.2.1 (Rationally /irrationaly related). We say that log(1/po), ...,
log(1/pm—1) are rationally related if there exists a positive real number L such

3.2. Redundancy of the Khodak VF Code 45

that log(1/po), - . .,log(1/pm—1) are integer multiples of L, that is,
log(1/p;) =n;L, n; €Z, (0<j<m).

Without loss of generality we can assume that L is as large as possible which is
equivalent to ged(ng,...,nm-1) = 1.

For example, in the binary case m = 2 this is equivalent to the state-
ment that the ratio log(1/po)/log(1/p1) is rational. Similarly we say that
log(1/po), .. .,log(1/pm—1) are irrationally related if they are not rationally re-
lated.

Now are we ready to present our first result.

Theorem 3.2.2. We consider Khodak’s VF code with parameter v. If we as-
sume that log(1/po), . .. ,log(1/pm—1) are irrationally related, then

v

My = (m = 1)h1n2

+ o(v), (3.7)

where h denotes the entropy rate of the source.

Otherwise, when log(1/po), . ..,log(1/pm—1) are rationally related, let L > 0
be the largest real number for which log(1/p1),...,log(1/pm) are integer multi-
ples of L. Then

M, = (m— 1)@1%0(@1—") (3.8)
for some n > 0, where
L oz
Qi(z) = 1912 (), (3.9)

and, recall, (x) = x — |x] is the fractional part of the real number x.

Proof. We present the proof that is based on the Mellin transform. Furthermore,
for simplicity we only present it for the binary case m = 2. In Exercise 3.3 we
ask the reader to provide a detailed proof for m > 2.

The Mellin transform F*(s) of a function F'(v) for complex s is defined as

(see Appendix D))
F*(s) :/ F(v)v* dv,
0
if it exists. Using the fact that the Mellin transform of F(ax) is a °F*(s), a

simple analysis of recurrence ([3.0) reveals that the Mellin transform A*(s) of
A(v) is given by

—1
A*(s) = ,
) s(1—py°—p1°)

R(s) < —1.

46 Chapter 3. Tunstall and Khodak VF Codes

In order to find asymptotics of A(v) as v — oo one can directly use the Taube-
rian theorem by Wiener-Tkehara (properly adapted for the Mellin transform, as
discussed in Appendix [D))), which says that if F'(v) =0 for v < 1, F(v) > 0 and
non-decreasing for v > 1, and if %F* (s) can be represented as

Ag
s—sg’

éF*(s) =G(s)+

where G(s) is analytic for $(s) < sp and has a continuous extension to the half
plane R(s) < s, then it follows that

F(v) ~ Agv™°°.

In the present context we can apply this theorem directly in the case, where
log(po)/log(py) is irrational. In this case we observe that so = —1 is the only
(polar) singularity on the line ®(s) = —1 (compare with Lemma [D.3.1)), that
A*(s) exists for R(s) < —1 and that (s + 1)A*(s) can be analytically extended

to a region that contains the line R(s) = —1. In particular one finds
AW~ s, (0> 00)
V) ~—— v — 00).
hln2’

This proves the first part of Theorem [3.2.2
In the rational case, that is, log(1/po) = noL and log(1l/p1) = niL for
coprime integers ng,n1 we just have to analyze the recurrence

Gn=14Gp_ny+ Gnn,, (3.10)

where G, abbreviates A(2£"). Equivalently we have A(v) = G(|logv|/L). By
setting

G(z) = Z Gpz"

n>0
we obtain from (3.I0) the relation

1

Glz) = (1—2)(1—zm0 —zm)’

This rational function has a dominant simple polar singularity at zg = 27% < 1.
Since ng and n; are coprime there are no other polar singularities on the circle
|z| = 27L. Thus, from the representation

1 1

Gle) = (1 = 20)(nozp° +nizgt) 1 — z/20 + H(z),

3.2. Redundancy of the Khodak VF Code 47

where H(z) is analytic for |z| < zo + x for some k > 0, we directly get

1

G =
" (1 —27L)(ng2 "m0l 4 py2-mL)

2Ln + O(2Ln(1—n))

for some 7 > 0 and consequently
L27L(log7j/L) v

BEEERN

+ O(U(lfn)).

As above, (z) is the fractional part of x. |

Next we deal with our main goal, namely the analysis of the phrase length
and Khodak’s code redundancy. We start with deriving the moment generating
function of the phrase length D, and then its moments. Let us define the
probability generating function D(v, z) of the phrase length D := D, for the
Khodak code with parameter v as

D(v,z) :=E[zP] = Z P(d)z!.
deD,

However, it is better to work with another generating function describing the
probabilities of strings which correspond to internal nodes in the parsing tree
Ty. Therefore, we also define

S(v,z) = Z P(y)z, (3.11)

y: P(y)=1/v
Lemma 3.2.3. The function S(v,z) satisfies the following recurrence

0 v <1,

1+ pozS(vpo, 2) + -+ + pm—12S(Vpm—1,2) v > 1. (3.12)

59 = {

Furthermore,
D(v,z) =14 (2—-1)S(v, 2) (3.13)
for all complex z.
Proof. The recurrence ([B12]) can be derived in the same way as for A(v). The
relation (BI3) follows from the following general fact on trees.
Let D be a uniquely parsable dictionary (e.g., leaves in the corresponding

parsing tree) and)7 be the collection of strings which are proper prefixes of one
or more dictionary entries (e.g., internal nodes). Then for all complex z

3 P (1+z+.--z|d*1) =3 Py, (3.14)

deD yey

48 Chapter 3. Tunstall and Khodak VF Codes

This can be deduced directly by induction and implies BI3]) as the reader is
asked to check in Exercise B4l

Alternatively we can use the following result (see Exercise BH]). For every
real-valued function G defined on strings over A

> P()G(d) =G0)+ > Ply Z P —G(y)) (3.15)

deD yey s€A

where () denotes an empty string, D the set of external nodes and) the set of
internal nodes. By choosing G(z) = 2/*l we directly find

Z P(d)zl4 = 20 + Z P(y) Z P(s) (z 2l — z‘y‘>

deD yey seA
+(z=1)) P(y)
yey
which again proves (3.14). |

In view of Lemma [3.2.3] we conclude that

D] =Y P(y)=S(v,1), E[D(D-1)]=2)_ Pylyl =5 (v,1)
yey yey
This allows us to formulate our next result.

Theorem 3.2.4. We consider Khodak’s VF' code with parameter v.
(i) If log(1/po), - - ., 1og(1/pm—1) are irrationally related, then

log v ho
5 + 02 +o(1), (3.16)

E[D,] = S(v,1) =

where hy = Y7 pilog?(1/p:), while in the rational case

_logu ha Qa(logv)
h 2h? h

Q2(z) =L~ (% - <%>) (3.18)
for L as defined above.

(ii) The phrase length D, in Khodak’s construction with parameter v of the
Tunstall code with a dictionary of size M, over a biased memoryless source

+O0(w™) (3.17)

3.2. Redundancy of the Khodak VF Code 49

(i.e., not all symbol probabilities are equal) satisfies a central limit law, that is,
as M, — oo
D, — % log M,

(72 — %) log M,

— N(0,1)

where N(0,1) denotes the standard normal distribution. Furthermore, we have

log M,
E[D,] = Ogh +0(1)
1
Var[D,] ~ (% - E) log M,,

where M, is give in Theorem [T.2.2.

Finally, before presenting a proof of Theorem [3.2.4] let us discuss its conse-
quences for the redundancy rate of the Khodak code. By combining (7)) and

BI6) resp. (8) and FI7) we find for the irrational case

log M, log(hln2/(m—1)) hs
= — 1
T+ . tomet o(1)

E[D,]

and in the rational case we have

_logM, log(h/(m—1)) hy
=T h Toe T
—log L +log(1 —2"5)+ L/2

h

E[D,]

+O(M,; ™).

Recall that L > 0 is the largest real number for which log(1/po), - . ., log(1/pm—1)
are integer multiples of L. As a direct consequence, we can derive a precise
asymptotic formula for the average redundancy of the Khodak code, that is,

SK log M -
M E[D]

The following result is a consequence of the above derivations.

Corollary 3.2.5. Let D, denote the dictionary in Khodak’s construction of the
Tunstall code of size M,,. Iflog(1/po),...,log(1/pm—1) are irrationally related,

then
7 __h (ke —log(hIn2/(m —1))) +o !
Mo ™ Jog M, 2h & logM,)"

50 Chapter 3. Tunstall and Khodak VF Codes

In the rational case we have

h h 2L/2 _ 9-L/2
o _ 0 (2 _ 1)) — £ e
"M, = g MU< o, ~ log(h/(m —1)) 1°g< L))

1
° ()
log® M,

where L > 0 is the largest real number for which log(1/p;), 0 <i <m —1, are
integer multiples of L.
3.2.1. Proof of Theorem [3.2.4l

Again we only present the proof of the binary case. In order to prove Theo-
rem 3.2-4(i), we consider

E[Dv] = Z P(y) :S(Uv]-)'
y:P(y)>1/v
Here the Mellin transform is given by
-1

s(L—py *—p1 ")

D*(s) = /OOO E[D,Jv* ' dv = (R(s) < 0)

and it leads (in the irrational case) after applying a proper extension of the
Wiener-Tkehara theorem (see Theorem [D.2.2 in Appendix [D)) to the asymptotic
equivalent

In(v) log(v)
“hm2 h
Note that the double pole at s = 0 is responsible for the log-factor. Actually a
more careful analysis that is based on the inverse Mellin transform (see the last
part of Appendix [D] properly adapted) determines also the second order term:

E[D,]

O

E[D.] h 2h2

In the rational case, it is easy to see (similarly to the proof of Theorem 32:2])

that
B, — 8l fe | L <1 - <log(v) >) +0(r)

R 22 R\2 \ L

for some 1 > 0, where we recall (z) is the fractional part of .
The analysis of D(v,z) is more involved. Here we do not give a full proof
but restrict ourselves to the irrational case and give (only) a heuristic argument

3.2. Redundancy of the Khodak VF Code 51

bases on the Wiener-Ikehara Tauberian theorem discussed in Appendix [D| and
below. A full proof the reader is asked to provide in Exercise
We assume that z is a real number close to 1, say |z — 1| < §. The Mellin
transform D*(s, z) of D(v, z) with respect to v is
1—-2 1

- — Nl
s(1 —zpl=s — 2q'=5) s’ (3:19)

D*(s,z) =

for R(s) < so(z), where so(z) denotes the real solution of the characteristic
equation:

2pl ™ 4 2gt 0 =1, (3.20)
where now we write p := pg and ¢ := p;. It is easy to see that
z—1 1 h2 2 3
= — — -1 O(lz—1 3.21
s0(2) h1n2+(h1n2 2h31n2)(2)7+ 0(= -1 (8:21)

as z — 11

The next step is to determine the polar singularities of the meromorphic
continuation of D*(s,z) right to the line R(s) = sg(z), that is, we have to
analyze the set

Z(z)={s€C:zp " +2¢"* =1} (3.22)

of all complex roots of the characteristic equation ([@I4). This can be handled
with the help of Lemma [D.3.1] from Appendix [Dl Since we restrict ourselves to
the irrational case it follows that so(z) is the only root on the line R(s) = so(2).
For all other roots si(z) (k € Z C {0}) we have R(sk(z)) > so(z). Furthermore,
the additional zero s = 0 is canceled because of the additional term —1/s.

From Wiener-Ikehara’s Tauberian theorem we find that (for fixed z # 1)

1—-=2
zs0(2)h(so(z) — 1)1n2v

D(v,z) = —5002)(1 4 0(1)), (v —o00), (3.23)

where h(s) abbreviates

h(s) = p~"log(1/p) + ¢ *log(1/q).

Now if we assume that the error term in (3:23)) is uniform in z then we can use
the local expansion ([B.2]]) to obtain uniformly for |z — 1] < § as v — oo, and
then

D(v,2) = v~ (1+ O(s0(2)) + o(1))
=y (i~ aastns) =D 001 (1 4 O (|2 — 1)) + o(1)).

INote that we now in a similar situation as described in Appendix[Dl The only difference is
that we are considering here the Mellin transform and not the Mellin-Stieltjes transform (that
differ only by a proper scaling).

52 Chapter 3. Tunstall and Khodak VF Codes

Recall that D(v,z) = E[zP*] is the probability generating function of the dic-
tionary length D, and, therefore, it can be used to derive the limiting behavior.
We can use the local expansion B21) with z = e!/(¢ "% t6 obtain

7SU(Z) _ z—1 _ 1 B hQ B 2 _ 3
Y P <1°g” <h1n2 <h1n2 2z) ¢~V Oz 1)
1 12 (1 o\ ., ,
= exp (Et 1og’u+ﬁgf <ETlﬁ)t +O(t /\/logv))

B 1 hy 1) t? N
= exp (Et logv + (F - E) 5 +O(t /\/logv)) .

Hence, we arrive at

E {et(Dv—%log@)/\/@} _ o (/m)VioEug [eDutN@} ~ e (GE1) (3.20)

By Laplace’s theorem this would prove the normal limiting distribution as v —
oo (and also convergence of all (centralized) moments as well as exponential tail
estimates).

In order to make this arguments rigorous we have to show that the asymptotic
relation ([B:23) is uniform for |z — 1| < 4. Instead of using a Tauberian theorem
we can also use the inverse Mellin transform

1 o+1iT

D(v,z) = Q—MTlgréo e D*(s,z)v™°ds (3.25)

(with o < so(z)) and proceed as demonstrated at the end of Appendix

In the rational case we reduce the recurrence for D(v,z) to a discrete re-
currence (as is the proof of Theorem [3.22.2]) which can be asymptotically solved
uniformly in z and provides a central limit theorem by Laplace’s theorem. The
reader is asked in Exercise 3.7 to provide a detailed proof of this claim.

3.3. Analysis of the Tunstall Code

Let us now return to the Tunstall code. Recall that the parsing tree is the same
as for the Khodak code, but in the case of a tie, the Tunstall code adds a phrase
one at a time, while the Khodak code all at once. Nevertheless, one should
expect similar results. Indeed, in the next theorem we present our findings for
the Tunstall code.

3.3. Analysis of the Tunstall Code 53

Theorem 3.3.1. Let Dy denote the phrase length of the Tunstall code when
the dictionary size is M > 1. Then for a biased source (i.e., when the probabil-
ities p; are not equal)

Dy — %logM
(7% —) log M

— N(0,1),

where N(0,1) denotes the standard normal distribution, and

~ . logM

E[D] +0(1),
Var[Dy] ~ (% — %) log M

for M — oo.

Proof. We shall show that Theorem [B.3.1] can be deduced from Theorem 324
(The converse is obviously true.) This follows, informally, from the fact that
Tunstall’s code and Khodak’s code are “almost equivalent” as discussed above.

Let’s be more precise. Suppose that v is chosen in a way that there exists a
word x with P(xz) = 1/v. In particular the dictionary D, contains all external
nodes d that are adjacent to internals x with P(x) = 1/v. Now let Dy be the
dictionary (of size M) of any Tunstall code where only some of these internal
nodes x with P(z) = 1/v have been expanded. Then D, is the Tunstall code
where all nodes « with P(x) = 1/v have been expanded. Hence, by this coupling
of the dictionaries we certainly have for the dictionary lengths [Dys — D,| < 1.
This also implies that E[Dy] = E[D,] + O(1) and Var[Dy; — D,] = O(1).

We observe that the central limit theorem is not affected by this variation.
Since D, satisfies a central limit theorem (see Theorem B.24) we find

EM — %logM
(7 — #) log M

— N(0,1).

For the expected value and variance we have E[Dy;] = 3+ log M + O(1) and

Var[ﬁM] = Var[D,|+ O (Var[Dy])

hy 1

54 Chapter 3. Tunstall and Khodak VF Codes

Indeed, more generally, let Y,, = X,,+ Z,, and we know that X,, satisfies a central
limit theorem of the form

X, — E[X,)]
Var[X,]

such that Var[X,] — oo as well as Var[Z,]/Var[X,,] — 0 as n — oco. Then
also Y,, satisfies a central limit theorem, i.e.

Y, — E[Y,]
Var|Y,,]

— N(0,1)

— N(0,1),

and we have

Var|Y,] = Var[X,,] + Var[Z,] + O(y/Var[X,|Var[Z,]) ~ Var[X,,]-

which follows from Cauchy-Schwarz’s inequality
E[(X, — E[X.])(Z, — E[Z,])] < (Var[Xn])l/Q(Var[Zn])1/2.
This completes the proof of Theorem [3.3.11 [|

Let us offer some final remarks. We already observed that the parsing trees
for the Tunstall and Khodak algorithms are the same except when there is a
“tie”. This situation can occur both, for the rational case and for the irrational
case, and somewhat surprisingly leads to the cancellation of oscillation in the
redundancy of the Khodak code for the rational case. As shown in Savari and
Gallager (1997) tiny oscillations remain in the Tunstall code redundancy for the
rational case. We ask the reader in Exercise to provide details.

3.4. Back to Khodak Code with Bounded Phrase Length

Before we discuss a Khodak code with some additional constraints, let us de-
scribe another representation of the Khodak code using a random walk in the
first quadrant. As already observed in Chapter [l a path in the parsing tree
from the root to a leaf corresponds to a random walk on a lattice in the first
quadrant of the plane (see Figure[[T]). Indeed, observe that our analysis of the
Khodak code boils down to studying the following sum

Aw)= Y f)

y:P(y)>1/v

for some function f(v). Since P(y) = p*1¢*? for some nonnegative integers
k1, ks > 0, we conclude that the summation set of A(v) can be expressed, after
setting v = 2V, as

k1log(1/p) + k2 log(1/q) < V. (3.26)

3.4. Back to Khodak Code with Bounded Phrase Length 55

This corresponds to a random walk in the first quadrant with the linear boundary
condition ax + by = V, where a = log(1/p) and b = log(1/q) as shown in
Figure The phrase length D, of the Khodak code coincides with the exit
time of such a random walk (i.e., the last step before the random walk hits the
linear boundary). This correspondence is further explored in Janson (1986).

A
—logv
logg
—logg=1"5
a=—logp —logv ;:
logp

Figure 3.2. A random walk with a linear barrier; the exit time is equiv-
alent to the phrase length in the Khodak algorithm (e.g., the exit time
=T1).

This new representation of the Khodak code allows us to analyze a novel
version of the code by putting additional constraints on the random walk in
the first quadrant. In this section, we consider the Khodak code with bounded
phrase length, that is, we additionally impose that

ki+ ks <K (327)

for some positive integer K. Throughout this section we assume the binary
alphabet with p = p; and ¢ = ps.

We consider here a random walk in the first quadrant with two constraints:
28) and [B27). In other words, we study a Khodak code with phrase length
bounded by K, that is, any parsing tree of such a code has no leave beyond level
K. This is illustrated in Figure

Our goal is to understand the probabilistic behavior of the phrase length
Dg v for a Khodak code with bounded phrase length. However, in order to

56 Chapter 3. Tunstall and Khodak VF Codes

Figure 3.3. Lattice paths in a bounded region

express succinctly these results we need to enumerate the number of paths in
the bounded area of the first quadrant. To be more precise, let us define

Ck,y :={(x1,22) € Réo cx1 + 22 < K, x1log(1/p) + x2log(1/q) < V3.

Let then Lk v be the corresponding set of lattice paths within the region Ck v
and Tk v be the associated binary tree. In order to present our results, we need
to study first the cardinality of Lk v, that is,

k1 + ko
ILxv]= Z (f .
1
k1+k2<K, kilog %+k2 log %SV
In this context it is natural to let K be an integer variable and V' a positive real
variable.
In the formulation of our results we will make use of sgp, = ssp (K, V') defined
as the root of
pr g K

psep log % + g ssp 10g % = V

Note that sq, > —1 if and only if K/V < 1/h.
We further set recall the definition (39):

(3.28)

R(ssp) 1=

L

=~ o-L{p),
1—-2-L

Q1(z)

In the next section we present a sketch of the proof of our first result.

3.4. Back to Khodak Code with Bounded Phrase Length 57

Theorem 3.4.1. Suppose that 6 > 0 is given.
(i) Assume that K and V satisfy the following constraints

1% Vv
7o s R s e gy Y B

Iflog p/ log q is irrational, then as K,V — oo

v
1 .
[Lxv] = 71 +o(1)). (3.30)
However, if }ggg is rational then
\%
ILx.v| = %2‘/ +0(2V1-m) (3.31)

for some n > 0, where L > 0 is the largest real number for which log(1/p) and
log(1/q) are integer multiples of L.
(ii) Neaxt, if

2V

\%4
(148 <K< —-(1-96), 3.32
og(1/p) +Tog(i/g) T p 179 (3:32)
then
A (Ssp, (K —£)1n Vin2 —ssp 4 g7 %0) K2V
x|~ 3 = Jop_Vin2) 2 ta) . (333)
=0 p+q) 27K T (ssp)
where A =1Ing —Inp,
: s s s 2
Py el (pring e g
p=S+qs PS4+ q 3 ’
and A
_ sA(%
QA(S,Z)—me (%)
If logp/logq = d/r is rational then
d—r—1 QWil WU
e“5Qr (s ,KInp—VIn2
Ly~ > (s = .) (3.34)

i 19
d—r
p5SP ¢ 5sp

. (pfssp + qfsﬁp)K27Vssp
oK T(ssp)

=0 1—

58 Chapter 3. Tunstall and Khodak VF Codes

Figure 3.4. The drift in the first and second case of Theorem

(iil) Finally, if
Vv 2V
max(log(1/p) tog(1/a)) T =K S 1og(i/p) + Tog(1/g)

then (for some n > 0)

S(1=46) (3.35)

|Lxy| =28+t — o(2K0-m), (3.36)

However, the main result of this section deals with the phrase length Dy v
which we discuss next. As noticed the phrase length coincides with the first exit
time from Ck . Observe that we assign to the lattice paths in Lk, a natural
probability distribution. Recall that if y € Lk consists of k; steps of the form
R (for Right) and ks steps of the form L (for Left) then we set P(y) := pFiq"
and that this is exactly the probability distribution that is induced by a random
walk that starts at (0,0) and is generated by independent steps R and L with
probabilities p and ¢. Further, since every path y eventually leaves Cx v we
surely have > 7 . P(y) = 1. Certainly, we can also think of the corresponding
trees T,y and its external nodes. Our second result concerns the exit time Dy v
of this random walk, that is, the number of steps |y| = k1 + k2 of y € Lk v (see
Figure [34). In the next subsection we present a brief sketch of the proof.

Theorem 3.4.2. Let Dg v denote the exit time of the above described random
walk and the phrase length in the Khodak code with phrase length bounded by K .
Fiz § > 0.

(i) If (329) holds, then we have, as K,V — oo,

Dgv — tlog|Lk v|

(3 - +)1og |Lrcv])

— N(0,1),

3.4. Back to Khodak Code with Bounded Phrase Length 59

where N(0,1) denotes the standard normal distribution. Furthermore,

_ log|Lkyv| logh = hy = —logL+ log(1 —27F) + %
N h h 2h2 h

1
to | ——),
(10g |Lr V])

where L = 0 if logp/ logq is irrational and L > 0 is defined as in Theorem[5.7.]|
if log p/ log q is rational. Further

EDk v]

(3.37)

h 1
Var[Dg v] ~ (—2 - —> log |Lx.v| (3.38)

where Lk v is discussed in Theorem [37.1].
(i) If (232) or (Z33) holds, then the distribution of Dy v is asymptotically
concentrated at K + 1, that is,

P(Dgy # K +1) = O(e™"¥)

as K,V — oo for some n > 0. We also have E[Dg] = K + 1+ O(e™"%) and
Var[DK,V] = O(einK).

Let us explain intuition behind these results. We observe that a random walk
(that starts at (0,0) and is generated by independent steps R and L with prob-
abilities p and ¢) has an average position (pm, gm) after m steps. Furthermore,
by approximating this random walk by a Brownian motion it is clear that the
deviation from the mean is (almost surely) bounded by O(y/mloglogm). Thus,
if (329) holds then the Brownian motion approximation can be used to derive
the central limit theorem (see, for example, Janson (1986)). The bound coming
from ki + ko < K has practically no influence (cf. Figure [3.4). However, in the
second and third case ((3.32) and (3.35)), the bound ki logp~! + kalogg™t <V
is negligible and, thus, the exit time is concentrated at K + 1. This also explains
the first threshold K/V ~ 1/h of Theorem B 4.1l The second threshold K/V ~
2/(logp~! +logg™") comes from the fact that 37, ., x (kllzk?) = 2K+l 1
and that

> (kl - kQ) (3.39)
3}

ki4+k2<K, kilog % +k2log £ >V

becomes negligible, that is, O(251=), if

KV < (1—5)-2/(10g%+10g%).

60 Chapter 3. Tunstall and Khodak VF Codes

The two thresholds K/V ~ 1/h and
1 1
K/V ~ 2/(10g5 —|—10g5)

are not covered by Theorems[3.Z.1]and The reader is asked to derive them
in Exercise In fact it is possible to characterize the limiting behavior of
|Lx,v| and D,y also in these cases but the statements (and also the derivations)
are very involved and are not discussed here.

3.4.1. Proof of Theorem [3.4.7]

As above, for any lattice path y we set P(y) = p*1¢*2 if y consists of ki steps
R and ko steps L. We further set v = 2. Then k; logp™! + kylogg™! <V is
equivalent to P(y) > 1/v. Observe that

Ag(v) = Z 1

y:P(y)>1/v, |y|<K

is the number of lattice paths with endpoints contained in Ckyy. Due to the
binary tree interpretation of these lattice paths we have

ILxv]=Axg) +1=Ag(2")+1

since the number of external nodes of a binary tree exceeds the number of internal
nodes by exactly 1.

For the proof of the limit laws of the exit time we will also make use of the
following sum

Sk(v,z) = Z P(y)z‘y‘

y:P(y)>1/v, |y|<K

as already defined (BIT]).
First, by definition it is clear that Ax (v) =0 and Sk (v, z) = 0 for v < 1 and
all K > 0, however, for v > 1 we recursively have

A 41(v) = 1+ A (vp) + Ax (vg)
Sk+1(v,2) = 14 pzSk(vp, 2) + 425k (vg, 2).

From this recursive description we immediately obtain the corresponding rela-
tions for the Mellin transforms, namely

a(8) =+ 07 MEG) (R(s) < 1)

3.4. Back to Khodak Code with Bounded Phrase Length 61

and
1] —8\ Q*
Sk(s,2) = ——+ (2" 4+ 2¢"%)Sk(s,2) (R(s) <0).

Since Aj(v) = Sj(v,2) = —1 we explicitly find

1—(p~* +q%)K+!
s(1=(p~>+4q7*))
L= (0 g)
s(1—z(pt=—*+4+q¢'—9))
In order to find asymptotics of Ax (v) as v — co we must compute the inverse
transform of A% (s):

Al (s) =

Sk(s,2) = —

1 0'+iT
Ag(v) = 2_7mTh—>n;o - A% (s)v~*% ds, (3.40)
where ¢ < —1. The factor (z(p'~* + ¢*=*))X*! needs special care and the
corresponding part will be handled with saddle point methods.
Case (i). We first assume that we are in the first case of Theorem B.41]
that is, the relation (8:29) holds. Then we know that sg, < —1. We split up the
integral (3.40) into two parts:

o+iT 1
I, = ——— lim — v %ds,
ZTE o A T e
1 o+iT —s —s\K+1
IQ = —— lim / (p + g) v~ %ds.
2mi T—oo Jy_ip 8(1—(p* +q7%))

We observe that I is the same expression that occurs in the unconstrained case.
The integral I> has to be treated in a completely different way. First of all,
we shift the integral to the line o = sq, < —1 and observe that

(p~*» + q_SSD)Kv_SSp — Pi(ssp) log(p™ "P +q7 P) —s¢p
where sy, and R(sgp) are defined in (328)). Notice also that
R(sgp)log(p™®® 4+ q %) —s5p <1
if ssp # —1. Hence, I5 can be estimated by

I = O (pilew)loale 7 ka0 2) — 0 (V1m0) (3.41)

for some 7o > 0. In Exercise B.I3] the reader is asked to provide details of this
estimate. Again we have to overcome the technical problem that the integral is
not absolutely convergent.

62 Chapter 3. Tunstall and Khodak VF Codes

Case (ii). Next we assume that we are in the second case of Theorem B.4.T]
that is, the relation ([3:32)) holds. Here sy, > —1 and we do not split the integral
B40) into two parts. Of course, we again shift the integral to a line o > —1,
namely to 0 = sg, > —1. Note that the zeros of the denominator are no
singularities of the function A% (s) since the numerator has the same zeros.
Nevertheless, the integral

1 ssptil | _ (p—s —s\K+1
2mi T—oo Js _yp s(1—(p~°+¢7*))

v ds, (3.42)

needs a delicate analysis. It is again not absolutely convergent but this is just a
technical question. The second problem comes from the fact that on the line of
integration there are infinitely many saddle points. First note that s = sgp, is a
saddle point of the mapping

S = (pfs +q75)K,U75 _ eKln(p +¢7°)—sVIn2

and, thus the integral from sy, — iK27¢ to sg + iK27° (for some ¢ > 0) is
asymptotically given by
1 (p*Ssp +q755p)K+12755pV
2K T(ssp) Ssp(1— (p50 +q75»))

However, as already noted this is not the only saddle point on this line of inte-
gration. Set t), = 27h/(logp —logq) = —2mih/A. Then all points s = sg, + its,
h € Z, are saddle points. Consequently, the total contribution of the integral is
asymptotically given by

(pfsﬁp + qfssp)KJrl 27sSpr7ith(K+1)27inh

1
2 TRTeD (ot)~ o)

The representations (3.33) and ([B3.34) follow after a few lines of computation by
using the Fourier expansion of Qa (s,).

Case (iti). If (B30) holds then sy, > 0. Thus if we shift the line of
integration of the integral :42) to o = sy, we have to take into account the
residue 2¥*! corresponding to the polar singularity s = 0. The saddle point
machinery for the remaining integral at the line o = s4, provides the error term.

3.4.2. Proof of Theorem [3.4.2]

In order to treat the exit time Dg y we make again use of the corresponding tree
Tk v we refer to Lemma [3.23] which we re-state as follows: Let T" be an m-ary

3.4. Back to Khodak Code with Bounded Phrase Length 63

tree, let X denote the set of leaves and Y the set of internal nodes. Furthermore,
we assume a probability distribution pg, ..., pm_1 on an m-ary alphabet A and
identify a node in T with a word over A in the usual way. Then we have

Z P(x)zl*l = (2 — 1) Z P(y)z" 4+ 1. (3.43)

reX yey

This directly implies that the probability generating function of Dg (v, z) =
E[zP%.V] (where v = 2V) is given by, as proved in Lemma .23

Dk (v,z) = (# — 1)Sk(v,2) + 1 (v>1)

and consequently its Mellin transform has the following representation (for

R(s) < 0):

1_ (=20 2@ +¢)" 1
1—2(p'—* + ¢'=%)) s

D (s,2) =(z—1)Sk(s,2) — = =
ie(5,2) = (= DSicls2) — =
Hence, we have for any o < 0

E[:Drv] =

o+iT _ _ 1—s 1—s\K+1
1o / ((1 2)(L—2(p " +q' 7)) 1) —
o S

21 T—oo Jy_ir s(1— z(pl= + q'=#))

In the first case of Theorem B42] that is, if (B:29) holds then we split up the
integral into two parts I (z) + I2(2):

I(s) = — lim Uﬁ(= ((1 Siql = _é) v ds,

' o+iT (1 Z)((1— erql 5)K+1
27t T—o00 Jo_ip s(1—z(pt=—*+4¢'—9))

v ®ds.

Observe that I1(z) is again directly related to the unconstrained case. Thus we
get (as above)
Li(z)=v""P (1+0(z 1),

where so(z) is the real solution of the equation z(p!=% + ¢!=%0) = 1.

In the second integral I5(z) we shift the line of integration to o = sp+1 < 0
and obtain an negligible exponentially small error term. Consequently we obtain
the same kind of central limit theorem as in the unconstrained case.

The derivation of the mean value and variance is asked to be provided in

Exercise B.11]

64 Chapter 3. Tunstall and Khodak VF Codes

In the second case of Theorem (where B32) or [B35) holds) we do
not split up the integral into two parts, which implies that the integrand has no
singular points other than s = 0. We shift the line of integration to ¢ = s, +1 >
0 and obtain (again by taking care that there is no absolute convergence)

E[zPxv] = 25T 1 O(|z — 1jv™") (3.44)

where 7 = s +1 > 0. By construction we know that Dg < K + 1. From
B44) we can easily deduce that Dk v is in fact concentrated at K + 1. By
Markov’s inequality (for z < 1) we directly obtain

P(DK,V < K) < »KE [ZDK’V l{DK,VSK}}
==z K (B[P<V] -5t + 2 P(Dky < K)

which implies (with z = 1 — %) the estimate P(Dg,y < K) = O(v~"). This
proves the concentration. We have v = 2V and, thus, v=" = 27"V is exponen-
tially small. By using the corresponding tail estimate of the form P(Dgy <
K —7) = O(e™"/%y™), we can also deal with moments and obtain E[Dg y] =
K +1+O(K?v™") and Var[Dg v] = O(K3v™").

3.5. Exercises

3.1 Prove that the parsing trees for Tunstall and Khodak algorithms are
exactly the same (see Savari and Gallager (1997)).

3.2 Establish the Conservation of Entropy Property which states that the
entropy of the dictionary hp is related to the source entropy hg, that is,

hp = hsE[D]

(see Savari (1999)).

3.3 Provide detailed proofs of Theorems and B.2.4] for m > 2.

3.4 Prove (B14).

3.5 Establish Massey (1983) result, namely (3.15]).

3.6 Give a prove of Lemmal[D.3.1l See also Drmota, Reznik, and Szpankowski
(2010).

3.7 Supply details of the proof of Theorem for the rational case using
Mellin transform.

3.8 Consider again the Khodak algorithm for the rational case. Develop
precise analysis showing that somewhat surprisingly there is cancellation
of oscillation in the redundancy of the Khodak code (see Savari and
Gallager (1997)).

Bibliographical notes 65

3.9 Show that there are tiny oscillations remain in the Tunstall code redun-
dancy for the rational case. See Savari and Gallager (1997).

3.10 Extend our analysis of Tunstall and Khodak codes to Markov sources.

3.11 Complete the proof of Theorem [3.4.2] by providing a detailed derivations
of the average depth (837) and the variance ([B38]).

3.12 Derive the two remaining thresholds, namely, K/V ~ (log2)/h and
K/V ~2/(log, % + log, %) of Theorem

3.13 Provide detailed derivations of the estimation (3.4I]).

Bibliographical notes

Tunstall (1967) algorithm for the construction of a VF code has been extensively
discussed in Abrahams (2001). Simple bounds for its redundancy were obtained
independently by Khodak (1969) and Jelinek and Schneider (1972). Tjalkens
and Willems (1992) were the first to look at extensions of this code to sources
with memory. Savari and Gallager (1997) proposed a generalization of Tunstall’s
algorithm for Markov sources and used renewal theory for an asymptotic analysis
of the average code word length and for the redundancy for memoryless and
Markov sources.

The Conservation of Entropy Property (3.3]) was established in Katona and
Tusnady (1967), Savari (1999).

Our presentation of the Khodak and Tunstall algorithms is based on an
analytic approach discussed in Drmota, Reznik, Savari, and Szpankowski (2006),
Drmota et al. (2010). Section [3.4]is based on Drmota and Szpankowski (2007)
(see also Janson (1986)). A precise analysis of infinite saddle points is first
discussed in Park, Hwang, Nicodeme, and Szpankowski (2009), but see also
Jacquet and Szpankowski (2015) and Jacquet, Milioris, and Szpankowski (2020).
A preliminary analysis of a Khodak-like code was presented in Choi and Golin
(2001) using a Laplace transform approach.

CHAPTER 4

Divide-and-Conquer VF Codes

In this chapter, we consider again a variable-to-fixed code due to Boncelet (1993)
who used the divide-and-conquer principle to design a practical arithmetic en-
coding. Boncelet’s algorithm is computationally fast and its practicality stems
from the divide and conquer strategy to build a parsing tree: It splits the input
(e.g., parsing tree) into several smaller subproblems, solving each subproblem
separately, and then knitting together to solve the original problem.

We first describe in some details Boncelet’s algorithm and present its redun-
dancy analysis. To prove these results we need precise results about a discrete
divide-and-conquer recurrence that for some T'(n) satisfies

T(n) = an+ijT(ijn+5jJ)+ZBjT({pjn+Sj]) (4.1)

j=1

for some known sequence a,, and given b;, Ej, p; and 6, gj. The discrete nature of
this recurrence (represented by the floor || and ceiling [-] functions) introduces
certain oscillations not captured by traditional analysis of the divide and conquer
recurrence. In the second part of this chapter we present a rigorous and precise
analysis of the discrete divide-and-conquer recurrence that goes beyond data
compression.

4.1. Redundancy of Boncelet’s Code

We now describe the Boncelet VF algorithm. To recall, a variable-to-fixed length
encoder partitions the source string, say over a binary (or more generally over an
m-ary) alphabet, into a concatenation of variable-length phrases. Each phrase
belongs to a given dictionary D of source strings which constitutes a complete
prefix free set. Such a uniquely parsable dictionary is represented by a com-
plete parsing tree, i.e., a tree in which every internal node has all 2 (or more

68 Chapter 4. Divide-and-Conquer VF Codes

generally m) children nodes. The dictionary entries correspond to the leaves of
the associated parsing tree. The encoder represents each parsed string by the
fixed length binary code word corresponding to its dictionary entry by the code
mapping C : D — {0, 1}rlog IPI1. Boncelet’s algorithm, described next, is a prac-
tical algorithm to generate a parsing tree for a VF code, and therefore should
be compared to the (asymptotically) optimal Tunstall and Khodak algorithms
discussed in Chapter [3

The main idea of Boncelet’s VF code is to construct a parsing tree using
a simple divide-and-conquer strategy. More precisely, let n = |D| denote the
number of leaves in the corresponding parsing tree, hence also the size of the
dictionaryE We construct the parsing tree as follows: to build a tree with n
leaves, we split n into n = ng + n1 so that there are ng leaves in the left subtree
and nj leaves in the right subtree. We accomplish it using a divide-and-conquer
strategy, that is, we set

no = [pon+46|, ni=[pin—7]

for some § € (0,1) (that satisfies 2pg + & < 2) and pg is the probability of
generating a “0” with pg+p1 = 1 (we consider here only the binary case). Then
the procedure is recursively applied until only 1 or 2 leaves are left.

Example 4.1.1. We want to build a tree with n = 10 leaves and pg = 1/3.
There are |10/3| = 3 leaves in the left subtree and 7 in the right subtree.
Recursively, 7 leaves of the root right subtree we split 7 = 2 + 5 so that the left
subtree of the root right subtree will end up with two leaves, the right subtree
of the root right subtree will have 5 leaves, and so on. At the end we will build
a complete pursing tree on 10 leaves.

Let D = {v1,...v,} denote the set of phrases of the Boncelet code that are
constructed in this way, that is, they correspond to the paths from the root to
leaves of the Boncelet’s parsing tree, and let £(vy), . . ., £(v,) be the corresponding
phrase lengths. Clearly the probabilities pg, p1 induce a probability distribution
P(v1),...,P(vy) on the leaves of the parsing tree and, thus, on the phrases.
This fits naturally to a Bernoulli source with probabilities pg, p1 when the input
string is partitioned according to D.

Our aim at is to understand the probabilistic behavior of the phrase length
that we denote as D,, and the average redundancy. By definition the probability

1We should mention that in this chapter we use n to denote the number of leaves and the
number of dictionary entries. Notice that in the previous chapters we used M for n which is
more convenient in the context of divide-and-conquer recurrences.

4.1. Redundancy of Boncelet’s Code 69

generating function of D,, is defined as

C(n,y) z”: P(v;)y),

=1

Boncelet’s splitting procedure leads to the following recurrence on C(n,y) for
n>2
C(n,y) =poy C(lpon+4],y) +p1y C([pin —61,y) (4.2)

with initial conditions C'(0,y) = 0 and C(1,y) = 1. We shall use this repre-
sentation again in the last section of this chapter when we sketch a proof of a
central limit law for the phrase length.

For now let us focus on the average phrase length and code redundancy. Let
D,, denote the average phrase length

n

D, =E[D,] =) P(v;) {(vy)

Jj=1

which is also given by D,, = C’(n, 1) (where the derivative is taken with respect
to y) and satisfies the recurrence

En =1+ pOELpgnJrSJ +p05fp1n75'| (43)

with Dy = Dy = 0. This recurrence falls exactly under our divide and conquer
recurrence ([A.T]).

We will discuss a more general recurrence in the next section where in The-
orem [.2.T] we give a general solution of (A1), and in particular recurrence (3]
discussed in Example[Z2.8 below. In Section 2] we present a sketch of the proof
our main result regarding the performance of the Boncelet algorithm.

Theorem 4.1.2. Consider a binary memoryless source with positive probabili-
ties po = p and p1 = q and entropy h = plog(1/p) +qlog(1/q). Let D,, = E[D,]
denote the expected phrase length of the binary Boncelet code with n phrases.
(i) If the ratio (logp)/(logq) is irrational, then

— 1 o
D, = 7 logn — 7 + o(1), (4.4)
where _ ~
_ E'(0) - G'(0) ha
a=—— _h_ﬁ’ (4.5)

ha = plog?(1/p) + qlog?(1/q), and E'(0) and G'(0) are the derivatives at s = 0
of the Dirichlet series defined in ({.26]) below.

70 Chapter 4. Divide-and-Conquer VF Codes

(ii) If (logp)/(logq) is rational, then

D, — %lognf o+ \Illglogn)

where U(t) is a periodic function and n > 0.

+0((n™"), (4.6)

Recall from Chapter [that for variable-to-fixed codes, the average (normal-
ized) redundancy is expressed as

logn __logn

T ED,) " D,

h

since every phrase of average length D,, requires log n bits to point to a dictionary
entry. Our previous results imply immediately the following corollary.

Corollary 4.1.3. Let 7, denote the (normalized) average redundancy of the bi-
nary Boncelet code (with positive probabilities po = p and p1 = q and n phrases).
(i) If the ratio (logp)/(logq) is irrational, then

ha 1
Tn = 4.
n 1ogn+0(1ogn) (47)
with o defined in [{.5).

(ii) If (logp)/(log q) is rational, then
h(a+ ¥(logn)) (1)
+o0 (4.8)

logn logn

Ty =

where U(t) is a periodic function.

Let us now compare the redundancy of Boncelet’s algorithm to the asymp-
totically optimal Tunstall algorithm. From Corollary we know that the
redundancy of the Tunstall/Khodak code i

h h 1
_K 2

= “log(hln2) — 22) +

"n logn < og(hIn2) 2h) O(logn)

(provided that (logp)/(logq) is irrational; in the rational case there is also a
periodic term in the leading asymptotics).

Example 4.1.4. Consider p = 1/3 and ¢ = 2/3. Then the recurrence for D,
is precisely the same as that of Example below. Consequently a =~ 0.0518
while for the Tunstall code the corresponding constant in front of h/logn is
equal to —log(hIn2) — 22 ~ 0.0496.

2Recall that we now write n for the dictionary size M.

4.2. Divide-and-Conquer Recurrence 71

It is also interesting to study the asymptotic behavior of the distribution
of the phrase length D,,. Actually a precise analysis of the recurrence (@2,
explained in Section [£3] leads to the following result.

Theorem 4.1.5. Consider a binary memoryless source with p # q. Then the
phrase length distribution D,, of the corresponding Boncelet code with n phrases
satisfies the central limit law, that is,

D, — +logn
—_—t
(3% — 7) logn
where N(0,1) denotes the standard normal distribution, and

1 1
E[Dn] = O}gln +O(1)a Val“[Dn] ~ (@ — —) logn

for n — oo.

4.2. Divide-and-Conquer Recurrence

To prove Theorem we will rely quite heavily on a solution of the divide-
and-conquer recurrence which we describe next in some generality.

We shall assume that a problem of size n is split into m subproblems. It is
natural to assume that there is a cost associated with combining subproblems
together to find the solution. We denote such a cost by a,. In addition, each
subproblem may contribute in a different way to the final solution; we represent
this by coeflicients b; and Bj for 1 < j < m. Finally, we postulate that the
original input n is divided into subproblems of size |h;(n)| and [hj(n)], 1 <
j < m, where h;(z) and h;(z) are functions that satisfy h;(z) ~ h;(x) ~ p;x
for x — oo and for some 0 < p; < 1. We aim at presenting precise asymptotic
solutions of discrete divide and conquer recurrences of the following form for
n>2

T(n) = an+ D BT () + Y57 ([hy(m)]) (49)

A popular approach to solve this recurrence is to relax it to a continuous
version of the following form (hereafter we assume b; = 0 for simplicity)

T(z) = a(z) + ijT(hj(x)), x> 1, (4.10)

72 Chapter 4. Divide-and-Conquer VF Codes

where hj(x) ~ pjz with 0 < p; < 1, and solve it using a Master Theorem
of a divide-and-conquer recurrence. The most general solution of (I0) is due
to Akra and Bazzi (1998) who proved (under certain regularity assumptions,
namely that a’(z) is of polynomial growth and that h;j(z) —pjz = O(z/(Inz)?))

T(z)=6© (:c (1 + /11 ;([ffl du)) : (4.11)

where sg is a unique real root of

> bips =1. (4.12)
J
Actually, this also leads directly to (see Exercise [A3])

n
S a;
T(n)=0© | n® 1+§ jsoil (4.13)
j=1

in the discrete version provided that a,4+1 — a,, is at most of polynomial growth.

Discrete versions of the divide and conquer recurrence, given by (£9) are
more subtle and require a different approach. We will use Dirichlet series (closely
related to the Mellin transform) that better captures the discrete nature of the
recurrence, and then apply Tauberian theorems together with the Mellin-Perron
formula presented in Appendix

We now present asymptotics of the divide and conquer recurrence when the
sequences a,, of the form a,, = Cn?(Inn)® (with C > 0 and a,b > 0).

Theorem 4.2.1 (M. Drmota and W. Szpankowski, 2013). Let T'(n) be the di-
vide and conquer recurrence defined in ({f.9) with a, = Cn%Inn)® (C > 0,
a,b>0) such that:

(A1) bj and b; are non-negative with b; +b; > 0,

(A2) hj(z) and hj(z) are increasing and non-negative functions such that hj(x) =
pjx 4 O(z'~°) and h;(x) = pjz + O(z'~°) for positive p; < 1 and § > 0,
with hj(n) <n and hj(n) <n—1 for alln > 2.

Furthermore, let sg be the unique real solution of the equation

m
(bj +bj)p;° = 1. (4.14)

Jj=1

Then the sequence T'(n) has the following asymptotic behavior:

4.2. Divide-and-Conquer Recurrence 73

(i) If a > so, then
C'n(Inn)? 4+ O (n*(Inn)®>~1) if b > 0,
T(n) = /0@ a—¢' ; —
C'n®+O0(n*=?) ifb=0,
where & = min{a — sg,d} and

C

C' = — .
1= 3700 (b + by)ps

(i) If a = so, then

T(n) = C"n(Inn)"** + O (n*(Inn)°)

with
1! _ C _ .
(b+1) 32711 (bj + bj)pg In(1/p;)
(i) If a < so (or if we just assume that a, = O(n%) for some a < sg

as long as a, is a non-negative and non-decreasing sequence), then for
logpi,...,logpm irrationally related (see Chapter[3)

T(n) ~C"'n,

where C"" is a positive constant. Iflogp1,...,logp, are rationally related
and if we also assume that (the so called “small growth property”)

T(n+1)—T(n)=0 (n"") (4.15)
holds for somen >1—19, then
T(n) = ¥(logn)n + O (ns"*"')

where W(t) is a positive and periodic continuous function with period L
andn’ > 0.

We now offer some remarks.

Remark 4.2.2. The order of magnitude of T'(n) can be checked easily using
Akra and Bazzi (1998). In particular, if we just know an upper bound for a,
which is of the form a,, = O(n®(Inn)®) — even if a,, is not necessarily increasing
— the Akra-Bazzi theorem provides an upper bound for T'(n) which is of form

74 Chapter 4. Divide-and-Conquer VF Codes

stated in Theorem .21l Hence the theorem can be easily adapted to cover a,
of the form
an = Cn®(Inn)® + O((n® (Inn)")

with a; < a or with a; = a but by < b. We split up the solution T'(n) into

T(n) = T1(n) + T2(n), where T1(n) corresponds to att) = Cn?(Inn)®, for which
we can apply Theorem 2] and T5(n) corresponds to the error term ag) =
O((n® (Inn)), for which we apply the Akra-Bazzi theorem.

The same idea can be used for a bootstrapping procedure. Theorem .2.]
provides the asymptotic leading term for T'(n) that is (for example, in case (i))
of the form C'n®(Inn)®. Hence, by setting T'(n) = C'n*(Inn)® + S(n) we obtain
a recurrence for S(n) that is precisely of the form (£3]) with a new sequence a,
that is of smaller order than the previous one. At this step we can either apply
Theorem [.2T] a second time or the Akra-Bazzi theorem.

Remark 4.2.3. Theorem [£.2.1] can be extended to the case
an = Cn(Inn)°?,

where a > 0 and b is an arbitrary real number. The same result holds with the
only exception a = sg and b = —1. In this case we obtain

T(n) =C"n*Inlnn+ O (n*(lnn)~")

with
C

CII _ .
Zj:l b;jp§ In(1/p;)

Remark 4.2.4. The third case (iii): a < S, is of particular interest. Let us
consider first the irrationally related case. Even in this case it is not immediate
clear how to describe explicitly the constant C"”. It depends heavily on a,, and
also on T'(n) and can be written as

A(s0) + 301 bi(G(s0) — Ej(s0)) + Sy b;(G(s0) — Ej(s0))

o = > o (4.16)
s0 ;=1 (bj + b;)p;* In(1/p;)
with -
A(S) _ Z anJrQT;anJrl’

n=1

4.2. Divide-and-Conquer Recurrence 75

and

G= Y T ([hj(n+2)]) =T (lhj(n+1)]) (4.17)
L T@) =T (lhi(n;(1) + 1))
n;(1) ’

Z (k+2)—T(k+1)) ((k/;j)s — nj(lk)s) , (4.18)

=1

=

where n;(k) = max{n >1:h;(n+1) < k + 2}, and

Z T ([hs(n+2)]) =T ([As(n + 1)])

nS

nn

T(2) =T ([hi(n; (1) +1)])
n;(1) ’

+

oo

By(o) = 42 =T+ D) (s o)

k=1

where 7;(k) = min{n > 1 : h; (n+2) > k+1}. We will show in the proof
of Section ILZZ that the series A(s), E i(s0) and E;(so) actually converge. It
should be also mentioned that there is no general error term in the asymptotic
relation T'(n) ~ C"'n®.

In the rationally related case the periodic function ¥(¢) has a convergent
Fourier series W(t) = ", cpe? /L syhere the Fourier coefficients are given by

A(sk) + T bi(Gy(sk) = Bi(sk)) + X5 5;(Gi(sk) — By(si)
o = - - . (4.19)
sk 2521 (bj +b)p3° In(1/p;)

where s, = so + 2kmi/L. In particular the constant coefficient ¢y equals C".
Note that it cannot be deduced from this representation that the Fourier series
is convergent. This makes the problem really subtle.

Remark 4.2.5. The small growth condition ([I5) is important for the asymp-
totics. In examples of below Section [2.1l we discuss several recurrences in which
this conditions holds and it doesn’t leading to different asymptotic behavior.

We next present some applications of our main Theorem [A.2.1] before pre-
senting a sketch of its proof.

76 Chapter 4. Divide-and-Conquer VF Codes

4.2.1. Examples

We first illustrate our theorem on a few simple divide and conquer recurrences.
Note that we only consider examples for the case (iii) and (ii), since they are
more interesting. For more recurrences see Exercises [4.6H4.9

Example 4.2.6. The recurrence
T(n)=T(|n/2])+2T([n/2])+n

is related to the Karatsuba algorithm as discussed in Knuth (1998a). Here after
solving the characteristic equation ([@I4) we find

so = In(1/3)/1n(1/2) = 1.5849 . ..

and sg > a = 1. Furthermore, since m = 1, we are in the rationally related
case. Here the small growth condition (LI is satisfied so that we can apply
Theorem [£2.7] to obtain

1n
1r

T(n) = U(logn)niz - (14 o(1)) (n — o0)

with some continuous periodic function W(¢).
In a similar manner, the Strassen algorithm as discussed in Knuth (1998a)
for matrix multiplications results in the following recurrence

T(n) =T(|n/2])) +6T([n/2]) + n>.

Here we have m = 1, s = In7/In2 ~ 2.81 and a = 2, and again we get an
representation of the form

In7

T(n)=¥(logn)nz - (1+0(1)) (n — o0)

with some periodic function U(t).

Example 4.2.7. The next two examples show that a small change in the re-
currence might change the asymptotic behavior significantly. First let

T(n) =T(|n/2]) +T([n/4])

with T'(1) = 1. Here we have so = In((14-1/5)/2) In2 ~ 0.6942 and we are in the
rationally related case. Furthermore it follows easily that T'(n + 1) — T'(n) < 1.
Hence the small growth condition ([{I3)) is satisfied and we obtain

T(n) ~n*°U(logn)

4.2. Divide-and-Conquer Recurrence 77

50
120+

100+ 404

307

60
204
40

20

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

(a) (b)

Figure 4.1. Illustration to Example 27t (a) recurrence T'(n) =
T(|n/2]) + T([n/4]), (b) recurrence T'(n) = T'(|n/2]) + T(|n/4]).

for a continuous periodic function ¥(¢); see Figure L.I(a).
However, if we just replace the ceiling function by the floor function, that is,

T(n) =T(|n/2]) +T(|n/4]) forn>4

and T(1) = T(2) = T(3) = 1, then the small growth condition [EIF) is not
satisfied . We get T'(n) = F), for 28~ < n < 2%, where Fy denotes the k-th
Fibonacci number. This leads to

T(n) ~ n*U(logn),

where W(t) = (14 v/5)/2)'=®//5 is discontinuous for ¢ = 0; see also Fig-
ure [£TI(b).

Example 4.2.8. Finally we consider a recurrence for the Boncelet’s algorithm
with pg = 1/3 and p; = 2/3. Then

1 n 1 2 2n 1
Tn)==T|(|=+= “T||——-= 1
=g ([5]) <50 (15 30)+
with initial value T'(1) = 0. Its asymptotic solution is given by

1
T(n) = Elogn +C +o(1),

78 Chapter 4. Divide-and-Conquer VF Codes

with h = %10g3 + glog% and some constant C. We can compute C' = —a/h,
where
Tm+2)—T(m+1) 5
= 1 - —1 4.2
a ngl 3 og |3m + 5 og(3m) (4.20)
T(m+ 2) T(m +1) 3 5 3m
2 1 = —| —lo
+ 7;1 (ogbmuJ g(2))

+ 1og37h7 %10g23+§10g2%
3 2h

We have used this example for computing the redundancy of the binary Boncelet
code in Example .14

4.2.2. Sketch of Proof of Theorem [4.2.7]

We present here only a part of the proof of Theorem LZTl A complete detailed
proof can be found in Drmota and Szpankowski (2013) to which we refer the
interested reader.

Let us start with defining some appropriate Dirichlet series whose analysis
will lead to asymptotic behavior of T'(n). We set

=3 T(n+2)—T(n+1)

n=1

ns ’

provided the series is convergent. By partial summation and using a-priori upper
bounds for the sequence T'(n), it follows that T'(s) converges (absolutely) for
s € C with R(s) > max{sg, 04,0}, where s is the real solution of the equation
#I4), and o, is the abscissa of absolute convergence of g(s) defined as

oo

Afsy =y G2~ Tnd (4.21)

nS
n=1
To find a formula for f(s) we apply the recurrence relation ([@3). To simplify
our presentation, we first assume that 5]- = 0, that is, we consider only the floor
function on the right hand side of the recurrence ([{9); those parts that contain
the ceiling function can be handled in the same way. We thus obtain

)+ 3o,y LA DT

ns
j=1 n=1

4.2. Divide-and-Conquer Recurrence 79

For &k > 1 set
n;(k) :=max{n>1:hj(n+1) < k+2}.

By definition it is clear that n;(k + 1) > n;(k) and

n;(k) = g +0 (k9. (4.22)

Furthermore, by setting G;(s) we obtain

f: T (lhj(n+2)]) =T (lhj(n+1)])

2 T(k+2)—T(k+1)
PR
We now compare the last sum to pjT(s):
‘X’Tk+2 kz+1 °°Tk+2 T(k+1)
; k=1 k/p.]
S) ((k/;j)s -) T = B
where Ej;(s) is
G 3 Tl 2) =T (st 1))
n<n; (1) n
SACELICHIES) w23)
;::1 (k+2)—T(k+1)) ((k/;j)s - nj(lk)s) . (4.24)
Defining

m

E(s) = ijEj(s and G(s Zb iG(
j=1

we finally obtain the relation

~ . A(s) + G(s) — E(s)
T === D1 by

(4.25)

80 Chapter 4. Divide-and-Conquer VF Codes

As mentioned above, (almost) the same procedure applies if some of the Ej
are positive, that is, the ceiling function also appear in the recurrence equation.
The only difference to (£2H]) is that we arrive at a representation of the form

T(s) = F : (4.26)

with a properly modified functions G(s) and E(s), however, they have the same
analyticity properties as in ([{.23]).

For the asymptotic analysis we will only consider the irrational case for which
we apply Tauberian theory. The analysis of the rational case is based on the
inverse Mellin transform and quite involved calculations, see Appendix The
reader is asked in Exercise to provide missing details. _

We recall that we have a representation (£.25]) of the Dirichlet series T'(s) =
Yons1(T(n+2) —T(n+1))n"*, where T'(n + 2) > T'(n+ 1), and that we are
interested in the asymptotic behavior of

n—2
T(n) =T(2)+ > (T(k+2) = T(k+1)). (4.27)
k=1
Hence it is sufficient to get some information on the partial sums of the coefficient
of the Dirichlet series T'(s).
For the asymptotic analysis, we recall the fact that a Dirichlet series C(s) =
Y n>1Cnn”® can be represented as the Mellin-Stieltjes transform of the partial
sums ¢(v) = Y., -, ¢n (see Appendix [D):

C(s) = Z En /OO v~ dé(v)
ns 0 '
n>1
In our present context we set
¢(v) = Z(T(n +2)—T(n+1))
n<v

so that we get

T(n)=T(2)+¢(n—2).
Hence, the asymptotic behavior of T'(n) depends on the asymptotic behavior of
¢(v) which is reflected by the singular behavior of 17'(s); see the Wiener-Ikehare
Tauberian Theorem [D.2.2] from Appendix [Dl Clearly, the singularities of éA(s)

4.2. Divide-and-Conquer Recurrence 81

are at least s = 0 and the roots of the denominator in (£20), that is, roots of
the characteristic equation

m
(bj + bj)pi =1 (428)
j=1
(Note that sg is the unique real solution of this equation.) Furthermore there
might be singularities from A(s), G(s), and E(s).
By assumption we know that a, = Cn?(lnn)® for some a > 0 and some

real number b. By Theorem [0.2.4] from Appendix [D] we know that A(s) can be
represented as

ro+1) TB+1)
(s—a)btl (s—a)

if b is not a negative integer, or we have

A(s) =b + G(s), (4.29)

~ 1)k
A(s) =0 (l(c _1)1)' (s —a)*1In(s — a) (4.30)
1)k
+ %(s —a)*In(s — a) + G(s)

if b = —k is a negative integer. In both cases G(s) is analytic for (s) > a — 1.
We also note that an estimate of the form a, = O(n®) implies that the
function @(v) = 3, 5, (@nt2 — ant1) satisfies

a(v) = O(v?).
Consequently the Dirichlet series
A = Y Sttt [Pyt
ns 0
n>1

represents an analytic function for R(s) > a.
By the same reasoning it follows that the function E(s) is analytic for (s) >

so— 0. For example by using the Akra-Bazzi theorem we have the a-priori upper
bound T'(n) = O(n*°). Furthermore

1 1 1
®inye ~ myr C ((k/pj)“(s’”) '

Hence by partial summation and by the monotonicity of the sequences T'(n) it
follows that the series

1
kZZl(T(kH) —T(k+1)) oo s

82 Chapter 4. Divide-and-Conquer VF Codes

represents an analytic function for R(s) > so —d. Hence, the same holds for the
function E(s)

Summing up, we see that T(s) is an analytic function for R(s) > max{so, a}.
Hence, we have to distinguish three different cases: a > sg, a = sg, and a < sg.
These three cases correspond to the different parts of the master theorem for the
divide-and-conquer recurrence, Theorem[LZ 21l In the first case the (asymptotic)
behavior of a,, dominates the asymptotics of T(n), in the second case, there is
an interaction between the internal structure of the recurrence and the sequence
an (resonance), and in the third case the behavior of the solution is driven by
the recurrence and does not depend on a,,

So let us consider first the case a > so. From [@29) and (£30) it follows
that %f(s) has a meromorphic extension to $(s) > so with polar singularity at
s = a. Hence we directly apply the Wiener-Tkehara Theorem and obtain

T(n) =T(2) +¢(n—2) ~C'n(Inn)°

for a proper constant C’ > 0. (By using the inverse Mellin transform it is also
possible to obtain the proposed error term.)

Next suppose that a < sg, that is, the third case. Here sg is the dominant
singularity. Since we are in the irrational case there are no other singularities
on the line R(s) = so. Consequently the assumptions of Theorem are
satisfied (with K = 0) and it directly follows that

T(n) ~ C"'n®

for some positive constant C””. Note that we do not require the precise behavior
of a,. We just have to assume that a, is non-decreasing and that a,, = O(n%)
for some a < sg.
~ -1
Finally if sg = a then the singularities of A(s) and that of (1 - Z;nzl b, p;)
coincide. In particular the order of the polar singularity at s = sg = a is now
b+ 2. Furthermore in the irrational case this is the only singularity on the line
R(s) = so. Again the assumptions of Theorem [D.2.2] are satisfied so that the
result follows:
an ~ C"n%(Inn)"H

as desired.

4.3. Central Limit Law for Boncelet’s Algorithms

We next provide a very brief sketch of the proof of the the central limit theorem
for the phrase length D, of the Boncelet algorithm that is stated in Theo-
rem Again we only consider the irrationally related case for a binary
alphabet.

4.3. Central Limit Law for Boncelet’s Algorithms 83

To deal with C'(n,y), we consider the Dirichlet series

L Cn+2,9)—-Cn+1,y
C(sy) =y 02U Clot 1Y)
n=1

For simplicity we just consider here the case y > 1. (The case y < 1 can be
handled in a similar way.) Then C(s,y) converges for R(s) > so(y), where so(y)
denotes the real zero of the equation (for a binary alphabet)

y(szrl + qs+1) -1
discussed in Lemma [D.3.71 We find

(y—1) = E(s,y)
L—y(p*tt +g°tt)’

C(s,y) =

+qyz (k+2,y)) — C(k +1,9)) (k/lq)SQkL;J_l)s

q

converges for R(s) > so(y) — 1 and satisfies E(0,y) = 0 and E(s, 1) = 0.

Then by the Wiener-Tkehara theorem only the residue at so(y) contributes
to the main asymptotic leading term. (Recall that we consider the case y > 1).
We thus have

(y—1) = E(s,p)(n—3/2)"
““”“R%< S =g +) ’5‘%@0

_ ((y —1)— E(So(y), y))(n — 3/2)80(11)
— —50(y)(In(p)p=o @+ 4 In(g)g=o @) +1)) +o(1)).

The essential but non-trivial observation is that this asymptotic relation holds
uniform for y in an interval around 1. This can be actually checked in the same
way as for the example that is discussed at the end of Appendix So let us
assume that this uniformity holds. Then we are precisely in the same situation
as in the case of the Tunstall code (see Chapter [3) and we obtain a central limit
theorem.

As in the previous cases the rationally related case is even more subtle. We
ask the reader in Exercise to supply details of the proof.

84

Divide-and-Conquer VF Codes

Exercises
4.1 Build the Boncelet’s parsing tree for n = 22 and pg = 1/4.
4.2 Derive a more precise formula for the oscillating function ¥(logn) ap-
pearing in ([@6) of Theorem
4.3 Derive Akra and Bazzi (1998) formulas (£.11)) and [@I3) for the contin-
uous version of the divide and conquer recurrence.
4.4 Consider again Examples and consider continuous versions
of them, that is, without floor or ceiling function. Apply Akra and Bazzi
(1998) formula (@IT]) or (@I3)) to analyze these recurrences.
4.5 Prove the estimate (£20) in Example
4.6 Consider the recurrence
T(n)=2T([n/2])+3T([n/6])+ nlogn.
Let s = 1.402... > 1 be the solution of the characteristic equation
(@14). Show that
T(n) ~ Cn® (n — o0)
for some constant C.
4.7 Consider the following recurrence
T(n)=2T(|n/2])+1 (withT(1)=1)
Show that
T(n) = 2Ueenl+1 1
and
T(n)=n¥(logn) —1
with W(t) = 21— 18},
4.8 Consider the recurrence
2
T(n)=2T||=zn
3
with 7'(1) = 1. Show that T'(n) = 2* for ny <n < ng,1, where ng = 1
and ngy; = {%nd
4.9 Study the recurrence

T@):MQ%D (n > 6)

Bibliographical notes 85

with T'(n) =1 for 1 <n < 5. Show that
T(n) =2 ni<n<np,

where ny = 6 and ngy1 = [2ng + 1 — 24/2nx]. It then follows that ny is
asymptotically of the form nj, = ;2% —¢22%/24+O(1) (for certain positive
constants c¢1,ce). Show finally that it is not possible to represent 7'(n)
asymptotically as T'(n) ~ n¥(logn).

4.10 Establish Theorem .2l for the rational cases.

4.11 Prove Theorem [D.2.4l See also Drmota and Szpankowski (2013).

4.12 Provide missing details for the proof of Theorem in the rational
case.

4.13 Analyze the Boncelet algorithm for Markov sources.

Bibliographical notes

Divide and conquer is a very popular strategy to design algorithms. It splits
the input into several smaller subproblems, solving each subproblem separately,
and then knitting together to solve the original problem. Typical examples in-
clude heapsort, mergesort, discrete Fourier transform, queues, sorting networks,
compression algorithms as discussed in Flajolet and Sedgewick (2008), Cormen,
Leierson, and Rivest (1990), Knuth (1998a), Roura (2001), Szpankowski (2001).

It is relatively easy to determine the general growth order of the (continuous)
divide and concur recurrence as discussed in Roura (2001). A precise asymptotic
analysis is often appreciably more subtle. The most general solution of the
continuous version of the divide and conquer is due to Akra and Bazzi (1998).
The literature on continuous divide and conquer recurrence is very extensive.
We mention here Akra and Bazzi (1998), Cormen et al. (1990), Roura (2001).

The discrete version of the divide and conquer recurrence has received much
less attention, especially with respect to precise asymptotics. For example, Fla-
jolet and Golin (1954) and Cheung, Flajolet, Golin, and Lee (2008) studied
the recurrence but only for p; = pa = 1/2. Furthermore, Erdds, Hildebrand,
Odlyzko, Pudaite, and Reznick (1987) apply renewal theory and Hwang (2000)
(cf. also Grabner and Hwang (2005), Hwang and Janson (2011)) used analytic
techniques to analyze similar recurrences. The oscillatory behavior of some di-
vide and conquer was observed in Delange (1954, 1975), Grabner and Hwang
(2005).

Dirichlet series and Mellin-Perron formula are discussed in many books. We
mention here Apostol (1976). Tauberian theorems are well presented in Korevaar
(2002). See also our Appendix

86 Divide-and-Conquer VF Codes

The Boncelet’s algorithm was introduced by Boncelet (1993). The whole
chapter is based on Drmota and Szpankowski (2013) and Drmota et al. (2010).

CHAPTER 5

Khodak V'V Codes

In the last three chapters, we discussed fixed-to-variables FV codes such as
Shannon and Huffman codes (see Chapter [2)), and variable-to-fixed VF codes
such as Tunstall, Khodak, and Boncelet codes (see Chapters Bl and Ml). As a
consequence of Theorems 2.T.1] and it follows that the normalized redun-
dancy is inversely proportional to the block length n, that is, of order ©(1/n).
In Theorems B.2.4] and B:3.1] we analyzed Khodak and Tunstall VF codes and
proved that the average redundancy (see in particular Corollary B.25) decays
like ©(1/E[D]), where E[D] is the average phrase length of the input string. In
summary, for both FV and VF codes the normalized redundancy (rate) decays
inversely proportional to the (average) phrase length (that we will denote by
D).

However, it is an intriguing question whether one can construct a code with
normalized redundancy of order o(1/D). This quest was accomplished by Kho-
dak (1972), who proved that one can find a variable-to-variable VV code with

normalized redundancy of order O(E_5/3). In this chapter we present a trans-
parent proof and an explicit algorithm to achieve this bound. We also will show

. . ——4/3 . . .
that the mazimal normalized redundancy is O(D /). Finally, in a major ex-
tension of Khodak’s results we present stronger results for almost all sources.

5.1. Variable-to-Variable Codes and Redundancy Rate

A variable-to-variable (VV) length code partitions a source sequence into vari-
able length phrases that are encoded into strings of variable lengths. While it is
well known that every VV (prefix) code is a concatenation of a variable-to-fixed
length code (e.g., Tunstall code) and a fixed-to-variable length encoding (e.g.,
Huffman code), an optimal VV code for a given dictionary size has not yet been
found.

Let us first briefly describe a VV encoder. A VV encoder has two compo-

88 Chapter 5. Khodak VV Codes

nents, a parser and a string encoder. The parser partitions the source sequence
z into phrases from a predetermined dictionary D. We shall write d or d; for
a dictionary entry, and by D we denote the average dictionary (phrase) length
also known as the average delay. As argued in previous chapters, a convenient
way of representing the dictionary D is by a complete m-ary tree also know as
the parsing tree. Next, the string encoder in a VV scheme maps each dictionary
phrase into its corresponding binary codeword C(d) of length |C(d)| = £(d).
Throughout this chapter, we assume that the string encoder is a slightly mod-
ified Shannon code and we concentrate on building a parsing tree for which
—log P(d) (d € D) is close to an integer. This allows us to construct a VV
code with redundancy rates (per symbol) approaching zero as the average delay
increases.
In (B2) of Chapter Bl we define the normalized average redundancy rate as

_ Saep P@UA) o _ S yep PA)(U(d) +log P(d)
E[D] E[D] ’
where P is the probability law of the dictionary phrases and

E[D] =) |d|P(d) =: D.
deD

(5.1)

By analogy we define the mazimal normalized redundancy rate r* for VV codes

as follows
o maxdep[é(c%—i— log P(d)] . (5.2)
In this chapter we shall study both, the average redundancy rate and the max-

imal redundancy rate for VV codes.

5.2. Redundancy of the Khodak VV Code

In this section we present several results regarding the average and maximal
redundancy rates for a VV Khodak code. We also construct an explicit algorithm
to achieve these bound.

We start with the main theorem of this section (that is due to Khodak
(1972)).

Theorem 5.2.1. Let m > 2 and consider a memoryless source over an m-ary
alphabet. Then for every Do > 1, there exists a V'V code with average dictionary
length E[D] =: D > Dy such that its average redundancy rate satisfies

F=0(D "), (5.3)

and the mazimal code length is O(Dlog D).

5.2. Redundancy of the Khodak VV Code 89

The rest of this section is devoted to the proof of Theorem[(.2.11 We assume

an m-ary source alphabet A = {0,...,m — 1} with corresponding probabilities
POy« -+ Pm—1. Let us first give some intuition. For every d € D, we can represent
P(d) as

P(d) :plg ’ pmm 11’

where k; = k;(d) is the number of times the symbol ¢ appears in d. In what fol-
lows we write type(d) = (ko, k1,...,km—1) (see also Chapter [[T)). Furthermore,
the string encoder of our VV code uses a slightly modified Shannon code that
assigns to d € D a binary word of length ¢(d) close to —log P(d) when log P(d)
is slightly larger or smaller than an integer. (Kraft’s inequality will not be au-
tomatically satisfied but Lemma [B.2.4] below takes care of it.) Observe that the
average redundancy of the Shannon code is

> P(d)[[~log P(d)] +log P(d)] = Y _ P(d)(log P(d))

deD deD
= ZP (d)yvo + ku(d)ys + -+ Em—1(d)ym-1)
deD

where 7; = logp;. In order to build a VV code with 7 = o(1/D), we have
to find integers ko = ko(d),...,km—1 = km—1(d) such that the linear form
kovo + k1y1 + -+ + km—17¥m—1 is close to but slightly larger than an integer for
almost all d.

Next we discuss some properties of the distribution of (koo + k1y1 + -+ +
km—17¥m—1) when at least one of 7; is irrational.
z))
1)

Some preliminary results. Let ||z| = min((z), (—z)) = min({(z),1 — (
be the distance to the nearest integer. The dispersion 6(X) of the set X C [0,
is defined as
0(X) = sup inf [y — x|,

O<y<1l
that is, for every y € [0, 1), there exists x € X with |ly — 2| < 6(X). Since
lly+1|| = |ly||, the same assertion holds for all real y. Furthermore the points of

X are at most 26(X) apart in [0,1]. Therefore, for every y there exist distinct
points x1, 22 € X with (y —21) < 2§(X) and (y — x2) < 26(X).

The following property will be used throughout this chapter. This is a stan-
dard result following from Dirichlet’s Approximation Theorem[E.1.1l The reader
is asked in Exercise to prove Lemma

Lemma 5.2.2. (i) Suppose that 0 is an irrational number. Then there exist
infinitely many positive integers N such that

S({(k0) : 0 <k <N}) <

=S

90 Chapter 5. Khodak VV Codes

(ii) In general, let (vo,...,Ym—1) be an m-vector of real numbers such that at
least one of its coordinates is irrational. Then there exist infinitely many integers
N such that the dispersion of the set

X:{<k0’}/+'-'+km_1’ym_1>IOSkj<N(OSj<m)}

is bounded by
2

I(X) < N
Crucial lemma. The central step of the proof of Theorem [(.2.1] is the
observation that a bound on the dispersion of linear forms of logp; implies
the existence of a VV code with small redundancy. Clearly, Lemma and
Lemma 523 directly imply Theorem [5.2.11 by setting n = 1 if one of the log p; is
irrational. (If all logp; are rational, then the construction is even simpler. We
ask the reader to handle this case in Exercise [(.3])

Lemma 5.2.3. Letp; >0 (0 <j <m) withpo+ -+ pm—1 = 1 be given and
suppose that for some N > 1 and n > 1 the set

X ={(kologpo + -+ km—1logpm_1): 0<k; <N (0< 5 <m)},

has dispersion

2
6(X) < —-

Then there exists a VV code with average phrase length D = ©(N?3), with maz-
imal length of order ©(N3log N), and with average redundancy rate

(5.4)

_44n
3

T<cCm- D
where ¢, is a constant that may depend on m.

Proof of Lemma[5.2.3. We now concentrate on the proof of Lemma [5.2.3
The main thrust of the proof is to construct a complete prefix free set D of words
(i.e., a dictionary) on m symbols such that log P(d) is very close to an integer
¢(d) with high probability. This is accomplished by growing an m-ary tree T
in which paths from the root to terminal nodes have the property that log P(d)
close to an integer (for most d).

In the first step, we set kY := [p; N?| (0 <i < m) for a large integer N and
define

T = k:8 logpo + -+ k:?n_l log prm—1-

5.2. Redundancy of the Khodak VV Code 91

By our assumption (5.4) of Lemma 523 there exist integers 0 < kj < N such
that
<£L’ + ké logpg + -+ k#_l logpm,1> =

(kg + ko) logpo + -+ + (k1 + k1) log pm—1) < N

Now consider all paths in a (potentially) infinite m-ary tree starting at the root
with k§ + k¢ edges of type 0, k9 + &k} edges of type 1,..., and kO, _; + Kk}, _; edges
of type m — 1 (cf. Figure B)). Let D; denote the set of such words. (These are
the first words of our prefix free dictionary set we are going to construct.) By an
application of Stirling’s formula it follows that there are two positive constants
c’, " such that the probability

(KO +Kg) + -+ (kp H k) k04kd KO itk
kS + kY, KO |+ KL 0 m—l

m—1

P(D) = (

satisfies
/ /!

S PO T (5.5)

uniformly for all k]1 with 0 < kjl < N. In summary, by construction all words
d € D; have the property that

(log P(d)) < N’
that is, log P(d) is very close to an integer. Note further that all words in d € D;
have about the same length

ny = (kg + ko) +---+ (K, +k,_)=N?+O(N),

and words in D; constitute the first crop of “good words”. Finally, let B; =
A™ \ D denote all words of length ny not in Dy (cf. Figure 5.I]). Then

/1 /
c

c

1-—<PB)<1——.

ysPB)sl-5

In the second step, we consider all words » € By and concatenate them with

appropriately chosen words dy of length ~ N? such that log P(rdz) is close to

an integer with high probability. The construction is almost the same as in the
first step. For every word r € By we set

x(r) =log P(r) + kg logpo + -+ -+ k?n_l log pr_1.

92 Chapter 5. Khodak VV Codes

@ "'zood” word in G
A “bad” word in B;

NZ
N2+0(N)

C
P(Dy) =N

2N2 +0(2N)
P(D;)=5S(1-5)

3NZ+0(3N)
P(D:)=S(1-<)

KN?+0(KN)
K=NlogN

i c
P(Dg) = (1 -0

Figure 5.1. Illustration to the construction of the VV code.

By (5.4) there exist integers 0 < k?(r) < N (0 < j < m) such that

(a(r) + kg (r)logpo + -~ + ki1 () log prm—1) < N

Now consider all paths (in the infinite tree T) starting at r € By with kJ + kZ(r)
edges of type 0, k¥ +k3(r) edges of type 1, ..., and kO, | +k2,_(r) edges of type
m — 1 (that is, we concatenated r with properly chosen words dz) and denote
this set by Dj (r). We again have that the total probability

P(Da(r)) = P(r)
o (0 HRG(r)) oo (R g + K51 (1)) PR k(0
EQ+k2(r), ... kO + k2, (r) 0 m—l

m—1

5.2. Redundancy of the Khodak VV Code 93

of these words is bounded from below and above by

/ /!
C

P(r) 5 < P(Da(r) < P

Furthermore, by construction we have (log P(d)) < + for all d € D3 (r).

Similarly, we can construct a set D, (r) instead of Dj (r) for which we have
1—(log P(d)) < 4/N". We will indicate in the sequel whether we will use Dy (r)
or Dy ().

Let Dy = (D5 (r) : v € By) (or Dy = J(D; () : r € By)). Then all words
d € Dy have almost the same length |d| = 2N? + O(2N), their probabilities
satisfy A

(log P(d)) < N7 OF 1 — (log P(d))

and the total probability is bounded by

c/ C// c// Cl
(1=)< <—(1-=).
(-9)<rma <5 9)

For every r € By, let BY(r) (or B~ (r)) denote the set of paths (resp. words)
starting with r of length 2(kQ+-- -+ k0,)+ (ki +k2(r)+---+ kL, +k2_1(1))

that are not contained in Dy (r) (or D, (r)) and set By = |J(BS (r) : v € By) (or
By = U(B5 () : 7 € By)). Observe that the probability of Bz is bounded by

(1-2Y <rme (1-2)

We continue this construction, as illustrated in Figure 5.1l and in step j we
define sets of words D; and B; such that all words d € D; satisfy

<m

(log P(d)) < or 1—(logP(d)) <

N7 N7
and the length of d € D; U B; is then given by |d| = jN? + O(jN). The
probabilities of D; and B; are bounded by

LY ot (1-2) 6o
(12 crwy (1-2) o)

This construction is terminated after K = O(N log N) steps so that

P < (1-2) <L
Bosa\l-x) =w

94 Chapter 5. Khodak VV Codes

for some 8 > 0. This also ensures that

1
P(DiU---UDg) > 1~ 5.

The complete prefix free set D on the m symbols is given by
D=D;U---UDg U Bg.

By the above construction, it is also clear that the average dictionary phrase
length is bounded by

aN*<D =Y P(d)|d < cN*
deD

for certain constants cj,co > 0. Notice further that the maximal code length
satisfies
max |d| = O(N®log N) = O(Dlog D).
deD
Now we construct a variant of the Shannon code with 7 = o(1/D). For every
d € Dy U---UDg we can choose a non-negative integer ¢(d) with

2
|¢(d) 4+ log P(d)| < N

In particular, we have

if (log P(d)) < 2/N" and
2
if 1 — (log P(d)) < 2/N". For d € Bg we simply set ¢(d) = [—log P(d)].
The final problem is now to adjust the choices of “+” resp. “—” in the above
construction so that Kraft’s inequality is satisfied. For this purpose we use the
following easy property.

Lemma 5.2.4 (Khodak, 1972). Let D be a finite set with probability distribu-
tion P and suppose that for every d € D we have |¢(d) + log P(d)] < 1 for a
nonnegative integer £(d). If

> P(d)((d) +log P(d)) > 2 P(d)(¢(d) + log P(d))?, (5:8)
deD deD

then there exists an injective mapping C' : D — {0,1}* such that C is a prefix
free set and |C(d)| = ¢(d) for all d € D.

5.2. Redundancy of the Khodak VV Code 95

Proof. We use the local expansion 27% = 1 — zln2 + n(x) for |z| < 1, where
((log4)/4)x? < n(x) < (log4)z?. Hence

Z 274 = Z P(d)2~(¢d)+log P(d))
deD dcD|
=1-1In2) P(d)(¢(d) +log P(d))
deD
+ Z P(d)n (¢(d) +log P(d))
deD
<1-In2) P(d)(¢(d) +log P(d))
deD
+2In2) P(d)(¢(d) + log P(d))?
deD

If (5.9) is satisfied, then it follows that

Z 2—Ud) < 1,

deD

Consequently, Kraft’s inequality is satisfied, and there exists an injective map-
ping C : D — {0,1}* such that C is a prefix free set and |C(d)| = ¢(d) for all
deD.]

We now set

E; = Y P(d)(¢(d) + log P(d)).
deD;

Then E; > 0 if we have chosen “+” in the above construction and E; < 0 if we
have chosen “—”. In any case we have

2 2" ¢ Jj—1 20"
|Ej|§P(Dj)m§m<1N) S NI

Suppose for a moment that we have always chosen “+”, that is, £; > 0 for all
j > 1, and that

K

8+ 2¢”

> E; < ~TE (5.9)

j=1
We can assume that N is large enough that 2/N" < 1/2. Hence, the assumptions
of Lemma [5:24] are trivially satisfied since 0 < 4(d) + log P(d) < 1/2 implies

96 Chapter 5. Khodak VV Codes

2(¢(d) 4+ log P(d))? < £(d) + log P(d) for all d € D. If (59) does not hold (if we
have chosen always “+”), then one can select “+” and “—” so that

N

Indeed, if the partial sum Zj; E; < (8+2¢")N=177 then the sign of Ej is

chosen to be “4” and if ZJKZZ E; > (8+2¢")N~17" then the sign of E; is chosen
to be “—". Since

3 PN + 108 P’ < 577, < Foreg < 5 2 P(UA) + 108 D)

the assumption of Lemma [5.2.4] is satisfied. Thus, there exists a prefix free
coding map C : D — {0,1}* with |C(d)| = ¢(d) for all d € D. Applying
the above lemma we arrive (after some algebra) at the following bound on the
average redundancy rate (see Exercise [5.0])

1 1

T < = .
- DN1+n

(5.10)

Sl

> P(d)(¢(d) +log P(d)) < C
deD

Since the average dictionary phrase length D is of order N* we have

_q_ldn ___adn
o(pF)-o(p).

This proves the upper bound for 7 of Lemma [£.2.3 and, thus, Theorem (.21
follows.

=l

5.3. Explicit Construction of a Khodak VV Code

In what follows we present an algorithm for designing a VV-code with arbitrarily
large average dictionary length D for memoryless sources. More precisely, we
construct a code with redundancy 7 < e/D, where ¢ > 0 is given and D >
c/e3 (for some constant ¢). In fact, for some large integer N we find that
— ——4/3
D = N3 and ¢ = 1/N, so that 7 = O(D /) which does not employ the
full strength of Theorem B.2.1] that guarantees the existence of a code with the
——5/3
average redundancy smaller than cD 5/ . This allows some simplification, in
particular we just use a standard Shannon code.

5.3. Explicit Construction of a Khodak VV Code 97

Continued fraction. Before we proceed, we need some facts about contin-
ued fractions (see also Appendix [F]). A finite continued fraction expansion is a
rational number of the form

co +)
cl++

where cg is an integer and c; are positive integers for 7 > 1. We denote this
rational number as [cg,c1,...,¢cy]. With help of the Euclidean algorithm for
ged, it is easy to see that every rational number has a finite continued fraction
expansion. Furthermore, if ¢; is a given sequence of integers (that are positive
for j > 0), then the limit 8 = lim,,_, oo [co, 1, - -, ¢y] exists and is denoted by the
infinite continued fraction expansion 6 = [cg, c1,¢a...]. Conversely, if 0 is a real
irrational number and if we recursively set

Oo =0, cj=10;], 0;41=1/(0; —cj),

then 6 = [cg,c1,c2...]. In particular, every irrational number has a unique
infinite continued fraction expansion.
The convergents of an irrational number # with infinite continued fraction

expansion 0 = [cg, c1,¢a .. .| are defined as
P,
@ = [CO;Cla .. -7Cn]a

where integers P,,, @, are coprime. These integers can be recursively determined
by

Pn = CnPnfl + Pn72; Qn = Cnanl + Qn72 (511)
that the reader is asked to prove in Exercise In particular, P, and @Q,, are

growing exponentially quickly. Furthermore, the convergents 5” are the best
rational approximations of € in the sense that

_ P i — P
|Qnb — P,| < pcolnin |QO |

In particular one has (see Exercise [0.7)

1
f— "< —.
Qn| QF

The denominators Q,, are called best approximation denominators.

‘ Fr (5.12)

98 Chapter 5. Khodak VV Codes

Algorithm. Now we present algorithm KHODCODE that constructs a VV
code with the normalized redundancy o(1/D). We will also make the assumption
that all symbol probabilities p; are rational numbers; otherwise we would have
to assume that p; is known to an arbitrary precision. We then know that log p;
is either irrational or an integer (which means that p; = 27F). Thus, we can
immediately decide whether all logp; are rational or not. If all p; are negative
powers of 2, then we can use a perfect code with zero redundancy. Thus, we only
have to treat the case where p,,_1 is not a negative powers of 2. We also assume
that the continued fraction expansion of logp,,—1 = [co,c1, ¢, ..] is given and
one determines a convergent

[co,c1,¢2,...,¢] = M/N

for which the denominator N satisfies N > 4/e. The main goal of the algorithms
is to construct a prefix free set of words d with the property that for most
words (log P(d)) is small. The reason for this philosophy is that if one uses
the Shannon code as the string encoder, that is, £(d) = [—log P(d)], then the
difference ¢(d) — log(1/P(d)) = (log P(d)) is small and contributes negligibly to
the redundancy.

The main step of the algorithm is a loop of the same subroutine. The input
is a pair D, B of sets of words with the property that D U B is a prefix free set.
Words d in D are already good in the sense that (log P(d)) < 3e, whereas words
r in B are bad because they do not satisfy this condition. In the first step of
the subroutine, one chooses a word r € B of minimal length and computes an
integer k with 0 < k < N that satisfies

2

1
— < < —.
v = (kM/N + x4+ log P(r)) < v

Here x is an abbreviation of

[

m—

xr = Z kjo»logpj,

Jj=

where k:]Q = |p;N?], 0 < j < m. The computation of k can be done by solving
the congruence
EM=1-|(z+1log P(r))N] mod N (5.13)

(e.g., with help of the Euclidean algorithm). This choice of k ensures that

3
0 < (klogpm + +log P(r)) <3/N < Je.

5.3. Explicit Construction of a Khodak VV Code 99

For this k we determine the set D’ of all words d of type(d) = (K3, ..., k% o, kO |+
k). By construction all d’ € D’ satisfy

3
(log P(r - d')) = (klog pm—1 + x +log P(r)) < 1

We now replace D by DUr-D’" and B by (B\{r})Ur-(A™\D’). This construction
ensures that (again) all word in d € D satisfy

w

(log P(d)) < —e.

=

The algorithm terminates when P(D) > 1—e¢/4; that is, most words in DUB
are good. The proof of Theorem [(.2.1] shows that this actually occurs when the
average dictionary length D is of order O(N?). In particular, the special choice
of integers ko |p; N?] ensures that the probability P(D) increases step by step
as quickly as possible, compare with (5.5]).

As already mentioned, we finally use the Shannon code C : DUB — {0,1}*,
that is ¢(d) = [—log P(d)] for all d € DU B. The redundancy can be estimated
by

AL ~log -
= Ed;;sp(d) <£(d) 1 gP(d)>
1
== P(d) (log P(d))
:§<ZP (log P(d +ZP (log P()))
deD deB
1 3
<5 (P03)

< 1 /3 n 1 €
frd —& —& = =.
~ D\4 4 D
Thus this algorithm constructs a parsing tree and a VV code with a small
redundancy rate. A more formal description of the algorithm follows.

ALCORITHM KHODCODE:
Input: (i) m, an integer > 2; (ii) positive rational numbers py, ..., pm—1 with

po+ -+ Dm—1 =1, pm—1 is not a power of 2; (iii) ¢, a positive real number
< 1.

100 Chapter 5. Khodak VV Codes

Output: A VV-code, that is, a complete prefix free set D on m symbols and
a prefix code C : D — {0,1}*, with redundancy 7 < /D, where the average

dictionary code length D satisfies D > c(m, po, ..., pm_1)/> (for some constant
C(map(b s apmfl))-
Notation: For a word w € {0,...,m — 1}* that consists of k; copies of j

Km—1

(0<j<m)weset Plw) = plg‘) ---p," for the probability of w and type(w) =
(ko, ..., km—1). By w we denote the empty word and set P(w) = 1.

1. Calculate the convergent % = [co,c1,...,Cn) of the irrational number
log pm—1 for which N > 4/e.

2. Set kY = |p;N?| (0 <j <m), ="k logp;, and ng = 3" | kY.

3.Set D=0, B={w},and p=10

while p <1—¢/4 do
Choose r € B of minimal length
b+ log P(r)
Find 0 < k < N that solves the congruence
kM =1-|(z+b)N| mod N
n<nyg+k
D'+ {de A" : type(d) = (kQ,... kO, o, kO | +k)}
D« Dur-D
B+ (B\{rhur-({0,...,m—1}"\D)
p <+ p+ P(r)P(D'), where

PO) = e
end while.
4. D+~ DUB.
5. Construct a Shannon code C': D — {0,1}* with ¢(d) = [—log P(d)] for
alld € D.
6. End.

Example 5.3.1. We assume m = 2 with py = 2/3 and p; = 1/3. In the
first iteration of the algorithm we assume that both B and C are empty. Easy
computations show that

19

log(1/3) = [~2,2,2,2,3,..], and [-2,2,2,2]= —1,

5.4. Khodak’s Redundancy for Almost All Sources 101

hence M = —19 and N = 12. Let us set ¢ = 0.4 so 4/¢ = 10 < 12 = N.
Therefore, kJ = 96, kY = 48 so that ng = 144 = N2. Solving the congruence

—19k =1+ 1587 mod 12
gives k = 8 and therefore
C' ={d € {0,1}'%: type(d) = (96,56)}

with P(C’") ~ 0.04425103411. Observe that B = {0,1}152\ C.

In the second iteration we can pick up any string from B, say the string r =
00...0 with 152 zeros. We find, solving the congruence with b = 1521og(2/3) =~
—88.91430011, that k = 5. Hence C' = {d € {0,1}'* : type(d) = (96,53)}
and C = {d € {0,1}'? : type(d) = (96,56)} Ur - C’. We continue along the
same path until the total probability of all “good” strings in C reaches the value
3/4 - e = 0.3, which may take some time.

5.4. Khodak’s Redundancy for Almost All Sources

In this section we present better estimates for the normalized redundancy rates,
however they are valid only for almost all memoryless sources. This means
that the set of exceptional p;, those p; with Z;n:lpj = 1 and p; > 0 for all
0 < j < m—1 that do not satisfy the proposed property, has zero Lebesgue
measure on the (m — 1)-dimensional hyperplane zg + -+ + Z;,—1 = 1. From a
mathematical point of view, these results are quite challenging.

While Lemma and (23] laid foundation for Theorem [(E.2.1] the next
lemma is fundamental for our current considerations.

Lemma 5.4.1. Suppose that € > 0. Then for almost all p; (0 < j < m) with
p; >0 and po+p1+---+pm_1 =1 the set

X ={(kologpo+ -+ km—110gpm-1) : 0<k; <N (0<j<m)}
has dispersion
1
Nm—a

for sufficiently large N . In addition, for almost all p; > O there exists a constant
C > 0 such that

5(X) < (5.14)

—m—e
llkologpo + -+ + km—1log pm—1|| > C <O%agfn |kj|> (5.15)

for all non-zero integer vectors (ko, ..., km—1).

102 Chapter 5. Khodak VV Codes

We should point out that for m = 2 we can slightly improve the estimate
of the lemma. Indeed, we will show that for almost all pg > 0,p; > 0 with
po + p1 = 1 there exists a constant x and infinitely many N such that the set
X = {(kologpo + k1logp1) : 0 < ko, k1 < N} has dispersion

K
< e
The estimate (5.16)) is a little bit sharper than (5.14]). However, it is only valid
for infinitely many N and not for all but finitely many. We point out that (514
and (B.I6]) are optimal. Since the set X consists of N™ points the dispersion
must satisfy §(X) > $N—™.

By combining Lemma[5.2.3land Lemma B4 we directly obtain the following
property.

5(X) (5.16)

Theorem 5.4.2 (Y. Bugeaud, M. Drmota, and W. Szpankowski, 2008). Let us
consider a memoryless source on m > 2 symbols. Then for almost all source pa-
rameters, and for every sufficiently large Dy, there exists a VV code with the
average dictionary size D satisfying Dy < D < 2Dy such that its average redun-
dancy rate is bounded by

m
3 e

a4
F<D ® : (5.17)
where € > 0 and the mazimal length is O(D log D).

This theorem shows that the typical best possible average redundancy 7 can
be measured in terms of negative powers of D that are linearly decreasing in the
alphabet size m. However, it seems to be a very difficult problem to obtain the
optimal exponent (almost surely). Nevertheless, these bounds are best possible
through the methods we applied.

Before we present a proof of Lemma [5.4.] and hence prove Theorem [(.4.2]
we complete our analysis with a lower bound for all sources. We start with a
simple lemma that follows directly from our proof of Lemma [(5.2.4]

Lemma 5.4.3. Let D be a complete prefix free set with probability distribution
P. Then for any code C : D — {0,1}* we have

r> 3= 3 P log PP,

Proof. Suppose that |z|] < 1. Then we have 27% = 1 — zIn2 + n(x) with
(In4)/4)z? < n(x) < (In4)z?. Actually we can represent 2% also for |z| > 1
and still have some positive error term 7n(z) that satisfies

n(z) = min (n({z)), n(1 - (2))) = %II%IIQ-

5.4. Khodak’s Redundancy for Almost All Sources 103

Hence by using the representation

r=01-2""4n(z))/In2

we find
7= L 57 P(a)(e(d) + og P(d)
D deD
1 - og
- C%)P(d) (1 td)=log P(d) 4 (p() +logP(d)))

Hence, by Kraft’s inequality and the above observation the result follows imme-
diately. [|

We are now in a position to present a lower bound on the redundancy rates
for almost all sources. Note that the exponent is again linearly decreasing in m,
however, with a different rate than in the upper bound (E.17).

Theorem 5.4.4. Consider a memoryless source on an alphabet of size m > 2.
Then for almost all source parameters, and for every VV code with average
dictionary length D > Dg (where Dy is sufficiently large) we have

P >7>D E (5.18)
where € > 0.
Proof. By Lemma [5.4.3] we have
1
_EZ d)||log P(d)||>.
€D

Suppose that P(d) = pf° - - - pf,;":f holds, that is
log P(d) = kologpo + - -+ + km—110g pm—1.

By Lemma 547] we conclude from (5I5) that for all p; and for all non-zero
integer vectors (ko, ..., kmn—1)

—m—e
ko logpo + -+ ks og pra_s | > c(max |kj|) 7
0<j<m

104 Chapter 5. Khodak VV Codes

and therefore

log P(d)|| > k; > k; =C|d|~™"¢.
log P@)] 2 € (max 1) =€ L cid
Consequently, by Jensen’s inequality, we obtain
c
T>— Y P(d)d
2D deD
c —2m—2¢
> (32 paa)
2D (dED
Z 372777,71736.
This completes the proof of Theorem [5.4.4 [|

5.4.1. Proof of Lemma [5.4.7]
Lemma [3.4.T] states that for almost all p; > 0 (with py +-- -+ pm—1 = 1) the set

X = {(kologpo + -+ km—1logpm—1): 0 <k; <N (0<j <m)}

has dispersion §(X) < N~"7%¢ for all sufficiently large N (that is, (5.14]) holds)
and for all non-zero integer vectors (ki,...,k;) the relation (EI3) holds for
some constant C' > 0.

These kind of problems fall into the field of metric Diophantine approxima-
tion that is well established in number theory. One of the problems in this field
is to obtain some information about linear forms of type

L=Fkoyo+- -+ Ekmo1Vm—-1+ km,

where k; are integers and ; are randomly chosen real numbers. In fact, one is
usually interested in lower bounds for |L| in terms of max |k;|.
In our context, we have v; = log p; so that the «;’s are related by

2')’0+,,.+2’Ym—1:1.

This means that they cannot be chosen independently. They are situated on a
proper submanifold of the m-dimensional space. It has turned out that metric
Diophantine approximation in this case is much more complicated than in the
independent case. Fortunately, there exist now proper results that we can use
for our purpose.

5.4. Khodak’s Redundancy for Almost All Sources 105

Theorem 5.4.5 (Dickinson and Dodson, 2000). Suppose that m > 2 and 1 <
k < m. Let U be an open set in R* and, for 0 < j <m —1, let U; :U —= R be
C* real functions. Letn > 0 be real. Then for almost all u = (ug, ..., ur_1) € U,
there exists No(u) such that for all N > Ny(u) we have

lkoWo(u) + - + km1Upm_1 () + k| > N~FHm=Rn(log Nym—k
for all non-zero integer vectors (ko, ki, ..., km) with

| < | < N1 .
Ogr;lggfllkgl_f\’ and kgglgag;gllkgl_N /(log N)

More precisely, let us define a convex body consisting of all real vectors
(y07 s 7ym) with

|y0\I/0(U) oot ymfl\pmfl(u) + ym| < N_m+(m_k)n(10g N)m_ka
il < N*77 (log N) ™ (k< j <m).
Dickinson and Dodson (2000) considered in the course of the proof of their

Theorem 2 the set S(NN) that consists of all u € U for which there exists an
integer vector (ko, k1, ..., kn) with 0 < [nax_ |kj| < N'=7 satisfying (G.19).
j<m—

In particular they showed that the S(V) has the property that the set
limsup S(N) = m U S(M)
N—oo N>1 M>N

has zero Lebesgue measure. This means that almost no u belongs to infinitely
many sets S(N). In other words, for almost every u, there exists No(u) such
that u ¢ S(N) for every N > No(u). And this is stated in Theorem G451

For m = 2, Theorem can be improved as shown by Baker (1978).

Theorem 5.4.6 (Baker, 1978). Let Uy and ¥y be C3 real functions defined
on an interval [a,b]. For x in [a,b], set

k(x) = Wo(2) WY (z) — g (2) W) (2).
Assume that k(x) is non-zero almost everywhere and that |k(z)| < M for all
z in [a,b] and set kK = min{1073, 10" M ~Y/3}. Then for almost all x in [a,b),
there are infinitely many positive integers N such that

|koWo(x) + k Uy (x) + ko| > kN2

for all integers ko, k1, ko with 0 < max{|ko|, |k1|} < N.

106 Chapter 5. Khodak VV Codes

Using Theorem [5.4.5] and Theorem [5.4.6] we are now in a position to prove
(GI4) and EI5).

Proof of ({5.13]). For this purpose we can directly apply Theorem .45
where kK =m — 1 and U is an open set contained in

A={u=(ug,...,Um—2):u0>0,...,Up_—2>0,up+ -+ Up_o <1}
and U, (u) = log(u;) (0 < j <m—2), resp. ¥p_1(u) =log(l—ug—--—Um—2).
We also know that, for almost all u, the numbers 1, Uy(u),...,¥,,—1(u) are

linearly independent over the rationals, hence,
L= kO\I/()(’U,) + -+ kmfl\I/mfl(u) + km 7& 0

for all non-zero integer vectors (ko, k1, ..., km)-

Set J = maxo<j<m—1 |k;| and define N by N1=7 = Jlog N. Assume that
J is large enough to give N > No(u). We then have (for suitable constants
c1,c2 > 0)

L] > N~™*"(log N)
> ClJ—m—(m—l)n/(l—n)aOg J)=m)/(=n)
> C2J7m75
for e = 2(m — 1)n/(1 —n) and J large enough. This completes the proof of
G.I5).
Proof of (5.13). To simplify our presentation, we first apply Theorem
in the case of m = 2 and then briefly indicate how it generalizes. First of

all we want to point out that Theorems [.4.5 and [£.4.0] are lower bounds for the
homogeneous linear form

L=FkoUo(u)+ 4+ km-1Pm-1(u) + km

in terms of max |k;|. Using techniques from “geometry of numbers” these lower
bounds can be transformed into upper bounds for the dispersion of the set

X = {<k0\110(u) + -+ kmfl\I/mfl(u» 0< ko, kmo1 < N}

In particular we will use the notion of successive minima of convex bodies.
Let B C R? be a 0-symmetric convex body. Then the successive minima A; are
defined by

Aj = inf{A > 0 : AB contains j linearly independent integer vectors}.

5.4. Khodak’s Redundancy for Almost All Sources 107

One of the first main results of “geometry of numbers” is Minkowski’s Second
Theorem stating that

2%/d!l < Ay -+~ AgVoly(B) < 2%

Let z and N be the same as Theorem and consider the convex body
B C R? that is defined by the inequalities

lyoPo(z) +y1¥1(z) + yo| < kN2,
|y0| S Na
ly1] < N.

By Theorem [5.4.6 the set B does not contain a non-zero integer point. Thus, the
first minimum A; of B is > 1. Note that Vol3(B) = 8k. Then from Minkowski’s
Second Theorem we conclude that the three minima of this convex body satisfy
AA2Ads < 1/k. Since 1 < A1 < Ay we thus get A3 < MA2A3 < 1/k and
consequently A1 < Ay < A3 < 1/k. In other words, there exist constants ko and
k3, and three linearly independent integer vectors (ag, a1, az), (bo,b1,b2) and
(co, €1, c2) such that

lagWo(z) + a1¥1(x) + az| < KoN 2,
boWo(z) + bWy () + be| < kaN 2,
lcoPo(z) + 1 P1(x) + co| < kaN 72,
max{|a;[, |bil, e;|} < K3 N.
Using these linearly independent integer vectors, we can show that the dispersion

of
X = {<I€0\Ifo($) + klllfl(x)> 10 < ko, k1 < 7K3N}

is small.
Let £ be a real number (that we want to approximate by an element of X)
and consider the (regular) system of linear equations

—&+0a(aoVo(z) + a1¥1(z) + az) + Op(boWo(x) + b1 V1 (z) + ba)
+ 0c(coWo(x) + 1P () + co) = dka N2
Oqa0 + Opby + O.co = 4k3N, (5.20)
0,a1 + 0pby + 0.c1 = 4r3N.

Denote by (4,0, 6.) its unique solution and set

ta - LeaJa tb = LobJa tc = LocJa

108 Chapter 5. Khodak VV Codes

and
k/’j =t.a; —l—tbbj + tecj (j :0,1,2).
Of course, ko, k1, ko are integers and from the second and third equation of (520
combined with max{|a;|, |bi|, |ci|} < k3N it follows that
k3N < min{ko, k1} < max{ko,k1} < TkzN,

in particular, ky and k; are positive integers. Moreover, by considering the first
equation of (B.20) we see that

KQN_2 < =&+ ko‘lfo(x) + kl‘l/l(I) + ko < 7K2N_2.
Since this estimate is independent of the choice of £ this implies
§(X) < TrhoN™2.

Clearly, we can apply this procedure for the functions ¥y(z) = logz and
Uy (z) =log(1l — z) and for any interval [a,b] with 0 < a < b < 1.

This also shows that we can choose € = 0 in the case m = 2 for infinitely many
N in Lemma 3, provided that we introduce an (absolute) numerical constant.

Finally, we discuss the general case m > 2 (and prove Lemma [Z4T]). We
consider the convex body B C R™*! that has volume 2™*! and is defined by

E.19):
|yO\IjO(u) +...+ ymfl\pmfl(u) + ym| < Nﬁer(mik)n(lOg N)mika
|yJ|SN7 (.j:O7"'ak_1)a
ly;] < N7 (logN)™t (j=k,...,m—1).

By assumption, the first minimum \; of B satisfies Ay > N7, thus, by Minkowski’s
Second Theorem, its last minimum A, is bounded by A, < N™. Consequently,

we have n + 1 linearly independent vectors q(¥), i = 0,...,m, such that
Hq(i) ‘I/(U)H < N—m+(m—k)n+mn(1OgN)k, Hq(i)HoO < NH—mn.
We now argue as above, and consider a system of linear equations analogous to
(E20). Hence, for any real number &, there are positive integers ko, ..., kmn—1
such that
1

I =&+ koPo(u) + ...+ kmo1Un(u)] < maxk; < N,

Nmfe’

where € > 0 can be made arbitrarily small by taking sufficiently small values of
7. Applied to the functions

U;(u) =log(uj), 0<j<m-—2

Exercises 109

and
‘Ilm_l(u) = IOg(l —ug — - — U/m—2)7

this proves (5.I4). This completes the proof of Lemma [5.4.11

Exercises

5.1 Show that every V'V prefix code is a concatenation of VF and FV codes.
5.2 Prove Lemma [5.2.2]

5.3 Prove a proper variant of Theorem [B.2.1] in the case, where all log p;,
0 <7 < m are rational.

5.4 Provide details of (5.6)—(E.1).
5.5 Establish (5.10).
5.6 Derive recurrences (G.11]).

5.7 Prove (.12)).
5.8 Solve congruence (.13).

5.9 Using algorithm KHODCODE construct a VV code for py = 1/5 and
5.10 Following the steps of the proof of Lemma [(.2.3] establish Lemma .41

Bibliographical notes

There is scarcely any literature on VV codes with a few exceptions such as
Fabris (1992), Freeman (1993), Khodak (1972). The most interesting is a fifty
year old work by Khodak (1972). To the best of our knowledge not much was
done since then, except that Fabris (1992) and also Freeman (1993) analyzed
Tunstall-Huffman VV code and provided a simple bound on the redundancy
rate. Furthermore, Fabris (1992) also showed that a greedy optimization does
not lead to an optimal VV code.

There is much more literature on Diophantine equations and their approxi-
mation. We mention here Cassels (1957), Bernik and Dodson (1999), Allouche
and Shallit (2008), Sprindzuk (1979). Continued fraction are discussed for ex-
ample in in Cassels (1957) and Allouche and Shallit (2008). Minkowski Second
theorem is discussed in Cassels (1957), Schmidt (1980).

This chapter is based on Bugeaud et al. (2008).

CHAPTER 6

Non Prefix One-to-One Codes

In this chapter we discuss non-prefix codes, that is, codes which are not prefix
free and do not satisfy Kraft’s inequality. In particular, we construct a one-to-
one code whose average length is smaller than the source entropy in defiance
of the Shannon lower bound. To focus, we only consider fixed-to-variable codes
over known memoryless sources with block size equal to n. We first present a
very precise analysis of one-to-one codes for a binary source alphabet, and then
extend it to a general finite source alphabet.

We start with some general comments. Lossless symbol-by-symbol com-
pressors are required to satisfy the condition of “unique decodability” whereby
different input strings are assigned different compressed versions. Uniquely de-
codable non-prefix codes do not offer any advantages over prefix codes since any
uniquely decodable code must assign lengths to the various symbols that satisfy
Kraft’s inequality, while a prefix code is guaranteed to exist with those symbol
lengths. Achieved by the Huffman code, an exact expression for the minimum
average length of a prefix symbol-by-symbol binary code is unknown, however,
in Chapter [2] we provided precise asymptotics.

However, the paradigm of symbol-by-symbol compression is severely subop-
timal even for memoryless sources. For example, symbol-by-symbol compression
is unable to exploit the redundancy of biased coin flips. Algorithmically, at the
expense of a slight penalty in average encoding length, this inefficiency is dealt
with stream codes such as arithmetic coding. To approach the minimum aver-
age encoding length one can partition the source string of length n into blocks
of length k£ and apply the symbol-by-symbol approach at the block level. The
resulting average compressed length per source symbol is equal to the entropy of
each symbol, H(X), plus at most 1/k bits if the source is memoryless, or more
generally, equal to the entropy of k consecutive symbols divided by k plus at
most 1/k bits. Thus, to achieve the best average efficiency without regard to
complexity, we can let £ = n, apply a Huffman code to the whole n-tuple and

112 Chapter 6. Non Prefix One-to-One Codes

the resulting average compressed length behaves as
L, =nH(X)+ O(1).

In Chapter 2l we analyzed precisely the O(1) term, which really constitutes the
redundancy of the Huffman code.

It is possible, however, to attain average compressed length lower than the
entropy (by, for example, ignoring the unique decodebility or Kraft’s inequal-
ity). The reason is that it is often unnecessary, and in fact wasteful, to impose
the prefix condition on a code that operates at the level of the whole file to
be compressed. Applying prefix codes to n-block supersymbols is only optimal
in terms of the linear growth with n (it attains the entropy rate for stationary
ergodic sources); however, as far as sublinear terms, this conventional approach
incurs loss of optimality. The optimal fixed-to-variable length code performs no
blocking on the source output; instead the optimal length-n compressor chooses
an encoding table that lists all source realizations of length n in decreasing prob-
abilities (breaking ties using a lexicographical ordering on the source symbols)
and assigns, starting with the most probable.

The fact that the length of the compressed file is unknown a priori is im-
material since the decompressor receives as input the compressed file, including
where the file “starts and ends.” For example, files stored in a random-access
medium (such as a hard disk) do not satisfy the prefix condition: a directory (or-
ganized as a so-called inode pointer structure), contains the starting and ending
locations of the sequence of blocks occupied by each file in the storage medium.

The foregoing code is optimal not just in the sense of average length but in
the sense that the cumulative distribution function of its length is larger than
or equal to that of any other code. Such optimal codes have been previously
considered under the rubric of one-to-one codes that we discuss next.

6.1. Binary One-to-One Code

We focus on one-to-one codes for a memoryless source X over the binary alpha-
bet A = {0,1} with p being the probability of generating a “0”. Hence, the
sequence " = x1...1, € A" has the empirical probability P(z") = pFq"~*,
where k is the number of 0’s in " and p is known. We shall assume that p < ¢.
We first list all 2" probabilities in a non increasing order and assign the code

length [log(j)] to the j-th binary string on this list, as shown below:
0 1 n
probabilities ¢" (%) > " (%) > o> g (%)

code lengths |log(1)] |log(2)] e |log(2™)].

6.1. Binary One-to-One Code 113

Observe that there are (Z) equal probabilities pF¢™~*. Set

()) () ame

Starting from the position Ak 1+ 1 of the above list , the next () probabilities
are the same and equal to p*¢”~*. The one-to-one code assigns to z" the shortest
(possibly empty) binary string (ties broken with the ordering 0 < 1) not assigned
to any element y™ with P(y™) > P(x™). Thus, for each j = Ax_1+1i,1 <i < (Z),
we assign the code length

llog(5)] = [log(Ax—1+1)]

to the jth binary string. Hence the average code length is

n Apg
=> " D [log(h)) (6.1)
k=0 j=Ap_141

n (*)
= pFq"FD [log(Ak-1 +1)).
k=0

Our goal is to estimate E[L,] asymptotically for large n and the average unnor-
malized redundancy o
R, = E[Ly] — nh(p)

where h(p) = —plogp — qlog g is the binary entropy.

Let us first simplify the formula for E[L,]. We need to handle the inner
sum that contains the floor function. To evaluate this sum we apply partial
summation (see Exercise [6.1))

N N-1
Zaj = NaN - Z j(aj+1 - aj). (62)
Jj=1 j=1

Using this, we easily find an explicit formula for the inner sum of (6.1I), namely

)
Snk =) |log(Ar—1+j)]

~—
>3

.
s U

k:> llog Ay, | — (2Hos(Ar)]+1 _ gflog(Ar—1+2)1T)

+ (Ap—1 + 1)(1 + [log(Ax)] — [log(Ax—1 +2)1).

114 Chapter 6. Non Prefix One-to-One Codes

After some algebra, using |z] = = — (z) and [z] = = + (—=z), we finally reduce
the formula for E[L,] to the following

E[L,)=Y" (Z) Prg" 7 log Ay | (6.3)

A
(1t tog (5) — (- osinoa +2)) - log Au))
=~ (n k n—k Ak—1 —(log Ag)+1 (—log(Ax_1+2))
- p°q — (2 -2
> ())

Now we are in the position to present the result on the asymptotic behavior
of the average unnormalized redundancy R,,.

Theorem 6.1.1. Consider a binary memoryless source and the one-to-one
block code described above. Then for p < %

= 77110 n73+ln2+0 1-p 1
nT T8 2102 ST —2p /2mp(1 —p)
p 2(1-p)
1 F 1). 6.4
o tog (22 4 Fn) o) (6.4)

Furthermore if @ = log(1 — p)/p is irrational then F(n) = 0. Conversely if
a = N/M for some integers M, N such that gcd(N,M) = 1, then F(n) =
Hy(Bn — %log n), where § = log(1/(1 — p) and Hp(y) is a periodic function
with period 1/M which is upper bounded by Hpy(y) = O(1/M).

1

Finally for p = 5, we have

R,=-2+2"(n+2) (6.5)
for every n > 1.

We note that the function Hjps(y) can be explicitly represented in terms of
integrals (see Lemma [G.1.3)).

6.1. Binary One-to-One Code 115

We continue with some observations. As already discussed in Chapter 2] the
redundancy behavior depends on the rationality /irrationality of a = log(1—p)/p.
In Figure [6.1] we plot R,, + 0.5log(n) versus n. We observe a change of “mode”
from a “converging mode” to a “fluctuating mode”, when switching from o =
log(1—p)/p irrational (cf. Figure[6Ila)) to rational (cf. Figure[GIkb)). We saw
this behavior already in Chapters 2] and [] for Huffman, Shannon, and Tunstall
codes.

50 100 150 200 50 100 150 200
v

- -1.4
-1.05—

n -1.
-1.1—

- -1.5!

-1.15— -1

I -16
1.0

7 -1

— L_n-n*h(p)+0.5*log(n) E— L_n-n*h(p)+0.5*log(n)

(a) (b)

Figure 6.1. Plots of L, —nh(p)+0.5log(n) (y-axis) versus n (x-axis) for:
(a) irrational a = log(1 —p)/p with p = 1/m; (b) rational o = log(1 —p)/p
with p =1/9.

We briefly sketch the proof of Theorem [6.1.J] and only analyze here part (G.3])
of E[L,,] which we re-write as follows

n n
n
z(Yot tlos = Y- ()t o
=0 k=0
n
_ Z (k>pk n— k<10gAk>
k=0

and define

k=0 k=0

116 Chapter 6. Non Prefix One-to-One Codes

The other terms can be handled very similarly or are negligible; for example we
have

n
Zpkqn7k2<710g(14k—1+2)> = O(q").
k=0
We first deal with a,, for which we need to derive a precise asymptotic esti-
mate for A,.

Lemma 6.1.2. For every sufficiently small € > 0 there exist § > 0 such that
uniformly for k = np 4+ O(n'/?+%)

1-p 1 1-p* 1
=iy, \/2mp<1p>< e (86)

_ (k—np)* 00
xexp(2p(1—p)n> (1+O())

for some § > 0.

Proof. By Stirling’s formula and local expansion of the logarithm it follows that
(0) == (5) o (o)
k 2rnp(l —p) \ P (1—p) 2np(1 —p)

o3 _
x(l—i—O('k ;Lpl +|k npl))
n n

for k —np = O(n'/*¢), where 0 < e < . This directly implies (G.6). |

We remark that we could have also used the saddle point method applied to
the generating function

~ 14 2)" — 2ngntl
z)zZAkzkz()172
k=0

with the saddle point zg = p/(1 —
Lemma implies that (umformly for |k — pn| < nl/2te)

k—n
log Ay, = ak + nfB — log(wy/n) — m +0(n™°),

where w = (1 — 2p)y/27p(1 —p)/(1 — p) and § > 0. Consequently we directly

obtain
an, = Z (Z)pkq”k log Ay, + O(n™°)

|k—pn|<nl/2+e

1
= apn + nB — log(wy/n) — T3 +0(n~%)

6.1. Binary One-to-One Code 117

For b,, we need an extension of Lemma [2.1.5] from Chapter 2] presented next.

Lemma 6.1.3. Let 0 < p < 1 be a fized real number and f : [0,1] — R be a
Riemann integrable function.

(i) If « is irrational, then

n

lim (Z)pk(l —p)nkf ((ka+y — (k—np)*/(2pgnIn2) +o(1))) (6.7)

=43mﬁ7

k=0
where the convergence is uniform for all shifts y € R.

(i) Suppose that o = L is a rational number with integers N, M such that

ged(N, M) = 1. Then uniformly for all y € R

5 ()= o (b (k= o Cpantn2) 4o(1)) (68)
k=0

=/ f&)dt + Gu(y) + o(1),

where

ouitn 35 [(1 (o= 520))) - [o)

is a periodic function with period 5; and satisfies limps o0 Grr(y)[f] = 0. In
particular if | is of bounded variation then G (y)[f] = O(1/M).

Proof. We consider first the case, where « is irrational. In this case we know
that the sequences xj = ak is uniformly distributed modulo 1. Actually, since
Thtky = Tk + Xk, 15 just a shifted version of the sequence zj, we have uniformly
for all ky and (additional) shifts s

K-1

jﬂ%wﬁﬂ»:KAf@ﬁ+dK)

b

=0
as K — oo. Furthermore we can perturb the sequence zy, slightly to zx + ok (1)
and still obtain uniformly for all ky and shifts s

K—-1 1
ﬂm%~w+wum:KAf@w+dm

b

=0

118 Chapter 6. Non Prefix One-to-One Codes

as K — oo.
Since

(Z)p’““ o) m - < H)

is concentrated in the interval k € [np — n%“, np+ n%"’a] =: I, it is sufficient to
restrict ourselves to this interval I,,. We now set K = _n%_k | and partition the
interval [np — nzte np+ n%"’a] into (approximately) 2n3¢ subintervals of length
K. Next observe that for k1, ko € I, with |k; — ko| < K we have (uniformly)

(k1 — nP)Q) ((k2 — np)?) e

exp|—————)=exp|—————) (1+0(n .
(2p(1 —p)n 2p(1 —p)n ((™)

Hence, we have for k1 € I, and the subinterval [k1, k1 + K — 1]

ki+K—-1

S () pr s (et y = = oo tn) + (1)
k=k;
Y e (_M)
V2mnp(1 = p) 2p(1 —p)n
ki+K-—1
x Y (1+0m™9) f ((ka+y— (k= np)*/(2pgnIn2 + O(n~%)) + o(1)))
k=k1

= T (s) [0

K k1 — np)?
+0| —————=¢exp (—7(L= np)) .
2mnp(1 — p) 2p(1 —p)n
Finally, by summing up over all subintervals of I,,, that is by considering all k;
of the form k; = |np —nz+e| + M for 0 < r < 2n, we directly obtain (B7).

For the rational case we first partition the sum according to the residue
classes modulo M and, hence, obtain by Gaussian approximation

Z (Z)pk(l —p)" *f ({(kN/M +y — (k—np)*/(2pgnIn2) + o(1))) =

k=0

S ()P (N = (- Cpantn) + o(1)

L [O e 2f ((rN/M +y — 2%/(2102))) do + of1).

6.2. Non-binary One-to-One Code 119

Since the residue classes 7N mod M, r =0,..., M —1, are just all residue classes,
we complete the proof of (G.8]).

Note that the sequence r/M, 0 < r < M — 1, has discrepancy 1/M, even
uniformly for a shifted version. Thus, we have uniformly in x

M—-1

1 Zf (rN/M +y —2%/(21In2)) /f)dt + o(1)

M

which implies that Gas(y)[f] — 0 as M — oo. Furthermore, if f is of bounded
variation then by Koksma-Hlawka’s inequality (Theorem [E22.3)) we can replace
the error term o(1) by O(1/M) which implies that Gar(y)[f] = O(1/M). |

This leads us to the asymptotic behavior for

= X ()t es + 00

|k—pn| <nl/>+e

= > (k) k"M (Nk/M +np — log(w\/ﬁ)fMJrO(n*‘;)}

|k—pn|<nl/2+e 2p(1 — p)nin2
+0(n™°%)

1
= 5+ Guunf — loa(wym)a] +o(1).
As mentioned above the other sums can be handled similarly (see Exer-
cise and Szpankowski (2008)). This completes our sketch of the proof of

Theorem G111

6.2. Non-binary One-to-One Code

Finally, we consider a non-prefix codes over a general finite alphabet. Consider a
probability distribution P on a set of ordered elements A = {0,...,m —1}. We
define a permutation 7 on A by w(a) < 7(b) if P(a) > P(b) or if P(a) = P(b)
and a < b. Thus, w(z) = £ if x is the ¢-th most probable element in A according
to the distribution P, with ties broken according to the ordering in A. It is easy
to verify that

Plx)n(z) <1 (6.9)

for all z € A. Indeed, if ([63) failed to be satisfied for xy € A, there would be
at least m(zo) masses strictly larger than 1/m(x).

The one-to-one code assigns to x the shortest (possibly empty) binary string
(ties broken with the ordering 0 < 1) not assigned to any element y with 7(y) <

120 Chapter 6. Non Prefix One-to-One Codes

m(x). Thus, we obtain (the simple but important conclusion) that the length of
the encoding of z is |logm(x)]. We are interested in finding the average code
length

T = B[[log n(X)]].

A simple upper bound (first noticed in Wyner (1972b)) is obtained as follows

L = E|[[log(X)]]
< Ellog (X)]
1
=B [bgm]
= H(P)

where (6.10) follows from (6.9). Note that dropping the prefix condition makes
the entropy an upper bound to the minimum average length, rather than a lower
bound.

As a simple example, let us compute the average code length when P is

uniform over A = {0,...,m — 1}. Here we have
L= 1 zm:Uo i]
om i=1 °
= |logm] + k= (2 + |logm] — 2“"ng+1> (6.10)
m

which is quite close to the entropy H(P) = logm. In the second line above we

apply formula ([62).
Our goal is to present a general result for the asymptotic behavior of average
block code length for memoryless sources over A,, = {0,...,m — 1}".

Theorem 6.2.1 (W. Szpankowski and S. Verdu, 2011). Consider a memory-
less source on Ap, = {0,...,m—1}" and assume that the probability distribution
Doy -+ -Pm—1 on A={0,...,m—1} is not uniform. Then the average code length
of the one-to-one code is given by

E[L,] = nh — %10gn+0(1), (6.11)

where h = fzzzglpi logp; is the entropy. Hence, the average redundancy
becomes

— 1
R, = 5 logn + O(1)

for large n.

6.2. Non-binary One-to-One Code 121

This theorem extends Theorem (that was restricted to m = 2), however,
in contrast to Theorem [6.1.1] the bounded error term is not specified.

The rest of this section is devoted to the proof of Theorem Without
loss of generality we assume that

Po <p1 < < Pm—2 < Pm—1- (6.12)
We set
B; = log Zm=1 (6.13)
Di

for i = 0,...,m — 2. Note that the entropy h can be expressed as

m—2
h =log + Z ;i Bi. (6.14)
m=l oo
Let
k= (ko,...,km-1) (6.15)

be such that ko+- - -+k,,—1 = n denote the type of an n-string x™; the probability
of each such string is equal to

P(a") =p*=pf° - py (6.16)
Denote the set of all types of n-strings in A,, = {0,...,m — 1}" by
Tom = {(ko, ... km—1) e N ko + - + kyppe1 = n}.
We introduce an order among types:
=k iff P>t

and we sort all types from the smallest index (largest probability) to the largest.
This can be accomplished by observing that pi > p¥ is equivalent to

JoBo+ -+ + jm—2Bm—2 < koBo + -+ + km—2Bm—2. (6.17)
Therefore, to sort types k one needs to sort the function S : R™~! s Rt
S(k) =koBo+ -+ km—2Bm—2 (6.18)

from the smallest value S(00---0) = 0 to the largest.

122 Chapter 6. Non Prefix One-to-One Codes

There are

K n n!
<k) - (ko,-.-,km_1> o S — (6.19)

sequences of type k and we list them in the lexicographic order. Then, the
optimum code assigns length |logi] to the ith sequence (1 < i < m™) in this
list. We denote the number of sequences more probable than or equal to type k

as
n
A=Y () |
iz N
In a first step we derive an asymptotic property for Ayg.
Lemma 6.2.2. Suppose that m > 2 and that the probability distribution py <

-+ < Pm—1 s not uniform. Then for every sufficiently small € > 0 there exist
positive constants C1,Cy such that

m—2 (TN m—2 ([T
2 < < 2
C’ln <k> =~ Ak ~ CQTL <k>

uniformly for max; |k; — np;| = O(nz+e).

Proof. We consider the case, where k; = np;, 0 < i < m, and show also that all
estimates stay uniform with respect to small perturbation of the p;.

For notational convenience we write x; = j; —k; = j;—np;, 0 < i < m. (Note
we have g + -+ + z;,—1 = 0). Then by applying Stirling’s formula and local
expansions of the logarithm we obtain uniformly for max; |j; — np;| = O(n%“)

n onh 1T 2
<-> = m—1 €xp BO'TO +- 4+ Bm72xm72 - 5 Z —-
J (2mn)" = /Do Pm—1 2n Di

< (14 0(n~%) :

for some d > 0, where h = — Zﬁglpi log p;. Thus, Ay is given by

w=20)

izk
m 1 m—1 l‘?
- m_1 Z exp | Boxo + -+ + Bm—2Tm—2 — o™ Z =L
(27’(’) 2 Do Pm—1 x=0 n o Pi

x (1+ O(nf‘s)) ..

6.2. Non-binary One-to-One Code 123

Clearly we can restrict ourselves to the case, where z; = O(n%“). which we
assume from now on implicitly. The resulting error is negligible. In this range
we also have the property that the term

1 m—1 l‘2
exp <Boﬂfo + o+ Bpotm_2 — — Z —Z>
2n — p;
i=0
is of the same order of magnitude if the x; are varied to x; £1. Hence can replace
the upper sum S over x by an integral of the form

1 m—1 IQ
I= /xjoexp (Boxo + ot Broatmn — oo Z : (6.20)

im0 Pi

so that C; < I/S < (5 for proper positive constants C7, Cs.

We now estimate the integral (620). To simplify our presentation, we focus
on the case m = 3 We ask the reader in Exercise to provide details for all
m. So let

2 2 2
X X X X
I = / exp (B():L'o + Bix1 — U L (o+ 1) > dxodry.
Bozo+Bi1z1<0 2np0 2np1 2np2

In a first step we apply a proper linear transformation A; to the variables xq, z1
such that

B o)

Po b2
Clearly Boxo+ Bix1 = Byyo+ Biy: for proper real coefficients (B, By) # (0,0).
In a second step we apply an orthogonal operation As to the variables yg, y; such
that Blyo + Bjy1 = Bz (and of course y2 +y? = 22 + 27). Hence, the integral
I is (up to the constant |det A;|) given by

=5+ ui-

1
I = / exp <Bé’z0 —— (2 + zf)) dzodz
B()’ZUSO 2n
1
=V2mn exp (B(')'zo - —zg) dzo
Bl 20<0

2n
N V2t 1
= 5] (1+0(n™).

Of course this proves (in the case m = 3) that Ay and \/n (E) differ at most by
a bounded factor. In the general case the factor y/n is replaced by n"r.

Clearly all computations are stable with respect to small perturbation of the
p;. This completes the proof of the lemma. [|

124 Chapter 6. Non Prefix One-to-One Codes

As a corollary we obtain the following asymptotic relation for the logarithm

m—1 o

BOIO + -+ B’m—QIm—Q 1 Z;
— —40(1) (6.21
In2 2In2n ; pi+ (1) ()

1
log Ay = nh—§ logn+

uniformly for z; = k; — np; = O(n2+¢), 0 < i < m.

We now turn to the average code length E[L,]. We use the somewhat infor-
mal, but intuitive, notation, k + 1 and k — 1 for the next and previous types,
respectively, in the sorted list of the elements of 7, ,,. Clearly, starting from
position Ay the next (kil) sequences have probability p&*!. Thus the average
code length can be computed as follows

Ax

E[L,)= Y p* > |logi]

kETn,m i=Ax_1+1
(%)
> p*) llog(Ax —i+ 1))

kE€Tn, m i=1

k;m (ﬁ) p* (log A +0 ((Z) /Ak))

where p = (po, - . ., Pm—1) and we have used that i < (ﬁ) = O(4x). Actually we

have in central part, where |k; — np;| = O(n2+<)

(ﬁ) = O(n~"T" Ay),

which implies that
2

n k - _m—1
Z (k) P /Aka(n 2)
ke€Tn,m
Furthermore by ([G:21]) we have

LLATRN _ LLATRN
> <k>p log Ak = Y <k>p

ke€Tn,m ke€Tn,m

m—1

1 ki —np;)?
<nh—1ogn+—ZB —np;) 721n2nz(o) +O(1)>
=0

_ 3

1
=nh — 3 logn 4+ O(1).

Consequently we obtain E[L,] = nh — ; logn + O(1) as proposed.

6.3. Exercises 125

6.3.

6.1

6.2
6.3

6.4

6.5
6.6
6.7

6.8
6.9
6.10

Exercises

For any non-negative sequence a; establish the following identity ([G.2)

N N-1
Y aj=Nay =Y jlajr1 —ay)
j=1 j=1

(see Knuth (1997) Ex. 1.2.4-42).

Establish precise expansion of Ay, presented in (G.6]) of Lemma
Following our analysis from Chapter [2] prove Lemma For details
see Drmota, Hwang, and Szpankowski (2002).

For an unbiased memoryless source with p = 1/2 prove (G.3]) of Theo-

rem 6111

Establish (610).

Estimate asymptotically the other parts of (63).

Let f be a function of polynomial growth. We seek asymptotics of the
so called binomial sums

55 =3 () - s
k=0
Prove that

Sy(n) = f(np) + 5np(1 — p) " (np) + O(nf"(©).

for some £ € [0,n]. For example, show that

n
Z (Z)pk(l —p)" *logk = log(np) — % +0(n™?).
k=0 pr
For more see Flajolet (1999), Jacquet and Szpankowski (1999). For a
multidimensional extension see Cichon and Golebiewski (2012).
Compute the precise asymptotic behavior of A, for m = 3.
Estimate the integral ([G.20) for all m.
Consider again the binary one-to-one code but assume now that the
source is unknown, that is, p is unknown and needs be estimate. Analyze
the average redundancy in this case (see e.g., Kosut and Sankar (2017)).

Bibliographical notes

Unique decipherability was addressed in many papers and books, but mostly
likely for the first time in MacMillan (1956).

126 Non Prefix One-to-One Codes

The fact that one-to-one codes have average code length smaller than en-
tropy was actually known to Shannon and Huffman. However, Wyner (1972a),
and then much later Alon and Orlitsky (1994), quantified more precisely this
difference. In particular, Alon and Orlitsky (1994) show that

L>H(X)—-log(H(X)+1)—1loge.

This chapter is based on Szpankowski (2008) and Szpankowski and Verdu
(2011). Further extensions can be found in Kontoyiannis and Verdu (2014)).
A univversal scheme with a precise analysis was proposed in Kosut and Sankar
(2017).

CHAPTER 7

Advanced Data Structures: Tree
Compression

Information theory traditionally deals with “conventional data” almost exclu-
sively represented by sequences, be it textual data, image, or video data. Over
the last decade, repositories of various data have grown enormously. Most of
the available data is no longer in conventional form. Instead, biological data
(e.g., gene expression data, protein interaction networks, phylogenetic trees),
topographical maps (containing various information about temperature, pres-
sure, etc.), medical data (cerebral scans, mammogram, etc.), and social network
data archives are in the form of multimodal data structures, that is, multitype
and context dependent structures, often represented by trees and graphs.

Unconventional data often contains more sophisticated structural relations.
For example, a graph can be represented by a binary matrix that further can be
viewed as a binary sequence. However, such a string does not exhibit internal
symmetries that are conveyed by the so-called graph automorphism (making
certain sequences/matrices “indistinguishable”). The main challenge in dealing
with such structural data is to identify and describe these structural relations.
In fact, these “regular properties” constitute “useful (extractable) information”
understood in the spirit of Rissanen (2003) “learnable information”.

For efficient compression of such data structures, one must take into account
not only several different types of information, but also the statistical dependence
between the general data labels and the structures themselves. In Figure [[1]
we show an example of such a multimodal structure representing an annotated
protein interaction network in which graphs, trees, DAGs, and text are involved.

In the last two chapters of of the first part of this book, we deal with advanced
data structures: In this chapter we discuss various trees (binary tree, d-ary tree,
general trees). In the next Chapter [§l we continue our discussion of advanced

128 Chapter 7. Advanced Data Structures: Tree Compression

3 /AWE
NN
| TR
f | \
ki el L
ey 1
| |
= /
A I /
| /
‘ P s

Figure 7.1. Annotated protein interaction network: nodes in the network
represent proteins in the human interactome, and there is an edge between
two nodes if and only if the two proteins interact in some biological process.
Associated with each node is a position in a fixed ontology (encoded by a
DAG whose nodes represent classes of proteins defined by, say, structural
or functional characteristics) known as the Gene Ontology. Nodes that
are connected in the interaction network are often close in the ontology.

data structures focusing on graphs.

7.1. Binary Trees

The most popular data structure are trees, among which binary trees occupy spe-
cial position so we devote this section to such trees. They come in two varieties:
plane-oriented trees, often simply called (plane) binary trees, and non-plane

7.1. Binary Trees 129

oriented trees. In plane-oriented trees, the order of subtrees matters, while in
non-plane-oriented trees (e.g., representing a phylogenetic tree) all orientations
of subtrees are equivalent as shown below:

DDA

Figure 7.2. Plane-ordered representatives of one non-plane tree.

7.1.1. Plane Binary Trees

In this section we introduce the concepts of plane binary trees and define two
probabilistic models for these types of trees that turn out to be equivalent.

We call a rooted tree a plane binary tree when we distinguish the left-to-right-
order of the children of the nodes in the embedding of a tree on a plane. To
avoid confusion, we call a tree with no fixed ordering of its subtrees a non-plane
tree (also known in the literature as Otter trees). We shall assume throughout
this section that every internal node has two children. In a non-plane tree any
orientation of subtrees is equivalent.

Let 7 be the set of all binary rooted plane trees having finitely many vertices
and, for each positive integer n, let 7, be the subset of 7 consisting of all trees
with exactly n leaves (and n — 1 internal nodes). Similarly, let S and S,, be the
set of all binary rooted non-plane trees with finitely many vertices and exactly
n leaves, respectively.

Formally, a rooted plane binary tree t € 7T, can be uniquely described by
a set of triples (v;,vj,vg), consisting of a parent vertex and its left and right
children. Given such a set of triples defining a valid rooted plane binary tree, we
can standardize it to a tree defined on the vertex set {1, ...,2n — 1} by replacing
a vertex v in each triple by the depth-first search index of v. We then consider
two trees to be the same if they have the same standard representation; see the
example in Figure

We now introduce some notation that will be useful in the tree context. Let
t be a binary plane tree, and consider a vertex v in ¢. By ¢(v), we shall mean
the subtree of ¢ rooted at v. We denote by ¢ and ¢ the left and right subtree
of t, respectively. Furthermore we denote by A(t) the number of leaves in the
tree t. Finally, we denote by root(t) the root node of ¢.

130 Chapter 7. Advanced Data Structures: Tree Compression

A A\
A A

Figure 7.3. A rooted plane tree and its standardization. The left tree
can be represented by the list of triples {(5,1,7), (1,2, 3)}. After standard-
ization, this becomes {(1,2,5),(2,3,4)}. Note that this is distinct from
the tree {(1,2,3), (3,4,5)} or, equivalently, {(5,1,7),(7,2,3)}.

We introduce two models for generating plane binary trees Our first model
— the binary increasing tree model — is defined as follows. We start with a tree
that consists just of the root (which is also a leaf) and apply then the following
steps:

e pick uniformly at random a leaf v in the tree generated in the previous
steps,

e append two children vy, and vg to v,
e repeat this procedure until the tree has exactly n leaves.

Our second model — also known as the binary search tree model — is ubig-
uitous in science literature, arising for example in the context of binary search
trees formed by inserting a random permutation of {1,...,n — 1} into a binary
search tree. Under this model we generate a random tree 7, as follows. We
start with a tree that is just a leaf and assign to this leaf the number n (indi-
cating that we will finally have precisely a trees with n leaves). Then we apply
recursively the following procedure

e choose any leaf v of the tree generated in the previous steps, and let ng be
the integer value assigned to v.

e if ng > 1, select randomly an integer so from the from the set {1,...,no—1}
with probability ——, and then grow two edges from v with left edge

no—1?
terminating at a leaf of the extended tree with value so and right edge

terminating at a leaf of the extended tree with value ng — sg.

e repeat this procedure till all leaves are assigned to the value 1

7.1. Binary Trees 131

Clearly, the recursion terminates with a binary tree having exactly n leaves (in
which each leaf has assigned value 1 that can be deleted then). This tree is T,.

Recall that A(t) is the number of leaves of a tree ¢, and A(t(v)) denotes the
number of leaves of a tree t rooted at v. It is easy to see that under the second

model 1
P(T,=t)= — 1P(TA(tL) = t")P(Ta@ry = "), (7.1)

P(T,=t)= [] (A(tw) -1 (7.2)

veV(t)

where V(t) is the set of the internal vertices of ¢. It turns out that the probability
distribution in the first model (for increasing binary trees) is exactly the same,
as we prove below.

Theorem 7.1.1. Under the increasing binary tree model it holds that

P(T,=t)= [] (A@)-1)" (7.3)

veV(t)
where V(t) is the set of the internal vertices of t.

Proof. We use the concept of labeled histories: a pair (t,£), where t € T,
(generated by the first model) and £ is a permutation of the natural numbers
from 1 to n — 1, assigned to the internal n — 1 vertices of t, such that every
path from the root forms an ascending sequence. If we think of the internal
nodes of t as being associated with their depth-first-search numbers, then the
permutation & is a function mapping each internal node of ¢ to the time at
which its two children were added to it. Thus, for instance, the root always
receives the number 1, meaning that £(1) = 1. Clearly, for each ¢, each labeled
history (t,£) corresponds to exactly one sequence of generation, as it defines
uniquely the order of the leaves, which are picked during consecutive stages of
the algorithm. Moreover, the probability of each feasible labeled history (¢,£)
is equal to ﬁ since it involves choosing one leaf from k available at the
kth stage of the algorithm for & = 1,...,n — 1. Therefore, denoting ¢(t) =
[{&: (¢, &) is a labelled history}|, we find

q(t)

P(Ty=1) = o255

Note that if A(¢(v)) = k for any vertex v of ¢, then we know that the sequence of
node choices corresponding to (¢, &) must contain exactly k — 1 internal vertices

132 Chapter 7. Advanced Data Structures: Tree Compression

from the subtree of v, and that v is the first of them. Moreover, for the subse-
quence in the sequence corresponding to (¢,£) of a subtree ¢(v) rooted at vertex
v, the sequences of A(t(v)Y) — 1 vertices from its left subtree and of A(t(v)®)—1
vertices from its right subtree are interleaved in any order. Thus we arrive at
the following recurrence for ¢(t):

A(t) —2 A(t) — 2)!
00 = (Ao 2) = 5 gy ")

This recurrence can be solved by observing that each internal vertex appears
exactly once in the numerator, and that each internal vertex not equal to the
root r appears exactly once in the denominator. Hence

[T (A(t(v)) = 2)!

VeV (t)

AT (AG) =D
veV(O\{r}

Since A(t(r)) = A(t) = n, we thus obtain
I (A(t(v)) —2)!

q(t) =

o(t) = VeV (1) B (n—2)!
T G -0 1 G -1

veV (t)\{r} veV (t)\{r}

leading finally to
q(t) 1
P(T,=1t)= = .
T =0= 601 = T Gew) -1
veV(t)

This completes the proof. [|

In conclusion, the models are equivalent for binary trees in the sense that
they lead to the same probability distribution on trees.

We should point out that the above equivalence does not hold for non-binary
trees. In Exercise we ask the reader to analyze m-ary binary search trees
while in Section we study general d-ary trees for d > 2.

Remark 7.1.2. We note that it is possible to extend the above tree model
by assigning to the vertices more information, for example, by strings/words of
given length over an alphabet A. This leads to a named model in the spirit of
Aldous and Ross 2014. Magner, Turowski, and Szpankowski (2018) considered
such binary trees with vertex names, where the names are modelled by a discrete
Markov process.

7.1. Binary Trees 133

7.1.2. Entropy Evaluation

The next goal is to determine the entropy of the probability distribution H(T5,)
of the above probability model(s) for plane binary trees. The main result is the
following one.

Theorem 7.1.3. The entropy of a plane binary tree T, is given by

2 og(k — 1)
H(T,) =log(n — 1)+ 2n 8) = han —logn + O(1),
= k(k+1)
where |
og(k
=2 ~ 1.736.
> Sy~
k>2

Consequently the entropy rate of plane binary trees is

lim H(T,)/n = hy ~ 1.736.

n—oo

The rest of this section is devoted to the proof of Theorem [[.T.3] We start
with the observation that A(T.L) is a random variable corresponding to the num-
ber of leaves in the left subtree of T;,. From the previous section, we know that
P(A(TH) =k) = . Next, we note that the random variable TL conditioned

on A(LTE) = k is 1dentlca1 to the random variable T}, and the same holds for
LTf and T;,—. This leads us directly to the recurrence

H(T,) = H(A(LT))

£ 37 PATE) = k) (H(THATE) = k) + HIFATE) = k)
k=1
=log(n—1)+ % kz:; H(LTy), (7.4)

where we have also used the fact that H(A(LTL)) = log(n — 1).
Such recurrences can be explicitly solved and we present it in the next lemma.
A more general version is given in Lemma [7.3.2)

Lemma 7.1.4. For constant o, xg and x1, the recurrence

Mk+a—-1)
k!

n!
nl(n+a—1)

M

Ty = Qp + — Tk, n>2 (7.5)

k=0

134 Chapter 7. Advanced Data Structures: Tree Compression

has the following solution for n > 2:

_ n+a-—1 o
= -1) .
T = +aln+a kz_: k+a71 k+a)+ a+1 (x1+a1)

Proof. Let us multiply both sides of the recurrence by the normalizing factor

w. Define also
x,T(n+a—1) . apl'(n+a—1)
= R
Then (7)) rewrites
n—1
B =+ =Y (7.6)
k=2

To solve the recurrence (Z.6]) we compute

nin - (n - 1)52'7171 == n&n + O[i'n,1 - (n —]_)(Aln,l.
This leads us to

R . 1\ . a—1Y\ .
Tp=ap—(1-— E Gp—1+ 14‘__ﬁ__ Tn—1,

which holds for n > 3. Then after iterating the above we arrive at
B = 2o ﬁ + zn: an—(1-1)a ﬁ o1
n — k — L k—1 ‘ j .
k= j=k+1

j=3
The product can be rewritten as

I (7)o

j=k+1

Hence, after some standard calculations we obtain

ag n+aoa—1
+ (@2 —a2) a+1

7.1. Binary Trees 135

Zo
a—1

We can, thus apply this formula for « = 2 and obtain the solution for z,, =
H(T,) and a,, = log(n — 1):

By observing that xo —as = z1 + we have completed the proof. []

X og(k — 1)

H(T,) =log(n — 1)+ 2n FUES

k=2
where rg = 1 = 0.
In order to finish the proof of Theorem [[.1.3] we just note that

Slog(k—1) Xlog(k—1) log(n) 1
;;2 Kk+1) &= k(k+1) n +O(E)'

This completes the proof.

7.1.3. A Compression Algorithm for Plane Binary Trees

Clearly it is now possible to encode a plane binary tree in an (almost) optimal
way, that is, the expected code length is close to the entropy. Since the prob-
ability distribution of T, is explicit (see (Z3))) we could use the Huffman code.
However, this is not very efficient since we would need all probabilities.

In what follows we will give an algorithm that computes an arithmetic coding,
where we design the code word directly without computing the whole probability
distribution. The idea is to partition the unit interval [0, 1) into subintervals [a, b)
such that every tree t of size n corresponds to one of these intervals and that
P(t) = b — a. We then associate to each interval [a,b) a binary string, namely
the first [—log(b — a)] + 1 binary bits of the real number (a + b)/2.

It is clear that the redundancy of such an encoding is < 2 since every code
word length differs from — log P(t) by at most by 2. Furthermore, it is clear by
construction that all code words are different binary string (see Exercise [T)).

More precisely, in the algorithm we start from the interval [0,1) and we
traverse the tree ¢ to be compressed: at each vertex we split the current interval
into parts according to the probability of the number of leaves in the left subtree.
That is, if the subtree rooted at v has k leaves and ¢(v) has £ leaves, then we split
the interval into k — ¢ equal parts and pick /-th subinterval as the new interval.
Then, we pick as a new interval: one that represents the value associated with
the current vertex (the number of leaves in the left subtree).

After we traverse the whole tree, we obtain an interval [a,b). As mentioned
above the crucial idea is that any two intervals corresponding to different trees
are disjoint and the length of each interval is equal to the probability of gener-
ating its underlying plane tree. We output the first [—log(b — a)] bits of %E2.
The pseudocode of this algorithm, called COMPRESSPTREE is presented next:

136 Chapter 7. Advanced Data Structures: Tree Compression

function COMPRESSPTREE(t)

[a,b),d < CompressPTreeRec(t)
a+b

pb—a, x <+
return C\" = first [—logp] + 1 bits of =

function COMPRESSPTREEREC(%)

v < root(t)

{+—0,h+1

if v is not a leaf then
[Ciepts Puest), diepe < CompressPTreeRec(th)
[Crights Pright), dright < CompressPTreeRec(tft)
d <+ dleft + dm’ght
range < h — ¢
h <« {+range * dicse/(d — 1)
C <+ L+ range * (djegr — 1)/(d — 1)
range < h —/
h < {4 range * hc st
<=L+ range * liepy
range < h — ¢
h < {4 range * hyight

<L+ range * lright
return [(,h), d

Example 7.1.5. For the following tree our algorithm COMPRESSPTREE pro-
ceeds as follows:

U1 Us =[0,1), 1
A V4 = [0, 1), 1
. s U3 = [Oa 1)7 1
V2 = [Oa 1)7 2

/\ VU1 = [0.5,1), 3.

V3 V4
Hence, we finally obtain the interval [0.5,1), the probability p = 0.5, and the
first 2 digits of 0.75 = (0.11),, that is, C§" = 11.

Next we show correctness of the algorithmCoMPRESSP TREE.
Lemma 7.1.6. Let t denote a given plane binary tree with n external ver-

tices. Then the algorithm COMPRESSPTREE computes an interval whose length
is equal to P(T,, =t). Furthermore the intervals constitute a partition of [0,1).

7.1. Binary Trees 137

Proof. First, if ¢ is just a leaf then the algorithm computes the interval [0, 1)
and the value d = 1.
Second if ¢ is not a leaf then the length of the interval [¢,r) is updated by

r—4{=

1
d—_1 (Tleft - gleft)(rright - gm’ght)

which corresponds to the recurrence (). Thus, the probability P(T,, = t) is
computed correctly. Furthermore the computed intervals are nested and cover
by construction the whole unit interval. [|

As mentioned above the redundancy in this arithmetic coding is within at
most 2 bits of the entropy.

Lemma 7.1.7. The average length of a codeword Cr(ll) of COMPRESSPTREE is
only within 2 bits from the entropy.

Proof. From the analysis above, we know that:

E[C{V] =) P(T, = t)([~log P(Ty, =)] +1)
teTn
<> —P(T,=t)log P(T, =t) +2 = H(T,) +2
teTn

which completes the proof. [|

7.1.4. Non-Plane Binary Trees

As discussed above, binary trees come in two flavors, as plane-oriented trees
and as non-plane trees. In this section we discuss non-plane trees, also called
unordered trees or Otter trees. These are just rooted trees in the graph theoretic
sense — there is no order between subtrees.

Non-plane trees are harder to analyze and less attention has been devoted
to these kind of trees in the literature. Nevertheless, non-plane trees find many
important applications from data compression to biology. For example, in a
phylogenetic tree describing n species there are n leaves representing extant
species and n — 1 internal nodes. By design there is no specific order between
the two children of a binary node. We will study these trees not in the uniform
probability model but rather a growth model of binary trees.

In data compression and other applications symmetries of plane and non-
plane trees are of interest. In particular, for compression one needs to know the
number of internal nodes that have two isomorphic subtrees, the size of such

138 Chapter 7. Advanced Data Structures: Tree Compression

isomorphic trees, and the entropy of trees. In order to analyze such quantities
we first derive a functional-differential equation for a bivariate generating func-
tion from which we compute the average number of nodes with two isomorphic
subtrees as well as the entropy of non-plane trees.

Let S be the set of all binary rooted non-plane trees having finitely many
vertices. Let S, be the subset of S consisting of all trees with exactly n leaves.
We recall that T is the set of all binary rooted plane trees having finitely many
vertices and 7, is the subset of T consisting of all binary trees with exactly
n leaves. For any s € S and t € T let t ~ s mean that the plane tree ¢ is
isomorphic to the non-plane tree s. Furthermore, we define [s] ={t € T : ¢t ~ s}
as a collection of all plane binary trees ¢ that are isomorphic to the same non-
plane binary tree s.

From Theorem [.T.1] we know that the probability of a tree t € 7T, is

P(T,=t)= [[A@w)-17",

veV(t)

where V(t) is the set of internal nodes of ¢ and A(v) is the number of leaves of
a tree rooted at ’UE For any t1,ts € T}, such that t; ~ s and t2 ~ s it holds that
P(T,, =t1) = P(T,, = t2). By definition, s corresponds to |[s]| isomorphic plane
trees, so for any ¢ € [s] we have

P(Su =) =]l - P(Tu = 1), t€ls]. (7.8)
Of course we can also write
P(S,=s)=Y P(T,=t).
t~s
Furthermore,

P(T, = 1], = s) = ﬁ (7.9)

Let sym(¢) be the the number of non-leaf (internal) nodes v of tree ¢ such
that the two subtrees stemming from v are isomorphic. Observe that |S;] =
|S2] = |S3| = 1, and that |S4| = 2. If t € Sy, then clearly sym(t) = 0. If t € Sy
or t € 83 then sym(t) = 1. Notice that if ¢; and ¢ are the two subtrees of a tree
t whose roots are the two children of the root of ¢, then

[sym(t1) +sym(te) + 1if ¢4 =t
Sym(t) o { sym(tl) -+ sym(tg) if tl 7& t2.

We use T, to denote a random variable representing a random tree in 7; however, we
often abuse notation and write T3, for both the set of trees and the random variable.

7.1. Binary Trees 139

Observe also that
sym(s) = sym(t)

for all ¢ € [s]. Furthermore, and more interestingly
|[s]| = 2ntmsym(s), (7.10)

Indeed, we can form a new tree by rotating both subtrees of a plane tree at every
internal node that is mot symmetric, that is, for those nodes whose subtrees are
not isomorphic.

With the help of this notation we can evaluate the entropy H(S,,):

H(Sn) ==Y P(Sp=s)log P(S, = 5)
5E5n
- ; %:]P t)log (P(T = t)|[s]])
:f;;p T, = t)log(P(ES:P s)log|[s]|
, GXS: P(S (n—1- Sy;()
= H(T,) — n— 1)+ Ezsj s)sym(s). (7.11)

Out goal is, therefore, to compute the expected value

E[sym(S Z P(S,, = s)sym(s Z P(T, = t)sym(t).

sESy teTy,

For this purpose we first derive a differential equation for the following bi-
variate generating function

Z) _ ZP(T — sym(t) \t| _ Z Z T _t bym(t)z|t\
teT n=1teT,

where we simplify our notation and write |¢| for the size of a tree (i.e, the number
of leaves). Define also

ZP _t 2 bym(t) \t| 1 Zp 2 sym(t) |t\ 1
teT teT

where we write p(t) = P(T =t)

140 Chapter 7. Advanced Data Structures: Tree Compression

Lemma 7.1.8. Let f(u,z) = @ Then f(u,z) satisfies the following Ric-

cati differential equation

of (u, 2)
0z

Furthermore after the substitution

Bg(au,z)
Flu,z) = ——2—
(v2) 9(u, 2)
equation (7.12) becomes
2
Toinz) %(;Z 24 (u— DB, 2)g(u2) = 0 (7.13)

which is a second order linear equation assuming B(u, z) is known.

Proof. Observe that

= i Z P(T, = t)u™¥™®lt = 5 4 Z Z P(T,, = t)u»™® 1t

n=1teT, n>2teT,

Since every tree t € T, for n > 2 can be divided into two subtrees, we have

Flu,z) =z + S%:T m ()p(t)uy ™ +sym(@+ls=tl] lsl+l1]
— 2+ tZE:T mp(s)p(t)usym@mym(w sl
7; 2|t| — 1p(t)2 2sym(t 2\t| + tEZT 2|t| — 1 2 2sym(t)+1 . Z2\t|
PR PR b
+(u—1) ; 2|t|1— 1p(t)2u25ym(t) 22

Notice that, from the original definition of F'(u, z),

Flu,z)? = 3" p(s)p(tyusymtsym®) s+t
s,teT

= f(u,2)* + (u — 1)B(u?, 2?). (7.12)

7.1. Binary Trees 141

Therefore,

? F(u,w)? 1 , ,
z 0 dw= E = () (™S Fsym(t) | [s|+t]
/O 2 |5|+|t| _1]7()p()

We also have

Z) _ Zp(t)2’u8ym(t)z‘t|71

teT

_ 2 2bym(t) 2|t\
Z/O u ,w? Ydw = Z2|t| .

and

Hence
Flu,z) =2+ z/ Md + (u—1)z / B(u?, w?*)dw.
0 w? 0

Let f(u,z) = @ From the last equation we get
Of(u, 2)

0z
This proves Lemma [7.1.8 [|

= f(uv Z)2 + (u - 1)B(u27 ZQ)'

Remark 7.1.9. We note that similar considerations can be also done for the
uniform model. If we set

z) = Z uY™(s) 51|
sES

then this generating function satisfies functional equation (as shown by Bona
and Flajolet (2009))

ﬁ(u,z)zz—l—%ﬁ(u,zﬁ—i— (u—%) F(u?, 22). (7.14)

Next we observe that (TI2) could be viewed as a functional-differential equa-
tion. Indeed, let us introduce a special Hadamard product of two generating
functions A(u, z), B(u, z) defined by

Z calt t)zs(t) Z cn(t r(t)7

teT teT

142 Chapter 7. Advanced Data Structures: Tree Compression

where r(t) and s(t) map combinatorial objects t € T to the non-negative integers.
We then define a Hadamard product A(u, 2)EB(u, z) by

A(u, 2)EB(u, 2) ZCA cp(t T RPAON
teT

We contrast this with the standard bivariate Hadamard product, defined by

A(u, 2)0B(u, z) =

Z Z ca(t) Z cp(t) | u™z™.
n,m=0 \t : r(t)=m,s(t)=n t: r(t)=m,s(t)=n

Note that A(u, z)EB(u, z) is in general not equal to A(u, 2)®B(u, z), unless r(t)
and s(t) uniquely determine t. With this definition in mind we can rewrite ([.12])
as

S fl2) = f(w, 2+ = DA AT (715)

which is a functional-differential equation.
Let us now evaluate the average E[sym(S,,)]. For this purpose we set

oo
Z [sym(S, Pl

Using Lemma [T.1.8 we find the following ordinary differential equations:

2E(z)

E(z) = z(1—2)

+ B(2?) (7.16)

with E(0) = 0, where

Z) _ Zp(t)QZ‘tl_l — Zzn—l Z p(tn)Q _ Z bnzn—l

teT n=1 tn€Tn

with

te€Tn

for n > 1. It is easy to compute b,, for a few small values of n, namely

1 2 13 7
b1 = by , b3 by 9’ bs 11’ be 500 (7.17)

7.1. Binary Trees 143
Actually, to compute b,, for all values of n we need a better approach. Define
C(z) = zB(z) and notice that
bn = [z"]C(2) = [" 71| B(2).

We will derive a differential equation for C(z), from which a recurrence for b,
will follow. It is easy to notice that C(z) satisfies the following

1
C _ 2 2 |u\+|v\
€)=z 3 e pe))
u,veT
Furthermore,
1
Bl —_ 2 2 ‘ul—‘,—‘Ul—Q
()= > 7(|v|+|u|71)p(w p(v)°2
u,veT

and

C*(z) = Y plup(v)zl"IH1,

u,vET

Combining all of these, we arrive at the following Riccati differential equation
C(z) — 2C'(2) + 22C"(2) = C?(2). (7.18)

By standard tools we can extract from the above a recurrence for b, = [2"]C(2).
Indeed, for n > 2 we have

n—1
1
b = e > bibn-; (7.19)
j=1

Remark 7.1.10. In passing we remark on the generating function C(z) satis-
fying non-linear differential equation (ZI8)) with coefficients b, = [2"]C(2). It
turns out that applying the method discussed in Chern, Fernandez-Camacho,
Hwang, and Martinez (2012) one can prove the following asymptotic result

22

where p = 0.3183843834378459.. . ..

With the help of b,, we can now formulate the following result for E[sym(S,,)] =
E[sym(T,)].

144 Chapter 7. Advanced Data Structures: Tree Compression

Theorem 7.1.11. Consider a binary plane tree and its corresponding non-
plane tree. The expected number of internal nodes with two isomorphic subtrees
18

L(n+1)/2] by

E[sym(S,)] =n) TS VICTESY (7.20)
ntl n+3 n
tha (0 (0 o) * e
=en+ O(1)

where by =37, .p, p(t)? and

oo
by
= =~ 0.3725.
“ ; (20— 1)0(20 + 1)

Proof. We now compute E[sym(7},)] = E[sym(S,,)] using the generating function
On(u) = [2"]F(u, 2) = [" 7] f(u, 2)
defined above. We observe that

Blsym ()] = 22

u=1

Since taking the coefficient commutes with taking the derivative with respect to
u we have

d[2" 1 f (u, 2)
du

Thus, taking the derivative with respect to v in (.I2)) gives (using (7.153]))

(uz,zz)]

= [Zn_l]fu(uv Z)

fz,u(ua Z) - 2f(ua Z)fu(ua Z) + (U - 1)% l(f(ua Z)Elf(ua Z))

(u2,z2)] 7

(f(1,2)Bf(1, 2))

+ | (f (u, 2)Bf (u, 2))

and setting u = 1 results in

foa(1,2) =2f(1,2) fu(1, 2) +

(u2722)‘| .

7.1. Binary Trees 145

Now, we use the fact that ¢, (1) =1 for n > 1 implies

f(]-az) -

We also note that
fu(l,2) = > Elsym(T,)]z" " = E(2).

With the notation as above we find

B(:) = 2L 4 (AG)RAG)

with E(0) = 0, as needed.
We now solve (Z2I]). It is easy to see that

1 S 2 2
E@%:E—ZF(AMxﬂl—@dx+C)
But E(0) = 0 implies C' = 0. Thus

= + B(2?), (7.21)

Efsym(T,)] = [2" '] E(2)
1 - 2Y(1 — 2)2de
(1_2)2/0 B(2?)(1 - z)*da.

Next we observe (after some algebra) that

="

1 z by + bpy by,
B 2 1— 2n+1 2n .
(1—2)2/0 (@)1 —a)? ;< 2n+1 n:
By setting
0 k=0,
1 k=1,
=Nk p=26 0>, (7.22)
btbenl p=20+1, 0> 1,
we have
o 1 %) n
Efsym(T,)] = [¢"!] TEE chzk = Z ck(n — k).
k=0 k=0

It is also easy to see that

n [n/2]

D ke =14 > (brs1—be) =1 =1 +bpsaje1 = (—1)"'b(ns1)/2)-
k=0 =1

146 Chapter 7. Advanced Data Structures: Tree Compression

This finally leads to the representation
n
E[sym(T,)] =n Z cr + (*1)n+1b|.(n+1)/2j. (7.23)
k=1

We can further simply this expression by computing », ¢ and obtain (with
L=|(n+1)/2])
[(n+1)/2]-1

2 1 1 1
;Ck =1- §b1 —+ ; by <2€—_1 — Z —+ m) (724)
1 1+(*1)n
e <2L—1 2L)

We thus get the following formula:
[(n+1)/2]-1 by

Zk:ck: 2 (20— 1)0(20 + 1)

{=1

e (1 (1) b

In summary, we have

L(n+1)/2]

bs
Blsym(Tn)] = n ; 20— 1)i20+1)
natl n+3 n
T 0mry2) (H) ’ <2 T Dt 2)> T Dt 2))
=en+ O(1),

where, we recall that b, = 3, p(t¢)*> = O(1). This proves Theorem [LT.TTl |

Remark 7.1.12. Let us observe that we can use just computed E[sym(S))]
to design and evaluate some compression algorithms on non-plane (and plane)
trees. Indeed, let us replace for every internal node with two isomorphic subtrees
by the second identical subtree with a pointer to the first subtrees. We need
about =~ n-0.3725 bits to accomplish it. On the other hand, if we do this, we can
save some storage on the replaced subtree. We can quantify that by computing
the total size, size(S,), of the saved isomorphic subtrees. Similar computations
as above lead to

L(n+1)/2] be

E[size(Sn)] = n kz::l D@ ID " 0.4190. (7.25)

7.1. Binary Trees 147

The reader is asked in Exercise [[.7] to prove this property.

Finally we deal with the entropy of the non-plane tree H(S,) and its rate
h(s) = lim, o0 H(Sy)/n. Here we just have to collect the results from Theo-
rems [7.1.3 and [LT.1T] and the representation (Z.I1]).

Theorem 7.1.13. The entropy H(S,) of non-plane binary trees with n leaves
s given by

log (k1) L(n+1)/2]

k(k+ 1)

by
2D+ 1)

H(Sp)=log(n—1)—n+1+2n Z

=1
a1 n+3 n

+ by (nt1)/2) <(1) " (- (n+1)(n+2)) RDTCE (n+2))

_ - log(k) oo by
=n (2; (k+D)(k+2) 1+ kz::l (2k — 1)k(2k + 1)> + O(logn),

where b, = ZteTn p(t)2. Consequently the entropy rate hoy = limy, 00 H(Sp)/n
s given by

oo

o0
=2 ~ 1.109

which should be compared to the entropy rate ho of the plane trees found in

Theorem [7.1.3

7.1.5. A Compression Algorithm for Non-Plane Binary Trees

Next we present an compression algorithm for non-plane binary trees, again
based on an arithmetic encoding. In order to accomplish it we need to define
a total order among non-plane trees and compute efficiently the probability
distribution P(S,, < s), where < is the order to be defined. Recall again that S
is the set of all non-plane trees and S,, is the set of all non-plane rooted trees
on n leaves. Furthermore, A(s) is the number of leaves of the non-plane tree s.

We start with the definition of our total ordering. In what follows, we will
denote by subtrees(s) the set of the two subtrees of the tree s rooted at the
children of its root, that is, s is not a contained in subtrees(s).

Definition 7.1.14. The relation < on S is defined as follows: s; < sg if and
only if one of the following holds:

o A(s1) < A(s2),

148 Chapter 7. Advanced Data Structures: Tree Compression

e or A(s1) = A(sz2) and min{subtrees(s;)} < min{subtrees(sa)},

e or A(sy) = A(sz), min{subtrees(s;)} = min{subtrees(sz)} and
max{subtrees(s;)} < max{subtrees(sz2)}.

Here, min and max are defined recursively in terms of the order relation.

Lemma 7.1.15. The relation < is a total ordering on S.

Proof. The reflexivity and anti-symmetry are straightforward since either s; <
S2 Or §1 = S Or S1 > Sa.

To prove the transitivity, we assume that s; < ss and sy < s3. Now, if
A(s1) < A(s2) or A(s2) < A(sz), then A(sy) < A(sz) (so s1 < s3), as from
the definition of < we know that A(s;) < A(s2) < A(s3). The only remaining
possibility is that A(s1) = A(s2) = A(ss).

Then, we proceed similarly: if min{subtrees(s;)} < min{subtrees(sz)} or
min{subtrees(s2)} < min{subtrees(ss)}, then we see that min{subtrees(s;)} <
min{subtrees(s3)} (so s; < s3) since from the definition of < if A(s1) = A(s2) =
A(s3), then min{subtrees(s;)} < min{subtrees(sz)} < min{subtrees(ss)}.

Therefore, the only missing case is when A(s;) = A(s2) = A(ss) and
min{subtrees(s;)} = min{subtrees(sz)} = min{subtrees(ss)}. Since we know
that s1 < s2 and s2 < s3, then max{subtrees(s;)} < max{subtrees(sz)}
< max{subtrees(s3)} by induction, and this completes the proof. |

We denote by less(s) = min{subtrees(s)} and gtr(s) = max{subtrees(s)} the
minimum and maximum root subtree of s, respectively, under the ordering just
introduced. Moreover, we let T;, denote the (random) plane binary tree from
which S, is generated, and we recall the notation T and T2 for the left and
right subtrees of T,.

The idea is to determine an algorithm that, given a non-plane binary tree
s, outputs P(S, < s) and P(S, = s). This will allow us to construct an
arithmetic coding scheme as follows: we associate to s the half-open interval
[a,b), whose left endpoint is given by P(S, < s) and whose right endpoint is
P(S,, < s). The length of this interval is clearly P(S, = s), and, because of our
total ordering on non-plane trees, for two trees s; < ss, the right endpoint of
s1 is less than or equal to the left endpoint of s;. That is, the two intervals do
not overlap. Having this interval in hand, we take the midpoint and truncate its
binary representation as usual. This will give a uniquely decodable code whose
expected length is within 2 bits of the entropy H(S),).

Let us now consider the probabilities P(S, = s) and P(S,, < s). First, we
derive an expression for P(S,, = s). In the case where s has two non-equal

7.1. Binary Trees 149

subtrees, we have

P(S, = s) = P(less(Sy) = less(s), gtr(S,) = gtr(s))
= P(TE ~less(s), T ~ gtr(s))
+ P(TE ~ gtr(s), TR ~ less(s)) (7.26)
where ~ denotes isomorphism. To calculate the first term on the right-hand

side, we condition on the number of leaves in the left subtree of T;, taking the
correct value:

P(TE ~less(s), T ~ gtr(s))
= P(A(TE) = Aless(s))) - P(TE ~ less(s), TE ~ gtr(s))|A(TL) = Aless(s)))
1

RS - P(SA(less(s)) = less(s)) - P(Sa(gir(s)) = gtr(s))-

Here, we have applied the conditional independence of the left and right subtrees
of T,, given the number of leaves in each. It turns out that the second term of
(28]) is equal to the first, so we get in this case

P(Sn = 5) = (’I’L — 1) : P(SA(less(s)) = 1685(8)) 'P(SA(gtr(s)) = gtr(s)).

In the case where the two subtrees of s are identical, only a single term in
(726]) is present, and it evaluates to

P(Sn = 5) = 'P(SA(less(s)) = less(s)) ' P(SA(gtr(s)) = gtr(s))

= n_1 : P(SA(less(s)) = 1688(8))2.

Thus, in each case, we have derived a formula for P(S, = s) (that may be
recursively computed with O(n) arithmetic operations in the worst case).

It remains to derive an expression for P(S,, < s). We again first consider the
case where s has two non-identical subtrees. Following the definition of <, this
event is equivalent to

[A(less(Sp)) < A(less(s))] (7.27)

U [[A(less(Sn)) = A(less(s))] N [less(S,) < less(s)]

U [[A(less(Sn)) = A(less(s))] N [less(Sy) = less(s)]| N [gtr(Sy) < gtr(s)]]-

150 Chapter 7. Advanced Data Structures: Tree Compression

The terms of this union are disjoint, so the total probability is the sum of the
probabilities of the individual intersection events.

The first event is equivalent to the union of the disjoint events that the left
subtree of T;, has < A(less(s)) leaves or more than n — A(less(s)) leaves. The
probability of this event is thus

A(less(s)) — 1'

P(A(less(Sn)) < Alless(s))) = 2- ————

The second and third events can be similarly written in terms of disjoint unions
of events involving the left and right subtrees of T},. This gives recursive formulas
for their probabilities. Since the formulas are conceptually simple to derive but
tedious to write out explicitly, we do not list them, but we mention that at most
4 recursive tree comparison calls are necessary to evaluate P(S,, < s): we need
to know the probability that a tree of the appropriate size is < less(s), = less(s),
< gtr(s), and = gtr(s).

Finally, we compute P(S,, < s) in the case where the two subtrees of s are
equal. This happens if A(less(S,)) < n/2 or A(less(S,)) = n/2 and either
subtree of S, is less than the tree s’ comprising the two subtrees of s.

The probability of the first event is

P(A(less(S,)) < n/2) = P(A(TE) < n/2) + P(A(TE) > n/2)
1
n—1

The probability of the second event may be computed by conditioning: the prob-
ability that A(less(Sy,)) = A(T}F) = n/2is —15, and the probability, conditioned
on this event, that either subtree of S, is less than s’ is

P(TE < s UTE < §'|A(TE) = n/2)
=1-P(I; > 5'|A(Ty) = n/2) - P(T;}! > §'|A(T}}) = n/2)
=1—(1—-P(S,2 <))

where we have used the conditional independence of the two subtrees of T}, given
their sizes. Thus, the quantities P(S,, < s) and P(S, = s) may be recursively
computed.

With these results in hand, the aforementioned arithmetic coding scheme, in
which the interval corresponding to a tree s € S, is [P(Sy, < s), P(S,, < 8)). As
in the case of plane binary trees we encode then the tree s by the digits of the
mid-point of the corresponding interval. As above this leads to a code, where
the average code length exceeds the entropy at most by 2.

7.2. d-ary Plane Trees 151

Remark 7.1.16. It is not difficult to analyze the running time of the above
compression algorithms that is polynomial in n. Indeed, in Exercise we ask
the reader to prove that the worst case and the average running times of our
algorithm are

T(n) = O(n®log®nloglogn), A(n)= O(n*log®nloglogn) (7.28)

respectively.

7.2. d-ary Plane Trees

In this section we discuss d-ary plane trees that are generated recursively. We
derive the entropy and design an arithmetic compression algorithm so that the
average code length exceeds the entropy at most by 2 bits.

7.2.1. d-ary Increasing Trees

We recall that a rooted tree is a plane tree when the left-to-right order is taken
into account. We will also distinguish between labeled trees and unlabeled trees.
More precisely we will start with a recursive process that generates labeled d-ary
plane trees, that is, d-ary plane recursive trees. In a second step we will remove
the labels.

The process that generates unlabeled random d-ary plane increasing trees
starts with an empty tree, that is, with just an external node (leaf). The first
step in the growth process is to replace this external node by an internal one
with d successors that are external nodes (see Figure[Z4]). Then with probability
é, one of these d external nodes is selected and again replaced by an internal
node with d successors. In each subsequent step one of the external nodes is
replaced (with equal probability) by an internal node with d successors. In this
process the j-th created internal node is by j. Clearly all labels of all internal
successors of any node v are larger than the label of v.

It is clear that this evolution process (without removing the labels) produces
random d-ary plane increasing trees. We now define the size of the d-ary plane
increasing tree by the number of internal nodes. (We need to emphasize here
that unlike in the binary tree case we measure the size of a tree not in term of
leaves.)

Let G denote the set of d-ary increasing trees, that is, the set of d-ary trees,
with successive labels as described above, and G, set set of d-ary increasing trees
with n interval nodes.

Lemma 7.2.1. The number g, = |G| of d-ary increasing increasing trees of

152 Chapter 7. Advanced Data Structures: Tree Compression

(a) (b)

Figure 7.4. Example of the generation process that produces 3-ary plane
tree of size 4 and its unlabeled counterpart.

size m s given by

n—1 —_d_
m= 1@ D5+ =1~ 1)"%- (v29)

Furthermore, conditioned on the size n, the evolution process (described above)
generates every element of G, with equal probability 1/gy,.

Proof. Clearly we have g1 = 1. Furthermore, if a d-ary tree with k internal

7.2. d-ary Plane Trees 153

nodes has (d — 1)k + 1 external nodes. Thus, there are precisely (d — 1)k + 1
ways to extend a d-ary tree of size k to a d-ary tree of size k (by replacing one
of the external nodes by a new internal one with label k£ 4+ 1 and by attaching d
leaves to it). Thus,

grr1 = ((d =1k +1)gx
which proved (.29) immediately. Furthermore this procedure also shows that
every tree in G, is produces equally likely. |

Next let F denote the set of all unlabeled d-ary plane trees and, for each
integer n > 0, let F,, be the subset of F consisting of all trees that contain
exactly n internal nodes. We can consider F from two different points of view.
First, it can be seen as equivalence classes of trees from G, where two trees of
G are considered as equivalent if they represent the same d-ary tree plane tree
after removing the labels. Second, we can also consider the above probabilistic
construction of d-ary plane trees, where we do not put labels (but just choose
uniformly any external node and extend the tree). Clearly both points of view
lead to the same probabilistic model. Let f be a given d-ary plane tree of size
n. In the first case we just set P(F,, = f) = |[f]|/gn, where [f] denotes the
equivalence class of d-ary increasing trees that represent f after deleting the
labels. In the second case we just consider the evolution process and condition
on the size n.

Example 7.2.2. There are

3 1
<2,07 1) (0,1,0) =3

ways to obtain the resulting tree from Figure [[4l Thus, the probability of this
tree is 3/g4 = 3/105 = 1/21.

Remark 7.2.3. We note that the number of elements in an equivalence class
[f] can be also determined by the so-called hook length formula. The number of

increasing trees induced by an unlabeled plane rooted tree t is
It]!
—_—, (7.30)
Hs subtree of ¢ |S|

where | - | corresponds to the tree size measure.
From this we conclude that the probability of an unlabeled plane rooted tree
t obtained by removing labels from a plane increasing rooted tree is

P(Fy = /) = £1!

glt| Hs subtree of ¢ |S| .

In Exercise [[L.T0] we ask to establish the hook formula.

(7.31)

154 Chapter 7. Advanced Data Structures: Tree Compression

Next we establish a recurrence relation for the probability distribution P(F,, =
f). Suppose that f € F,, has the d subtrees f1,... f4 of sizes k1, ..., kq. (Clearly
we have k1 + -+ + kg = n — 1.) Furthermore

= (" Il 112

since there are precisely (klnilkd) ways to distributed the labels 2,...,n to the
subtrees f1,..., f4. Consequently we have
P(F, = f)= @ (7.32)
i(n—1 >ﬁ|[f']| (n—1 >uﬁP(Fk =)
dn k‘l,...,k’d j=1 J k‘l,...,k’d dn J=1 7 J
(7.33)

Thus, we can consider the term

< n—1)gk1~~~gkd
k’l,...,k'd dn

where n — 1 = k1 4+ --- k4 as the splitting probability, that is, the probability
to split at the root of n internal nodes into subtrees of sizes ki, ..., kq, respec-
tively. Note that in the binary case d = 2 the splitting probability is uniform:
P(k‘l,k’g) = 1/n.

For later use it will be convenient to define a random vector V;d) as

71 gk...gk
P(VD = (ky koo k) = (. " ki """ Gka 34
(V0 -) - (VB

where k1 4+ --- + kg = n — 1. The components of V%d) will be denoted by V,, ;,
1<j<d
VD = (Vi1,... Vi)

where Vi, 1 +---+ Vg =n—1.

7.2.2. Entropy for d-ary Plane Trees

Next we derive a formula for the entropy H(F,). If n = 0 we have an empty
tree, and H (Fp) = 0. If n = 1, we have one fixed tree and H (F;) = 0, too. By

7.2. d-ary Plane Trees 155

the definition of the trees, for n > 1 there is a bijection between a tree F,, and
a tuple (V;d), Fy, ,,...,Fy, ;). Therefore, for n > 1, we have

H(F) = H (VO P,y Py,) = B (VEO) + H (Fy o By, V)

—H (Vﬁ;”) + Y H(Fy.....F,) P(V{ = k@),
kot kg =n—1

Since the subtrees F,, ..., F), are conditionally independent given their sizes,
we have
n—1
H (F) = H (Vi) +dY" po H (Fy) (7.35)
k=0
where
Pk = 3 P (V;@) = (k ko, ..., kd)) . (7.36)

ko+---+kg=n—k—1

The next lemma gives an explicit formula for p,, j.

Lemma 7.2.4. For k=0,...,n—1 we have

o (k)
(d=1n gip <n+ ﬁ) '

Proof. Using (34)), we can rewrite (Z.30) as

~ (n—=1)lg <n 1k)
Pk = it = 1= k)lgn kﬁﬁ;wm ko, ... kg)82 Ik

Pnk =

Let us define the exponential generating function G(z) =", - gn% with g =
1. In Exercise [[.11] we ask to establish the explicit representation

1

G(z)=(1—(d—1)z) 7. (7.37)

Observe that
> (s
ks Gk
ko+...+kg=n—1—k k27 ey kd
n—1—k

is the (n—1—k)-th coefficient of the function G(2)?~! (i.e., [m} G(2)4).

156 Chapter 7. Advanced Data Structures: Tree Compression

Hence

LES LR g1k Jeer

Prke = Eln—1—-K)lg, [(n—1—k)
o (Tl - 1)!gk n—1—k 1
= kg, [+]L—u—1y
_ (’I’L - 1)!gk n—1—k
TR, T

For d = 2, we have g, = n! and the result is immediate. For d > 2, from
(C29) we find (with a = 24)

(a—1)(-1)™nl'(2 —a —n)

Pk = T D RRIT2 —a— k)
We know that I'(z — n) = %, hence
7 (n—14a)
-1)"r re2—a—n)=————= .
(1T)l (2 —a—n) = T (7.38)
and then
_(a=1)nl'(k+a)(n+a—1)
Pk = ET(n+a)(k+a—1)
Since I'(z 4+ 1) = 2T'(z) we get the desired result. |

In summary, by setting o = d%'ll the entropy z, = H(F,) satisfies the
recurrence

a n! T(k+a—1)
_ o > 9
on an+nf(n+a71)kz_0 k! Tk "=

with initial conditions xg = x1 = 0. Thus, by applying Lemma [[.T.4] we obtain
the explicit representation

i
L

Ty = ap +a(n+a—1) ak +n+a71 1+ —2
e < (k+a—1)(k+a) a+1 Ta—o1)

el
Il

This leads us to the following result.

7.2. d-ary Plane Trees 157

Theorem 7.2.5. The entropy of unlabeled d-ary plane tree of size n, generated
according to the d-ary plane increasing tree model, is given by

=) 5t () S oy
where
H (V%d)) — Z P(Vgld) — k(d)) log (P(V%d) _ k(d)))

ki+-kg=n—1

is the entropy of the random vector V%d) that is defined by the probability distri-

bution (7-34).

Example 7.2.6. Taking a closer look at H (ng”) we find

H (Vﬁ{”) = log (n%) — demk log (%) .

In particular, H (V@) =log(n — 1), and for d = 3 and n > 0 we have

n—1 (2k\o2n 2k
2n 3 (%)2)
(3) _ = k K/
From Theorem we can also deduce the asymptotic behavior of H(F},).

However, we have to know something about the order of magnitude of H (V%d)) .

Here we first observe that the range of the random vector V%d) is contained in

the set {0,...,n — 1}%. Since the entropy is upper bounded by the logarithm of
the image cardinality we have

Consequently the series

o0 H(VfO
g(md 1) (k+

is certainly convergent and we can formulate it as the following corollary.

158 Chapter 7. Advanced Data Structures: Tree Compression

Corollary 7.2.7. The entropy rate hq f = lim, oo H (F},) /n of the unlabeled
d-ary plane trees, generated according to the model of d-ary plane increasing tree
s, s given by

d & H (Vy)

s = d—1 (k+ﬁ) (k+%)

For example, for d = 2 and d = 3 we have ho ¢ ~ 1.73638 and h3 5 ~ 2.470

(7.40)

7.2.3. A Compression Algorithm for d-ary Plane Trees

Next we provide a compression algorithm for unlabeled d-ary plane trees. As in
the previous cases we will use a proper arithmetic coding method.

We first define a total order < on the set of such trees with a given size
n. Having fixed this, we must show how to efficiently compute two quantities,
for a given tree f: the probability of all trees f/ < f of size n, as well as the
probability of f itself. We, thus, produce a subinterval I(f) of [0,1), unique
to f, which has length equal to the probability of f and whose left endpoint
is the probability P(F,, < f) of all trees f' < f. We than compute the first
[—log P(F,, = f)] + 1 binary digits of the mid-point of I(f) and obtain a code
for which the expected code length exceeds the entropy H(F;,) at most by 2 bits.

Definition 7.2.8. The relation < on F is defined as follows: let f1, fo € F
with subtrees sizes (s1,...,84), (k1,...,kq) respectively, then f; < fa if and
only if one of the following holds:

° (81,...,5d) < (kl,...,k’d),
e orif (s1,...,84) = (k1,...,kq) and first subtree of f; < first subtree of fa,

e orif (s1,...,84) = (k1,...,kq), first subtree of f; = first subtree of f2 and
second subtree of f; < second subtree of fs,

e or if (s1,...,84) = (k1,...,kq), first d — 1 subtrees of f; = first d — 1
subtrees of fo and dth subtree of f; < d-th subtree of fs.

It is simple to check that this is a total order. Next, we present an algorithm
which computes the subinterval corresponding to an input tree f € F (see
Algorithm [).

This does exactly as intuitively described above: it implements a depth-first
search of the input tree f, and at each step refining the current interval based
on the split of vertices among the root subtrees of the current node.

7.2. d-ary Plane Trees 159

Algorithm 1 Unlabeled d-ary Plane Tree Compression

1: function COMPRESSDTREE(f € F) > f tree to be compressed
[a,b) < EXPLORE(root of f, [0,1))
3: return first [—log(b — a)] + 1 bits of (a + b)/2

4

4: function EXPLORE(v € f, [I,7) C [0,1))

5 visited(v) + true
6 n < size of a subtree of f hanging from node v
7: (s1,-..,84) < sizes of subtrees of v
8 a < |+ (r —1)- CALCULATEINTERVALBEGIN(n, $1, . .., Sq4)
9: p + (r —1)- CALCULATESPLITPROBABILITY (n, 81, - - . , S4)
10: TLew < [a,a+ D)
11: for all u descendant of v do
12: if not visited(u) then
13: Inew <+ EXPLORE(u, Ihew)
14: return [y
15: function CALCULATESPLITPROBABILITY (n, k1, . .., kq)
. n—1 9k "9k
16: return (kl,m,kd) —¢gn
17: function CALCULATEINTERVALBEGIN(n, 1, ..., S4)
18: return
-1
1 (n—1)"! (3
- Js
9n Zl sple 81!]1;[1 !
si—1 n727k72i715+d_’
Z g_k 1=1°! d—1 (d 1)n717k72;;11 s
k.l 1—¢
k=0 d—1

Now, we explain more precisely the procedures CALCULATESPLITPROBABIL-
ITY and CALCULATEINTERVALBEGIN. The former simply calculates the proba-
bility that a d-ary tree of size n has root subtrees of sizes k1, ..., kg (giving the
length of the next subinterval). This is illustrated in Figure

The latter gives the probability that such a d-ary tree has a root subtree size

Chapter 7. Advanced Data Structures: Tree Compression

160
CALCULATEINTERVALBEGIN() CALCULATESPLITPROBABILITY()
a a+p
0 S —
\\ : //’ ///
\ . || /, . ’
IR | y _-4caling and shifting
/
\ : e
\ / v
' vl (a+p)(r=1) -
0t > 11
M

Figure 7.5. Visualization of lines 8 — 10 in the Algorithm [listing.

tuple lexicographically less than (s1, ..., s4). That is, it computes the expression

Z (n—1)gkl'"gkd
kla"'akd dn

(k1,.. .y ka) < (s15...,84)
Ei4 ... dhka=n—1

Observe that a naive implementation of this calculation generates all ©(n?)
integer partitions with d parts of the number n — 1 and calculates the split
probability for each of them. To reduce the time complexity, we rewrite the sum

=L
k’l,...,k'd dn

(k1,...,ka) < (s1,...,54a)
ki+...+kg=n—-1

1< i n—1
— D G5 Gsi . Ik Gjipn G

k=0 ji+1+...+Ja

as follows:

For a given 4, the ith term of the outermost sum gives the contribution of
all tuples of the form (s1,...,8;-1, ki, kit1, ..., ka) with varying k;,... kq. We
can, furthermore, write the multinomial coefficient as a product of two other
multinomial coefficients, one of which can be brought outside the k sum. The

7.3. General Plane Trees 161

kth term of the resulting sum can then be written as follows:
1 n—1-k-3I_} sl)

. g «7’ PR g .

n—1—k-— Zl 151)]7+1;+]d(Jit1s---»Jd s s

= [(1 (@ - 1)z
_ (n —2—k-— Zz 1851+ d >(d 1)n717kfz;’;llsl'

1—1
d—1

We thus finally find

1 (n—1)!
*_Zsl..s. ! Hgs:
gdn 151 i—1 j=1
si—1 i1 d—i
Z 9k <” —2-Fk~- le:1 s+ di) (d— 1)n71*k‘*22;11 s
k! 1=
k=0 d—1

Observe that the resulting expression only requires to perform O (n) calculations,
where each of them is of the same order as the calculation of the split probability.
An application of Algorithm [Ilto a 3-tree is presented in Figure

7.3. General Plane Trees

Finally we deal with (general) plane trees, where we do not put any restrictions
on the node degree. In this context we consider the following generation model of
unlabeled plane trees (which is a also known as the plane increasing tree model).
Suppose that the process starts with the root node carrying a label 1. Then we
add a child node with label 2 to the root. The next step is to attach a node with
label 3. However, there are three possibilities: either to add it to the root (as a
left or right sibling of 2) or to the node with label 2. One proceeds further in the
same way, as shown in Figure [At the end, we remove the labels from the
nodes of the tree. Observe that if a node v already has out-degree outdeg(v) = k
(where the descendants are ordered), then there are k+ 1 possible ways to add a
new node (this time we do not distinguish between external and internal nodes).
Hence, if a plane tree already has j7 — 1 nodes then there are j — 2 edges and

162 Chapter 7. Advanced Data Structures: Tree Compression

The following example describes
algorithm COMPRESSD TREE
in detail for a given 3-ary tree.
From Equation (7.32)), proba-
bility of the glven tree equals
to m = ==. Moreover,
consecutive calls of the EX-
PLORE procedure for the tree
vertices outputs the follow-
ing intervals: v; — [£, &),
o L) o (65
[Z,1). In the last step
[—log (£ — =)] + 1 = 7 bits
1 13

541
35 ' 5 70
11000101011111... is
returned, i.e. 0010111.

Figure 7.6. Illustration to Algorithm [II

precisely

> (outdeg(v) +1) = (j —2)+ (j —1)=2j -3
possibilities to attach the jth node (see Figure[[7)). For example, the probability
of choosing a specific node of out-degree k equals (k+1)/(2j —3). Here we define
the size of the tree as the number of nodes.

7.3.1. Entropy of General Trees

In this section we consider general plane trees as described above (and illustrated
in Figure [[7). We only present the entropy analysis since the compression
algorithm follows the same steps as for d-ary trees and is left as an exercise. In
what follows we will denote by R the set of rooted labeled plane trees, by T,
the set of rooted plane trees, and by R,, and 7,, the corresponding subsets with
n nodes.

Let r, = |Ry|, the number of labeled plane increasing trees with n nodes.

7.3. General Plane Trees 163

1 1
| N
2 4 2
\ \
3 3
(e) ()
1
T~ /’\
4 2 5
| |
3

Figure 7.7. Example of the generation process that produces a labeled
general plane tree of size 5 and its unlabeled counterpart.

Clearly there are

Ty = j]_:[2(2j —3)=(2n -3 = NQ"T'_l <2:_12) (7.41)

different labeled plane oriented increasing trees of size n. Alternatively we could

use the exponential generating function R(z) =), -, rn2"/n! that satisfies the
differential equation B

(7.42)

164 Chapter 7. Advanced Data Structures: Tree Compression

which translates into the recurrence

n—1
'n = ()rkl---rkd.
d;k Z_ ko kg
>1 ki terka=n—1
Clearly the differential equation (742 has the solution

R(z)=1—-+v1-2z

that leads to the explicit formula

1
= (—1)"tpl2n(2) = nt (-2 .
n n2n—l\n-1

As in the case of the d-ary plane increasing trees, let [t] denote the subset of
trees in R,, that have the same structure as a given unlabeled tree t € T, (i.e.,
[t] is the set of labeled representatives of). Observe that

4
P, =) = -
rn
Suppose that the tree ¢ of size n has d subtrees t1, ..., of sizes k1, ..., kq.
Then we have
n—1 Thy " Thy
P(In =1) = S BT P(Th e,). 7.44
(!) (kla ~-7kd) n]1;[1 (k])—tkj) ()

Observe that

n—1 Thy Ty
k’l,...,k'd Tn

is the probability that the root of a plane increasing tree of size n has degree
equal to d and the root’s subtrees are of sizes k1, ..., kq.

Let W,, the random vector, where its jth component W, ; denotes the size of
the j-th subtree of a tree of size n. Clearly, W, is concentrated on those vectors
(k1, ko, ...), where there exists d > 0 such that k1, ..., kg > 0, k1+- - -+kqg = n—1,
and kg1 = kg2 = --- = 0. In particular we have

n—1 Thy " Thy
P(W,, = (k1,ko,...)) = _. 7.45
(Wo = (ko) = ("7) (7.45)

The initial conditions for the entropy are as follows. If n = 1, we have just
a root node, so H (T}1) = 0. Similarly, if n = 2, we have one fixed tree, so
H (T>) = 0. We now give the recurrence for n > 2.

7.3. General Plane Trees 165

Fork=1,...,n—1, let qr(fl)c be defined as the probability that the root of a
plane increasing tree has degree d and that one specified root subtree is of size
k. Therefore, largely by the same reasoning as was used to derive the recurrence
for d-ary plane trees,

n—1 n—d
H(T,)=H(W,)+ > dY H(Ti)d". (7.46)
d=1 k=1

We need an expression for the probability qffl,)€ which we present in the next

lemma.

Lemma 7.3.1. Fork=1,...,n—1 we have

. qs}hl: L anquL:Oifk#nfl,

2n—3
o ford>1:
(d) _ od d—1 (Qkk:f) (2("5357’“2*‘1)
q =
S I

Proof. If d =1 then the root has only 1 subtree with all other nodes, so its size
has to be equal to n — 1 and

(1) Tn—1 1

Qnn-1 = T = m;

moreover, if k #n —1 : qfll;C = 0. In the case of d > 1, using ([43]), we can
rewrite g,n, k as follows

(d) (n—1)lrg n—1-—k
Dk = Tlin—1 — V. Z Thy ** " Tka-
Elln —1—K)lr, R e ko,... kg
We use again the exponential generating function R(z) = Zn21 rn% and ob-

serve that
Z (n —1- k)’l" r
kot Thy
kot...+kg=n—1—k k27 ey kd

is the (n — 1 — k)-th coefficient of the exponential generating function R(z)41,

that is,
Zn—l—k a1
{(nlk)!]R(z) '

166 Chapter 7. Advanced Data Structures: Tree Compression

Therefore,
_(n=Drg gy d—1
e E | R(z)* .

We now use the fact that R(z) = 1—+/1 — 2z, is also the solution of the equation

Hence, by Lagrange’s inversion formula, we obtain an explicit formula for

[Zn—l—k]R(z)d—l _ 2d—n+k d—1 2(” -1- k) —d)
n—1—k n—2—k
This proves the desired result. |
The recurrence found in (740) is another one that we need to analyze. Its
general solution is presented next.
Lemma 7.3.2 (Generalized entropy recurrence for unrestricted trees). For given

y1 = b1 and ys = b, the recurrence

n—1 n—d

Yn = by, +Zdzan Ve, n>2 (7.47)
d=1 k=1

has the following solution for n > 2:

n—1
2(2n —1
yo= 222Dy 1y 4] (n——)

3]:2 a % Jj+)
Proof. Using Lemma [L.37] for n > 2, we find
Yoot S T TR Gy | G)
yn:bn+m+;d(d—1)2 ;kz(n—l—k))

2n 2)

Multiplying both sides by ("’1
we find

n—1
.2 29n—1 1 d 2n—2k—2—d
n = by, — d(d —1)2 .
Y O n(n —1) Jrnde Z 717 (n—k—2

Yn (27?:12) l; - b, (27::12)

n)’ on n

and substituting g, =

7.3. General Plane Trees 167
Changing the order of summation gives us

nz_:l d(d —1)2¢ S ﬁ <2” - i’fk__QQ_ d> _
- 3 s(s—1)2° (Zn ;Ejj_,QQ_ S).

Since for N > 0:

we obtain

Dividing both sides by 22 and substituting 7, = 2%” , En = ng; we find
_ 1 n—1
]:

Solving this recurrence relation by calculating ny,, — (n — 1)y,—1 leads to

Pe+d) 5 Po+dEt 5 g
~n —p ~\"T3) + bn + 2 . J .
R VI ! 22223+1F(j+%)
. - (271.72)
Substituting y,, into y, with y, = y, "5z, we find the desired result. [|

This leads us to the following representation of the entropy H (T,).

Theorem 7.3.3. The entropy of an unlabeled general plane tree, generated ac-
cording to the model of plane increasing tree, is given by

nw)-nv 3 (-3 ey 0
where
H(W,)=— > P(W, = (ki ky,..)log P(W, = (k1 ka,...)

E1,ka,...

and the distribution of W,, is given in (7.43).

168 Chapter 7. Advanced Data Structures: Tree Compression

We conclude this section with the following result.

Corollary 7.3.4. The entropy rate hg = lim,_,oc H (T},) /n of unlabeled gen-
eral plane trees, generated according to the model of plane increasing trees, is
given by

_Ise HW)
hg_QZ(J__) G+ (7.49)

Proof. From Theorem [[.3.3] we just need to prove that
H(W,) = o(n).

Let us recall that the random vector W,, describes the split at the root of a tree.
Let D,, denote then number of subtrees of the root that has distribution

n— d (2(n—=1)—d-1
PD, =) = P s ey - 22 s)

If we condition on the event D,, =d then the image set of the random variable
(W,.|D,, = d) is upper bounded by n¢. Consequently we have

H(W,|D,, = d) <log(n?) = dlogn

which implies that

n—1
H(Wn) = Z P(Dn = d)H(Wn|Dn = d)
d=1
n—1
<logn Y dP(D, =d).
d=1
Observe that E[D,,] = >~ lldP(n = d) is the expected value of the general
plane increasing tree root degree. In Exercise [[.I4] we establish that E[D,] =
van + O (1), which gives us the desired result. |

Remark 7.3.5. Taking a closer look at H (W,,) we find that

H (W,|D, = d) = log (n—) d Z ¢\%) log () .

This allows us to check numerically that the entropy rate of the unlabeled general
plane trees, generated according to the model of plane increasing trees is hz ~
1.68.

7.4. Exercises 169

7.4.

7.1

7.2

7.3

7.4

7.5

7.6
7.7

7.8

Exercises

The arithmetic coding used for compressing trees runs as follows. The
interval [0, 1) is partitioned into subintervals [a,b) such that every tree
t of size n corresponds to one of these intervals and that P(t) = b — a.
Then we associate to each interval [a, b) a binary string, namely the first
[—log(b — a)] + 1 binary bits of the real number (a + b)/2. Show that
this algorithm produces different code-words for different plane binary
trees of size n.

Show that the worst case and the average case running time of the
non-plane tree compression algorithms proposed in Section satisfy
[T28) (see Magner et al. (2018)).

Analyze the m-ary search tree U, built over n keys. In particular, prove
that the entropy of m-ary search tree is given by

H(U,) = ¢mn+ o(n)

where

1Og (mlil)
m = 20m ;
om =20 kzzo(kﬂ)(mz)

Om = ﬁ is called occupancy constant; H,, is the mth Harmonic
number; see Fill and Kapur (2005).

Using the functional equation (TI4) derive asymptotics of the Otter
trees for the uniform model (see Bona and Flajolet (2009)).

Let by, = [2"]C(z) where C(z) satisfies the Riccati differential equation

([TI]). Prove that

b, = p" <6n - 2—52 + O(n5)) (7.50)

where p = 0.3183843834378459 ... (see Chern et al. (2012)).
Derive (T.24).

First derive (Z2H). Then design a compression algorithm of non-plane
trees using the idea described around equation ([Z25]).

The entropy h(s) is related to the Rényi entropy hq(t) of order 1 of
non-plane trees. We define hy(¢) as follows, if its exists:

—log E[p(T, —1lo tn)?
hi(t) = lim M: lim thneTnp() .

n—00 n n—00 n

170 Advanced Data Structures: Tree Compression

Note that for large n

bn= Y plta)? ~ exp(—nha(t)).

tW, 67—7’1

By appealing to ([C50) prove that
22
by, = p" <6n —¥ + O(n_5))

where p = 0.3183843834378459 Thus hy(t) = — log(p).

7.9 Prove ([C29) that gives a formula for the number of d-ary plane increasing
trees.

7.10 Prove the hook formula (Z30).

7.11 Define the exponential generating function G(z) = >, -, gn% with
go = 1 as in Section Prove that -

1

Glz) = (1 (d—1)z) 71

establishing (7.37]).
7.12 Derive (TA4I) that counts the number of general trees.

7.13 Design an optimal algorithm for compressing general trees following the
steps presented for d-ary trees.

7.14 Consider general plane trees with n internal nodes. Show that the av-
erage degree D,, is

E[D,] = vmn + O(1)
(see Bergeron, Flajolet, and Salvy (1992)).

Bibliographical notes

Trees are the most popular data structures and have been analyzed from al-
gorithmic, probabilistic, and analytic point of view in many books. There are
different types of trees: plane, non-plane, increasing, digital trees, and so forth.
Here, we focus on analytic approaches to d-ary and general trees which are in-
depth discussed in Drmota (2009) and Bergeron et al. (1992) as well as Flajolet
and Sedgewick (2008). See also Mahmoud (1992), Jacquet and Szpankowski
(2015) and Szpankowski (2001).

There are a few scattered results for non-plane trees in a uniform model, e.g.,
see Bona and Flajolet (2009), Drmota (2009), Flajolet and Sedgewick (2008).
The non-plane trees in the binary search tree-like model were studied by analytic

Bibliographical notes 171

tools in Flajolet, Gourdon, and Martinez (1997) in a different context, and by a
different method in Magner, Turowski, and Szpankowski (2016).

Symmetry in binary trees in the uniform model was first precisely analyzed
Bona and Flajolet (2009). This was extended to a non-uniform model in Ci-
chon, Magner, Turowski, and Szpankowski (2017). We should also point out
that asymptotic analysis involved here is quite sophisticated and presented in
Chern et al. (2012). However, to the best of our knowledge there is no study of
symmetry for d-ary and general trees.

A more thorough studies on the compression of trees from information-
theoretic point of view can be found in Golebiewski, Magner, and Szpankowski
(2018), Kieffer, Yang, and Szpankowski (2009), Zhang, Yang, and Kieffer (2014),
Magner et al. (2018), J. Zhang (2014). For binary plane-oriented trees rigorous
information-theoretic results were obtained in Magner et al. (2018). A univer-
sal grammar-based lossless coding scheme for trees was proposed in J. Zhang
(2014).

This chapter is based on Magner et al. (2018), Cichon et al. (2017), and
Golebiewski et al. (2018). The hook formula can be found in Knuth (1998b)

(page 47).

CHAPTER 8

Graph and Structure
Compression

Another class of advanced data structures that we study in this book are graphs.
Unlike trees, graphs are non-sequential data structure with no clear “beginning”
and “end”. However, like trees graphs can come in two forms: graphs can be
labeled and unlabeled. We often shall call the former simply as graphs while the
latter as unlabeled graphs or better structures.

Our basic question in this chapter is how many bits one needs to describe
succinctly labeled graphs and structures. Formally, the labeled graph compres-
sion problem is as follows: fix a graph G,, or a distribution on (multi)graphs
on n vertices. We would like to exhibit an efficiently computable source code
(Cn, Dy,) for G, where C, is a function mapping graphs in the support of G,
to bit strings, in such a way as to minimize the expected length of the output
bit string when the input is a graph distributed according to G, and D, in-
verts C,, and is efficiently computable. A related problem, and one focus of this
chapter, seeks to compress graph structures: here, the encoding function C, is
presented with a multigraph G isomorphic to a sample from G,,, and D,,(C,(G))
is only required to be a labeled multigraph isomorphic to G, that is, the labels
are “discarded”, leaving only the structural information. We again insist on a
source code with the minimum possible expected code length which is given by
the Shannon entropy of the distribution on unlabeled graphs induced by G,,, an
often non-trivial quantity to estimate; we call this the structural entropy of the
model.

The structural compression problem is motivated by scenarios in which one
only cares to transmit or store information about the isomorphism type of a
graph — e.g., its degree sequence, number of occurrences of certain subgraphs,
etc. In such scenarios, one does not care about labeled graph information, such
as the fact that, say, vertex 2 connects to vertex 7. Taking advantage of this

174 Chapter 8. Graph and Structure Compression

fact allows for a more compact description of the relevant information than
would result if we naively encoded the labeled graph. More philosophically,
structural compression allows to quantify and encode the information contained
in the shape of graph-structured data. Structural compression may also answer
questions like: how much information about the labels of a (random) graph is
contained in its structure?

As in the case of trees, graph and/or structural compression depends on the
model of generations or on the graph distribution. However, because graphs
are non-sequential models governing the graph generation is very important.
In this chapter we focus on two models: Erdds-Rényi graphs and preferential
attachment graphs. We also briefly discuss other graphs such as duplication
graph generations.

8.1. Graph Generation Models

We first introduce two graph models. The first one is the static Erdos-Rényi
model G(n,p) while the second is a dynamic preferential attachment model
PA(n,m). We also briefly discuss the duplication-divergence model.

We start with the Erdds-Rényi model G(n,p) with n nodes and parameter
p. In such a model, given n nodes, one selects any pair of nodes and with
probability p puts an edge. The probability P(|E(G(n,p))| = k) of seeing a
graph on k edges is

P(IE(G(n,p))| = k) = p"(1 — p)(5) =&

where E(G(n,p)) is a set of edges. The parameter p may depend on n, however,
in most of the analysis in this chapter we assume that p is fixed.

Next we describe the preferential attachment model PA(n, m). We say that
a multigraph G on vertex set [n] = {1,2,...,n} is m-left regular if the only
loop of G is at the vertex 1, and each vertex v, 2 < v < n, has precisely m
neighbors in the set [v — 1]. The preferential attachment model PA(n,m) is a
dynamic model of network growth which gives a probability measure on the
set of all m-left regular graphs on n vertices, proposed in Albert and Barabasi
(2002). More precisely, for a fixed integer parameter m > 1 we define the graph
PA(m;n) with vertex set {1,2,...,n} using recursion on n in the following way:
the graph G7 ~ PA(1,m) is a single node with label 1 and m self-edges (these will
be the only self-edges in the graph, and we will only count each such edge once
in the degree of vertex 1). Inductively, we obtain a graph G, 11 € PA(n+1,m)
from G,, by adding a vertex n 4+ 1 and by connecting it to m randomly (not
necessarily different) chosen vertices vy, ..., vy, of G, such that for all vertices

8.2. Graphs versus Structures 175

w<nin G,

deg,, (w)
P(v; =w|Gyp) = Sy
where we denote by deg,, (w) the degree of vertex w in G, (note that G,, has
mn edges so that the sum of all degrees equals 2mn).

There are many modifications and generalizations of the PA(n, m) model,
but we focus here on the basic model with fixed m.

There are also graph models that are structurally different than preferential
models. One such a model is called duplication—divergence model. It works as
follows: Given an undirected, simple, seed graph Gy, on ng nodes and a target
number of nodes n, graph Gj41 with k + 1 nodes evolves from graph G}, using
the following rules: a new vertex v is added to graph Gg, and then: (i) in the
duplication phase a node u from Gy, is selected uniformly at random and node v
makes connections to all neighbors of u; (ii) in the divergence phase each of the
newly made connections from v to neighbors of u are deleted with probability
1 — p. Furthermore, for all nodes in G to which v is not connected, we create
an extra edge from it to v independently with probability r/k for some r > 0.

8.2. Graphs versus Structures

For any graph G, we denote by S(G) its unlabeled version (i.e., the equivalence
class consisting of all labeled graphs isomorphic to G).

Our first concern will be to derive a fundamental lower bound on the expected
code length for compression of unlabeled graphs. As usual, this is given by the
Shannon entropy of the distribution on unlabeled graphs induced by a graph
model. Thus, we need the entropy H(G) of labeled graphs G' and the structural
entropy H(S(G)) of unlabeled graphs or structures S(G).

By the chain rule for the conditional entropy, we have

H(G) = H(S(Q)) + H(G|S(G)). (8.1)

The second term, H(G|S(G)), measures our uncertainty about the labeled graph
if we are given its structure. In some cases, for certain graph models (such as
the Erdés-Rényi model and the preferential attachment model PA(n,m)) the
conditional entropy H(G|S(G)) can be computed in terms of the size of the
automorphism group |Aut(G)| and another quantity I'(G) which is a subset of
permutations that have positive probability of generation. Let us introduce these
two quantities. We start with a graph automorphism Aut(G). An automorphism
of a graph G is an adjacency preserving permutation of the vertices of G. The
collection Aut(G) of all automorphisms of G is called the automorphism group

176 Chapter 8. Graph and Structure Compression

of G. An automorphism is a measure of symmetry in a graph. Indeed, if two
nodes have exactly the same view on the graph topology, then switching them
does not change the adjacency matrix.

We illustrate it in the next example.

Example 8.2.1. In Figure Bl(a), the graph G on four vertices {vy, va, v3,v4}
has exactly four automorphisms, that is, in the usual cyclic permutation rep-
resentation: (v1)(v2)(vs)(va), (v1)(va)(vavs), (vivs)(v2)(vs), and (viv4)(v2v3).
For example, (v1)(v4)(vovs) stands for a permutation 7 such that 7(vi) = vy,
m(v4) = va, m(v2) = v3, and 7(vs) = vg. Thus, G has 4!/4 = 6 different labellings
as shown in Figure BIi(b).

V1 V2 1 3 1 2 1 2 2 1 2 1 3 1

U3 V4 4 2 4 3 3 4 4 3 3 4 2 4

Figure 8.1. The six different labeling of a graph.

To count the number of distinct relabeling of a graph we need one more
parameter, namely, the set of feasible permutations T'(G). As usual S,, denotes
the set of all permutation on {1,2,...,n}.

Definition 8.2.2. Let G be a graph on n vertices. The set of feasible permuta-
tions I'(G) is a collection of permutations o € S,, such that the graph o(G) has
positive probability of generation (in the underlying probability model). Clearly,
I'(G) C S,.

Obviously, the cardinality of I'(G) is upper bounded by n!, that is |[I'(G)| <
n! and the upper bound is achievable. For example, for Erdés-Rényi graphs
IT'(G)| = n!. But is is not true for preferential attachment graphs PA(n,m) as
illustrated in the example below.

Example 8.2.3. Consider a preferential attachment model PA(4,3) with n =
4 nodes and m = 3 as shown in Figure In this case the last node, node
4 must add three new edges as shown on the left of the figure. If we permute
nodes 2 and 4, then as shown on the right side of the figure the last node 4
would have degree five, which is not allowed by the PA(4,3) model, hence the
probability of generating such graph is zero.

8.2. Graphs versus Structures 177

Figure 8.2. Preferential attachment graph PA(4,3) before and after “il-
legal” permutation

Finally, we are able to define a set of admissible graphs.

Definition 8.2.4. The set of admissible graphs Adm(G) for G is defined as
Adm(G) :={o(G): 0 €eT(G)} (8.2)
where I'(G) is the set of feasible permutations.

We observe that by the orbit-stabilizer property of groups we have the fol-
lowing relationship
DG
Adm(G)| = ——==.
|Adm(G)| AUt (G)]
We are now able to prove the main result of this section connecting the graph
entropy H(G) and H(S(G)), but only for graph models in which every labeled
version of the same structure (unlabeled graph) has the same probability or
more precisely, in such models graphs are invariant under isomorphism.

(8.3)

Lemma 8.2.5. Consider a proper random graph model and assume that all
positive probability labeled graphs G of the same structure S(G) have the same
probability. Then

H(G) = H(S) + E[log |Adm(G)|] (8.4)
— H(S) + E[log |T(G)[] — E[log |Aut(G)]]. (8.5)

178 Chapter 8. Graph and Structure Compression

Proof. We recall the relation (8]) saying that
H(G)=H(G,S)=H(S)+ H(G|S).

Under our uniformity assumption (of all label graphs of the same structure) we
have) Aut(G)
u
P(G|S) = = ,
Adm(G)| [T(G)]
hence H(G|S) = E[log|Adm(G)|]. The proof follows from this and B3] |

It is easy to see that Erd6s-Rényi graphs are invariant under isomorphism.
It is also true for the PA(m,n) model, however, it is harder to prove. We ask the
reader to establish it in Exercise We should also observe that this property
does not hold for the duplication-divergence model.

8.3. Erdo6s-Rényi Graphs

We now focus on the structural compression of Erdés-Rényi graphs. Let us recall
that in the Erdés-Rényi random graph model G(n,p), graphs are generated
randomly on n vertices with edges chosen independently with probability 0 <
p < 1. If a graph G in G(n,p) has |E(G(n,p))| = k edges, then

P(IE(G(n,p))| = k) = p"q(2)F,

where ¢ =1 — p.

It is clear that an Erd&s-Rényi graph is uniquely represented by a memo-
ryless 0-1-sequences of length (%) that has entropy (3)h(p). Thus, a (labeled)
Erdés-Rényi graph can be encoded by 0-1-sequences of expected code length
(5)h(p) + O(1). For example we could use a standard arithmetic encoding that
has expected code length < (Z)h(p) + 2. To recall the arithmetic encoder, that
encodes a string «, computes an interval I C [0, 1) of length P(z) and takes then
the first |—log P(x)] + 2 binary digits of the mid-point of I. The intervals [
form a partition of [0,1). For example, the first letter of = partitions [0, 1) into
two parts and so on. In the case of a memoryless source with parameter p the
length of these two intervals are just p and 1 — p.

Regarding the unlabeled version, or structure S of GG, we first observe that
IT(G)| = n! so that every permutation is feasible. Hence the cardinality M (S) :=
|Adm(G)| of the admissible set is therefore M (S) = n!/|Aut(G)| where Aut(G)
is the automorphism group of G. This further implies that the probability of a
given structure S with k£ edges becomes

P(IE(S)| = k) = M(8) - p*(1 - p)B) ",
The next aim is to estimate M (5).

8.3. Erdos-Rényi Graphs 179

8.3.1. Structural Entropy

To compute the structural entropy H(S(G)) by Lemma one needs, to
estimate the cardinality of Aut(G) for randomly selected G from G(n,p), which
we do next.

A graph is said to be asymmetric if its automorphism group does not contain
any permutation other than the identity, that is, |Aut(G)| = 1; otherwise it is
called symmetric.

Lemma 8.3.1 (Kim, Sudakov, and Vu, 2002). For all p satisfying

logn logn

<p and 1—p> mat

a random graph G € G(n,p) is symmetric with probability O (n™") for any
positive constant w, that is, G € G(n,p) is asymmetric with high probability.

Proof. 'We follow here Kim, Sudakov, and Vu (2002a). Let G = (V, E) be a
graph and let 7 : V' — V be a permutation of the vertices of G. For a vertex
v € V we define a defect of v with respect to 7 to be

Dr(v) = [N(m(v)) A w(N(v))],

where N (v) is the set of neighbors of v and A denotes the symmetric difference
of two sets, that is, AAB = (A\ B)U (B \ A) for two sets A and B. Similarly,
we define a defect of G with respect to m to be

D, (G) = max Dy (v).

Finally, we define a defect of a graph G to be
D(G)= min D.(G).

m#identity
It is easy to see that a graph G is symmetric if and only if its graph defect equals
zero, that is, Jridentity Vo Dr (v) = 0. Thus we only need to show that D(G) > 0
for G € G(n,p) with high probability. But we shall next prove that D(G) is at
least (2 — o(1))np(1 — p) with high probability.
Set e = £(n, p) such that ¢ = o(1) and 2np(1 — p) > logn. This is possible

for all p’s satisfying the conditions of the lemma (e.g., ¢ = © ({‘/ n;((’ffp)) .) Fix
an arbitrary 2 < k < n, and let 7 be a permutation of vertices of G which fixes
all but k vertices. Let U be the set of vertices {u|m(u) # u} and

X =Y Di(u).

uelU

180 Chapter 8. Graph and Structure Compression

By definition, D, (u) is a binomially distributed random variable with expecta-
tion either 2(n—2)p(1—p) or 2(n—1)p(1—p), depending on whether (7 (u)) = u
or not. Therefore,

ELX] = 3" BIDx(w)] = (2 - o(1))knp(1 - p).

We prove next that X is strongly concentrated around its mean, which im-
plies that for some vertex v € U, D (u) is at least E[X]/k with high probability.
Then we conclude that D, (G) is at least E[X]/k with high probability by the
definition of D,(G). Finally, we shall prove that, for every possible permutation
7, the minimum of D, (G) is still at least E[X]/k with high probability, which
implies that D(G) is at least E[X]/k with high probability by the definition of
D(G).

We start with the observation that X depends only on the edges of the
graph adjacent to the vertices in U. Moreover, adding or deleting any such
edge, say (u,v), can change only the values of at most four terms D (u), D (v),
Dy (77 Y(u)), and D, (7~ 1(v)) in the sum, each by at most 1. Here, X can be
seen as a random variable on a probability space generated by a finite set of
mutually independent 0/1 choices, indexed by i. Let p; be the probability that
choice i is 1, and let ¢ be a constant such that changing any choice i (keeping all
other choices the same) can change X by at most c. Set 02 =2, p;(1 — p;).
In Exercise we ask the reader to show that for all positive ¢t < 20/c,

P(IX — E[X]| > to) < 2¢7/%. (8.6)

In this case, c = 4 and 0% = 16((}) — (”gk))p(l —p) = O(knp(1—p)). Therefore,
for some positive constant «,

P(|X —E[X]| > eknp(1 —p)) < e—ac’knp(1-p)

Thus, with probability at least 1 — e*as%”p(l’p), there is a vertex in U with
defect at least

(E[X] —eknp(1 —p)) = (2 — o(1))np(1 — p).

Bl

Therefore,
P(Dx(G) < (2 —e)np(1 —p)) < eokmri=p) = py

Now we see that the number of permutations which fix n — k vertices is at most
(Z)k' Therefore, the probability that there exists a permutation such that the

8.3. Erdos-Rényi Graphs 181

defect of G with respect to it is less than (2 — e)np(1 — p) is at most

n n
n 2
kP, < nkefae knp(1—p)

=2

(e—aaznp(l—p)-i-ln n) k

I
S M

2
efae np(1— p)+lnn>

—~Inn+In n)

) =0@™)

for any positive constant w. We just have to choose v > 1 and set w = 2y —
2. Therefore, the probability that G is symmetric is at most O (n~") for any
positive constant w. [|

I
,92

e

Using Lemmas R.2.5 and R3] we next present the structural entropy of
G(n,p) and establish the asymptotic equipartition property, that is, the typical
probability of a structure S.

Theorem 8.3.2. For large n and all p satisfying IOTgL” <pandl—
the following holds:
(i) The structural entropy H(S) of the structure S generated by G(n,p) is

logn

H(S) = <Z>h(p) —logn! + O (o > , for some a >0,

(ii) For everye > 0,
log n!
(5)

where h(p) = —plogp — (1 — p)log (1 — p) is the entropy rate of a binary mem-
oryless source.

P (‘—% log P(S) — h(p) +

< E) >1— 2¢, (8.7)

Proof. Let us first compute the entropy H(G) of G(n,p). In G(n,p), m = (Z)
distinct edges are independently selected with probability p, and thus there are
2™ different labeled graphs. That is, each graph instance can be considered as
a binary sequence X of length m. Thus,

H(G) = —E[log P(X™)] = —mE[log P(X)] = (Z)h(p).

182 Chapter 8. Graph and Structure Compression

By Lemma [B2.5]
n

H(S) = <2> h(p) — logn! + A

where
A= > P(S)log|Aut(S)|
SeS(n,p)
and S(n,p) denotes the structures that are generated by G(n,p).

Now we show that A = o(1) to prove part (i). By applying the upper bound
[Aut(S)| < n! <n™ and Lemma R3] with some w > 1 we obtain

A= Z P(S)log |Aut(9)]

S€S(n,p) is symmetric

+ > P(S)log |Aut(S)|

Se S(n,p) is asymmetric

= Z P(S)log |Aut(9)]

SeS(n,p) is symmetric

Z P(S) -nlogn

S€S(n,p) is symmetric

1
-0 (i)
nw

= o(1).

IN

To prove part (ii), we define the typical set T[* as the set of structures S on n
vertices having the following two properties: (a) S is asymmetric; (b) for G ~ S,

n

9= (2)(hr)+e) < p(q) < 2~ () (hp)—e),

Let T7* and T3 be the sets of structures satisfying the properties (a) and (b),
respectively. Then, T = T N TJ. By the asymmetry of G(n,p), we know
that P(T7*) > 1 — ¢ for large n. As explained above, a labeled graph G can be
viewed as a binary sequence of length (%). Thus, by the property (b) and the
asymptotic equidistribution property for binary sequences, we also know that
P(T4) > 1 —¢ for large n. Thus, P(T") =1 — P(T{* UTy) > 1 —2¢. Now let us
compute P(S) for S in T*. By the property (a), P(S) = n!P(G) for any G = S.
By this and the property (b), we can see that any structure S in T satisfies the
condition in (7). This completes the proof. |

8.3. Erdos-Rényi Graphs 183

8.3.2. An Algorithm and Its Analysis

Our algorithm, that we call Szip (Structural zIp), is a compression scheme for
unlabeled graphs. In other words, given a labeled graph G, it compresses G
into a codeword, from which one can reconstruct a graph S that is isomorphic
to G. The algorithm consists of two stages. First it encodes G into two binary
sequences (B; and Bs) and then compresses them.

The main idea behind our algorithm is quite simple: We select a vertex,
say v, and store the number of neighbors of v; in binary. Then we partition
the remaining n — 1 vertices into two sets: the neighbors of v; and the non-
neighbors of v;. We continue by selecting a vertex, say wvo, from the neighbors
of v1 and store two numbers: the number of neighbors of vy among each of the
above two sets. Then we partition the remaining n — 2 vertices into four sets:
the neighbors of both v; and vs, the neighbors of v; that are non-neighbors of
v, the non-neighbors of v; that are neighbors of v, and the non-neighbors of
both v; and vs. In each step we create a new child node if there is at least
one graph vertex in that node. Similarly, in the i-th step, we remove one graph
vertex v; from the (level-wise) leftmost node at level 4 — 1. If this removal makes
the node empty, we remove the node. The other graph vertices at level ¢ — 1
move down to the left or to the right depending whether they are adjacent to
v; or not. We repeat these steps until all graph vertices are removed. During
the construction, the number of neighbors of the selected vertex with respect
to each set in the partition is appended either to the sequence B; or to the
sequence By where By contains those numbers for singleton sets (i.e., we store
either “0” when there is no neighbor or “1” otherwise). We then compress Bs
using, for example, an arithmetic encoder since it dominates the compression
rate and can be viewed as generated by a memoryless source, see Lemma [R34)).
The algorithm is illustrated in Figure B3

It is an interesting exercise to reconstruct (decode) the structure of the graph
from the lists By and Bs (see Exercise [8]).

The main result of this section provides an asymptotic formula for the ex-
pected code length.

Theorem 8.3.3. Let L(S) be the length of the codeword generated by our al-
gorithm for Erdds-Rényi graphs G € G(n,p) (with fized p) isomorphic to a
structure S. Then for large n,

n

BIL(S)] = () h(s) — nlogn + (c-+ Blogr)) n + ofn),

where ¢ is an explicitly computable constant, and ®(z) is a periodic function.

184 Chapter 8. Graph and Structure Compression

{a b cdefghj}

{2, 9,1}

B1 =0100110100001110101
h
B2 = 1001011000000101) {E}\ far
{e} {a}
{a}

Figure 8.3. Illustration of the Szip algorithm: On the left we show a
graph that encodes to By and Bs. The first vertex is chosen to be v; = 1.
So it is removed and the vertices {d, f,g,j} are put to the left and the
vertices {a,b,c,e,h} to the right. In particular the number of neighbor
vertices of the root is 4 = (100)2. Thus, B starts with 0100 (we use 4
digits since the maximum number of neighbors is 9 that need 4 digits). In
the next step we choose the vertex vo = f that is removed from the set
{d, f, 9,7} and consider the neighbors/non-neighbors {d,g,j}, 0, {b,c},
{a,e,h}. The neighbor numbers are 3 = (11)2 and 2 = (010)2. Thus,
11010 is appended to Bi. In this way we proceed further. In the third
step we choose v3 = d and in the fourth step va = j etc. In the fourth step
there are the first singleton sets {g}, {c}, {b}, where only g is neighbor
of j. Thus, By starts with 1, 0, 0. Note also that in the fifth level the
neighbor singleton set {g} is removed since vs = g (similar situations occur
subsequently).

Hence the algorithm SzIP is close to an optimal one, since we certainly have

> 2>h(p) —nlogn + L. O(logn).

E[L(S)] > H(S) = (o

We also want to mention that the distribution of L(.S) has a kind of concentration

8.3. Erdos-Rényi Graphs 185

around its expected value E[L(S)]. In Exercise we ask the reader to prove
the following
P(L(S) < E[L(S)] + enlogn) = o(1) (8.8)

for every ¢ > 0. Also, it is easy to see that our algorithm runs in time O(n?) in
the worst case. We ask the reader to establish it in Exercise

8.3.3. Proof of Theorem [8.3.3|

We start with a description of two binary trees that better capture the progress
of our algorithm. Recall that our algorithm runs as follows. Given a graph G on
n vertices, a binary tree 1), is built as follows. At the beginning, the root node
contains all n graph vertices, V(G), that one can also visualize as n balls. In the
first step, a graph vertex (ball) v is removed from the root node, and the other
n — 1 graph vertices move down to the left or to the right depending whether
they are adjacent vertices in G' to v or not; adjacent vertices go to the left child
node and the others go to the right child node. We create a new child node in
T, if there is at least one graph vertex in that node. After the first step, the
tree is of height 1 with n — 1 graph vertices in the nodes at level 1. Similarly, in
the i-th step, we remove one graph vertex (ball) v from the (level-wise) leftmost
node at level ¢ — 1. If this removal makes the node empty, we remove the node.
The other graph vertices at level ¢ — 1 move down to the left or to the right
depending whether they are adjacent to v or not. We repeat these steps until
all graph vertices are removed (i.e., after n steps).

The tree structure just described can be generalized to a tree that we call
(n,d)-trie. In such a tree the root contains n balls that are distributed between
the left and the right subtrees according to the following rule. In each step, all
balls independently move down to the left subtree (say with probability p) or
the right subtree (with probability 1 —p). A new node is created as long as there
is at least one ball in that node. Furthermore, a nonnegative integer d is given,
and at level d or greater one ball is removed from the leftmost node before the
balls move down to the next level. These steps are repeated until all balls are
removed (i.e., after n + d steps). Observe that when d = co the above tree can
be modeled as a trie that stores n independent sequences generated by a binary
memoryless source with parameter p. Therefore, we coin the name (n,d)-tries
for the tree just described, and to which we often refer simply as d-tries. This
is illustrated in Figure B4l

Let N, denote the number of graph vertices that pass through node x in T},
(excluding the graph vertex removed at z, if any). In Figure B3] for example,
N, is the number of graph vertices shown next to the node x. Our algorithm
needs to encode, for each node z in T,, the number of neighbors (of the removed
graph vertex) among N, vertices. This requires [log(N, + 1)] bits. Let L(B1)

186 Chapter 8. Graph and Structure Compression

Figure 8.4. A (6,1)-trie with six balls and d = 1, in which the deleted
ball is shown next to the node where it was removed.

and L(Bz) be the lengths of sequences By and Bs, respectively. By construction,
these lengths are defined as

L(B1) = > [log(N, + 1)1,

x€Ty, and No>1

LBy)= Y. (og(N.+1)]= > L

x€Ty, and N,.=1 z€T), and N,=1

In Figure B3|b), L(B1) and L(B2) are sums over all circle-shaped nodes and
over all square-shaped nodes, respectively. Here we can observe an important
property of By presented next.

Lemma 8.3.4. Given a graph from G(n,p), the sequence Bs constructed by
our algorithm is probabilistically equivalent to a binary sequence generated by a

8.3. Erdos-Rényi Graphs 187

memoryless source(p) with p being the probability of generating a ‘1.

Proof. Consider any bit b € By. It represents the number of neighbors of a vertex
u in a subset, which contains only one vertex, say v. Then the probability that
b =1’ is the same as the probability that u and v are connected, which is p
in the Erd6s-Rényi model. Let us consider any two bits b3 and by. Assume
that b; corresponds to vertices u; and v; (i.e., b; corresponds to the potential
edge between wu; and v;.) These two potential edges are chosen independently
according to the Erd6s-Rényi model. This shows the memoryless property. |

To set up precise recurrence relations for the analysis, we need to define
a random binary tree T}, 4 for integers n > 0 and d > 0, which is generated
similarly to 7T;, as follows. If n = 0, then it is just an empty tree. For n > 0, we
create a root node, in which we put n balls. In each step, all balls independently
move down to the left (with probability p) or right (with probability 1 —p). We
create a new node if there is at least one ball in that node. Thus, after the i-th
step, the balls will be at level . If the balls are at level d or greater, then we
remove one ball from the leftmost node before the balls move down to the next
level. These steps are repeated until all balls are removed (i.e., after n+d steps).
We observe that, if T, is generated by a graph from G(n,p), T}, is nothing but
the random binary tree T, 9. Thus, by analyzing T}, 0, we can compute both
L(Bl) and L(BQ)

Let us first estimate L(B;). Recall, N, denotes the number of balls that pass
through node z (excluding the ball removed at z, if any). Let

An,d = Z [log(Nx + 1)—|a

€Ty, q and Np>1

and an,q = E[A, 4). Then E[L(B1)] = ano. Clearly, apg = a14 = 0 and
az,0 = 0. For n > 2 and d = 0, we observe that

n
n _
v =ogln4 D1+ Y (1)oh"Hano 4 anrs): (89)
k=0

This follows from the fact that starting with n + 1 balls in the root node, and
removing one ball we are left with n balls passing through the root node. The
root contributes [log (n + 1)]. Then, those n balls move down to the left or right
subtrees. Let us assume k balls move down to the left subtree (the other n — k
balls must move down to the right subtree, and this happens with probability
(Z)pkqnfk.) At level one, one ball is removed from those k balls in the root of
the left subtree. This contributes ay . There will be no removal among n — k

balls in the right subtree until all £ balls in the left subtree are removed. This

188 Chapter 8. Graph and Structure Compression

contributes ay_ ;. Similarly, for d > 0, we can see that

an,g = [log(n+1)] + Z ()pkq” Maka—1 + @n—k ktd—1)- (8.10)
k=0

This recurrence is quite complex. We start with the asymptotic behavior of the
solution of the limit

a(n,o0) = lim ay.q,

that satisfies the recurrence

a(n,o0) = [log (n + 1)] +Z() kg =k (a(k, 00) + a(n — k, 00)) (n>2)
B (8.11)

with initial conditions a(0,00) = a(1,00) = 0. It is not difficult to show that
this limit actually exists. By induction it follows that a, 4+1 > an,q4-

Lemma 8.3.5. Let a(n,c0) be defined by the recurrence (811) with initial con-
ditions a(0,00) = a(l,00) = 0. Then:
(1) If logp/logq is irrational, then

n

aln, o) = 1 g

A*(=1) + o(n), (8.12)

where

A(-n=%" 7“‘2%171;” . (8.13)
b>2

(ii) If logp/logq = r/d (rational) with ged(r,d) = 1, then

a(n,o0) = m (A*(=1) + @1 (log, n)) + o(n), (8.14)
where
Oy (z) = Z A* (=1 + 2kmri/ logp) exp(2kmrei) (8.15)
k#0

is a periodic function, where

ar(s) =Y L8O DIne,)

n!
n>2

and T'(s) is the Euler gamma function.

8.3. Erdos-Rényi Graphs 189

Proof. Define the exponential generating function (EGF) of a(n, o) as

n=0
for complex z. Then, by setting ¢, = [log(n 4+ 1)] we have for n > 2

n

= 2o kz()% : — &) (20)" " (a(k,00) + a(n — k,0))

Cn n = a 1 n—k
=2 +Z (n—k)!(zq)

a(n, 00)

n!

ooan7oo n ooCnn > nakz,oo 1 n—
S = S e 325 e e
n— n= n=0 k=0
co n 1 a(nfk’oo) n—
+2 2 e gy 0

Finally, we arrive at
a(z) = é(z) + a(zp)e®? + a(zq)e™®

where é(z) is the EGF of ¢,. The Poisson transform (see also Appendix [C]),
defined as A(z) = a(z)e™?, of the above equation satisfies then

A(2) = C(2) + A(zp) + A(zg), (8.16)

where C(z2) = é(z)e 7.
At this stage the Analytic Depoissonization result Theorem [C.4.2] (of Ap-
pendix [C) suggests that
a(n,o0) ~ Z(n)

as n — oo. However, the conditions of Theorem cannot be directly
checked, since it is not clear how C(z) behaves in the complex plane.

In order to overcome this technical problem we can proceed as follows. For
given £ > 0 we define B(e) such that

190 Chapter 8. Graph and Structure Compression

We replace then the sequence ¢,, = [log(n + 1)] by a lower and upper bound:

) _ J enforn < B(e), 2) _ | cn for n < B(e),
m 7 0 for n > Be), ‘= Vvn for n > B(e).

Since cg) <cp, < 0512) it follows then that the corresponding solutions a(n, oo)(l)
and a(n, 00)? satisty a(n, 00)M) < a(n,00) < a(n, 00)?). On the other hand the

corresponding Poisson transforms C)(z) and C®(z) satisfy the assumptions
of Theorem [C.4.2] (as we will show later). Hence it follows that

a(n,00)D ~ AV (n) and a(n,c0)® ~ A (n).
If log p/ log q is irrational we have (as for the sequence cy,)

ANy = —— 3 [log(b+1)]

M), 2 b= T)
and
~ log(b+1)] Vb
A = " [log(b +1)]
() = 7 ma D bb—1) 2 b(b— 1)
2<b<B(e) >B(e)
Consequently it follows
1 n €
. 1 TV D
h;r;s;l)pn a(n, o) h(p)ln2A (=)= h(p)In2

Since € > 0 is arbitrary it finally follows that

n

a(n, o) ~ WA*(—U.

Similarly we can argue in the rational case.

In order to solve asymptotically the functional equation (RI€]), we apply
the Mellin transform. The reader is referred to Appendix [Dl for an in-depth
discussion of the Mellin transform. In brief, the Mellin transform of a real-
valued function f(z) is defined as

re= " f@ertdr,

It is defined in a strip —a < R(s) < —f when f(z) = O(z®) for z — 0 and
f(x) = O(z?) for z — oo. Noting that the Mellin transform of the function
f(ax) is given by

a”*f*(s),

8.3. Erdos-Rényi Graphs 191

we transform the functional equation (8I6) into the following equation
A(s) = C%(s) +p *A%(s) + ¢ A" (5),

where A*(s) and C*(s) are the Mellin transforms of A(z) and C(z), respectively.

This leads to
C*(s)

1 p— p*S p— q*S
for —2 < R(s) < —1, as is easy to see under our assumption on a(0, o). Observe
also that

A*(s) =

/ C(z)z° dz = Z / 2he P2 1d,z—z: i I'(n+s), (8.17)

n>2 n>2

and for ¢, = [log(n + 1)] the series converges for R(s) < 0. The same holds for
et For {2 we just have convergence for R(s) < —3.

In order to find asymptotics of a(n, co) (as well as for a(n, o0)™") and a(n, c0)?,
respectively), we first compute the inverse Mellin transform:

. c+i100
A(z) = L/ A*(s)z™%ds, (8.18)

2mi c—100

where —2 < ¢ < —1 is a constant. The goal is to get asymptotics for Z(n) as
n — oo (and then to apply the above described Depoissonization procedure).
For this purpose we will shift the integral to the right. However, we have to
take care of the zeros of 1 — p~% — ¢7%. By Lemma [D.31] (from Appendix [D)).
we know that all zeros satisfy

-1 S §R(S) S ao,

where oq is a real positive solution of 1 + ¢=° = p~*%.

integer k there uniquely exists a zero s; with

Furthermore, for every

(2k —)7/ In(1/p) < S(sk) < (2k+ 1)7/1n(1/p).

Furthermore, if logg/logp = Ing/lnp is irrational, then so = —1 and R(sg) >
—1 for all & # 0. If logg/logp = r/d is rational, where ged(r,d) = 1 for
integers r,d > 0, then R(s;) = —1 if and only if & = 0 mod d. In particular
R(s1),...,R(s4-1) > —1 and

2(k — k mod d)mi
Sk = Skmod d I)
np

192 Chapter 8. Graph and Structure Compression

that is, all zeros are uniquely determined by sg = —1 and by s1,s9,...,S4-1,
and their imaginary parts constitute an arithmetic progression.

To compute the integral (8I8]) asymptotically we apply the standard ap-
proach. We shift the integral to the right and collect the appearing residues at
s = sy (k € Z). Due to the convergence properties of C*(s) (due to the I'-factors
in the representation ([BIT)) it is easy to see that the residue theorem gives (for
n > 0 sufficiently small)

~ 1 ot n°* loge .
A(n) = —/ A+ Y = C* (s1).

C 27), e = p~sk —log qq sk

If log p/ log q is irrational then R(sx) > —1 for all k # 0 and so we have

n’k loge nloge
- —C*(s) = C*(-1)+o(n
keZZ —logpp=*r —logqq—* (51) h(p) e

which gives

~ nloge n
A(n) ~ —=—C"(-1) = ————=C*(-1).
") h(p) G h(p)n2 _
In the irrational case we have a linear progression of k with (s) = —1 that
leads to the representation
Z n°* loge C* (1) = nloge (C*(—l)—i—q) (lo n))—i—O(nl_a)
—logpp = —logqg~ " h(p) 108

kEZ
for some £ > 0 and finally we find

~ nloge
Aln) ~ h(p)

All these computations can be done for ¢, = [log(n + 1)] as well as for

csll) and 0512). As mentioned above this leads to asymptotic representations for

AW (n) and A (n).

At the next step we recall that we want to apply Depoissonization, in partic-
ular Theorem [CZ1] in order to obtain a(n,c0)™ ~ AM(n) and a(n,c0)® ~
A®)(n). For this purpose we have to check that the functions M) (z) and C(M(z)
satisfy the conditions of Theorem Since

"
h(p)In2

(C*(-1) + @4 (log, n)) = (C*(-1) + @4 (log, n)).

CW(z)=¢? Z wzn

n!
n<B(e)

8.3. Erdos-Rényi Graphs 193

is only a finite sum these conditions are trivially satisfied. Furthermore, cW (2)
differs from

5(2) =e 7 Z gzn = M /CeZ(e’”—l)(_I)—sm dr

211
n>0

just by a finite sum; here C' denotes a Hankel contour as in the Hankel integral
representation of 1/I'(s) (compare with Appendix [C]). It is an easy exercise that
D(z) satisfies the assumptions of Theorem (see Exercise [B4).

This completes the proof of Lemma]

The next step is to analyze the difference a(n,d) = a(n,o0) — ay 4. First we
note that by definition we have an 1 = any1,0. We then obtain the (homoge-
neous) recurrence

a(n,d) = z": (n)pkqn_k [a(k,d—1)+an—kk+d—1)] (n>2,d>1)

k
k=0
(8.19)
with the side and initial conditions
a(n+1,0)—a(n,1) =a(n+1,00) —a(n,o0) (n>0)
and
a(0,d)=a(l,d)=0 (d=>0).
Lemma 8.3.6. The following upper bound holds
a(n,d) < Agn" T (p? +¢*)% n>2,d>0 (8.20)

where v = log(p? + ¢*)/logp > 0.

Proof. When n = 2 it is easy to see that we have (exactly)
1
’&/’2,d: __2 p2+q2d71,
(2,d) (pq) ()

so (B20) clearly holds. Assuming that (820) holds for all (N, D) with N+ D <
n + d we can estimate the first sum in the right side of (8I9) by

n—2 n
N\ &k n—k~ vte(, 2 2\d—1_k n—k(T
E (k)pq a(k,dfl)SAOE k" (p” +¢7)" g (k)

k=0 k=0
< Ao(np)"te(p® + ¢*)*!
= AW 4)",

194 Chapter 8. Graph and Structure Compression

and the second sum (I9) by

Z() k" *an —k k+d—1)

k=0))
Z u+e p + q2)k+d—1pkqn—k (k)

k=0
vte(2 2\d—1 — (n 2 o1k m—k
< Agn” T (p” + ¢°) kzo<k> [p(p* + ¢*)]" ¢"
— Aonu+6(p2 +q2)d—1 [q+p(p2 +q2)}"
which completes the proof of the lemma. [|

In particular we find

n - n n o
Z (k)pkqn ka(n _ k,d) < Aonu+e(p2 + q2)d 1 Z (k)pkq k(pQ + q2)k
k=0 k=0

= Agn” e (p(p” + ¢*) +)", (8.21)

that is, the second part in the recurrence (819) is bounded by a term that is
exponentially small in n and d. It it therefore convenient to study next the
following recurrence

;(> bk (k,d —1) (n>2,d>1)

with the side and initial conditions
ax(n+1,0) —a.«(n,1) =a(n+1,00) —a(n,00) (n>0)
and
a+(0,d) = a.(1,d) =0 (d >0).
The difference agif (n,d) = a(n, d) — a.(n, d) satisfies then

agif (n, d) = Z <k>pkq" Fagig (k,d — 1) + Z < >pkq" Ma(n —kk+d—1)
k=0

k=0
(8.22)
and agig (n +1,0) = aq(n, 1). Note that agg(n,d) is non-negative.

8.3. Erdos-Rényi Graphs 195

Lemma 8.3.7. We have the following upper bound.
Qa diff (Tl, d) § A1 (823)
for some constant Ay.
Proof. Since agigr(n + 1,0) = agigr(n, 1) and by ([82I]) we have
n n - .
a’diﬁ(n + 1; 0) = Z <k>pkqn kadiﬁ(ka 0) + O(f}/)
k=0

for some v < 1. This immediately shows that a4 (n,0) is bounded.
Now we show by induction on d that aqyz(n,d) < Cq4 for proper constants
Cy that are uniformly bounded. By [822) and [821]) we get

sup aaig (n,) < Ca-1 + O((p* + ¢*)%).

Hence, it is clear that we can define inductively constants Cy by Cy = Cy_1 +
O((p? + ¢*)%). Clearly, these constants are uniformly bounded. |

We finally need an upper bound for a.(n,d) which is presented next and
prove in Section B.3.5] since we need some additional results.

Lemma 8.3.8. For every fized d the numbers a.(n,d) are bounded by
a.(n,d) = O((logn)?)

for large n.

Summing up, we have
E[L(B1)] = ano

= a(n,o0) —a(n,0)
= a(n,00) — a«(n,0) — aqzg(n,0)
= a(n,00) + O((logn)?).

Hence, together with Lemma B31) we have obtained the precise asymptotic
behavior for E[L(By)].

Theorem 8.3.9. For large n,

E[L(B1)] = (8 + @1 (logn)) + o(n),

_n
h(p)In2

196 Chapter 8. Graph and Structure Compression

where
ﬂZ%Q.GOGM,

and @4 (logn) is a periodic function for logp/logq rational and zero otherwise.

Estimate of Bs. The next step is to estimate the average length of Bs. Let
Sp,a be the total number of nodes z in 7}, 4 such that N, = 1, that is,

Spa= Z 1 = Z N, = Z N, — Z N,.

€Ty, q and Ny=1 x€T),q and Ny=1 €Ty 4 €Ty, q and Np>1
Let Bp,g = erTn 2.No>1 No. We observe that
n(n —1)
L(B2) = Sno= »_ Nuo—Bno= ——5 "~ Buo- (8.24)

z€Th 0

The last equality follows from the fact that the sum of N,’s for all x at level £
inT,0isequalton —1—/¢.

Let by, g = E[By,q]. For our analysis we only need b, o. Clearly, by ¢ = b1,4 =
0 and b2,9 = 0. For n > 2, we can find the following recurrence in a similar way
to an q:

n+10n+z<> knkkaern kk) (8.25)

and bp.g n—l—Z() R (a1 + bn_grra_1) ford>0. (8.26)

Instead of (82H) we can just use the boundary condition
bn,1 = bny1,0, forn>0. (8.27)

We should point out that this recurrence describes the path length in the
(n,d)-trie discussed in the previous section. We just recall that in such a tree
the root contains n balls that are distributed between the left and the right
subtrees. In each step, all balls independently move down to the left subtree
(say with probability p) or the right subtree (with probability 1 — p). A new
node is created as long as there is at least one ball in that node. Furthermore, a
nonnegative integer d is given, and at level d or greater one ball is removed from
the leftmost node before the balls move down to the next level. These steps
are repeated until all balls are removed (i.e., after n + d steps). Observe that
when d = oo the above tree can be modeled as a trie that stores n independent

8.3. Erdos-Rényi Graphs 197

sequences generated by a binary memoryless source with parameter p. This is
illustrated in Figure 8.4l

We now study in detail recurrence ([828]) corresponding to the path length
in a (n,d)-trie and show how much the path length of such a d-trie differs from
that of regular tries (in which d = o00).

If we let d — oo in (820) and assume that b, 4 tends to a limit that we
denote as b(n, 00), then (826) becomes

b(n,00) =n+ Y (Z) gk [b(k, 00) + b(n — k,00)], (8.28)
k=0

with b(0,00) = b(1,00) = 0. This is the same as the recurrence for the mean
path length in a trie. We recall that the Poisson generating function B(z) =
e %Y >0 b(n,00)2™/n! satisfies

B(z) = 2(1 — ¢ %) + B(pz) + B(q2).
By inverting the Mellin transform of B(z) we obtain (similarly as above):

~ 1 _3/2+’L'OO F 1
B(z)=— z‘sﬂds7 (8.29)

2w —3/2—ico I e
which holds for —2 < $(s) < —1. The integral certainly converges for z real and
positive.

The asymptotic expansion of b(n,c0) as n — oo can be obtained in the same
way as above by shifting the integral in ([829) to the right and by collecting
the residues. The only difference to the above analysis is that the function
I'(s+1)/(1—p~* —q~*) has a double pole at s = —1. Hence, the residue of the
integrand is then

1 gl ha(p)
——nlogn + — +
h(p) h(p) ~ 2h(p)?
where ha(p) = plog2p + qlog2 q and ~ is the Euler constant. Together with
the residues at s = s, and by applying the Depoissonization theorem (Theo-
rem [C.4T)) we, thus, obtain

1 ha(p)
b(n,o0) = Wnlogn + W {7 + 22@)

where ®5(x) is the periodic function

S 2kmir 2kmriz
@2 (l’) = Z I'(— m e y

k=—00,k#0

+ @5 (log, n)] n+ o(n), (8.30)

198 Chapter 8. Graph and Structure Compression

provided that logp/logq = r/s is rational, with r and s being integers with
ged(r, s) = 1. If log p/ log g is irrational, then the term with ®, is absent

Our analysis requires, too, a two term asymptotic estimate of the difference
b(n+1,00) — b(n,o0), whose generating function may be represented, similarly
to ([B830), as the inverse Mellin transform

n —3/24i00
Z[b(n +1,00) — b(n, oo)]z—'e_z = L %z_sqd&
n>0 n: 210 _g/9i0e 1 —p7°—q
(8.31)
This integral has (again) a double pole at s = —1 and we can obtain a two term

approximation for z — oo

Cb(n.oo) = — lognt —— b)Y, 1 g og) ro
b1, 00)~b(n, 00) = s log et o (”*”%@))*h@)‘ha g,);3(;))

where W3(+) is the periodic function in Theorem B30, which again appears
only for rational logp/logq.
We next set

bn.a = b(n,00) — b(n,d) (8.33)

so that E(n, d) = b(n, c0) — by, ¢ measures how the path lengths in the d-trie differ
from those in a trie. From (820) and (828), we then obtain

n
E(n,d) = Z (Z)pkq”_k [E(kz,d— 1) +E(n —kk+d—1)|, forn>2,d>1,
k=0
(8.34)
which unlike ([826]) is a homogeneous recurrence. As above we have the boundary
condition B N
b(n+1,0) —b(n,1) = b(n + 1,00) — b(n, 00). (8.35)
We also have b(0,d) = b(1,d) = 0 for d > 0. As in Lemma we get an
a-priori bound for b(n, d):

b(n,d) < Agn"*(p® +¢*)% n>2,d>0 (8.36)
where v = log(p? + ¢%)/logp > 0.
We further define b, (n,d) to be the solution of

n

bon,d) =Y (Z)pkq”kb*(k, d—1), forn>2d>1, (8.37)
k=0

and
bi(n+1,0) —bi(n,1) = b(n + 1,00) — b(n, o). (8.38)

8.3. Erdos-Rényi Graphs 199

Next set bgig (n,d) = b(n,d) — by(n,d). Then (as above) we obtain from (834)-
(B38) that

baigr (n, d) = Z<Z>“kbdzﬁkd +Z<) ¢"Fb(n —k,k+d—1)

=0 =0

(8.39)
with bgig (n+1,0) = baiz (n,1). Using an inductive argument as in Lemma 837
we get that

for some constant Bj.
It remains to provide the asymptotic behavior of b, (n,d) from (838).

Lemma 8.3.10. Forn — oo and d = O(1) the sequence bi(n,d) is of order
O(log® n) for n — co. More precisely

1 , d
by(n,d) = =—————1 — =1
(n,d) 2hlog(1/p) o8 Ty oen
1 1 y+1 he
i [ﬁ " hlogp (m2 ' 2h +\Ij3(1°g”n)>} tog + ollog),

where W3(-) is the periodic function

1 > 2kmir 2kmir -
] - 1 (- 2kmirx
3(2) In2 k=_§k¢o [+ Inp } (Inp) ¢

and logp/logq = r/t is rational. If logp/logq is irrational, the term involving
W3 is absent.

Before proving Lemma [R:3.10] in Section [R.3.4] we just observed that

E[L(By)] = w ~bno
_ @ — b(n, 00) + b(n, 0)
_ ”(”T—l) — b(n,00) + b.(n,0) — baig (n,0)
_ @ — b(n, 50) + O((log n)?)

This finally gives us precise estimate for E[L(Bz)] leading the the following
theorem.

200 Chapter 8. Graph and Structure Compression

Theorem 8.3.11. For large n,

E[L(Bg)] = n(nT_l) - % logn

1 v, ha(p)

h(p) [In2 " 2h(p)

+ @2(log, n) | n + o(n),

where ha(p) = plog® p+qlog?q, v is the Buler constant, and Dy (x) is a periodic
function for logp/logq rational and zero otherwise.

8.3.4. Proof of Lemma

The goal is to analyze the recurrence ([837). For this purpose we introduce the
exponential generating function

ba(z) =Y buln, d)% (8.41)

and the corresponding Poisson version
Ba(z) = e *ba(2),
where b, (n, d) is defined from ([®37). We find that by(z) = bg_1(pz)e?* or
Ba(z) = Ba_1(p2). (8.42)
This can be solved by iteration to yield By(z) = Bo(p?z). Then setting

§(2) = > bl o)

n=2

and noting that

S b+ 1,027 = Lh2),
B3]) leads to
Lho(2) ~ bo(2) = ~3(2) +7(2). (3.43)

If we set G(z) = e~7§(z), we also have

B (2) + Bo(z) — Bo(pz) = G'(2). (8.44)

8.3. Erdos-Rényi Graphs

We recall that by (829) the Mellin transform of G(z) is given by

/Oo G(2)2° Nz = _ T+l
0

1_p—s_q s’

201

(8.45)

Furthermore let M(s) denote the negative Mellin transform of By(z), that is,

M(s) =— /000 Bo(2)z*"1dz.

Then by ([844]) we obtain the functional equation

(s = D(s)

— (S — 1)M(S - 1) + (1 —pis)M(s) = W

Next we set

with which (847) becomes

s—1

To solve (B49]) we let

and then (8Z9) becomes

a 1—pk75 s—1
Ni(s) = Ni(s —1) = {] -
kl;[l T_phtl |1 _pl-s _ g1

Now, for s — —oo the right side of (8EI) behaves as (s — 1) [[re, (1
with an exponentially small error. Letting

Ni(s) = S(Sgl)ﬁ(ﬁ) tAale)

the equation for N2(-) becomes

s—1 1 -
Na(s) = Na(s —1) = 2, (1—phth) [1 —pl=s —gl-s H(l -
= k=1

(8.46)

(8.47)

(8.48)

(8.49)

(8.50)

(8.51)

_pk+1)717

(8.52)

)1

(8.53)

202 Chapter 8. Graph and Structure Compression

whose the right hand side is, unlike that of (8X1]), exponentially small for s —
—o0. The solution to (B53) is

Na(s) = Z[H“l_ AR RS DU St S SN

1 — plti—s _ q1+z s H;OZI(]_ 7pk+1)

From BZI) we see that By(z) = O(z2) as z — 0 so that M(s) in (8Z0)
must be analytic at s = —1. From (848]) we then conclude that N (—1) = 0.

From (850) we have N1(—1) = 0 and from (852) and (854) we thus obtain an
expression for Na(—00):

k+1+1)

H PPy 41— Z(z+2) [Hl’“(m T 1} =0. (8.55)

=0

We have thus obtained the final expression for M(s) in ([848) as

_ I'(s)
M(s) = T - o) (8.56)
s(s—1) -) [T, (1 =pFet)
. (S— 8+ ;(s —i—1) [1 —kpll-i-i—s e 1]) ,
where -
B =Na(—o0) [T(1 ="
k=1

can be computed from (855]). Inverting the transform in (846]) we obtain

1 p—3/2+ico
Ba(z) = =% / T) M(s)ds, (8.57)

2mi) 32 i00

where we set z = n is large and positive. The function M(s) in (850) has a
triple pole at s = 0, and there are other double poles on the imaginary s-axis if
1 — p'=% — ¢*~* has zeros there, which occurs only if log p/ log g is rational, say
r/t where r and ¢ are integers. First we compute the contribution from s = 0.
Using the expansion I'(s) = [1 —ys+ O(s?)]/s as s — 0, with y being the Euler

8.3. Erdos-Rényi Graphs 203
constant, (83506 becomes

M(s) = 1[1775+0(]‘[

’ <ﬁ [[o-p -1+ S(S;” +8

k=1

) o0 — 541
[, (1 —p" ")
+Y (s—i- [S 1. (8.58)
i=1

Now 1
1—-p *=slnp— 552(1n10)2 +0(s®)

and)
. . haIn“ 2
1—p'™* —¢"* = —hsln2 — f2 0ty O(s?).
Also, using the expression in (855 to compute S+ 1 the expansion of (858 for
s — 0 becomes

M(s) = =120 [1+ 5 mp+0(s2)] {

s3 Inp

l—s |, hgln2 9 9
TTng [5T s+0(s)] +O0(s)}

1 1 1 0 1 hoIn2 1 1
S - 1 - 8.
s3hlnp+32 { hln2Inp hlnp(+2hln2)+2h}+o<s)859)

It follows that the integrand p~%*2~*M(s) in (857) has the residue

. s 11 d
res (p~ 27" M(s),s = 0) = 5 holig; 7 log z (8.60)
y+1, hey 1
+logz { < 2h2) 5% +0(1)
where the O(1) refers to terms that are O(1) for z — oo, and these can be

evaluated by explicitly computing the O(s™!) term(s) in (859). If logp/logq is
rational we must also compute the contribution from the double poles along the
imaginary axis at such points p~* = ¢=° = 1 and p' =% 4+ ¢'=* = 1. These poles
lead to the oscillatory terms in Lemma [B3310] as can be seen by computing their
residues from (850).

Finally, we use the Depoissonization Theorem [C.41] (from Appendix [C). We
already used (implicitly) the fact that the function G() satisfies the assumptions
of Theorem [T (the proof of Theorem [C-4.2] does precisely that), that is, G(z)

204 Chapter 8. Graph and Structure Compression

is JS-admissible (see Appendix [C)). In particular, this property is inherited to
the solution By(z) of the differential equation (8:44) (see again Appendix [C]).
Hence, Theorem gives

by (n,d) ~ Bg(n)

and completes the proof of Lemma R3.101

8.3.5. Proof of Lemma [8.3.8

We will apply Lemma B3 T0regarding b, (n, d) which establishes that b.(n, d) =

O((logn)?), where b, (n, d) is defined by (837) and (83%).

What remains is to show that a.(n,d) < b.(n,d). Since they are defined
by the same recurrence we just have to check the initial and side conditions, in
particular the conditions

a.(n+1,0) —as(n,1) = a(n + 1, 00) — a(n, 00),
bi(n+1,0) —bi(n,1) = b(n + 1,00) — b(n, o).

Thus, if we can show that
a(n+1,00) —a(n,o00) < b(n+ 1,00) — b(n, o) (8.61)

then we are done.
The differences Aa(n,o0) = a(n + 1,00) — a(n,00) and Ab(n,c0) = b(n +
1,00) — b(n, 00) satisfy the recurrences

Aa(n, 00) = [log(n + 2)] — [log(n + 1)

+ (Z)pkq"’“ (pAa(k, o0) + gAa(n — k, 00)),
k=0

Ab(n,00) =1+ Z (Z)pkq”_k (pAb(k,00) + qAb(n — k,00)).
k=0

Since [log(n + 2)] — [log(n + 1)] < 1 it follows by induction that (861) holds.
This completes the proof of the lemma.

Completion of the Proof of Theorem [R.3.3

We recall that the algorithms first computes two stings By and Bs, where B;
has expected length of order ©(n) and By has expected length of order (}) —

8.4. Preferential Attachment Graphs 205

©(nlogn). Furthermore By behaves as the initial part of a memoryless source
(with parameter p). For B; we do not have such a property. Thus it is not clear
how much could be gained by a compression of By, and it would be only negligible
compared to By. Conditioned on the length ¢ of By, B is precisely a memoryless
source with parameter p (all 2¢ stings appear). Thus, we should encode n (with
O(logn) digits), the ¢ of By (with O(log /) digits) and a compressed string Bo.
Conditioned on the length ¢ the entropy of By is ¢h(p). Hence, if we use, for
example, an arithmetic encoder to encode Bs the expected code length is given
by

E[L(S)] = E[L(B1)] + O(logn) + O | Y qelog?
>1

+> e (th(p) +O(1))

e>1
= E[L(B1)] + h(p)E[L(Bz)] + O(E[log L(B2)]) + O(log n),
where g¢ = P[L(B2) = {]. By concavity of logz we have
Ellog L(B2)] < log(E[L(B2)]) = O(logn).

Hence, by applying Theorems[R39and B3 TTlthe asymptotic formula for E[L(.S)]
follows.

8.4. Preferential Attachment Graphs

In this section we turn our attention to preferential attachment graphs PA(n, m)
with n nodes and a fixed parameter m. Our ultimate goal is to find an (almost)
optimal structural compression of PA(n,m). However, the problem is much
more intricate than we encountered for Erdos-Rényi graphs.

Let us start by recalling Lemma in which we proved a relation between
graph entropy and structural entropy, namely

H(S(G)) = H(G) + E[log |I'(G)|] — E[log |Aut(G)]] (8.62)

providing all relabeling of the underlying graph are equally likely. We recall
that Aut(G) is the set of automorphisms of G and I'(G) is the set of feasible
permutation. None of these quantities, as well as the graph entropy H(G),
are trivial to evaluate. Therefore, in this section, we first give an overview of
results regarding the above parameters, ending with an asymptotically optimal
algorithm for compressing a structure of PA(n,m).

However, before we start our journey we must assure that ([862) holds, that
is, all relabeling are equally likely. We prove it in the next lemma.

206 Chapter 8. Graph and Structure Compression

Lemma 8.4.1. For any two graphs g1, ga having the same structure (i.e., go €
Adm(g1), we have

that is, they are equiprobable.

Proof. This can be seen by deriving a formula for the probability assigned to a
given graph g by the model and noting that it only depends on the structure
and admissibility (a graph is said to be admissible if it is in Adm(S) for some
unlabeled graph S). If g is not admissible, then there exists some ¢ € [n] such
that the degree of vertex t at time t is not equal to m. This has probability 0,
so P(G=yg)=0.

Now, if g is an admissible graph on n vertices, then we can write P(G = g)
as a product over possible degrees of vertices at time n: let degg(v) denote the
degree of vertex v in g. We consider the immediate ancestors (i.e., the parents,
the vertices that chose to connect to v) of v in g, denoting the number of edges
that they supply to v by di(v), ..., dy()(v), where k(v) is the number of parents
of v. We also denote by K,(v) the number of orders in which the parents of v
could have arrived in the graph (which is only a function of its structure). Then
we can write P(G = g) as follows:

_ Masm Lo+ des, (v=a Ko(v) TG () fm + da(v) + -+ dj_g (0)] %)
T2 @mi)m

where each factor of the v product corresponds to the sequence of d —m choices
to connect to vertex v, which can be ordered in a number of ways determined by
the structure of g. The innermost product gives the contribution of each such
choice. Since this formula is only in terms of the degree sequence of the graph
and its structure two graphs that are admissible and have the same unlabeled
DAG must have the same probability, which completes the proof. [|

P(G=y9)

Now, knowing that (862) holds we can now estimate all its terms as a func-
tion of n and m.

8.4.1. Graph Entropy H(G).

Our goal is evaluate the graph entropy of G that are generated by the preferential
attachment rule PA(m;n). While it is easy to see that the leading term should
behave like nmlogn, our goal is to find a more precise asymptotic behavior.

8.4. Preferential Attachment Graphs 207

Theorem 8.4.2. Suppose that G ~ PA(m;n) for fived m > 1. Then we have

H(G) =mnlogn + mn (log2m — 1 —logm! — A,,) + o(n), (8.63)
where
= logd
= (d+1)(d+2)

Proof. We start by noting that, using the chain rule for entropy, we can write

n—1

H(Gn) =) H(vi1|Gy), (8.64)

t=1

where we denote by v;41 the multiset of connection choices of vertex t + 1 (i.e.,
a value for v, 1 takes the form of a multiset of m vertices < ¢+ 1). This follows
because G, corresponds precisely to exactly one n-tuple (v1,va, ..., v,) of vertex
choice multisets.

To calculate the remaining conditional entropy for each ¢, we first note that
it would be simpler if v;41 were a sequence of vertex choices, rather than a
multiset (i.e., an equivalence class of sequences). First, let us denote by 0;41 the
sequence of m choices made by vertex ¢t + 1. Le., Uy411 is the first choice that it
makes, and so on. Then we have the following observation:

H(Vi41|Gt) = H(Vpg1,v041|Gr) = H(vi41|Gr) + H(Vp41|ve41,Ge), (8.65)

where the first equality is because vy is a deterministic function of v;41, and
the second is by the chain rule for conditional entropy. We thus have

H(ve41|Gy) = H(0441|Ge) — H(Vt41]ve41, Gr). (8.66)

We first compute H (v:41|Gt). By definition of conditional entropy,
H(Tp41|Gy) = > P(Gi=G)H(U41|G: = G).

G on t vertices

Next, note that, conditioned on G; = G, the m choices that vertex t+1 makes are
independent and identically distributed. So the remaining conditional entropy
is just m times the conditional entropy of a single vertex choice made by ¢ + 1.
Using the definition of entropy (as a sum over all possible vertex choices, from 1
to t) and grouping together terms corresponding to vertices of the same degree,
we get

H (Ty41|Gy) mZP (Gy = Z 2(G)pr.alog(1/pe.a), (8.67)

208 Chapter 8. Graph and Structure Compression

where N4(G) denotes the number of vertices of degree d in the fixed graph G,
and we recall p; g = 2;:%. Note that the d sum starts from d = m, since m is the
minimum possible degree in the graph.

Next, we bring the G sum inside the d sum, and we note that

> P(Gy = G)Nu(G) = E[N4(G)],:= Ne.a.
Thus, we can express H (0;41|Gt) as

t
H(6t+1|Gt) =m Z Nt,dpt,d log(l/ptyd). (868)

d=m
Plugging this into ([8.64]), we find

n—1 n—1

-1 t
H(Gn) + Y H@rga|veg1,Ge) =m Y > Neapralog(l/pe.a). (8.69)

t=1 t=1 d=m

Now, we split the inner sum into two parts:

1 L 1/1uJ
H(Gn)+ Y H(@esa|vep1, Gr) mZ > Niapialog(1/pi.a)
t=1 t=1 d=m

n—1 t
+m Z Z Ni.apt,alog(1/pea). (8.70)

t=1 g— Lt1/15J 41

The first part provides the dominant contribution, of order ©(nlogn), and we
will show that the second part is o(n), due to the smallness of Ny 4.

To estimate the contribution of the first sum, we apply the following estimate
on Nt,d that we ask the reader to prove in Exercise R8I0 for t > 1land 1 <d <t
and for any fixed m > 1,

2m(m + 1)t ‘ (8.71)

‘m’d Cdd+Dd+2)|

for some fixed C' = C(m) > 0. This estimate is good for d = o(t!/3). Further-
more, for t — 0o, d > t'/1% and fixed m > 1, we have (see Exercise RIT))

8.4. Preferential Attachment Graphs 209

Now, with the above estimates we obtain

ne1 _tl/ISJ ne1 _tl/ISJ Cd
N log(1 —log(2mt/d
2o 2. ¢,dPt,d 10g(/pt,d)-i-tz:; dg;n D og(2mt/d)

n—1 Lt1/15J

1 d 2mt

3 Lt1/1oJ
d(logt + log 2m — log d)
1) .
(m+ z:: darna+z ow

Here, the second sum on the left-hand side is the error in approximation incurred
by invoking ([&71]). It is easily seen to be o(n).
Now, the tail sum is

n—1

> d(logt + log 2m — log d) ke > O(logd)
2. dwrnay < X @enury o

t

14— Lt1/15J 41 $1/15

so we have

B L1/1OJ
Z Z Ntdptdlog(l/ptd) logn! + (log2m — A,;,) n+ o(n),

t=1 d=m

where we define A,, as in the statement of Theorem [8.4.2]
Our next goal is now to show that the second sum of (810), which we denote
by E, is o(n). We apply (B72) to upper bound N, 4, which yields

n—1 t t
t d , -2
EL<C E E B —1og (2tm/d) < C E logt E d—=,
t=1 d:Lt1/15J+1 d= Ltl/lsJJrl

where we canceled factors in the numerator and denominator of each term,

and we upper bounded the expression inside the logarithm using the fact that
d> [11/15)]
The inner sum is easily seen to be O(t~1/1%), so that, finally,

n—1
E<(C Ztil/ﬁ logt = o(n),
t=1

210 Chapter 8. Graph and Structure Compression

as desired. We thus end up with
n—1
Z H(0¢11|Gy) = mlogn! +m(log2m — A)n + o(n). (8.73)
t=1
The final step is to estimate the contribution of H(Ui41|vit1,Ge). Let Ce

denote the set of multisets of m elements coming from [t] having no repeated
elements. Then we can write

H (Vg 1|vet1, Gy) = Z P(Gt = G, vp41 = 0)H (V¢g1]ve41 = v, G = G)
G,veCy

+ Z P(Gt = G, Vi1 = U)H(”l\)/t+1|1}t+1 =, Gt = G)
G,’U%Ct
(8.74)

The first sum can be estimated as follows: we trivially upper bound H (vUy41|vi41 =
v, Gy = G) < logm! and take it outside the sum. This gives

Z P(Gt = G, Vt+1 = U)H(5t+1|’l)t+1 =, Gt = G)
Gwely

S 1ogm' Z P(Gt = G,Ut+1 = ’U)
G,eCy
=logm!P(vi41 € Cy).

Now we can upper bound the remaining probability in this expression by not-
ing that with high probability, the maximum degree in G} is O(v/t(logt)?) as
discussed in Frieze and Karoniski (2016: p. 387). Using this fact, we have, for
arbitrarily small fixed € > 0,

P(viy1 € Ct) = P(veq1 € Cr,max. degree of Gy < Ct1/2+€)

+ P(v41 € G, max. degree of Gy > Ct/?7%), (8.75)

The first term is at most

Ct1/2+6) m—1

P(vi41 € Cp,max. degree of Gy < Ct1/2+5) <1- <1 ot
m

—1- (1 _ @(t—l/”a/m))w1
— o1/,

8.4. Preferential Attachment Graphs 211

Now, the second term of (870 is at most
P(vi41 € Cp,max. degree of Gy > Ct1/2+5) < P(max. degree of Gy > Ct1/2+5)
=0(e™")

and is negligible compared to the first term. Thus, the first sum in [§74) is at
most

> P(Gi=G,vi41 = v)H(@palvipa = v, G = G) = Ot~ /*H). (8.76)
G,veCy

We will now show that the second sum in (874), over all multisetsv of size
m with no repeated elements, is (1 4+ o(1)) logm!. This is trivial, since vertex
t + 1 is equally likely to have chosen the elements of v in any order. Hence,

H(V¢q1|vi41 = v, Gy = G) = logml. (8.77)
This implies that
Z P(Gy = G,vi41 = v)H(Upy1|ve41 = v, Gy = G) =logm! - P(veyq ¢ Cy)
GLugCy
=logm!(1 — O(t~1/?*)).
Thus,
H (i1 |vep1, Ge) = logm!(1 + Ot~ Y/,
Summing over all ¢ yields a total contribution of

n—1

- Z H (Ut q1|ve41,Gt) = —nlogm! + o(n). (8.78)

t=1

From (869), 873), and ([BT7F)), we arrive at

H(G,) =mnlogn +m(log2m — 1 — A —logm!)n + o(n), (8.79)
where A is as in the statement of Theorem [R.4.2] [|

8.4.2. Structural Entropy H(S(G))

The next goal is to discuss the structural entropy H(S(G)) for graphs in
PA(n,m). By (BG2) it is sufficient to study the expected values E[log|I'(G)|]
and Ellog |Aut(G)|]. Actually, by combining (862]), Theorems 842 and the
forthcoming Theorems and 847 we arrive at an expression for the struc-
tural entropy.

212 Chapter 8. Graph and Structure Compression

Theorem 8.4.3. Let m > 3 be fized. Consider G ~ PA(n,m). We have
H(S(G)) = (m —1)nlogn + R(n), (8.80)
where R(n) satisfies
Cn < |R(n)| < O(nloglogn)
for some nonzero constant C' = C(m).

The rest of this section is devoted to the proof of Theorem [8.4.3]

Evaluation of T'(G). First we turn our attention to the evaluation of the
number of feasible permutations |[I'(G)|. We start by introducing a directed
version of graph G that we denote as DAG(G). This is the directed multigraph
defined on [n], with an edge from w to the older node v < w for each edge
between v and w in G. We can partition the vertices of DAG(G) into levels
inductively as follows: L; consists of the vertices with in-degree 0 (i.e., with
total degree m). Inductively, L; is the set of vertices incident on edges coming
from vertices in L;_1. Equivalently, a vertex w is an element of some level > j
if and only if there exist vertices v; < --- < v; such with v; > w and the path
vjvj_1 - --viw exists in G. The height of DAG(G) is then defined to be the
number of levels in this partition.

Then it is not too hard to see that any product of permutations that only
permute vertices within levels is a member of I'(G). Thus, we have, with prob-
ability 1,

n@)| = [T 10"

j=1

To continue, we will prove in Lemma below that almost all vertices lie
in low levels of DAG(G). We define X = X (e, k) to be the number of vertices
w > en that are at level > k in DAG(G). In other words, w is counted in X if
there exist vertices v; < v < --- < vy for which w < vy and the path vy - - - viw
exists in DAG(G).

We have the following lemma bounding E[X]:

Lemma 8.4.4. For any € = ¢(n) > 0, there exists k = k(e) for which
E[X (e, k)] < en.
In particular, we can take any k satisfying

k> 15:1—2 In(3/¢). (8.81)

8.4. Preferential Attachment Graphs 213

Proof. Suppose that w > en. We want to upper bound the probability that there
exist vertices vy < --- < vk, with w < vy, such that there is a path vg ---vjw in
G. This probability is upper bounded by

<n> (5m/e)n3/e))" _ e((5m/e) n(3/¢))"

k nk - kk

Now, it is sufficient to show that we can choose k so that this is < e. In fact,
we can choose k > 3+ 22t In(3/e). This completes the proof. |

Now, we define Y = Y (k) to be the number of vertices w > 1 that are at
level > k in DAG(G). The variables X and Y are related by the following
inequalities, which hold with probability 1:

X <Y <X +en.

Now, to get a bound on Y, we apply Markov’s inequality:

E[Y] E[X]+en
on n ’

and provided that [8&T) holds, we can further bound by

P(Y >én) <

<

P(Y > on) <2/)
using Lemma 844l Then, selecting 6 = v/2¢, we have shown that
P(Y > én) <.
This is summarized in the following lemma.

Lemma 8.4.5. For any 6 = §(n) > 0, there exists £ = £(6) for which the
number of vertices that are not in the first £ layers of DAG(G) is at most on,
with high probability. In particular, we can take

15m

We now use Lemma to finish our lower bound on E[log [I'(G)[]. Fix

1

2
In“n

. 0=+2e=0(1/lnn), (= 1257?111(3/(252)).

E =

214 Chapter 8. Graph and Structure Compression

Then, defining A to be the event that the number of vertices in layers > £ is at
most dn = ©(n/logn), we have

Ellog|D(G)|] = Eflog [I(G)][A} (1 - 9).

Among the ¢ layers, there are at most ¢ — 1 that satisfy, say, |L;| < loglogn,
since Zle |L;| > (1 — é)n. So we have the following:

‘
Zlog(|Li|!) = O(¢loglognlogloglogn) + Z(|Ll| log |L;| + O(|L;)),
i=1 icB

where B = {i </{ : |L;] > loglogn}, and we used Stirling’s formula to estimate
the terms ¢ € B.
The sum), 5 O(|Li]) = O((1 — 0)n) = O(n), so it remains to estimate

Z |Li|log | Lil.
ieB

Let N = _,cp|Li|. Then, multiplying and dividing each instance of |L;| by N
in the above expression, it becomes

|Lil |Li] |Ls|
Z|Li|log|Li|:NZW10g ~ +NZW10gN.
i€EB i€B i€B

The first sum is simply —NH(X), where X is a random variable distributed
according to the empirical distribution of the vertices on the levels ¢ € B. Since
|B| < ¢, we have that | — NH(X)| < Nlogf. Thus, the first term in the
above expression is O(N log¢) = O(nloglogn). Meanwhile, the second term is

Nlog N3} icp ‘ﬁ;l = Nlog N =nlogn — O(nloglogn). Thus, in total, we have

Ellog|T'(G)|] = nlogn — O(nloglogn).
Compare this with the trivial upper bound on E[log |I'(G)|]:

Ellog|T'(G)]] < logn! =nlogn — % + O(logn).

This leads to our final estimate for Eflog |T'(G)|].

Theorem 8.4.6. For G ~ PA(n,m) we have the following bounds

nlogn — O(nloglogn) < Ellog|I'(G)|] < nlogn — % +O(logn) (8.82)
n

as n — o0.

8.4. Preferential Attachment Graphs 215

Asymmetry of PA(n,m). Next we have to discuss the asymmetry of
PA(n,m). In what follows we will focus it for m > 3. In Exercise B2 we
ask the reader to prove that PA(n,m) is symmetric for m = 1 and m = 2.

So from now on suppose that m > 3. Let us define first two properties, A
and B of PA(m;n) which are crucial for our argument. Here and below we set
k=k(n)=n? k=kn)=n?, and ¥ = k'(n) = n®" for some small enough
0<A<A’"<A” to be chosen:

(A) PA(m;n) has property 2 if no two vertices t1,t2, where k < t; < t3, are
adjacent to the same m neighbors from the set [t — 1].

(%B) PA(m;n) has property B if the degree of every vertex s < k is unique
in PA(m;n), i.e. for no other vertex s’ of PA(m;n) we have deg, (s) =

deg,, (s').
It is easy to see that
P(|Aut(PA(m;n))| = 1) > P(PA(m;n) € AN B), (8.83)
and so
P(|Aut(PA(m;n))| > 1) < P(PA(m;n) € A) + P(PA(m;n) ¢ B). (3.84)

Indeed, let us suppose that PA(m;n) has both properties 2 and 9B, and o €
Aut(PA(m;n)). Let us assume also that o is not the identity, and let ¢; be
the smallest vertex such that to = o(¢t1) # t;. Note that % implies that for all
s € [k] we have o(s) = s, so that we must have k < ¢; < t2. On the other hand
from 2 it follows that t; and t2 = o(t1) have different neighborhoods in the set
[t1 — 1] which consists of fixed point of o. This contradiction shows that o is the
identity, i.e. |Aut(PA(m;n))| = 1 which proves (83Z3)).

Theorem 8.4.7. Let G ~ PA(m;n) for fited m > 3. Then, with high proba-
bility as n — oo,

|[Aut(G)| = 1.
More precisely, for m > 3,
P(|Aut(G)| > 1) = O(n™?), (8.85)

for some fixed § > 0 and large n.

216 Chapter 8. Graph and Structure Compression

In order to prove Theorem 847 it is enough to show that both probabilities
P(PA(m;n) ¢ A) and P(PA(m;n) ¢ B) tend to 0 polynomially fast as n — oo.

We start with a number of results on the degree sequence of preferential
attachment graphs which we will use in the proofs of Theorem [BZ4.7

First, we denote by deg,(s) the degree of a vertex s < t after time ¢ (i.e.,
after vertex ¢ has made its choices). We also define dg,(s) = deg,(s) — m.

Our first lemma gives a bound on the in-degree of each vertex at any given
time.

Lemma 8.4.8. For any v, w,

=0 (71 51) (- o ()

In particular,

P(deg, (w) = d) < (2m + d)™ exp (—\fcu 0 (j;_w)) .

Proof. We estimate this probability as follows. Below we set t44+1 = mv + 1.

d 4 1 tiy1—1 4
m+1i— m+1
P(dg,(w) = d) < > [—5— II -5%-)
Mmw<t; <ts<-<tg<muvi=1 v j=ti+1 J
d tiy1—1 .
(m+d—1)! y711+0(d/t;) (i)
< _ _
= b)) (m—1)! H ot, P Z 2j
mw<t;<tz<---<tg<muv Jj=t;
d muv
B (m+d—1)! y711+0(d/t;) (1)
- by (m—1)! H ot, P Z 2j
mw<t;<tz<---<tg<muv =1 Jj=ti

IN

(S5 e (-2 5)

i=mw-+1

8.4. Preferential Attachment Graphs 217

Note that
i”: 1L+ 0(d/t;) (U i)
1=mw-+1 2t1 =t; 2‘7
muv
1+0(d/t Z) 1. mo 1
< 5 Ly (L umo()
< D o, P\ Tl O,
i=mw-+1
i 1+ 0(d/t;)
- Pt 2v/mut;
<1-—yw/v+0O(d//vw).
Thus, the assertion follows. [|

The next result gives an upper bound on the probability that two given
vertices are adjacent.

Corollary 8.4.9. Let w < v. Then the probability that v is adjacent to w is
bounded above by 5m/1/(vw)In(3v/w). In particular, each two vertices v, w >
en are adjacent with probability smaller than (5m/e)1n(3/¢e)/n.

Proof. The probability that v and w are adjacent is bounded from above by

> gt P 1(w) = d = m).
d>0

When d < dy = 8m+/v/wln(3v/w) the above sum is clearly smaller than dy/2 =
dm+/1/vwin(3v/w). If d > dy one can use Lemma to estimate this sum
by m+/1/vwIn(3v/w). |

Recall that for ¢ > s, the expectation of deg,(s) is O(1/t/s). We first state
a simple tail bound to the right of this expectation which we asked the reader
to prove in Exercise [R13 (see also Frieze and Karoriski (2016)).

Lemma 8.4.10. Letr <t. Then
P(degy(r) = Ae™(t/r)"/?(Int)*) = O(t™*)
for any constant A > 0 and any t.

We now turn our attention to the left tail which is much harder to establish.
We prove a left tail bound for the random variable deg,(s) whenever s < t, as
captured in the following lemma.

218 Chapter 8. Graph and Structure Compression

Lemma 8.4.11. Let v = O(T*~¢) as T — oo, for some fized ¢ € (0,1/2).
Then there exist some C, D > 0 such that

T (1—¢)?/(24:0.0001) . .
P (degT(v) <C <;>) < e P — =Dt (8.86)

To prove this, we need the following coarser lemma.

Lemma 8.4.12. Let v < T'7¢, for some fivred ¢ > 0. Then there exist con-
stants C, D > 0 independent of € such that

P(deg,p-(v) < CelnT) < T~P¢ (8.87)
for T sufficiently large.

Proof. We observe the graph at exponentially increasing time steps: for some
B>0,let tg = v, t; = (1+ B)to, tr, = (1 + B)Ftg = vT* (so k = 1n€(11n+T5))' Note
that deg, (v) = deg,(v) = m.

Let us upper bound the probability p;4; that no connection to vertex v is
made by any vertex in the subinterval (¢;,%;41]:

m(tjy1—t;) 1 mpt;
pior < (1- 5o (1-z=) s

2mtj+1 2tj+1

which is at most some positive constant p = p(mg), uniform in j, satisfying
p < 1. This follows from the inequality 1 —xz < e~ for all real . Thus, the total
number of connections to vertex v in all subintervals can be stochastically lower
bounded by a binomial random variable with number of trials k = ©(¢InT') and
success probability p(mg): for any d > 0,
k
P(deg,, (v) —m >d) > P(1 >d). (8.89)
—p
In particular, as T — oo, this implies (using the Chernoff bound) that with
probability 1 — 7~P¢, the number of subintervals which contribute at least one

new edge to v is at least CeInT, for some C, so that deg, - (v) > CelnT, which
completes the proof. [|

With the previous lemma in hand, we are now present the proof of our left
tail bound, that is, Lemma 84Tl Similar to the proof of Lemma RZAT2 we
observe the graph at exponentially increasing times: fix a small « > 0, and let

8.4. Preferential Attachment Graphs 219

to =vT%, t; = (1+ a)ito, tr, = (1 + a)*to = T, so that k = 112((?# Denote by
dj = deg; (v) and Aji1 = djy1 — dj, for each j.

In the interval (¢;,%;41], conditioned on the graph up to time ¢;, A;iq is
stochastically lower bounded by a binomially distributed random variable with
parameters (t;11 — t;)m = at;m and pjy1 = m The former parameter is
simply the interval length (in terms of number of vertex choices). The latter
parameter comes from the fact that the degree of v at any point in the interval

is at least d;, and the total degree of the graph is at most 2mt; ;. Le.,

Aj+1 |th tst Binomial (matj,

2tj+1m) : (8.90)
where >4 denotes stochastic domination.

This suggests that we define the bad event B; = [A; < atj_1mp;(1—¢)], for
arbitrary € > 0, and for j € [1,k]. We further define By = [dy < CelnT], for
some constant C' > 0.

Conditioning on all of the B; (for j € {0, ..., k}) failing to hold, we have

PN [de > d; <1 + %)] | ﬁo -B; | =1, (8.91)

i<k

recalling that dj11 = dj + Ajy1 by definition. This in particular implies that
(still under the same conditioning)

(1—8)a
(1-g)a)” In(l + 3r5ay)
dp>dy- ([1+——"—=] =d In(T/tg) ———————— | . .92
k=10 < Jr2(1—1—04) oexp | In(T/to) In(1 4+ «) (8.92)
Taking « close enough to 0, this becomes
1—¢ 1—c
dy > d ——— In(T/t = dy(T/to)2=0-0001 8.93
2 doesp (g IT0)) = do(T)55, (5.99)

as in the statement of the lemma.
Now, it remains to lower bound the probability P(ﬂfzo —B;). We may write
it as

k
Pl(-Bi| = ﬂBOH (—~B,|-By, ..., Bj_1)

E

> (1 -1 [[P(-B;|-Bo, ...,~Bj 1),

Jj=1

220 Chapter 8. Graph and Structure Compression

where the inequality is by Lemma [8.4.12]
Now, by the stochastic domination (890), the conditioning, and the Chernoff
bound, the jth factor of the product is lower bounded as follows:

P(_\Bj|_\Bo, ...,ﬂBj_l) Z P(Bin(atj_lm,pj) Z atj_lmpj(l - {5)|ﬂBQ7 ...,ﬂBj_l)

€2Oéd',1
>1-—). .
>1 exp< 2(1—1—04)) (8.94)

Under the conditioning, d;_; is further lower bounded by
(1-e)a\’ ™! a It
14+ CelnT> (14— — CelnT
(Tt a) S S Te e
(using the fact that ¢ < 1/2), resulting in

a o i1
P(-B;|-Bg,...,mBj_1)>1— — -1 In(T) | .
(]| 05 ? J 1) = exXp 02(1+Oé) (+ 4(1+a)) Il()

(8.95)
This implies
k
P|()-Bj| = P(-By) (8.96)
j=0
b Sa a i1
(8.97)

For convenience, set C' = 02(1+a)/D and D' =1+ Ity - Note that D' > 1.

So the product in (897) can be written (after some simple asymptotic analysis)
as

k
H (1—exp (=*C"- D In(T))) =1 — (T ="',

This implies, after combination with the lower bound on P(—By), that we can
write

P{-B| >1-TP)1-0(-TP)>1-TP" (898)

8.4. Preferential Attachment Graphs 221

for some D" > 0 (depending on «), as claimed. Combining this with (&39T])
yields (893) with the claimed probability bound as follows:

P(dy 2 do(T/to) 75507) > P ﬂk [dw = d (1 * %)]

= m[dj+12dj(1+%ﬂ|ﬁﬁ3j P ﬁﬁBj

j<k

as required. [|

Using Lemma B.Z.T1] we can roughly lower bounding the typical minimum
degree of the collection of vertices before a given time.

Corollary 8.4.13. Let A > 0 be fixed. There exists some small enough 6 > 0
and positive constant D such that

1/2

Pl | degp(w) <C(177%) <TP (8.99)

w<TS
as T — oo.

The next result gives a bound on the probability that early vertices have the
same degree which is need to establish an upper bound on the probability of 8.

Lemma 8.4.14. There exist positive constants A < 1 and ¢ such that the
probability that for some s < s < k? = n?2 we have deg, (s) = deg,(s") is
O(n—°).

Proof. Let s < s’ < k? = n?®, for some A > 0 to be chosen. We first estimate
the probability that deg,,(s) = deg,,(s"). In order to do so we set n’ = n%¢ and
define

deg/(s) = deg,,_,,(s) and deg”(s) = deg,(s) — deg'(s).

222 Chapter 8. Graph and Structure Compression

Note that
P(deg,,(s) = deg,(s")) (8.100)
= 3 P(deg, (s) = deg, (s))|deg'(s) = d.deg/(s') = &', deg” (') = ')
4’4/74/

x P(deg'(s) = d,deg'(s') = d',deg"(s') = d')

=) P(deg"(s) =d' +d — dldeg/(s) = d,deg/(s') = d', deg (s') = &)
d,d/,g/

x P(deg'(s) = d,deg'(s') = d',deg"(s') = d'). (8.101)

Observe that due to Lemma BTl (alternatively, Corollary BZT3) and
Lemma BZ4T0 with probability 1 — O(n~¢), for some appropriate ¢ > 0 and
small enough k = n®, a vertex s € [k?] has degree e between n48% and n®°!
at any time in the interval [n — n’,n|. Importantly, note that if this s holds
with probability 1 — O(n~¢) for a given choice of A, then the same holds for all
smaller choices of A, with the same value for ¢ (this is a consequence of the fact
that the probability bound in Lemma BZTTlis a function of £ and not of v).

Furthermore, one can estimate the random variable deg”(s) conditioned on
deg/(s) = d from above and below by binomial distributed random variables and
use Chernoff bound to show that with probability at least 1 — O(n~¢) we have

dn/
2mn

!’

0.6
- deg”(s)‘ = ‘0.5m_1dn_0'4 - deg”(s)‘ < (2_777;7,) <n"% (8.102)

Thus, in order to estimate P(deg, (s) = deg, (s)), it is enough to bound
o(d,d,d) = P(deg”(s) = +d — dldeg/(5) = d, deg/(5') = ', deg(s) = d)
for n0488 < @ d' < n%5! and
|0.5dn =% /m — (d' + d' — d)| < n®"®.

In order to simplify the notation set £ = d' + d — d. Let us estimate the

probability that deg”(s) = ¢ conditioned on deg'(s_) =d and deg'(s') = d'. The
probability that some vertex v > n—n’ is connected to s by more than one edge
is bounded from above by

Cn,(mdegn(ls))Q < %6 O(n=098) = O(n=0-3)
n—n
so we can omit this case in further analysis. The probability that we connect a
given vertex v > n —n’ with s is given by

mdeg,_,(s) _d+O0(dn") d

2m(v—1) 2(n—0()) 2n (1 + O(n’o"‘))- (8.103)

8.4. Preferential Attachment Graphs 223

Consequently, the probability that deg”(s) = ¢ conditioned on deg’(s) = d and
deg’(s") = d’ is given by

'—¢

(7;) pA(1— p)7 (1 + 0(n*0‘4))€ (1 + O(n’0‘4d/n))n ,

where p = d/2n.
If we additionally condition on the fact that deg”(s’)

= d’ (so that we now
have conditioned on deg’(s) = d,deg(s") = d’, and deg”(s") =

d'), it will result

d
in an extra factor of the order (1 + O(d/Qn)>_ since it means that some d’

vertices already made their choice (and selected s’ as their neighbor). Note
however that, since £,d" = O(dn’ /n) = O(n®!'*) we have

(1+ O(n‘“))e =1+ 0(n *%)

(1 * O(n*0‘4d/n))n/_e — 14 0(n~02)

(1 + 0(@/%))2 =1+ 0(n=048)

Hence, the probability that deg”(s) = ¢ conditioned on deg’(s) = d, deg/(s") =
d’, and deg”(s") = d' is given by

(7})t o= (1+ 002,

and so it is well approximated by the binomial distribution. On the other hand,
the probability that the random variable with binomial distribution with param-
eters n’ and p takes a particular value is bounded from above by O(1/y/n/p).
Thus, for a given pair of vertices s < s’ < k? = n?2 we have

P(deg,(s) = deg,,(s')) = O(v/n/n’d) + O(n"°) = O(n"").

Hence, the probability that such a pair of vertices, s < s’ < k? = n?2 exists
is bounded from above by O(k*n~°), and, as remarked at the beginning of the
proof, k = n® may be chosen small enough so that this yields a bound of the
form O(n=°"), for ¢ > 0. |

2A

Proof of Theorem [8.7.7. Finally, we are ready to prove Theorem B.Z.7]
that is, asymmetry of P(m,n) for m > 3. We recall that we need to prove that
neither property 2 nor properly B defined in previous section hold.

224 Chapter 8. Graph and Structure Compression

Let us study first the property 2. Our task is to estimate from above the
probability that there exist vertices ¢; and to such that k < t; < t3, which select
the same m neighbors (which, of course, belong to [t; — 1]). Thus we conclude

P(PA(m;n) ¢ A) Z P(t1,t2 choose the same neighbors in [t; — 1])

k<t1 <tz

< Z Z P(t1,t2 choose ri,...,7m) . (8.104)

k<t1<te 1<r;<rs...<r,,<t1

The event in the last expression is an intersection of dependent events but, if we
condition on the degrees deg,, (rs) of the chosen vertices 75 at times 1,2, then
the choice events become independent.

Let us define © as an event that for some £ = 1,2, and s = 1,2,...,m,

deg,, (rs) < Vite/rs(Intg)? .
Then from Lemma it follows that

P(PA(m;n) ¢ ©) <t; 1om/4
Consequently, for k < t; < to we get

P(t1,te choose 71, ..., 7)) < P(t1,t2 choose 71, ..., 7| D) + P(—D)

Thus, (8104)) becomes

PPA(min) ¢) < Y (Inty)"™ > 111 \/;_rsm—l

k<t; <tz 1<ri1<re..<r, <t £=1s=

=

m
1
< (t1ta) "™/ (Int —+n !
ORCECTTALID DI | S
k<ti<ta 1<r1<ra...<r;y, <tp s=1
< Z t1—m+1(1nt1)9m +Tl71
k<t1

< Cm)k> ™ k)™ +n~ 1

8.4. Preferential Attachment Graphs 225

where C'(m) is some positive constant. Hence
P(PA(m;n) ¢) < nA(20001=m) (8.105)

which is polynomially decaying since m > 3. We remark that this holds for
arbitrary A > 0. B

Next we show that, with probability close to 1, the k = n®" oldest vertices
of PA(m;n) have unique degrees and so these are fixed points of every automor-
phism. The key ingredient of our argument is Lemma [R.4.14]

To estimate the probability that PA(m;n) ¢ 9B, we reason as follows: from
Lemma RBZ4T4 we know that with probability at least 1 — O(n~°¢), for some
positive constant ¢, the degrees of all vertices smaller than k? = n22" are
pairwise different, for some A” small enough to satisfy Lemma R.Z4.14]

Furthermore, using Corollary B4T3] one can deduce that we can choose
A’ > 0 (playing the role of § in the corollary) small enough so that, with
probability at least 1 — O(n~¢) (for another positive constant ¢ > 0) all vertices
s <k =n" have degrees larger than those of all vertices ¢t > ' (in particular
using the left tail bound to show that vertices < k all have high degree and
the right tail bound to show that vertices > k’?> have low degree with high
probability). Let us be more precise here: we can choose A in Corollary 8413
to be some very small constant (say, 0.00001). This ensures the existence of a
choice for A’ for which

P () deg,(s) > Cn700000D/2 | > e (8.106)

s<k=na’'

for some positive constant c. That is, with probability at least 1 — 77, all
vertices < k have degree larger than Cn%49999 Note that we can bring the
exponent arbitrarily close to 0.5 by finding a small enough A’. We will require,
in fact, that A’ is small enough compared to A”. B

Now, we can use Lemma to show that all vertices r > k"2 = n24”
have low degree with high probability. In particular, in the lemma statement,
we choose t := n and arbitrary r > k2. This results, for arbitrary A > 0, in the
bound

P(U deg,, (r) > Ae™n1 =22 2(Inn)?) < n-O(n~*) = O(n'~*4), (8.107)
r>k'2

which is polynomially decaying if we set A sufficiently large (say, A = 2). Note
that we have used the union bound, followed by Lemma [8.4.T0 This shows
that, with probability at least 1 — n=¢ for some ¢ > 0, all vertices r > k' have

226 Chapter 8. Graph and Structure Compression

degree at most O(n1=22")/2)_ Since A” is some specific (small) constant, we
may choose A" above so small that this is asymptotically smaller than the lower
bound on the degrees of vertices < k. _

Consequently, with probability 1 — O(n~¢) degrees of vertices from [k] are
unique, i.e. PA(m;n) ¢ B.

Finally, Theorem R follows directly from (884) and our estimates for
P(PA(m;n) ¢ 2A) and P(PA(m;n) ¢ B), provided that we choose A < A’. This
completes the proof.

8.4.3. A Structural Compression Algorithm.

We now present an asymptotically optimal algorithm for compression of unla-
beled graphs (see Theorem BZTT below): that is, given an arbitrary labeled
representative G isomorphic to G’ ~ PA(m;n), we construct a code from which
S(G") can be efficiently recovered. The algorithm can be run on general undi-
rected graphs; our optimality guarantee is under the assumption that the input
is generated by PA(m;n).

We state our algorithm and analyze it in the case where the model is pref-
erential attachment with m self-loops on the oldest vertex. Only simple tweaks
are needed to generalize to the case where there are no self-loops (and hence
where one cannot necessarily uniquely identify the oldest vertex).

Our algorithm starts with finding a certain orientation of the edges of the
input graph G to produce a directed, acyclic graph D denoted as DAG(G). In
the case where G is isomorphic to a sample G’ from PA(m;n) (say, G = n(G")),
we have D = 7(DAG(G")), and all vertices have out-degree m.

We accomplish this by a peeling procedure: at each step, consider the set
D, of minimum-degree the graph. We orient the edges incident on those nodes
away from them, and then recurse on the subgraph excluding the nodes in D,,;,.
This procedure terminates precisely when there are no remaining vertices. For a
general input graph G, which might not have arisen by preferential attachment,
there may be edges between vertices in D,,;,. We orient edges from nodes with
larger labels to those with smaller ones. In general, this yields a directed, acyclic
graph (aside from self-loops) D = 7(DAG(G")).

Hence, we are free to apply our structural results (such as Theorem RZTH)
on DAG(G’). We remark that it is not too hard to generalize our algorithm to
tweaks of the model, since the only thing that is required is that the height of
the resulting directed graph be at most O(logn); such an orientating on of the
edges of G exists with high probability (this is granted by Theorem [RZ.TH]).

With this procedure in hand, the structural compression algorithm works as
follows on input G:

8.4. Preferential Attachment Graphs 227

1. Construct the directed version D = DAG(G) by the peeling procedure just
described.

2. Starting from the “bottom” vertex (i.e., the vertex with no out-edges ex-
cept for self-loops), we will do a depth-first search (DFS) of D (following
edges only from their destinations to their sources). To the jth vertex
in this traversal, for j = 1,...,n, we will associate a backtracking number
Bj, which tells us how many steps to backtrack in the DFS process after
visiting the jth node; e.g., when there is at least one in-edge leading to an
unvisited node (so that we do not backtrack), B; = 0.

Up on visiting vertex w from vertex v in the DFS, we do the following:

(a) Denote by k the maximum out-degree of D (which can be determined
in a preprocessing step, and which is equal to m if the input arises
from preferential attachment). Using [log k] bits, encode the out-
degree d,, of w (for preferential attachment, d,, = m, but we encode
it for the sake of generality). Encode the names of the d,, — 1 vertex
choices made by w, excluding one choice to connect to vertex v. Here,
the name of a vertex is the binary expansion of its index in the
DFS, which we can represent using exactly [logn] bits. These can be
determined in a preprocessing step, by doing an initial DF'S to label
the nodes with their names.

(b) We need to know what happens after we visit vertex w: do we go
forward in the search, or is there nowhere left to go along the current
route (i.e., do we need to backtrack)? Suppose w is the jth vertex
to be visited. Then we output an encoding of B;. We need to more
precisely examine how we encode these numbers, since it would be
suboptimal to simply encode them in ©(logn) bits. Lemma
below tells us how to more efficiently perform this encoding, that is,
in O(loglogn) bits (see below).

3. For the purposes of decoding, we store (once, for the entire graph) the
sequence of code words for the code used for the backtracking numbers.
This can be done in at most O(nloglogn) extra bits, at the beginning of
the code. We also store k (the maximum out-degree), which can be done
with at most O(logn) bits.

For the analysis of the algorithms we need the following property on the the
height of DAG(G). (The proof is postponed to Section B44])

Lemma 8.4.15. Consider G, ~ PA(m;n) for fited m > 1. Then, with proba-
bility at least 1 — o(n™1), the height of DAG(G,,) is at most CmInn, for some
absolute positive constant C.

228 Chapter 8. Graph and Structure Compression

With the help of Lemma [B.4.T5 we obtain the following complexity bound.

Lemma 8.4.16. The backtracking numbers B, ..., B, can be encoded using a
total of O(nloglogn) bits on average.

Proof. Consider a random variable X whose distribution is given by the empirical
distribution of the collection B = { B4y, ..., B, }. That is,

{j : Bj ==}

Px(l'): n

(8.108)
for each x. Note that this empirical distribution is itself a random variable.
We will show that E[n - H(X)] = O(nloglogn). Denote by W the event
that the number of levels in D is upper bounded by O(logn) (as considered
in Lemma [RZTH). Under conditioning on this event, X can take on at most
O(logn) values, which implies that H(X) = O(loglogn). Then we have
E[H(X)] < E[H(X)[W]+ (1 - P(W))E[H (X)|-W]

<E[H(X)W]+ (1—-P(W))logn = O(loglogn),
where we have used Lemma BZ.TH to upper bound 1 — P(W).

We can thus construct a prefix code (once, for the entire graph) for the
observed values of B;, whose empirical average length is given by

> Px(z) <HX)+1,
x : 3j,Bj=x

where ¢, denotes the length of the code word for . Now, recalling the definition
of Px(x), this implies

E > Ll{j i Bj==a}|| <nE[H(X)]+n=0(nloglogn).
x : 3j,Bj=z

This completes the proof. [|

It is easy to show that the code for S(G) is uniquely decodable. Furthermore,
its expected length is at most (m — 1)nlogn + O(nloglogn), which recovers the
first term of the structural entropy and bounds the second. Construction of the
Huffman code for the backtracking numbers takes time O(nlogn), and each step
of the DFS takes time at most O(mlogn), so the running time is O(mnlogn).

We have thus proved the following:

8.4. Preferential Attachment Graphs 229

Theorem 8.4.17. The algorithm given above, on input a graph G isomor-
phic to G' ~ PA(m;n), runs in time O(mnlogn) and outputs a code of ex-
pected length (m — 1)nlogn + O(nloglogn) from which we can recover S(G)
in time O(mnlogn). If self-loops are removed from G' and G (so that the first
vertex is hard to identify), then the same code length can be achieved in time
O(mn?logn).

8.4.4. Proof Lemma [8.4.T5]

We start with the following, surprising at first sight, observation.

Fact 8.4.18. Let w < v. Then the degree deg,(w) as well as the probability
that v is adjacent to w does not depend on the structure of the graph induced by
the first w vertices.

Let pim(n, k) denote the probability that DAG(G,,) contains a path of length
k. From Fact and Corollary R:4.9] it follows that

k k. 5m In(3v; /vi—1)
P (1, k) < Z HP(vFl — ;) < Z H e

vo<v1 < <V 1=1 vo<v1 << 1=1
n—k n—k—i
5m In(3v; /v;—
<y L H T 5mIn(3vi/vi-1) (8.109)
U4
vo=1 i=1v;=v;_1+1
In order to estimate the above sum we split all the vertices vq, ..., vx of the path

P into several classes. Namely we say that a vertex v; is of type ¢t in P if ¢ is
the smallest natural number such that v;/v;—1 < (1 + a)?, where a is a small
constant to be chosen later, i.e. t = [In(v;/v;—1)/In(1 + a)]. Then, given v;_1,
the contribution of terms related to v; can be estimated from above by

vilﬁi"a) 5mIn(3v; /vi—1)

— <5mn[(1+a)]In[3(1+a)] <at, (8.110)

v;=v;—1(1+a)t-1

where, to simplify notation, we put o = 5m1In(1+a)In(3(1+a)). Let s; denote
the number of vertices of type ¢ in P. Note that [], [(1+a)71] * <n and

2Inn
E < E P a— .
tSt 2 St =T (1+a) (8].].].)

t>2 t>2

230 Chapter 8. Graph and Structure Compression

Let us set J = 2Ilnn/In(l + a). Thus, we arrive at the following estimate for
m (1, k)

=3 (e (5 Y

vo=1 ZtsttSJ 82,83, ..y 152

k k—

< 3\/5()asl Z (o1) exp Z st In(at)
S1 52,83, ..., Sk

>, set<J t>2

EN o oo eat(k — 51)

< 3vn a®12* max exp(Zsﬂn())
S1 > set<J

t>2
In order to estimate the expression

o(J,8) = Zﬁ?ﬁJexp (Z s¢1n (eatS))

t>2

where S = Y ,~5 5, we split the set of all ¢’s into two parts. Thus, let
Ty = {t : In(eatS/s;) <t} and To = {2,3,...,k} \ T1 . Then, clearly,

eatS

max e g sln())< max e (E st)<e J).

ZtsttX<J Xp(t St ZtsttX<J P ¢ - Xp()
teT teT

Observe that for every ¢ € Ty we have In(eSat/s;) >t and so sy < eate™tS. Tt
is easy to check that then s; In (e“ts) <6-27S, so

eatS
max ex s¢ln ()) < max ex (65 2”) < exp(35) < exp(3J
>y sit<J P (tEZTQ ' St S set<J P EZTQ p) p()

Thus, o(J,S) < exp(4J), and, since s1 =k —S >k —J,

k)
m(n, k) < 3\/5(8)a“ZQ‘IU(J, kE—s1) < 3vn2ka* 7 exp(6.)
1
<3exp(nn+k+ (k—J)lna+6J).

Since for 0 < a < 1 we have a/2 < In(1 + a) < a, if we set a = 1/(310m),
then o < 1/61 and Ina < —4. Now let us recall that J = 2Inn/In(1 + a) and
k =5000mInn > 4J. Thus,

pm(n, k) <3exp(lnn+k+ (k—J)lna+6J)
< 3exp(lnn+k — 3k + 3k/2) = exp(lnn — k/2) = o(n).

It is simple to show that with high probability the height is also lower
bounded by Q(logn). Thus, the height is ©(logn) with high probability.

8.5. Exercises 231

8.5.

8.1

8.2
8.3

8.4

8.5

8.6
8.7

8.8

8.9

Exercises

Show that the structure of a graph can be uniquely reconstructed from
the lists By and By that are generated by the algorithm Szip.

Prove the algorithm SzIP runs in O(n?).

Prove the large deviation result (88) for Sz1P (see Choi and Szpankowski
(2012)).

Show that the function

satisfies the assumptions of Theorem [C41] that is, a(D) = O(|z|*)
uniformly as |z| — oo and |arg(z)| < 6, where 3 > 0 and 0 < 0 < %,
and D(z)e* = O(e®?!) uniformly as |z| — oo and 6 < |arg(z)| < m,
where o < 1.

Show that preferential attachment graphs PA(m,n) are invariant under
isomorphism, that is, every distinct relabeling of a graph has the same
probability (see Lemma [B4.T]).

Prove by induction that (820) holds.

Design an efficient version of algorithm Szip that runs in O(n + €) time
where n is the number of nodes and e is the number of edges.

Prove that the numbers b(n, c0) can be explicitly represented by

b(n, 00) = Z(—N(Z) % (8.112)
/=

. P —q

Furthermore show that the Poisson transform E(z) can be represented
by B29)) (see also Jacquet and Szpankowski (2015)).

Consider a G € PA(m,n) graph. Prove that the maximum degree is in
G is O(v/t) with high probability (see Frieze and Karoniski (2016)).
Prove the following property regarding the average Wt,d number of ver-
tices of degree d at time t for PA(n,m) graphs: we have, for ¢ > 1 and
1 < d <t and for any fixed m > 1,

2m(m + 1)t

Nt = @ a+)

<C,

for some fixed C' = C(m) > 0.

232 Chapter 8. Graph and Structure Compression

8.11 Prove the following property regarding the average Nt,d number of ver-
tices of degree d at time t for PA(n,m) graphs: we have, for t — oo,
d > Y15 and fixed m > 1,

W =0 (qrars) =0 5)

8.12 Prove that a preferential or uniform attachment graph is symmetric for
m =1 and m = 2. More precisely, prove the following theorem.

Theorem 8.5.1 (Symmetry behavior for m =1,2). Let G ~ PA(n,m).
Form=1
P(JAut(@)] > Q(n)) — 1.

Form =2
P(|[Aut(G)| > 1) > c.

for some constant ¢ > 0.

8.13 Prove Lemma [8.4.10]
8.14 Prove Fact [8.4.18

8.15 Consider the duplication-divergence model as discussed in Solé, Pastor-
Satorras, Smith, and Kepler (2002), Pastor-Satorras, Smith, and Solé
(2003). In this mode a new node first selects randomly and uniformly
an existing node and then connects to all its neighbors with probability
p. In addition, if the new node is the n-th node, then it connects to
nodes not selected in phase one with probability r/n.
For such a model, find the average degree of a node. Then derive a large
deviations (see Frieze, Turowski, and Szpankowski (2020)).

8.16 For the duplication-divergence model discussed in Exercise B.I5lfind the
expected size of the automorphism group This seems to be an open
problem.

8.17 Consider the following small-world-type model, similar to the one intro-
duced in Watts and Strogatz (1998), Kleinberg (2000). It is defined as
follows. Consider the vertex set V = {1,2,...,n} arranged on the circle,
with each vertex connected by an edge to its two nearest neighbors. For

each one of the remaining (g) —n pairs of vertices (u, v), we add an edge

between them with probability p(|u — v|), where |u — v| is the discrete

distance on the circle and p, (k) = ¢, k™%, for some a € (0,1) and with,

st -a ()

Bibliographical notes 233

where {b,,} is a nondecreasing, unbounded sequence of positive real num-
bers, with b, = o(n'~%), as n — oco.
Prove that such a model is asymmetric as long as

— n
1may, and — — 00, as n — 0o

b, =
o(n Inn

(see Kontoyiannis, Lim, Papakonstantinopoulou, and Szpankowski (2021)).

Bibliographical notes

There has been some work on compression of labeled graph and tree models
in recent years in both information theory and computer science communities
Zhang et al. (2014), Asadi, Abbe, and Verdd (2017), Abbe (2016), Choi and Sz-
pankowski (2012), Delgosha and Anantharam (2017), Adler and Mitzenmacher
(2001). In 1990, Naor Naor (1990) proposed an efficiently computable represen-
tation for unlabeled graphs (see Turan (1984)). that is optimal up to the first
two leading terms of the entropy when all unlabeled graphs are equally likely.
Naor’s result is asymptotically a special case of Choi and Szpankowski (2012),
where general Erdés-Rényi graphs were analyzed. In fact, Choi and Szpankowski
(2012) seems to be the first article that dealt with structural compression and
where graph automorphism was introduced in the context of graph compression.
This was further extended to the compression of preferential attachment graphs
in Luczak, Magner, and Szpankowski (2019b). Furthermore, in Mohri, Riley,
and Suresh (2015) an automata approach was used to design an optimal graph
compression scheme. Recently, the authors of Delgosha and Anantharam (2017,
2018, 2019) proposed a general universal scheme for lossless graph compression.

There also have been some heuristic methods for real-world graphs com-
pression including grammar-based compression for some data structure, see
Chierichetti, Kumar, Lattanzi, Mitzenmacher, Panconesi, and Raghavan (2009),
Maneth and Peternek (2018), Peshkin (2007). Peshkin Peshkin (2007) proposed
an algorithm for a graphical extension of the one-dimensional SEQUITUR com-
pression method. However, SEQUITUR is known not to be asymptotically op-
timal. A comprehensive survey of lossless graph compression algorithms can be
found in Besta and Hoefler (2018).

It should be mentioned that there are other graph models such as the small-
world model Watts and Strogatz (1998), Kleinberg (2000) and the duplication-
divergence model Solé et al. (2002), Pastor-Satorras et al. (2003) that did not
yet meet with rigorous analysis, at least from the symmetry point of view. Some
recent results in this context can be found in Turowski and Szpankowski (2019),
Frieze et al. (2020), Frieze, Turowski, and Szpankowski (2021), Hermann and

234 Graph and Structure Compression

Pfaffelhuber (2016), Jordan (2018) (duplication-divergence model) and Kon-
toylannis et al. (2021) (small-world model). More on graph dynamic models
can be read in Frieze and Karorniski (2016), van der Hofstad (2016).

Group automorphism for random graphs were discussed in several papers.
Asymmetry of (unlabelled) Erdés-Rényi graph was first proved in Bollobéas
(1982), and then strengthen in Kim, Sudakov, and Vu (2002b). Asymmetry
of preferential attachment graphs were discussed and solved in Magner, Janson,
Kollias, and Szpankowski (2014), Luczak, Magner, and Szpankowski (2019a).
Asymmetry of the small-word model was proved recently in Kontoyiannis et al.
2021 (see also Exercise [RI7T). However, symmetry behavior for the duplication-
divergence model is unknown.

This chapter is mostly based on Choi and Szpankowski (2012) and Luczak
et al. (2019a).

Part 11

UNIVERSAL CODES

CHAPTER 9

Minimax Redundancy and Regret

In the second part of this book, we study universal coding, modeling, and learn-
ing. Universal coding and universal modeling are two driving forces of informa-
tion theory, model selection, and statistical inference. In universal coding one
is to construct a code for data sequences generated by an unknown source such
that, as the length of the sequence increases, the average code length approaches
the entropy of whatever processes in the family has generated the data. Univer-
sal codes are often characterized by the average minimaz redundancy and regret
which are the excess over the best code from a class of decodable codes for the
worst process in the family. In universal learning, however, we rather search for
an unknown distribution so that one ignores integer nature of universal coding
leading to some simplifications. In this chapter we define precisely minimax
redundancy and discuss some of its basic properties.

As pointed out by Rissanen (1996), over years universal coding evolved into
universal modeling where the purpose is no longer restricted to just coding but
rather to finding optimal models. The central question of interest in universal
modeling is to achieve optimality for individual sequences. The burning question
is how to measure it. The worst case minimax redundancy and regret became
handy since they measure the worst case excess of the best code maximized
over the processes in the family. Rissanen also admitted that the redundancy
restricted to the first term cannot distinguish between codes over large alphabets
and that differ by a constant, however large.

In recent years regrets become more popular in machine learning; in partic-
ular in online learning. Here, however, instead of code length we must learn
model parameters from examples whose outcomes are already known to us. For
example, in online setup the training algorithm consumes data in rounds and
the prediction algorithm incurs some loss that we try to estimate. The regret in
online algorithm is defined as the excess loss it incurs over some value of a con-
stant comparator that is used for prediction for the complete sequence. Often,
one does the comparison through the so called regression function.

238 Chapter 9. Minimax Redundancy and Regret

The goal of this part of the book is to derive precise results for redundancy
and regrets, whether in data compression or gambling or machine learning.

9.1. Minimax Redundancy and Regret

Before we proceed, let us recall some notation from Chapter [l A code C,, :
A™ — {0,1}* is defined as an injective mapping from the set A™ of all sequences
of length n over the finite alphabet A of size m = |A| to the set {0,1}* of all
binary sequences. A probabilistic source P is a probability measure on A*. For
every n this source induces a probability measure on A™ by setting

P@a")=P({ye A" :y" =a"}),

where z" € A™. We write X" to denote a random variable representing a
message of length n according to the probability measure P, that is P(X™ =
a™) = P(a™). For a given code C,,, we let L(Cy,z™) be the code length for z™.

Also, recall that the pointwise redundancy Ry, (Cy, P;x™) and the average
redundancy R, (C,,, P) for a given source P are defined as

R (Cn, Pia™) = L(Cp,2™) + log P(z"),
R, (Cy, P) = E[R,(C,, P; X™)] = E[L(Cp, X™)] — H,(P)

= ZP(x”) [L(Ch,x™) + log P(2")]

where H,(P) = —Elog P(X™) denotes the entropy of the probability distribu-
tion on the source sequences of length n. As pointed out above, the excess of
the code length for individual sequences is a central issue for universal modeling,
therefore we define the mazimal or worst case redundancy as

R} (C. P) = max[L(Cy ") + log P(a")].
As observed in Chapter [[] while the pointwise redundancy can be negative, the
maximal and the average redundancies cannot, by Kraft’s inequality and Shan-
non’s source coding theorem, respectively.

In practice, one can only hope to have some knowledge about a family of
sources S that generates real data. For example, we may often be able to justify
restricting our attention to memoryless sources (see Chapter [I0) or Markov
sources (see Chapter [[T]). Sometimes, however, we must consider a larger class
of non-finitely parameterized sources of unbounded memory such as renewal
sources (see Chapter [[2)).

9.1. Minimax Redundancy and Regret 239

In several instances we will represent the family of sources S by a parametriza-
tion S = {P}yco, for example, m-ary memoryless sources can be parametrized
by 0= (90, ceey Gm,l) = (po, ce ,pmfl) with

0={0:0,>00<i<m-—1), g+ +0m_1 =1}

and
m—1 m—1
_ ki __ ki
~Te =TIt
i=0 =0

where k; is the number of symbol i € A occurring in z".
We define the average minimax redundancy R, (S) and the worst case (max-
imal) minimax redundancy R} (S) for family S as follows

Rn(5) = poin, sup <Z P(z") [L(Cp,a™) + log P(fﬂ")]) , (9.1)

R (S) = cr'menc Isjlég II;:E}:X[(Cp,z™) +log P(2™)], (9.2)

where C denotes the set of all codes satisfying the Kraft inequality. In words,
we search for the best code for the worst source on average and for individual
sequences.

We should also point out that there are other measures of optimality for

coding, learning, and prediction that are used in universal modeling and coding.
We refer here to minimax regret functions defined as follows:

7 (S) = min su P(z™)[L(Cp,x") + log sup P(a")], 9.3

n(8) = m ECPEI;Z wsa”) +log sup P(a")] (9.3)

77 (S) = min max[L(Cy,z™) + log sup P(z")], (9.4)
cp,ec zn PeS

and to the maxmin regret

r,(8) = glégglencZP(fv J[E(Cay2") +log sup Pla")] (9.5)

We call 7,,(S) the average minimax regret, 7} (S) the worst case (maximal)
minimax regret and r,,(S) the maxmin regret. Clearly, R, (S) < 7,(S), and, as
easy to establish,

r(S) = R,(S).

Finally, we may link universal modeling and learning with game theory and
statistics by ignoring the integer nature for the coding interpretations: Suppose
nature picks up a distribution P from § and we try to find a distribution @ as

240 Chapter 9. Minimax Redundancy and Regret

the best guess for P. We may then reformulate the above redundancy (average
and maximal) as well as regrets so that L(Cy,,2™) is replaced by its continuous
approximation, namely, log 1/Q(z™). We denote these corresponding continuous
redundancy and regret by placing a tilde over R or r. For example,]:’Ln (S)
and E’;L (S) denote continuous approximations of the average and the worst case
minimax redundancies. They can be explicitly defined as

R,(S) = inf sup (Z P(z™)log PW)) = inf sup D.(P||Q), (9.6)

Q pes Q(z™) PeS

R(S) = inf sup max|log (P(a")/Q(=")), (9.7)

where D,,(P||Q) is the Kullback divergence between @ and P. The average
minimax regret is defined in a similar manner, namely,

™ (S) = igf Isgg; <Z P(z"™)log Sllp]z;f#) .

Clearly, the continuous approximation of the redundancy and regrets are within
one bit from the corresponding redundancy and regrets, that is,

Tn

Rn(S) < Ru(8) < Ru(S) +1, (9.8)
Tn(S) < Fn(S) < Tn(S) + 1. (9.9)

Indeed, it suffices to consider the Shannon code for justifying these bounds.

9.2. Operational Expressions for Minimax Redundancy

In this section we derive some useful representation for the average minimax R,,
and the maximal minimax R} .

9.2.1. Average Minimax Redundancy

The average minimax redundancy is almost entirely considered within the frame-
work of Bayes rule and parameterized family of distributions. Let now S =
{Pe}ge@ be a parametrization for the source probability distributions. The
average minimax problem is then reformulated as

én(@) = inf sup Dn(P9||Q),
Q geco

where we restrict P? to sequences of length n. Note that we use the (simplified)
notation R, (©) instead of R,({P%}yco).

9.2. Operational Expressions for Minimax Redundancy 241

In the Bayesian framework, one assumes also a probability distribution w
on © so that the parameter § € © is generated according to this probability
distribution. For fixed n the mixture M (2™) is defined as

MY (z™) = / P? (2™)w(df)
e
and is again a probability distribution on sequences of length n. Observe now

i 0 = in 0 w
inf B (D (P11Q)) = ng /@ D, (P?(|Q)duw(0)

= inf <ZM”) log (1) / ZPelogPde(9)>

Tn Tn

@ ZM“’)log — Mw o) / ZPG log P?dw(6)

Tmn Tmn

= [DuP|Edule)
= 1(6;X"),

where E,, denotes the expectation with respect to w. The equality (A) follows
from the fact

mmZP 1og— ZP log (9.10)

and I(©,X™) is the mutual information between the parameter space and the
source output.

Lemma 9.2.1. The following holds

R, (0) = inf sup D,,(P?||Q) = sup inf E,[D,,(P?||Q)] (9.11)
Q seco w @
= sup/D(PBHM}l”)dw(G) =C(0,X"), (9.12)

that is, the continuous approrimation of the average minimax redundancy is
equal to the channel capacity C(0©,X) between the parameter space and source
output.

Proof. As pointed out by Gallager (1968) (see Exercise [0.2) the minimax theo-
rem of game theory entitles us to conclude (@I2) by replacing the minimax by
maxmin. |

242 Chapter 9. Minimax Redundancy and Regret

In view of the above, the average minimax redundancy problem is reduced
to finding the optimal prior distribution w*(6) for the Bayes rule. This was
accomplished by Bernardo (1979) who proved that asymptotically w*(#) can be
replaced by

~ det I(0)
w(f) = ——=—o, 9.13
(©) [/detI(z)dx (9-13)
where I(0) is the Fisher information matrix
2
{2250
00,0 0,0,
For example, for the binary memoryless source with one parameter
) pup— 7 (0) L (9.14)
= — w = .
0(1—0) /(1 = 0)

The above distribution, called also Jeffrey’s prior, is a special case of the Dirich-
let distribution that will find more applications in this book. To recall, for
nonnegative integer m > 1 the Dirichlet’s distribution is defined by

1 m
Di : == -1 9.15
lI‘(Zl, y Im; O, am) B(Oél,...,Oém) gzz ’ ()
where Y% x; =1 and

T(ag) - T(am)

B(ay,...,on) = ————2

(1 nl) F(Oél +am)
is the beta function. For notational convenience we write & = (aq, ... auy,) and

x = (x1,...2m) with 37", 2; = 1. Finally, for

SCO={(b1,....0m): > 0;=1}

we set 1
Dir(S;a) = —— / x® Ldx.
B(a) Js
Notice that Dir(0, a) = 1.
We finally address the optimality of w* defined in ([@I3]). As discussed, this
may be only asymptotic optimality with respect to the leading term. It was
Clarke and Barron (1990) who showed that under proper regularity conditions

9.2. Operational Expressions for Minimax Redundancy 243

such as the finiteness of the determinant of Fisher information and S being a
compact subset of the interior of © = {(po, ..., Pm) : pj > 0,po+- - -+DPm—1 = 1},
the following is true

lim (/ D(P9|Mg*)dw*(9)—m—_11ogl)
S

n—00 2 2me
o -1
= lim (/ D(P?| M™")dw* (0) — — log i) zlog/ V/det 1(0) db.
n—00 S 2 2me S

This discussion leads us to the following notation of the asymptotic average
minimaz redundancy

frasmp(s) = /S D(P* || M)di* (6).

We will use it in the next chapter to provide precise asymptotics for I?Effymp (S),
including the case when & C O discussed in Section[T0.3] (see also Section TO.T3).

9.2.2. Maximal Minimax

We now present a new characterization of the maximal minimax. Let us define

D,, = D,(S) := Z ;légp(xn)

Tn

and
sup P(z™)

Q*(z") := PESTn. (9.16)

The distribution Q* is called the mazimum likelihood distribution, while log D,,(S)
is also know as the complexity of S.

We start with a simple result that decomposes the maximal minimax re-
dundancy into two terms: the first one depends only on the underlying class of
processes while the second one involves coding.

Lemma 9.2.2. Let S be a set of probability distributions P on A™ and let Q*
be the mazimum likelihood distribution defined by (916). Then
R}(S) = R (Q") + R}(S) = R;,(Q) + log Du(S) (9-17)
R:(S) = log Dy, (S) (9.18)
where
R} (Q") = min max [L(Cp,z™) + log Q" (z™)]
CneC an

is the worst case redundancy of a single source S = {Q*}.

244 Chapter 9. Minimax Redundancy and Regret

Proof. By definition and noting that max and sup commute, we have

R} (S) = min sup max(L(Cy,,z") + log P(z"))
Cr€C pcs "

= min max (L(Cn,x”) + sup log P(ac"))

Cp,eC z PeS
= min max (L(C,, z") + log Q" (z") + log Dy,)
CpeC z™

= R} (Q*) +1log D,

which proves the lemma. If we assume that L(Cy,z") = —log Q(2") and set

Q* = Q, we establish (@.IT]). |

First, we observe that R} (Q*) is the maximal redundancy for the known
distribution Q*. We studied it in Section of Chapter [2] where we found in
Theorem 23] a precise expression for a given source P. However, the max-
imal likelihood distribution Q* needs extra care. We will come back to it in
Chapter _

In passing we observe an interesting property of the continuous part R (S)
of the maximal minimax redundancy, namely that it is a non-decreasing function
of n. In this context we assume that S is a set of probability measures on infinite
sequences. Of course this induces naturally probability distributions for finite
sequences by considering them as prefixes of infinite ones. Indeed, we have

R:(S) = log <Z sup P(:E"))

— Pes

= log <Z sup Z ?(z"z))

on PES zeA

< log (Z sup 15(%”“)) =R, 14(S),

g+l Pes

that is, R:(S) < R%.1(S).

9.3. Average and Maximal Minimax Relationships

In this section, we aim at finding a relationships between maximal and aver-
age redundancy and regrets. For example, we would like to know under what
conditions the following may hold

R:(S) ~ Ry (S) ~Tn(8S) ~1,(S). (9.19)

9.3. Average and Maximal Minimax Relationships 245

In the first attempt to answer this question, we restrict the class of sources to
those for which the maximum likelihood distribution @* belongs to a convex hull
of S, where the convex hull of § is just the set of all finite convex combinations
of elements of S. (We assume no topology on the set of probability measures.)
We formulate it as the following postulate.

(H) The maximum likelihood distribution Q* can be represented as a linear
combination of distributions from &, that is, for P, Ps,...,Py €S

N
Q" = Zaipi (9:20)
i=1

where o; > 0 and Z _, o = 1. In other words, @* can be represented as
a mixture of the distributions of S.

However, hypothesis (H) might be difficult, if at all, to verify. Therefore, we
often relax and adopt another weaker hypothesis:

(H1) There exists a probability distribution @ in the convex hull of S such that

max |log — <C (9.21)

where C' is a constant.

In Section 0.3.1] we prove the following crucial lemma that will allow us to
establish some relationships between the maximal redundancy and the average
redundancy and regrets.

Lemma 9.3.1. Let S be a subset of probability distributions P on A"™. Then
for all probability distributions Q contained in the conver hull of S we have

1nf sup (Z Pz i;) =0. (9.22)

Q pes

Now we are equipped with all the necessary tools to state and prove our first
main result of this section. We recall that D,(S) = " . suppcs P(z™) and

R;(S) = log Dy (S).

Theorem 9.3.2. (i) [UPPER BOUND] For any set of probability distributions
S on A™, we have
sup P(a")
= = Pes
< - —_— | . .
Ry (8) < I, (S) — jnf. > P(a")log 2D (9.23)

xn

246 Chapter 9. Minimax Redundancy and Regret

(ii) [LowER BOUND] If hypothesis (H) holds, that is, if Q* is contained in the
convex hull of S, then

sup P(z™)
R.(S) > R:(S) - sup S P)log% . (9.24)

"

If (H1) holds, then one finds the following weaker lower bound

o s P
R,.(S)>R;(S)-C— 18312)5‘ ZP()1ogﬁ . (9.25)

=
Proof. For part (i) we just observe trivially
R,.(S) = inf sup D(P||Q) < sup D(P||Q*)
Q pes Pes
sup P(z™)
= log Du(S) — jnf. ZP Pesﬁ
x

For the lower bound (ii) we need to use Lemma @311 We have

R, (S) = inf sup D(P||Q)
Q Pes
Q*(z")
= log D,,(S) + inf su P(x
8 Dn(8) ' PGF;(Z log Q(x™)
P)
_ Z P log‘ W)
Lemma [9.3. 1] 1 D Z P 1 Isglél?s- P(xn)
o — su og——
& pes | 4 &P

provided (H) holds.
The proof of (@25) (under condition (H1)) is a simple extension of the proof
of (@24). In fact, the maximal deviation can be bounded by
* (N
sup ZP(I”)log Q~ (2") <C
PeS |“m Q(zm)

and this completes the proof. [|

9.3. Average and Maximal Minimax Relationships 247

In view of the above we notice that ([@.19) holds if

sup P(z")

= su (0] L = o(10, . .
¢n(8) i= sup > P(z")log P (log Dy (S)) (9.26)

xn

We will verify the above conditions for memoryless source in Section [1.3.2 they
also hold for Markovian sources, see Chapter [[1]

Interestingly we have a stronger result for the minimax regret 7(S) that
basically shows that the conjecture is true under postulate (H1).

Theorem 9.3.3. Let hypothesis (H) hold. Then
7 (S) =log D, (S) = R%(S). (9.27)

Under (H1) we have _ B
R(S) = C <7u(S) < R(S)
where C' is the constant in (T21).

Proof. We start with an upper bound that actually holds without assumption
(H). We have for any S

T (S) = log Dp(S) + 1nf sup <ZP) log Q*(x”))

Pes Q(z")
Q (")
<log D,(S) + 21;1; <Z P(z™)log Q*(m"))

= log D,,(S).

For the lower bound we need to use Lemma We proceed as follows

7 = inf su ™) lo Q (")
7n(S) = log Dy (S) + preg (Z P(a")log Q")) '

If (H) holds, then the second term is zero. Otherwise, under (H1) we can bound
it by a constant C. This proves the theorem. [|

Finally, for the maxmin regret r, (S) we can also establish a precise result.

248 Chapter 9. Minimax Redundancy and Regret

Theorem 9.3.4. Let Q* be defined in (@10) and let Ef(P) be the average
minimazx redundancy of the Huffman code for the distribution P. Then

£,(8) = log Du(S) + sup (R, (P) = D(PI|Q")

= log Da(8) — jnf D(P]|Q") +O(1)

pPeS

IfQ* €S, thenr,(S) =log D, (S) + O(1) = R:(S) + O(1).

Proof. The calculations are straightforward:

r,,(S) = sup mm ZP L(C,,z") +log sup P(z™)]
PeSCn€ = pPes
= log D,,(S) + sup min Z P(z™)[L(Cp,2") + log Q" (™))
pes Cn
= log Dy, (S)
+ sup minz P(z™)[L(Cp,z") + log Q*(z™) + log P(z") — log P(z™)]
Pes Cn =

= log < Z sup P(:E")) + sup minz P(z™)[L(Cyp,z™) + log P(a™)]

encan PES pPes Cn =
P(z™)
_ ZP)log ((m"))
= log D, (8) + sup (R, (P) — D(P||Q"))
PeS
= log D,(8) — inf D(PI|Q") +O(1)

g P8
= sup ZP(z)logi) +0(1)

Pes P(zn

which proves the desired result. [|
In view of the above results, we just proved that under (H1)
n(S) = R, (S) + O(1).
Furthermore, we have
,(S) = en(S)

> R3(S) — RulS) + O(1).
If Q* € S, then r,(S) = R:(S) + O(1).

9.3. Average and Maximal Minimax Relationships 249

9.3.1. Proof of Lemma [09.3.7]

Suppose that Py, ..., Py are probability distributions on a finite set and @ isa
convex convex combination of Py,..., Py, i.e.

N
@ = Z o; P
i=1
with «; > 0 and Ziv=1 a; = 1. We first show that for every Q # @

N N
>_aiD(P]|Q) < Y a:D(BIQ). (9.28)

i=1
By using the definition of D(P||Q) it immediately follows that

N

N N
ZD(RIIQ) =Y D(RIQ)+ NDQIIQ) >y D(FQ).

1= =1

Hence, ([@28) holds for «; of the form «; = 1/N.

It is clear that the case of rational numbers a; = M;/M (with a common
denominator M) can be reduced to this case. We just have to set 8; = 1/M for
1§MandQ]:RforM1++MZ,1+1§]§M1++MZ Then

N M
>_aD(PIQ) =Y A D(@Q11Q).

Jj=1

and the lemma is proved since «; real can be viewed as a limit of the rational
case.

We now prove ([@22)). Obviously we have

. Q(z)
inf sup P(x)log=——+=1 <0
Q pPes <g((=) Q(z)
(We only have to choose Q = @)
The converse inequality can be proved indirectly. Let) be contained in the

convex hull of S, i.e. there are finitely many P,..., Py € S such that @ is
convex combination of the form

250 Chapter 9. Minimax Redundancy and Regret

Suppose that there exists @ such that for all P

3™ Pl toz Q&) - p(pyQ) - D(PIG) <0

zeX I)

Then we also have
N N ~
> wD(P]|Q) < Y i D(P]|Q)
i=1 i=1

which is of course a contradiction to (@.28). Thus

1nfsup (ZP g) >0,

PeS

and this proves the lemma. [|

9.3.2. Hypothesis (H1) for Memoryless Sources

In what follows we show that the boundedness of ¢, (S) as well as the condition
(H1) are satisfied for memoryless sources. For more on memoryless sources, see
Chapter

Lemma 9.3.5. Suppose that m > 2. Then we have uniformly for all pg, . .., pm—1
>0 withpy+ - +pm_1=1and alln >1

ko
n

ko [km—1

km—1
kot tkm—1=n

Py Pt

Proof. For notational convenience we only consider the binary case m = 2, where
we set pg = p and p; = 1 — p. (The general case uses precisely the same ideas.)
By using the inequality Inx < x — 1 we get

k n—k
o) (-w) Cem My L

pk(1 —p)n—k p 1—p

(5 1) rmom (S)
- ((k/n)2 L A=k/m? 1) .

P 1-p

IN

9.3. Average and Maximal Minimax Relationships 251

Since .
m\ ke ek (B/m)2 B
ny (k)p (1-p) o =+ (1-p),
k=0
we find
n 2 2
ny Kk n—tk [(k/n) (I—Fk/n)
1-— -1
"kzzo(k)p(i B
=np+l—-p+n(l-—p+p-—n=1,
which completes the proof of the lemma. [|

In view of this we conclude that that for memoryless sources Mg

sup P(z})

PeCMy
n(Mpo) = Px)log———— | =0O(1).
cn(Mo) sup > P(a})log PG (1)

n
Ty

On passing we observe that we can be much more precise if we consider just
p with a < p < b, where 0 < a < b < 1. Here we have uniformly for a < p <b
asn — 0o

n ek g gyn—k
Z <Z>pk(1 —p)" *log (Z)pkg _gl))k — 21112 +0 (nﬂ/z) .

k=0

Note that this relation is not true if a =0 or b = 1.
Next we consider condition (H1) which states that @Q* belongs “almost” to
the convex hull of S. For technical reasons we only consider the case m = 2.

Lemma 9.3.6. Suppose that m > 2 and let S denote the set of all memoryless
sources with parameters po,...,pm—1 > 0 with po+--- + pm_1 = 1. Let Q* be
the mazimum likelihood distribution corresponding to S, that is,

ko k}-,”71
Ebo ..k

m—1

= e() lm—l ’
Z€0+~~~€km71 =n 60 e gmfl

where kj = {1 <k <n:z; =35}, j€{0,1,...,m —1}. Then there exists a
convez combination Q of S such that
*(m
log Q~ (")
Qz")

Q" (=")

max
Tn

=0(1)

as n — 0.

252 Chapter 9. Minimax Redundancy and Regret

Proof. We just consider the binary case m = 2. The general case can be handled
in the same way. Our goal is to show that there exist positive numbers §; such
that the sums

S 1= Z ﬁllk(n — l)nik
=0

satisfy
Sk

log —— ok
8 Kk (n — k)n—k

max
0<k<n

= 0(1). (9.29)

Then we just have to define @ by normalizing sy.
We now show that we can use

n I k n—1 n—k\ —
(6 G
1=0
Observe that the function [— (*(n—1)"~* has its maximum at [= k and a local
expansion of the form (k +8)*(n—k — §)" % ~ k*(n — k)" Fexp <7m52) .

Thus, we obtain
n n
e =\ 2xktn =Ry <1 +O (k(n - k)))

and after some algebra

This proves (@.29). |

In the binary case it is also possible to cover the case a < p < b with
0 <a<b< 1. Wehave

ab*(1—a)" % for 0 <k < na,
sup pF(1—p)"F = (%)k (1 - %)n_k for na < k < nb,
pefab) bE(1 — bk for nb < k < n.

9.4. Regret for Online Learning 253

Here we show that there exist positive numbers ; (an < I < bn) such that the

Sumn
Sk = Z ﬂllk(n _ l)nfk
an<l<bn
satisfies
Sk
log—~ | = 1 .
anrgg%{bn 08 kk (Tl — k)nfk O()a (9 30)
! . =0(1) (9.31)
Ogci)fzn 8 (n)k(n _ an)n—k - ’ .
and
1 - =0(1) (9.32)
anE%}g{n 08 (bn)k(n — bn)n—k - . .

We define 5y by

[1/y/nfor [an] < k < |bn],
B = { 1 for k= Jan] and k = [bn].

First, (@31 follows from

(an)k(n —an)" % < (an)®(n — an)" % + % Z *(n -1k

I>an

= O((an)k(n - an)”_k)

if & < an. Observe that (@32) is just the symmetric case. Thus it remains to

show (@.30).

It is clear that the mapping [+— £¥(n — £)"~F attains its maximum for
¢ = k. A local expansion (around this optimal value) shows that for every fixed
0 < a < b <1 there exist two positive constants ¢, co such that

c1vnkE(n — k)" F < Z *(n— 1" % < cov/nk*(n — k)"F

an<k<bn

for all k£ with an < k < bn. Thus, (@30) follows.

9.4. Regret for Online Learning

Online learning is a popular sequential machine learning approach that has been
used for such tasks as category classification, click-through-rate prediction, and
risk assessment. In this case a model consists of a set of features, whose param-
eters represent their effect on some outcome. In an online setup, such a model

254 Chapter 9. Minimax Redundancy and Regret

is trained to learn these parameters from examples whose outcomes are already
labeled. The training algorithm consumes data in rounds, where at each round
t, it is allowed to predict the label based only on the labels it observed in the
past t — 1 rounds. The prediction algorithm incurs some loss and updates its
belief of the model parameters. The regret of an online algorithm is defined as
the total (excess) loss it incurs over some value of a constant comparator that is
used for prediction for the complete sequence.

More precisely, in machine learning, in particular, in online learning, the
rounds of learning are denoted by t. We adopt it in this subsection. We denote by
x¢ = (1,4, ...,24+) & d-dimensional feature vector with z;;, € Rfori =1,...,d
and t = 1,...,T, and by x7 the T x d matrix with rows x;, t = 1,...,T.
The label binary vector is written as y? = (y1,...,yr). We mostly consider
linear predictors and by w; = (w1 ,...,wq) we denote a d-dimensional vector
of weights. Notice that T' in this section plays the same role as n in previous
sections.

We now phrase our learning problem in terms of a game between nature/
environment and a learner. At each round the learner obtains a d dimensional
input/ feature vector x; and makes prediction §;. Then nature reveals the true
output/ label y;. Throughout we assume binary labels y; € Y = {—1,1} We
also assume that ¢, € Y which is usually some interval. Thus at round ¢ the
learner incurs some loss which we denote as ¢ :)> x YV — R.

In online regret analysis, we are interested in comparing the accumulated loss
of the learner with that of the best strategy within a predefined class of predictors
(experts) denoted as H. More precisely, H is a collection of prediction functions
h:R*)A), with input being x; at each time ¢. Given a learner prediction
function g, : Y~ x R* and after T rounds with the realizations (ye, x¢)1, the
pointwise regret is defined as

T
R(g",y" HIx") =) (e y) — jnf Zf (x¢),Yt)5
t=1

where §; = g¢(y*~1,x?). The first and the second summations above represent
the accumulated loss of the learner and the best predictor in H, respectively.
There are two main perspectives on analyzing the regret, highlighted next.

Fixed Design: This point of view studies the minimal regret for the worst
realization of the label with the feature vector x” known in advance. Let g;,¢ > 0
be the strategy of the predictor. Then, the fixed design minimaz regret is defined
as

rn(HxT) = inf sup R(gT,y", H|xT). (9.33)

9.4. Regret for Online Learning 255

Further, the fixed design maximal minimax regret is given by

rp(H) = sup inf sup R(g", 9T, H|xT). (9.34)
yT

xT g

Sequential Design: In this point of view, the optimization on regret is per-
formed at every time ¢ without knowing in advance x” or y*. Then the sequential
minimaz regret is defined as

5 (H|xT) = infsup---infsup R(§7, y”, H|xT). (9.35)

Y1y yr yr
Moreover, the sequential maximal minimax regret is

r%(H) = supinf sup - - -sup inf sup R(97, y*, H|x"). (9.36)

x1 Y1 oy xr YT yr

The sequential regret should be interpreted as follows. At round ¢ = 1, the
adversarial chooses a vector x; € R? that gives the worst regret for the best
choice of g1 for the worst choice of y; and for the interleaved worst, best, worst
choices of x, h(-) to compute §; and y;, respectively. Then, for the given x;, and
subsequent worst/best choices, the player chooses 1, and the adversary chooses
the worst choice of y; We ask the reader in Exercise to compare r7(x1) to
r%(x?) and see under what conditions they are equal.

More specifically, we consider a hypothesis (expert) class defined as follows

Hpw = {h:R* = R: h(x) =p((w,x)) : w,x € R}, (9.37)

where w is a d dimensional weight vector with (w,x) being the scalar product,
and p(w) with w = (w,x) is a proper probability function defining the class
H,. Often p(w) is either the logistic function p(w) = (1 + exp(—w))~! (see
Section in the next chapter) or the probit function p(w) = ®(—w) where
®(w) is distribution function of the normal distribution

In this book we study only logarithmic loss as this is the most relevant for
universal compression. For any h € H, we interpret h(x) = p((w,x)) € [0,1] as
the conditional probability P(—1|x,w) assigned to y = —1 €), that is,

h(x) = p({w,x)) = P(y = —1|x,w). (9.38)

Similarly we have 1 — p({w,x)) = P(y = 1|x, w).

This should be seen in connection to the logarithmic loss function 4(p,y) =
—log|(1 +y)/2 — p| for y € {—1,1} (often used in ML) which is related to
—log P(y), also used to define the minimax regret in universal source coding.
This is better justified in the below lemma.

256 Chapter 9. Minimax Redundancy and Regret

Lemma 9.4.1. Let £ :[0,1] x {—1,1} — R™ be the logarithmic loss function
defined as

{(p,y) = —log

1+y
-p

for allp € [0,1] and y € {—1,1}. Then,

| —logp fory=—1,

Up,y) = {1og(1 —p) fory=1.
Proof. If y = —1 then we have
(p,—1) = —logp

whereas for y =1

{(p,1) = —log(1 - p)
as proposed. [|

Hence, we can write

T T
Zg(h(xt)ayt) = fZIOgP(yﬁxt,w) = 710gP(yT|XTaW)7

t=1 t=1
where P(y”|x”, w) abbreviates

T

P(?/T|XT7W) = HP(yt|XtaW)'
t=1

In a similar way we interpret £(9, y:) = £(g:(y' =1, x*),y) in terms of a con-
ditional probability Q(y:|yt~!,x?):
0 Ger ye) = —log Qyely' ™", x").

Hence,
T

Z (G, ye) = —log Q(y" |xT),

t=1

since T
[Tl x") =Quw"x"),
t=1

where @) encodes the algorithmic learning distribution part up to 7.

9.4. Regret for Online Learning 257

We should observe that the online learning can be viewed as a generalization
of the universal source coding with side information x;. In this interpretation
‘H is represented by the class of sources S and @ can be viewed as a universal
distribution.

In view of the above definitions, we can now specifically rewrite the pointwise
regret as

Rr(g", y"1x") = —1log Q(y"[x") + sup P(y” |x", w)) (9.39)

and then the (maximal) minimax regret studied here is given by

ri(xT) = inf max Rp(Q, y” [xT) (9.40)
gT T
= igf max < log Q(yT |xT) + sup P(yT|xT, w))) .
Yy w

As in universal source coding, in order to study precisely the minimax regret
i (xT) we need a more succinct and computationally manageable representation
of it. This can be accomplished through a proper generalization of the Shtarkov
sum:

Dr(x") = Z sup P(y'|x", w). (9.41)
o7 weRd
If we define (/7<)
Py |x',w
Py [xT) = o PweRe ’ 9.42
(y" [x") S v Supyera P07 [T, w) ()
as the maxzimum-likelihood distribution, then
7) = g (g QU7) + sup P))
Q yT w
= i%f m%x(— log Q(y" [x") + log P* (y* |x™)) (9.43)
y
+1log Y sup P(y"|x", w)
o7 weRd
:logz sup P(y'|x",w) = log Dp(x")

R4
yT we

where we infimum is certainly attained for Q(y”,x”) = P*(y*|xT). Indeed,
since Q and P* are distributions, there is at least one y” such that the first
term in ([@43]) is nonnegative if Q # P*.

258 Chapter 9. Minimax Redundancy and Regret

9.5. Exercises

9.1 Establish (3.10).
9.2 Justify that the minimax theorem of game theory can be used to prove

@.10).

9.3 Prove that the optimal prior (@13)) is asymptotically optimal (see Bernardo
(1979)). Then for memoryless sources show that the Jeffrey’s prior (@.14)
are optimal.

9.4 Find an efficient algorithm to estimate the maximum likelihood distri-
bution defined in (@.16).

9.5

(MZX) The (strongly) t-mixing source is defined as follows: Let F, be a o-
field generated by X} with m < n. The source is called mizing, if there
exists a bounded function ¢(g) such that for all m,g > 1 and any two

events A € F" and B € F77, the following holds

(1=1(9))P(A)P(B) < P(AB) < (1+4(9))P(A)P(B) (9.44)

If, in addition, lim, o ¥(g) = 0, then the source is called strongly
mixing.

In words, model MX postulates that the dependency between X;,
and Xp2 . is getting weaker and weaker as g becomes larger The
“quantity” of dependency is characterized by 1(g). We can write the -
mixing condition in an equivalent form as follows: There exist constants
c1 < ¢o such that

¢1P(A)P(B) < P(AB) < ¢, P(A)P(B) (9.45)

for all m,g > 1. In some derivations, we shall require that ¢; > 0 which
will impose further restrictions on the process For mixing sources deter-
mine whether postulates (H) and/or (H1) hold. Furthermore, estimate
cn(MX) defined in ([@28)).

9.6 Using the fact that I'(z + 1) = 2I'(z) recover the well known smoothed
add-1/2 estimator also know as the Krichevsky-Trofimov estimator (see
Krichevsky and Trofimov (1981))

_ Ny + 0.5
Qg1 = A T0S

where ns_1 (y:) denotes the count of past occurrences of the label y; in
the ¢ — 1 initial labels.

Bibliographical notes 259

9.7 Assume that X = (X1,...X,,) is distributed as Dirichlet distribution
Dir(x; &) with parameters o, ..., an,. Prove that

Ellog Xi] = ¥(ai) — ‘I’(Z o)
k

where VU is the Euler psi function.

9.8 Prove that if X is distributed according to Dir(x,), then the entropy
H(X) becomes

H(X) =log B(a) + (ag — m)¥ () = Y (v — 1)¥(e;)

i=1

where ap =), ;.
9.9 Compare ro(x7) defined in ([@33) and r¢(x?) defined in ([@.35) and
establish under what conditions
re(x?) = r(x")

for all xT' (see Wu, Heidari, Grama, and Szpankowski (2022)).
9.10 Consider the following one dimensional logistic function

((w) = (1 + exp(—w)) "
Find a good approximation of this function via the cumulative function
®(x) of the standard normal distribution.

9.11 Consider a one-dimensional d = 1 logistic regret as in Section with
z; = 1 for all t. Prove that

1 1
T = ilong §1og(2) +O0(1/VT).

Bibliographical notes

Universal coding can be traced back to seminal works of Davisson (1973), Davis-
son and Leon-Garcia (1980), Gallager (1968), Rissanen (1984b), Rissanen (1984a)
Krichevsky and Trofimov (1981), and Shtarkov (1987). Rissanen (1996) pointed
out that universal coding evolved into universal modeling and learning. We
should also mention work of Kieffer (1978, 1991) on unified approach to weak
universal coding.

The last 20 years have seen a resurgence of interest in redundancy rates for
lossless coding: Atteson (1999), Drmota and Szpankowski (2004), Csiszar and

260 Minimax Redundancy and Regret

Shields (1996), Louchard and Szpankowski (1995), Barron, Rissanen, and Yu
(1998), Savari (1997), Jacquet and Szpankowski (2004), Szpankowski (1998),
Xie and Barron (1997, 2000), Weinberger et al. (1994), Weinberger, Rissanen,
and Feder (1995), Wyner (1997), Wyner and Ziv (1989), and more Orlitsky,
Santhanam, and Zhang (2004), Orlitsky and Santhanam (2004), Ornstein and
Shields (1990), Shamir (2006b, 2006a, 2013), Shields (1993, 1996). We shall dis-
cuss some of these references in a more detailed way in the next chapters. Some
of them deal with finite alphabets while others such as Orlitsky et al. (2004), Or-
litsky and Santhanam (2004), Shamir (2006b, 2006a, 2013) consider unbounded
alphabets or alphabets with some extra properties such as monotonicity condi-
tion.

Regret for logistic regression has been recently studied in Foster, Kale, and-
Mehryar Mohri, and Sridharan (2018), Hazan, Agarwal, and Kale (2007), Hazan
(2008), Hazan, Koren, and Levy (2014), Kakade and Ng (2005), McMahan and
Streeter (2012), Shamir (2020). The adversarial regret is discussed in Rakhlin
and Sridharan (2014, 2015), Rakhlin, Sridharan, and Tewari (2010), Ben-David,
P4l, and Shalev-Shwartz (2009). See also Wu et al. (2022). Machine learning
problems and techniques are discussed in many book, e.g., Shalev-Shwartz and
Ben-David (2014), Mohri, Rostamizadeh, and Talwalker (2018).

This chapter is mainly based on Drmota and Szpankowski (2004).

CHAPTER 10

Redundancy of Universal
Memoryless Sources

In this chapter we assume that an unknown source from the class S = Mg of
memoryless sources generates a sequence " over the alphabet A = {0,...,m —
1}. In other words, the empirical probability of ™ can be written as

Pa") = P9 = ﬁ or: (10.1)

=0

where k; is the number of symbol ¢ € A occurring in ", and 6; is the un-
known probability of generating symbol il Throughout we assume that 8 =
(0o, ...,0m—1) € © where

©={0:0,>00<i<m—1), g+ +0m_ =1}

In this chapter we first discuss in Section [I0.1] and the maximal min-
imax redundancy R}, and then in Section the average minimax R,. In
Section [I0.T] we assume that the alphabet size m is finite while in Section
we deal with alphabets, where the size m = m(n) may depend on n and is not
necessarily bounded. For finite alphabet we analyze in Section [0.1.3 the case
when the unknown probabilities € are restricted to a subset S € O (for example,
in the binary case we could postulate that 0 < a < 6y <b < 1).

10.1. Maximal Minimax Redundancy for Finite Alphabet

We now assume that the alphabet size m is finite and fixed (and does not depend
on n) and the unknown probabilities 0 < §; < 1 are not constrained.

IThroughout this chapter we use the notation 6; for the probability of the symbol 4 and
not p;.

262 Chapter 10. Redundancy of Universal Memoryless Sources

In Lemma [0.2.9] of Chapter [we derived a useful characterization of the
maximal minimax R}, namely

R: = R;(Q") + R}, = R,(Q") +log D,,

where
D, = Z sup P(z")
' PeMo
and
R} (Q") = min max [L(Cy, z"™) + log Q" (z™)]
CpeC zam
is the redundancy of the generalized Shannon code for distribution Q*. We
discussed the generalized Shannon code redundancy for a fixed distribution P in
Section [Z3 of Chapter[2l We will use the term “coding redundancy” for R} (Q*).
In the next Section [0.I.J] we derive precise asymptotics for the coding re-
dundancy RX(Q*). Then in Section we deal with the main asymptotic
terms of the maximal minimax redundancy, namely ér*l = log D, finishing this
section with deriving in Section [[0.1.3] the maximal minimax redundancy when
the unknown probabilities 6; are constrained.

10.1.1. Coding Contribution: Asymptotics of R} (Q*)

We now deal with R%(Q*). Clearly, it is bounded between 0 and 1, however, we
would like to have a more precise estimate.

In Chapter Plwe discussed the maximal redundancy R} (P) for a given distri-
bution P. In particular, we proved in Theorem 2.3.2] that in the case of a binary
memoryless source we have

N Inln?2
R3(P) = =2 4 o(1),

provided that log(6y/(1—6p)) is irrational. In the rational case R} (P) fluctuates
as shown in (Z.80). By the way, for an m-ary alphabet we can prove in a similar

way that
In (ﬁ In m)

Inm

R, (P) = +o(1),

in the irrationally related case.
Surprisingly enough, we can show that R} (Q*) behaves similarly. For the
sake of brevity we only present the binary case.

10.1. Maximal Minimax Redundancy for Finite Alphabet 263

Theorem 10.1.1. Consider a binary alphabet and fix two numbers a,b with
0<a<b<1. Let S denote the set of binary memoryless sources with a < 6 =
0o <b. Then, as n — o0,

. Inln2 logn
R, (Q) = — 02 +O<n1/9)' (10.2)

We prove this theorem in the rest part of this section. We first recall that

a*(1—a)"* for 0 <k < na,
sup 0%(1—0)""% =< (5)" (1= £)" ™" for na < k < nb, (10.3)

9€[a,b] (1 —b)"F formb<k<n

and . .
SUPge(q,p) 07 (1 — 0)"

D,, ’

Q" (a") =

where Dy, =). SUPge(q,5] Ok (1 —)"+,

Next, we need to compute R} (Q*), as we did in Chapter [2] for a given dis-
tribution. There, we reduced the evaluation of the redundancy R} (Q*) to a
verification of the Kraft’s inequality that in our case becomes

Y Q@) s ((~log Q*(21)))

where f,, () = 27(00=2)+50 for some 0 < sy < 1. Thus, the problem is to
evaluate the following sum

sup 6%(1 —@)n—*

" /0 6€(a,b] B ko1 gy
Z (k) D, fso < 10g< sup 0%(1—0)) +logDn>

k=0 0€la,b)

= Di Z (Z) a®(1—a)" % f,, (—log(a®*(1 — a)" %) + log D,,)

" k<an

e RUIONCH IR (GICOINERY

1 N\ikiy 1\n—k B k(1 _ pyn—k

+DnZ(k)b(1 D)™ fuy (— log(B* (1 —)"*) + log D)
k>bn

:SI+SQ+S3.

264 Chapter 10. Redundancy of Universal Memoryless Sources

Since

Dy,

n k k k n—k
= ()(—) (1—>
an<k<bn k n
an<k<bn v 27Tk n_

Wz—/m

and fs,(x) = O(1) we directly find

S =0(m"Y%) and S3=0(n"1?).

Thus, it remains to study So.
We prove the following lemma.

Lemma 10.1.2. Suppose that 0 < a < b < 1. Then for every Riemann inte-
grable function f :[0,1] — R of bounded variation Vi (f) and for every sequence
Tk, an < k < bn, of the form

Tnk = klogk + (n — k)log(n — k) + ¢y,

where ¢, is an arbitrary sequence, we have

b 5 G)) (o) - o)
Sh<bn (10.4)

Proof. We first show that z,, ; is @*-u.d. sequence modulo 1 as defined in dis-
cussed in Chapter Pl and Appendix [El In particular, we will apply the Koksma-
Hlawka inequality (Theorem [E22.4)) to derive the error term in (I0.4]). For this
purpose we just have to obtain an upper bound for the discrepancy (see Theo-
rem [E.2.7] of Appendix [E] for a precise definition)

- logn
Q —
D@ (z) =0 <n1/9 > : (10.5)

By the Erd8s-Turéan-Koksma inequality (Theorem [E.2.3) the discrepancy can
be estimated with the help of exponential sums

S(h) := Z A g2

an<k<bn

10.1. Maximal Minimax Redundancy for Finite Alphabet 265

where h is an integer and

08

We have (for every integer H > 1)

bl*—‘

H
) 3
D@ <
n (xk)_2(H+1 A, hzz

where

b
n dx
A= Y ans~ ﬁ / |
an<k<bn 21 Ja \% :L'(]' - l‘)
First, we consider the following exponential sum

S .= Z eQTri(h(klog k+(n—k) log(n—k))7

an<k<cn

where ¢ € [a,b], and h is an arbitrary non-zero integer. By Van-der-Corput’s
method (see (E]) from Appendix [E]) we know that

0 (|F’(cn) —g(ann + 1) |

where A = min |F”(y)| > 0 and
an<y<cn

F(y) = h(ylogy + (n —y)log(n — y)).

Since |F'(y)| < hlogn, and |F"(y)| > h/n (uniformly for an < y < cn) we

immediately find
S=0 (10g nv hn)

and consequently

Z e2mihenr — O (log n\/%) i

an<k<cn

Note that all these estimates are uniform for ¢ € [a, b].
Next we consider the exponential sum S(h). By elementary calculations we
obtain (uniformly for an < k < bn) a,, < min(k,n — k)~'/? and

lan ki1 — an k| < min(k,n — k)32,

266 Chapter 10. Redundancy of Universal Memoryless Sources

Thus, if @ > 0 and b < 1 we have a,) < n~1/2 and lan k41 — ank] <K n=3/2,
Consequently by partial summation

|§(h)| < . Z e2mihan &

an<k<bn

+ Z |an,k+1 _ an,kl Z eQm‘hzn,e

an<k<bn an<t<k

=0 (nil/Q log nvVhn +nn=3/? log n\/ﬁ)
=0 (\/E log n) .

Note that the shifting sequence c, does not change the absolute value of the

exponential sums S(h).
Next suppose that a = 0 and b < 1. Set € = (h/n)'/%. Then

|§(h)| < Z Qn i + Z an,ke%rihxnk

k<en en<k<bn
=0 (\/sn +n~Y2lognvhn + n(en) "% lognv im)
=0 ((logn)h1/8n3/8> .

The case b = 1 is completely similar to handle.
If0<a<b<1weset H=n'3 and find

If a=1 or b =1 we choose H =n'/? and obtain the upper bound

1 7 logn logn
- —pl/8Ee Y =
H+1+hzlhh n1/80<n1/9>'

10.1. Maximal Minimax Redundancy for Finite Alphabet 267

Thus, in all cases we obtain the upper bound (I03) for the discrepancy. As
mentioned above, this proves the lemma. [|

To complete the proof of Theorem 0. .1l we note that we are now in a similar
situation as in the proof of Theorem [2Z37] of Chapter 2l We apply (I0.4]) with
fso(x), that has variation Vj!(fs,) = 2. We thus, obtain

T Q@) 1 S QrEmeteE
2
(~Q* @) <s0 (~Q* @) 250

S il 0 ()

" an<k<bn
2%0—1 1 logn
= O(n#)+0
log 2 + m)E (nl/g)
2s0—1 logn
~ In2 +O<n1/9)'
This implies that ¢y (in the sense of Theorem 2:371]) is given by

Inln2 1
fo— 14 o +O(0gn)

=

In2 nl/9

and consequently (I041)) follows:

.y ~ Inln2 logn
R (Q")=1—ty= 0o +O<n1/9)

and this completes the proof of Theorem [I0.1.11

10.1.2. Unknown Statistics Contribution: Asymptotics of E;‘L

We now deal with the main term of the maximal minimax redundancy, namely
with R = log D,, where

D, = sup P(z7). 10.6
n= 3 g Pl (106)

268 Chapter 10. Redundancy of Universal Memoryless Sources

Observe that, with k; being the number of times symbol i € A occurs in a string
of length n, we have

km—
D, = E sup gro...g7mt
zn bot.Fbm_1=1

Y (o)
kot -tk _1=n k07"'akm—1
B Z n @ ko 1 km—1
N ko, ..., km—1 n n ’

kot thm_1=n

Ko —
sup ko ...}

Oo+..4+0m_1=1

We also set Dy = 1.
In summary,

D= ¥ n W) (k) 0
" ko, ..., km—1 n n ’ ’

kot +km—1=n
km—1
km—l
" .

This suggest to define the following so called tree-like generating function

9340

n=0

which we can re-write as

n! ko '\ ™
e, 2 G

kot thm_1=n

:|33

which becomes

D(z) = iz” > (%)k

n=0 ko++km_1=n

1\
- .

In view of the above we conclude that D(z) is the m-convolution of sequences
like k¥ /k!, thus we need to study the following tree-like generating function

[ee]
k:
— 10.
L 10
k=0
But this generating function, in turn, satisfies (see Exercise [0.]])
1
B(z) = (10.9)

1-T(z)

10.1. Maximal Minimax Redundancy for Finite Alphabet 269

for |z| < e7!, where T'(2) is the well-known tree function (that enumerates, for
example, all rooted labeled trees), defined as

e kkfl
T(z)=> o 2", (10.10)
k=1 ’

which is also a solution to the implicit equation
T(z) = zeT® (10.11)
with |T'(z)| < 1. In terms of the standard Lambert-W function, we have T'(z) =

—W(—=z) (see Appendix [C).
In summary, we just established the following lemma.

Lemma 10.1.3. The function D(z) of %Dn satisfies, for |z| < e1,

m 1
PG =BE" = pym
and, consequently,
|
Dy = L[B(2)™. (10.12)
nn

Our next step is to derive asymptotic expansion for D,,. This requires to
understand the singularities of B(z) and T'(z). Since Euler it is known that
T(z) has a singularity at 2 = e~!, and around this point it has the following
expansion (see Corless et al. (1996) for a full asymptotic expansion, the leading
term follows also from Theorem [C.5.4] from Appendix [C] and the functional
equation T = zeT):
—%(1—62)3/24-4—3(1—62)2+O((1—62)5/2) .

T(z)=1-+/2(1- ez)—i—;(l—ez) 38

Then, B(z) can also be expanded around z = e~ ! leading to

1 1 V2 4
B(Z):erg*ﬂ\/erl—%(l*ez)

23v/2
- %8_(1 —e2)3? + O((1 — e2)?) .
To extract the coefficients at z™ of of B(z)™ for finite m we use the transfer prin-
ciple of Lemma (from Appendix [C) which allow us to compute separately

the coefficients for every function involved in the asymptotic expansion.

270 Chapter 10. Redundancy of Universal Memoryless Sources

By taking only the first two terms into account we find

o) ((2(1 — ez))J'gQ)

m m
2

B()" = (21— e2)) % + Z(2(1 - e2))”

and consequently

nle™ (2% L, _ m2="T m_
R e)

L(3)" ny" my/2T (2 B
- r((m)) (37) (”ﬁﬂm(n))-

This leads directly to

Nlw

P()" | miosevar (3)
L(g) 80(=) v

Since we have (in principle) the full singular expansion of B(z) we can be
much more precise and obtain the following result.

+0(n™h).

]:’Lr*l =log D, = m2 10g(2n) + log

Theorem 10.1.4. Consider a class of memoryless sources Mg over the alpha-
bet of fixed size m. Then we have the following asymptotic series expansion:

R n L))" L(g)m V2
R~ 5 1g(2)Hogr(gm) T 3mer(ny) Va

3+m(m—-2)2m+1) r2(z)
()

HS
SIHN‘

+ Z 72 (10.13)

where ¢y, are explicitly computable constants.

10.1.3. Redundancy for Constrained Distributions

Let us first consider the binary case, where we have now a complete picture. As
above we assume that 6y € [a,b] for some 0 <a < b < 1.

Theorem 10.1.5. Let0 < a < b < 1 be given and let ©%* = {P: a < 6y < b}.
Then as n — oo

Inln2
In2

R: (%) = 3 log (2) +logm+log Cop — +0 (-1/ 1ogn> , (10.14)

10.1. Maximal Minimax Redundancy for Finite Alphabet

where

1 /b e z(arcsin Vb — arcsin v/a)
TJo Je(l—2x) 7 '
Proof. We already observed that

pu= (-t 5 () (-2)”

k<na

3y (Z) BR(1 — b)nF

k>nb

_@/ m
:2\/:(arcsm\/_—arcsm\/_)+0()

which leads to

+

R:(©%") = log D,,(©*") = 3 log (2n) +log 7 + log Cyp + O(n~1/2).

By Theorem [T0.T.T]

ln In2
In2

R (Q") = +0 (nil/Q logn)

and by the general property
R}(©") = R3(0"") + R;(Q")

which completes the proof.

271

Now we consider a general but finite alphabet of size m and study the (con-

tinuous) redundancy ITE;‘L in the constrained case S # O. In the unconstrained

case we know that

m—1
sup H oFi = H (ki/n)*,
=0

, that is, we know the optimal 6; = k;/n. The situation is more complicated
in the constrained case. For example, if we assume an interval restriction a; <
0; <b;,1=0,...,m—2, then for k; < na; or k; > nb; the optimal 6; may be qa;
or b;, respectively. Fortunately, we are able to prove (see Exercise[I(.2]) that the

272 Chapter 10. Redundancy of Universal Memoryless Sources

main contribution to D,, comes from those k = (k1, ..., ky,) for which k/n € S.
So we are led to analyze the following sum

s n m—1 k’z k;
oo =3 (e)IH(R)

kenS =0

which is of order n™7 as proved below Theorem [I0.1.6] By a standard analysis

we find
m—1
D = V1 3y = 1+0(Y &
(Zﬂ)T k/ nes kokl oo k’m,1 i—0 k'i

(1+O 1/v/n))

_ (i) o(8)B(1/2) (1+0(1/vn)),

2
where B(1/2) denotes the Beta-function

B(1/2) = B(1/2,...,1/2) = Fr((im))
and C(S) abbreviates
C(S) = Dir(8;1/2) = B(11/2) /S — .C.b;mil (10.15)

where Dir(S, ; a) is defined in Section [0.2.J] The contribution of the remaining

terms is only of order O(nanz) as we will argue below.
With this notation, we can formulate the main result of this section.

Theorem 10.1.6. Consider a memoryless constrained source on an alphabet

of size m > 2 and S C © a convex polytope. Then the worst case redundancy
for S is

o me r(1/2)"
R (S) = 5 log% — 1ogm

where C(8) is defined above in (I0.13]).

+1og C(S) + O(1/+/n) (10.16)

To complete the proof, we must show

Dy — D;S) = Z (ko nk 1) o H Hk

kgnS Ocs i—o
=0(n27"). (10.17)

10.2. Maximal Minimax Redundancy for Large Alphabet 273

Then we have log D,, = log D) + O(1/+y/n) and (I0.IG) follows.

The proof of (I0.I7) is very involved (a full proof is given in Drmota, Shamir,
and Szpankowski (2022)). We only give some heuristic arguments. First it is not
difficult to observe that the sum can be replaced by an integral over n(©\ S) so
that all variables k; are continuous. Second, by concavity of Hm ! Hk it follows
that the optimal choice Oop;, = (6;,0pt) has to be on the boundary of S Actually,
all k = (k;) that correspond to the same O,y are on a line. Set kg = nOgp. We
have then

m—1
n
max 9’“ = < > o
()OeaHne H o #oPt
D(kio + 1)kpp

: 4,0
(ko) H 92 Ot H Dk;+1) ’

=0 i=1

where the last product can be upper bounded by

™ D(ko + Dk

i,0 m—1
, 0 B (ki — kio)?
H [(ki +1) O< CI; kio

: i
=1 5

for some constant ¢; > 0. Since all k € n(0© \ S) with the same optimal choice
0., are one a line and all k; o are proportional to n the integral over this line
can be upper bounded by O(y/n). Finally the integral over ko on the (scaled)
boundary ndS — recall that kg = nf,p¢ — is upper bounded by

[(o) Tz~ [e
=0 (n*)

So the total contribution is of order O(n % ~1) as proposed.

10.2. Maximal Minimax Redundancy for Large Alphabet

Now we consider the maximal minimax redundancy when m grows with n. In
this case the expression (I0.12) of Lemma for the maximal minimax R}
still holds but the singularity analysis does not apply. Instead, the growth of the
coefficient [2"] B™(z) can be handled with the help of the saddle point method
(see Appendix [C).

Our main result of this section is presented next.

274 Chapter 10. Redundancy of Universal Memoryless Sources

Theorem 10.2.1. For the memoryless model family Mo over an m-ary alpha-
bet, where m — 0o as n grows, the minimax pointwise redundancy R}, behaves
asymptotically as follows:

(i) For m = o(n)

~ m—l1 n+ m n m m
n 2 % T om2 " 3m2\

1 loge |/m m? 1
- — \/— —t—. 10.1
3 1 n-i-O(n—i-m) (10.18)

(ii) For oo =m/n € [a,b], where a < b are positive constants,

~, 1
Ry, =nlog B,/ —logy/Apyn + O (E) , (10.19)
where
1 1 4 2
= — _ 1 — A = — 1 2
Ca 2+2V T “ Ca+o< (10.20)
and)
By = aC% e %, (10.21)
(iii) For n = o(m)
~ m 3 n(n—1) 1 n3
* = nlog — + —— L 10.22
R}, nlog 4 o o — +O<n+m2> (10.22)

for large m.

Before we prove Theorem [I0.2.1] we offer some insights. The formulation of
the scenario in which both n and m are large, as a sequence of problems where
m varies with n, is easy to imagine. In a typical application of Theorem I0.2.1]
for a given pair of values n = ng and m = mg, which are deemed to fall in one
of the three itemized cases, the formulas are used to approximate the minimax
pointwise redundancy Rj, . The asymptotic expansion in (I0.I8) reveals that
the error incurred by neglecting lower order terms may be significant. Consider
the example in which n = 10* and m = 40 (or, approximately, m = n#). Then,
the leading term in ([I0.3) is only 5.5 times larger than the second term, and
131 times larger than the third term. The error from neglecting these two terms
is thus 15.4% (assuming all other terms are negligible). Even for n = 10® (and
m = 1600), the error is still over 8%. It is interesting to notice that (I0.IF])

10.2. Maximal Minimax Redundancy for Large Alphabet 275

3.5+

3

2]

1.5+

o
w
»
-
o
-
oo
o
5

Figure 10.1. Value of the constant log B, in the ©(n) term of R}, in case
m = 0(n).

is a “direct scaling” of (I0.I3): using Stirling’s approximation to replace I'(x)
in (IOCI3) by its asymptotic value /27 /xz(x/e)*, and further approximating
(14 1/2)@+D/2 with /e (1 + 1/(4x)), indeed yields exactly (IIIR), up to the
error terms. Thus, our results reveal that the first two terms of the asymptotic
expansion for fixed m given by (I0I3)) are in fact a better approximation to R}
than the leading term of (I0.IS).

For the case m = ©(n), the value of the constant, log B,, where B, is
specified in (I021]) and ({020, is plotted against « in Figure [0l It is easy
to see that, when o — 0, log B, ~ («/2)log(1/a), in agreement with (I0.3)).
Similarly, when a@ — o0, log B, = log v, in agreement with (I0.22).

Observe that the second order term in (I0.I8)), which is ©(m), dominates
—log(n/m) whenever m = (n®) for some a, 0 <a < 1. Hence, the leading term
in the expansion is rather (m/2)log(n/m) than (m — 1)/2log(n/m). In the
numerical example given for this case, the choice of a growth rate m = o(y/n) is
due to the fact that, otherwise, the error term O(m?/n) may not even vanish,
and it may dominate the constant, as well as the /m/n terms. For any given
growth rate m = O(n?), 0 < a < 1, an expansion in which the error term vanishes
can be derived; however, no expansion has this property for every possible value
of a. The reason is that, as will become apparent in the proof of the theorem,
any expansion will include an error term of the form O(m(m/n)7/?) for some
positive integer j. The same situation can be observed in ([BI9), where one of

the error terms becomes O(n(n/m)?) if a more accurate expansion is used.

276 Chapter 10. Redundancy of Universal Memoryless Sources

We also want to mention that (I0.I9) can be also applied if m = an + ¢(n)
for some o > 0 and ¢(n) = o(n). We just observe that

1 2 3
log B,y /n, = log B, + log Cag(:) tn) L0 (5(”))

"~ 2In2a2A4, n2 n3
and '
\/2m Ay = V/2m A0 + O (%)
so that

E;’; = nlog By + ¢(n)log C, — log /27 A,
1 {(n)? {(n)® ¢ 1
oge) (0 (), 1)

2024, n n? +

n n

as long as ¢(n) = o(1).

10.2.1. Proof of Theorem [10.2.7]
We first describe a roadmap of our proof. Recall from (I0.12]) that

Dy = " mBE) = M e = M L %eh(z)dz, (10.23)

n" n" n" 2mi
where 8(z) = B(z/e) and
h(z) =mInf(z) — (n+1)Inz. (10.24)

We will now apply the saddle point methods, as discussed in depth in Ap-
pendix [Cl In particular, we first find an explicit normalized real root, Zo = 20/e
(here zg is defined below) of the saddle point equation h'(z) = 0, which satisfies

_ Bz _n+1l
= _ 10.25
0 5(20) m ()
Differentiating (I0.IT]), and using (I09]), it is easy to see that
B'(2) 2
z = B(z)* — B(2). 10.26
S = B - 8(e) (10.26)
Thus, (I027]) takes the form
n+1

B(Z0)* = B(Z0) = ——. (10.27)

10.2. Maximal Minimax Redundancy for Large Alphabet 277

a—— 1 151
04020 02040608 1 12

x x

m = o(n) m=mn n = o(m)

Figure 10.2. Illustration to locations of the saddle point 0 < Zzp <1

By definition of the tree-function T'(z), the range of B(z) for 0 < z < 1 is
[1,400). The three cases (i)—(iii) discussed in the theorem above correspond
to Zp close to 1 or inside the interval (0,1) or close to 0. As illustrated in
Figure [020 when m = o(n) the root Zp &~ 1, when m = O(n) then 0 < zp < 1
and for n = o(m) the root zy = 0.

We now prove Theorem [T0.2.]

Case (ii). We start with the case (ii), where m/n € [a, b] for some positive
constants a,b. In this case we can directly apply (CI3)) from Appendix [Cl a
standard saddle point result. For notational convenience we set o« = m/n. The
essential observation is that the equation

Z()B/(Zo) - 1

5o " o (10.28)

1 1
oL e
=0 (C’a>e ’

where C,, is given by (I0.20). Since T'(z) satisfies T'(z) = ze”*), the derivative
is given by T'(z) = T(z)/(2(1 — T(z)) and consequently

has an explicit solution

2B'(2) 2T"(2) T(z)

B(z) 1-T(z) (1-T(2)*

278 Chapter 10. Redundancy of Universal Memoryless Sources

It is easy to check that T'(z) = 1 — 1/C, satisfies T'(z)/((1 — T(2))? = 1/a.
Consequently, T'(z9) =1 —1/C,, and, thus,

1 1
zZ0 = T(ZO)e_T(ZO = E (1 — C_) el/c"

as proposed. (Note that B(zg) = Cy) It also follows that
B(zo

—eBa
20
and 2 //()
ZOB 20 1 1
2 -2+ — — — | =2mnA,.
ﬂ'm(B(zo) +a a2) TNAq
Hence,

n! B? 1
Dp = ["Blz)™ = —22 (1 =),
n BGE) VAa (o (”))
and so we obtain (I0.19).

Case (i). Next we consider the case (i), where m = o(n). We again apply
the saddle point method (as described in Appendix [C)). We consider A\ as the
pair (m,n) and the function g(\, z) = mln B(z) —nlnz. Of course this leads to
the same saddle point equation as in (I0.28) and consequently to

_ 1 L 1/Crjn — m?/2
Z°E<lcm/n)e -n ol

Notice that zo = Zp/e & 1/e. This also gives

m n m m m m2
= —1 e —_— JE— —_— -
9 z0) =n+ 5T+ 5+ 3 n+0()

as well as
en [2n n?
7" Ovin) = = (240 =222 (140 (Vi)
and
nCm/n

" _ E _ _ —_ 377‘_
g"(\, 20) = - (m(scm/n 1) SCm/n+3) ge3

10.3. Average Minimax Redundancy 279

Therefore, we find
wom(ns g 31 30E 0 (x)

" Lo, fme (140 (Vi)
< (140 (1/vm))

e (gl g g o ()
x(1+0(\/m—/n)+0(1/‘/m)

leading to (I0I8). Note that we can do slightly better by considering the fourth
derivative which leads to an error term O(1/m) instead of O (1/y/m). Further-
more note that /m/n = O(1/m + m/n?).

Case (iii). Finally we consider the case (iii), where n = o(m) Here we
proceed in completely the same way and obtain

2
2022(1—324—0(”—2))%0
m m m

2 3
B(z0)1+%+2%+0<%>.

and

This leads (after some algebra) to ([0.22). Note that g”(zg) is of order ©(m?/n),
g"(20) of order ©(m3/n?), and ¢g"""'(29) of order ©(m*/n3). Therefore we obtain
the error O(1/n) in the saddle point approximation. (Of course we can take even
more terms into account and could find more precise error terms.)

10.3. Average Minimax Redundancy

We now turn to the average minimax En We first consider the case when
the unknown symbol probabilities are constrained, and then we consider the
unconstrained case but for m = o(n).

10.3.1. Average Minimax with Constrained Distribution

Let S g 0 = {0 = (90;-~-79m71) : 9]' Z 0, 90+ "'+9m71 =].} in the
memoryless case. We now slightly modify Lemma to derive operational
expression for the average minimax redundancy which we denote as R,,(S). By
definition we have

En(S) = inf sup Dn(PBHQ)
Q ges

280 Chapter 10. Redundancy of Universal Memoryless Sources

where D(P?||Q) is the Kullback-Leibler divergence.
We recall that

Ry (S) = / D(P?||M>")dw*(0) (10.29)
S
where w*(0) is the maximizing prior distribution and

+

MY (:c"):/SP‘g(:c")dw*(@).

We already mentioned Bernardo (1979) proved that asymptotically the maxi-
mizing density is proportional to the square root of the determinant of the Fisher
information 1(), the so-called Jeffrey prior. This leads to the density

o1 1 1
)= B2 Vo o

where C/(S) defined in (I0.I5]) and is the probability that the Dirichlet distribu-
tion with o; = 1/2 falls into the subset S.
Thus, we are led to consider the asymptotic average minimax redundancy

~x

w

(10.30)

R () = /S D(PO | M)" (6).

The mixture distribution M?" (z™) can be calculated as follows

@ mN 1 1 ki—1/2
M) = &) Bs2) /5[19

_ mB(kl 12, o 4 1/2)

1 - ki—1/2
B(k1+1/2,--- akm+1/2)/3¢_1 !
1

=—————B(k 1/2,---)k 1/2)-Dir(S : k+1/2).
Observe again that for the unconstrained case Dir(©;k+1/2) = 1. In summary

Du(PY|MT") = log (C(S)B(1/2)) + (10.31)
m 9’91

" 1 K H'L:l i
i ; (k) g 9? log B(k +1/2)Dir(S;k +1/2)° (10.32)

The main result of this section is presented next.

10.3. Average Minimax Redundancy 281

Theorem 10.3.1. Consider a memoryless constrained source S C © with fixed
but arbitrarily large m > 2 where S is a convex polytope. Then the asymptotic
average minimax redundancy is

m—1._ 2 r(1/2)™
log — + log ——~—
2 i) 2me +log I'(m/2)

RAY™P(8) = +1og C(S) + O(1/v/n) (10.33)

where C(S) is defined in (I0.12).

We postpone the proof till Section [10.3.3] since we will use some ideas and cal-
culations of the proof of the subsequent Theorem [10.3.2

10.3.2. Unconstrained Case for m = o(n)

In Theorem [I0.31] we assumed that m is fixed to avoid complications with
constrains S, that may depend of m. Now we do not impose any constrained
on 0, that is we assume that S = ©.

Theorem 10.3.2. Consider a memoryless unconstrained source © with m =
o(n). Then the unconstrained asymptotic average minimaz redundancy becomes

m—1 2 r(1/2)m

Ezsymp (@) _

m—1

—5 log (%) + %(loge —1) +O0(1/m) + O(m*? /\/n).

Proof. The starting point is

DHasymp _ 1 n —-1/2 OkB(1/2)

where we write 8~ /2 = IL 9?7'_1/2. We need to estimate different parts of
the above sum. We first observe that

zk: (ﬁ)B(k +1/2) = /@ Zk: <z) o< 1/240

:/ 071240 = B(1/2).
©

282 Chapter 10. Redundancy of Universal Memoryless Sources

More importantly we notice that

/ 3 <”> 651/2 10g 656 =
o 2= \k
k

NE

-

3 <”> _ ki/eek_l/zlogﬁide
> (W) 2n
2

In2
<k>B (k+1/2)log B(k +1/2).

~ 3
INgE

B(k +1/2),

ki

I
A

7

3

/Z()0“ Y21og B(k +1/2) =
© k

Thus

R®Y™P(Q) = log B(1/2)+ (10.36)
* 3(11/2) Zk: (Z) ' <Z_; ’“ia%B(k +1/2) - B(k+1/2)log B(k + 1/2)) :

To deal with sums like (I0.30) we use the relation between the beta function,
the gamma function, and the psi function. For example

o Bl +1/2) = (U(ki +1/2) = U(n+m/2)) B(k +1/2),

where U(z) =T"(z)/T'(x). Asymptotically we have

U(z +1/2) =Inz+ 1/(122) + O(1/2%),
U(x+m/2)=Inz+ (m—1)/(2z) + O(1/x?)

Using this and Stirling’s formula we finally find

1
InT(z+1/2)=aznz—z+Inv2r — oY +O(1/2?),

n(z +m/2)

+Inv2r + (— — %2) % +0(m?/2?)

InT(

10.3. Average Minimax Redundancy 283

leading to

Bk+1/2)—Bk+1/2)logBk+1/2) =

gln

=Bk+1/2) (mT—l (log(n +m/2) — 1 —log(2m)) +

@ <m2/n + Z(kz + 1)1>> .

It is involved but not very difficult to show that (see Exercise [[0.4])

zk: (ﬁ) B(ll;++11/2) =0 (\/%35—11/2)) : (10.37)

k

In summary, we arrive at

— 1 log(n/2me) + log % +0(m3?/\/n). (10.38)

We now use Stirling’s formula for T'(m/2) and complete the proof.]

Rmr(e) = =

10.3.3. Proof of Theorem [10.3.7]

To prove the second statement of Theorem [0.3.1 the starting point for the
asymptotic average redundancy is ([0L31]), however, we rewrite it in terms of
S C O as follows

pasympt _ 1 n —-1/2 ekBS(l/z)
RS = B /SZ (k) 0 log (Bs(k ¥ 1/2)) (1039)

where we use the short hand notation
Bs(a) = / 0% d0 = Dir(S; a) B(a).
s
As in the proof of Theorem we obtain
—=asympt

R, (8) =log Bs(1/2)+

m;@(%%Bsmﬂ/mBs(k+1/2>long<k+1/2>>-

284 Chapter 10. Redundancy of Universal Memoryless Sources

Again we split the summation over k into several parts. If k/n € S~, where
S~ denotes all points in the interior of S with distance > n~/2*¢ to the bound-
ary (for some £ > 0), then the saddle point 8; = k;/n of the integrand 0~ of
the integral of Bs(k+1/2) or %Bs(kJr 1/2), respectively, is contained in S~ .
The precise statement is as follows.

Lemma 10.3.3. Suppose that k/n € S~ then for every fized integer L > 0 we

have
Bs(k+1/2)=B(k+1/2) (1 + 0 (Zki_L_1>>

5 £

ki 0)
o In2 57%'Bs(k +1/2) = Bs(k+1/2)log Bs(k +1/2) =
D iz g, B+ 1/2) ~ Bkt 1/2)log B +1/2) +0 <B(k+1/z>;ki)
for large n.

Before we start with the proof of Lemma [10.3.3] we comment on the relation
between the Beta- and Gamma-function:

D (bt 3) T (b +3)
U (ky+- 4k +)

Bk+1/2) =

First this formula follows from the following substitution on m-dimensional in-
tegrals:

r (lﬁ ot R+ %) Bk +1/2) = / o7 R bt =2 m=1 g
m
/ 16 2 de
©i=1
00 m
= / / H (e_z‘gi (z@i)ki_%) 2" 1dzdo
0 70i=1
m o0 1
= H/ e_z*zfq’_i dz;,
i=170

where 6,,, abbreviates 6,, =1 — (01 + -+ + 0,,,—1) and the substitution

zi=20; (1<i<m-1), zm=2z(1—(1+ - +60m_1)

10.3. Average Minimax Redundancy 285

has determinant z™!.

Second, we can use Stirling’s formula to obtain the asymptotic formula

m—-1 m N ki m
Bk +1/2) = (27:22 H(%) <1+O<Zkiil>>.

Note that we only have to work with integral that represents the Gamma func-
tion and that can be asymptotically evaluated as

Ik+1/2) = / e 2R3 dz
0

= / e 7R dy + O (e*kkke*gk%ﬂ)
|z—k|<ckB3*e

L

= 2me Kk <1 + > ek 4 O(k‘L_1)>
=1

for every given integer L > 0, for every € > 0, and for every constant ¢ > 0, and

where ¢y are certain real constants. We just have to use the saddle point zy = k
of the function e #z* and the local expansion

—2 k=1 _ —kpk—L1 —(2—k)%/(2k z—k (2—k)°
e b b _ gkph—d (k) /(>(1_ L T

In particular, it is sufficient to consider the integral on the interval [k — c k=, k +
ck®]. The remaining part of the integral is negligible.
Proof of Lemma[I0.3.3 By using the same substitution as above we have

I (k'l + etk + %) Bs(k + 1/2) — / e—zzk1+~..+km+—%zm—l dz
0

m -
/31;119 e
z/oo/ﬁ(6_297'(29i)k7'_%>zm_1 dz d@
0 IS =1

m

O
= He ‘2 dzy - dzm,
cone(S) ;

=1
(10.40)

where
cone(S) ={z0:2>0, 0 € S}.

286 Chapter 10. Redundancy of Universal Memoryless Sources

By assumption k/n € S~, which implies (for a properly chosen constant ¢ > 0)
that

H {kl — cn%“, k; + Cn%“] C cone(S).
i=1
Since k; < n it also follows that

ﬁ {kzZ - ck§+a, k; + ck:i%ﬁ} C cone(S).

i=1

This implies that

F(k1+---+km+%>Bs(k+1/2):F(k1+---+km+%>3(k+1/2)

m m
e (kk G k;L—1>
=1 =1

and consequently

Bs(k+1/2) = (k+1/2)+0< ﬁ(> Zk‘L 1)

=Bk +1/2) <1 +0 (Z k;L—1>> :

This proves the first part of Lemma I0.3.3
It remains to consider the second part of Lemma [[0.3.3] We start with the
integral representation (I0.40) for

F<k1+---+km+%)Bs(k+1/2)

and consider the derivative with respect to k;. By the product rule this leads to
in integral representation for

19
r(m) Ok,

I (n+%)
.)2(%) Bslk +1/2)

In z; Zz 2d cdzy,
/cone(S nz; He 21 2

7
m
— 1
T3 i Ris
m / z; dz1 - dzm,.
-5 one(S) ;_ 1

(k+1/2) = (r (k1+---+km+%)Bs(k+1/2)>

Ok

T m

4
r(+
1
nt o
n+
n+

10.3. Average Minimax Redundancy 287

Next we consider

ki O
< In 2 Ok;

(k+1/2) — Bs(k+1/2)log Bs(k +1/2),

where we replace log Bs(k +1/2) b

log Bk +1/2) + O (f: k;L—1> :

i=1

The appearing integrals over cone(S) can be safely replaced by integrals over
[0,00)™ since the dominating part of the integral is (again) contained in S.
This means that we can switch between S and © without changing the leading
asymptotic behavior. Actually the error term from the integration can be upper

bounded by
o <B(k +1/2)exp <02 Z kf)) .
k=1

Together with the error from the approximation of log Bs(k+1/2) by log B(k+
1/2) which is of the form

@) (B(k +1/2) f: k;L—1>

we obtain the proposed relation. This completes the proof of Lemma [[0.3.3
|

Note that k/n € S~ implies that k; > cn2*e for some constant ¢ > 0 and
all i = 1,...,m. Thus, the error term can be also stated in terms of negative
powers of n. With the help of Lemma [[0.3.3] we obtain for any large L' > 0

> (z)(f_QaikBs(kH/z)—Bs(k+1/2)10ng(k+1/2)>

k/neS—

gl

> (3)Bucr s (m;%ogﬁ +0 (Zl/(km))) +Om)

i=1

B(k +1/2) — B(k +1/2)log B(k + 1/2)) +0(m™)

ki

k/neS—

- (m; log% +0 (1/\/5)) Bs(1/2).

288 Chapter 10. Redundancy of Universal Memoryless Sources

Finally, to simplify our presentation, we now explain the other parts of the
summation over k only for m =2 and S = {(6,1—0) : 6 € [a,b]}. Suppose that
|k — nb| < n'/?*¢ that is (ki/n,1 — ki/n) is at distance < n~/2*¢ from the
boundary of S. Here we have

Bs(ki +1/2,n— ki +1/2)
) () (o () roum),

where ®(u) denotes the normal distribution function. A similar representation
holds for the derivatives %Bs(k +1/2). A standard analysis yields

2
Z (Z) < ﬁiBs(kJrl/Z)Bs(k+1/2)~1ogB3(k+1/2)>

|k1—nb|<nl/2+e =1 In 2 Ok;
— 0(1/vR).

The summation for nb + n'/2*t¢ < k; < n is much easier to handle.

For dimension m > 2 one has to handle multivariate Gaussian approxi-
mations. This is just technical and more involved but there is no substantial
problem (see Exercise Therefore we just add some comments on this case.
If k/n ¢ S~ we can distinguish two cases. The first one is when k/n is not
contained in & and has distance > n~2%¢ to S. In this case the box

m
1 1
Q:= {kifcn2+s,ki+cn2+€]
i=1

is not contained in cone(S) which implies that
m
Bs(k+1/2)=0 <B(k +1/2)exp (8 > k)) .
k=1
Secondly, if k/n has distance < n=3+¢ to the boundary of § then the Gaussian
integral
m 1
Hefz"zfﬁi dz1 - dzm
QNcone(S) i=1

m 1 m Z,L*kz 2
Ne*”ka’ 2 / eXp(-Zi(2ki) dzy - dzm

=1 QNcone(S) =1

10.4. Learnable Information and Minimax Redundancy 289

can be expressed in terms of the distribution function ® of the standard normal
distribution provided that boundary of S is (locally) a hyperplane. Since we
only need upper bounds in this case the general case can be reduced to this one.

Summing up, in all cases the remainder is of order O(1/4/n). This completes
the proof of Theorem 0311

10.4. Learnable Information and Minimax Redundancy

One of the fundamental question of information theory and statistical inference
probes how much “useful or learnable information” one can actually extract from
a given data set. In this section we connect useful information to the minimax
redundancy.

Let us fix n, the length of a sequence ™ = z; ...z, given to us. We would
like to understand how much useful information, structure, regularity, or sum-
marizing properties are in x'. For example, for a binary sequence the number
of ones is a regularity property, the positions of ones is not. Let S be such a
summarizing property. We can describe it in two parts. First, we describe the
set S, and then the location of z™ in S. We denote by I(S) a learnable/useful
information of S; clearly log |.S| bits are needed to point out a particular location
in S. Usually, S can be described in many ways, however, one should choose S
so that it extracts all relevant information and nothing else. It means we need
S that minimizes I(.S). We denote such a set S and call is I-sufficient statistics.
It makes sense to call I(S) the learnable information (log |S| is rather a measure
of complexity of S).

Let us consider two possible measures of learnable information. If we describe
S as the shortest program on a universal Turing machine Qi.e.7 Kolmogorov
complexity) then I(S) becomes Kolmogorov-information K(S), and K(z") =
K (S‘) + log |5’ |. For example, if 2™ is a binary sequence, we first describe the
type of ™ (number of ones; see Chapter [[1]) that requires logn bits (and can be
improved to % logn), and then the location of ™ within the type which requires
log (7) ~ nH(k/n) bits where H(k/n) is the empirical entropy. While this
sounds reasonable, in general the Kolmogorov information is not computable,
so we need another approach.

We now turn our attention to computable learnable information contained
in a sequence x" generated by a source belonging to a class of parameterized
distributions M(0) = {Py : 0 € ©}. Let A(z™) be the ML estimator, that is

(z") = arg max Py(z").
6co
Observe that for a given sequence z", produced either by 6 or by 0’, we can use
0(2™) to decide which model generates the data with a small error probability,

290 Chapter 10. Redundancy of Universal Memoryless Sources

C,(@)balls ; log C,(0) useful bits

\

indistinquishable
models

Figure 10.3. Illustration to “learnable information”

provided these two parameters are far apart in some distance. If these two
models, 0 and 6’ are too close to each others, they are virtually indistinguishable,
and there do not introduce any additional useful information. In view of this,
it is reasonable to postulate that learnable information about z™ is summarized
in the number of distinguishable distributions (models). In summary, if there
are C,(©) such distinguishable distributions according to some distance, it is
natural to call
1,(6) = log C1,(©)

the useful information. See Figure for an illustration.

Let us estimate C,(©) for the memoryless case. As a distance between
distributions/models we first adopt the Kullback-Leibler (KL) divergence. Using
Taylor expansion around 0, we find

D(Fy||Fy) := E[log P3(X™)]—El[log Py(X™)] = %(9*9A)TI(9)(9*9A)+0(|I9*9A||2),
(10.41)

10.4. Learnable Information and Minimax Redundancy 291

where I(0) = [I;;(0)];; is the Fisher information matriz defined as
82
L;i(0) = —E | ————log Pp(X)]| .
5(6) = ~B | gy o oY)

In fact, another related distance is more useful for us, namely the so called
Mahalanobis distance defined as

41(60,06) = /(0 —)T 1(6) (0 — b).

This is a rescaled version of Euclidean distance, and in Exercise [I0.5 we ask the
reader to show that (see also (@14

d1(9,80) = O(\/D(@]10y)). (10.42)

One property of the d; distance is that the volume V' of a ball (ellipsoid) at
center ¢ and radius ¢ is

V(B1(0,¢)) = 1/y/det 1)V (B(e), (10.43)

where B(e) is the regular Euclidean ball of radius € and det I(#) is the determi-
nant of 1(9).

To proceed, we need to specify the error probability and distinguishibility.
Let

BKL(H(),E) = {9 . D(9||90) § E}

be the KL-ball or radius £ around 6. Observe that the KL-ball Bk (0,¢) be-
comes By (0, 1/€) ball in the dy distance. The distingushibility of models depends
on the error probability that can be estimated as follows for some 6 € ©g

Py(0 # 0) = Py(arg min D(O(X")[|6) #) (10.44)
~ Py(6(X) & Bir(6,/n)) ~ 1 — O(c"?) (10.45)

for some small € > 0, where we use the fact that for memoryless sources (more
generally, exponential family of distributions)

Pé(xn)fn 1o Pé(X) —n ~
o8 pa iy = "3 0% 7o i | = D01

We conclude that the number of distinguishable distributions C,(©) is ap-
proximately equal to the volume V;(©) of © under distance d; divided by the
volume of the ball size Br(6, \/e/n). In Exercise[I0.7 we ask the reader to prove

that
V[(G):/ v/ det I(0)df (10.46)
e

292 Chapter 10. Redundancy of Universal Memoryless Sources

and V(B (0, /) = O(e*/? /\/det I(0)).

Setting up the error probability at level O(1/+/n) as indicated above, we con-
clude that the number of distinguishable distributions C,,(©) (i.e., the number
of centers of the balls Br(6,+/¢) is

C(O) = (£>k/2/® Vet 1(0)do + 0(1) (10.47)

2m
= Z sup Py(z™) = inf maxlog ki
s 0cO 0cO zxm Pg

= lnf D(F;||Pp) +O(1)
=R:+0(1) =R, +0(1). (10.48)

In summary, average or maximal minimax redundancy can be viewed as a
measure of learnable or useful information. Unlike entropy, minimax redundancy
provides information about regularity properties of a sequence.

10.5. Minimax Regret for Online Logistic Regression

In Section we introduced online regression and its minimax regret. We
shall analyze precisely the regret for the specific class Hpw of functions h(x) =
p({x,w)) with the so called logistic function p(w) = (1 + exp(—w))~! where
w = (x, w) is the scalar product or x and w. Using machine learning convention,
we write T for n.

We adopt all the notation from Section Thus x; = (T1.4,...,%a,e) 1S
a d-dimensional feature vector such that ||x;|| < 1 for some norm | -|. We
also assume that the set x; spans R¢. The label binary vector is denoted as
y'' = (y1,...,y7r) with y; € {—1,1} and the prediction is §; € [0,1]. As already
defined in Section wy = (W1, ...,wae) is a d-dimensional vector of weights.

Our goal is to precisely estimate the minimax regret with the logarithmic loss
for the logistic regression, thus we set £(yi|x:, w:) = log(1 + exp(—y+(Xs, Wt)).
Observe that for the logistic regression

Plyelx', w') = p(ye(xe, we)) = 14 eXp(_lyt<Xt W)

is the probability of seeing label y;, and thus
C(ye|xe, wi) = —log P(y|x", wh).
Finally, in ([@43]) we established that the (fixed-designed) minimax regret

*

rx(x?) can be computed through the Shtarkov sum, that is,

T (XT) = log DT(XT)

10.5. Minimax Regret for Online Logistic Regression 293

where
Dp(x") = Zsup Pyt |x",w) (10.49)
w

yT

and P(y?|xT,w) abbreviates

T
Pyt |xT, w) H (ye|x*, w) (10.50)

In order to make our analysis simpler we assume that the feature vector x;
takes only finite number of (vector) values, that is, there is a finite set A =
{ai,...,an} of vectors such that x; € A for all t. By T; we denote the number
of ¢ such that x; = a; so that

Ti+ - +Ty=T.

Furthermore also write a; = Tj/T so that o1 +---+any = 1.
Next, given y7 € {—1,1}7 we denote by k; the number of ¢ with x; = a;
and y; = 1. Then (I050) simplifies to

Py w) Hp aj, W) q((ay, w))" b

1
TR R T Z’f

Under these restrictions we prove in Section T0.5Tlthe following result. Recall
that p(w) = (1 4+ e %)t and g(w) = 1 — p(w) = p(—w).

Theorem 10.5.1. Suppose that d and N > d are fized positive integers and
that A = {ai,...,an} is a finite set of d-dimension real vectors with norms
laj|| < 1 that span RY. Let x, € A fort = 1,...,T and denote by T; the
number of t with x; = a;. Furthermore suppose that there exists 7 > 0 such
that T; > 0T for 5 = 1,...,N. Then the mazimal minimax regret becomes
asymptotically, as T — oo,

r*(xT) = glogT — glog%r + log </]Rd \/det(Bg(w))dw - -- dwd) +0(1/VT)

(10.51)
where Ba(w) is a d x d matriz computed as follows

N
= awp((ai, w)a(ai, w))a; - a7,

294 Chapter 10. Redundancy of Universal Memoryless Sources

where a; = T;/T and AT denotes the transpose of a matriz A.

We expect that the asymptotic relation (I0.51]) should hold in a much more
general context, in particular when the vectors x; are not restricted to a finite
set and d varying with T'. In this context the matrix B4(w) is to be replaced by

T
Blw,x") = = 3 pllx w))a((xe, w))xe 7 (10.52)

In such a case, we can study the behavior of B(w,x”) when the vectors x; are
generated randomly by an iid process. By the law of large numbers we find

(almost surely)
B(w,x") = B(w) := E (p((X, w))q((X, w))X - XT).

We present an asymptotic analysis of E(W) when the feature vector x; are
generated uniformly on the d-dimensional unit sphere Sg. In this case

= 1
Bw) = = [pllxw)a((xw))x " dx
Sd Sa
where sq4 is the area of the sphere of dimension d and radius 1, that is,
d+1
sq= 27r<d+1>/2/r(—;).

In Section [10.5.2] we prove the following result.

Proposition 10.5.2. In the case of uniform distribution on the d-dimensional
sphere we have, as d — 0o,

/ \/det(B(w))dw = (7/8)%4e3/8(d/4)=%2 (1 + O(1/d)) . (10.53)
Rd

We observe that when features x; are uniformly distributed inside the d-
dimensional unit ball, we need an extra factor

d \"?(d-1\"7
(d—l) (d—i—l)
leading to

/ \/det(B(w))dw = (7/8)4e=1/8(d/4)~2 (1 + O(1/d)). (10.54)
Rd

10.5. Minimax Regret for Online Logistic Regression 295

10.5.1. Proof of Theorem [10.5.1]

In what follows we sketch the proof of Theorem [[L5. 1l The first step is to
understand the behavior of the following optimization problem

sup P(y" |x", w).
w

It is easy to see that there is a uniquely defined weight vector w* with
max P(y” |x7,w) = P(y" |x*, w*)
w

that satisfies the relation

N N
Z a;jp((a;, w"))T; = Z ajk;. (10.55)
Jj=1 j=1

Actually the matrix

N

> pl{ayw)a((as, w)Tja; - a

j=1

is positive definite (since the vectors a; span R?) and so we have a convex
optimization problem.
Next we rewrite the Shtarkov sum (I0.49)) as

ZH()supP TN x", w), (10.56)

kN j=1

where kv denotes kN = (ky,...,kn) € [0,T1] x - -- x [0, T] and yT' (k) denotes
the corresponding binary vector. We then have

P(y" (k™)x", w* HP a;, W)™ q((a, W),
where w* = w* (k") satisfies (I0.55). Let now

N
Vo) i= T (7) ottasew) attag wop ™

for real k; € [0,T}]. We just replace k;! and (T;—k;)! by I'(k;+1) and T'(T; — k; +
1), respectively, and determine w* = w*(k") by the equation (IIL55) for real

296 Chapter 10. Redundancy of Universal Memoryless Sources

valued k;. With the help of Stirling’s formula B (KN, w*) can be approximated
by

1
I1; v2rp((a;, w*))a((a;, w)T;

B(kN,w*) ~

(kj — kj(w))
cexp | — - -
; 2p((ay, w))al(a, w)T;
where k;(w*) = p((a;, w*))* T; and we assume that |k;—k;(w*)| < ¢;/Tjlog T;
for proper constants c;. By setting

*) = dia, 1 !
Dlw?) = diag <p<<a1,w*>>q<<a1,w*>m""’p<<aN,w*>>q<<aN,w*>>TN)
with &V (w*) = (k1 (w*), ..., kx(w*)) we find

B(kN (w ~ y/det(D 21)) (10.57)
exp <5<kN - kN(w*))TD(w)(kN K w).

We ask the reader in Exercise [0.I3 to show that the sum (I0.50) can be
approximated by the integral (note that it will also make use of the Gaussian

approximations (T0.57).

N

~ Ty . Tj a N a n\W\\ T —k;
Breny= [L ot w0 atiagw ()55, (1059

that is, Dp(xT) ~ Dp(xT) as T — oc.
We next consider the map that assigns to w* € R? the vector

w* = A(w Za]p a;w

Furthermore let A denote the image of the set A(R?). This map is bijective and
has a strictly positive Jacobian determinant

N
w) =det | 3 p({ajw))a((a;w))Tra; -]

= det (T]~3d(w)) .

10.5. Minimax Regret for Online Logistic Regression 297

We further denote by H(w*) the set of k&~ = (ky,...,ky) € H;V:l[o, T;] with

N
A(W*) = Zajkj.
j=1

Note that
N (w*) = (p((ar, w)T1, ..., p((an, w*))Ty) € H(w™).

Next we replace the integral Dy (x7) into an integral over A and an (N — d)-
dimensional integrals over H(w*), that is, "V is mapped to

N ~
Z ajkj X 7‘[,
j=1

where H denotes the (N — d)-dimensional subspace

N
H = z:(zl,...,zN)ERN:Zajzj:O

j=1

where we apply just the (N — d)-dimensional Lebesgue measure. Actually this
is a linear mapping with determinant

Vdet (A~ A7),

where A = (ay,...,ay).
In the second step we apply the substitution A(w*) = a to the first compo-

nent a = Z;VZI ajk;. Since this substitution has determinant J(w*) we find

bT(XT) ~ &
Rd y/det (A - A7)
y /ﬁ /At D)/ (@) exp (—%ZTD(w)Z) dzn g dw*.

Let us denote by I(H,D) the following Gaussian integral

I(H,D) = \/m/ﬁexp (—@) dz, (10.59)

2

where we can assume more generally that D is a positive definite symmetric
matrix.

298 Chapter 10. Redundancy of Universal Memoryless Sources

In order to make the following computations more transparent we assume
that d = 1, that is, the vectors a; are just real numbers a;. We also denote by
u the normalized N-dimensional vector

1
u=——(ag,...,an)".

N
Zj:l a?

We know that the integral on the whole space equals 1, since the integrand is a
Gaussian density with D! as the covariance matrix. By slicing the whole space
into a folio of hyperplanes parallel to H we find

Vaom [:° it /H exp (_ (2 + tw)D(z + t“”) do—1

2

Let u = p(u) + v where p(u) is the projection of u on H according to the
metric induced by D. Thus in the integrand we have

((z +tu)"™D(z + tu)) = ((z + tp(u))"D(z + tp(u))) + t*(v' Dv).

For a given t, after a simple change of variable, we find

[exp (~ e oD) gy [(DY

Thus

I(’;q,D) /OO exp(—t3 (v Dv)/2)dt = 1

and therefore,
~ (viDv)
I(H,D) =4/ ——.
(H,D) 5
In order to determine v we notice that if v is orthogonal to H with metric
D then Dv is orthogonal to H with classic metric. Thus Dv is colinear with
u, or equivalently D~'u is colinear with v. Since u — v must belong to A then

(u"(u—v)) =0 and

1
=—— D!
M (u"D~1u) W
and consequently (v Dv) = m. Finally, we arrive at
I(H,D) = !
0\ 2r(uw D u)

N
B \/27r > i1 aip(ajw)g(ajw)T;

N
PR

10.5. Minimax Regret for Online Logistic Regression 299

which gives then

o N
Dp(xT) ~ / QWZ azp(ajw)q(a;w)Tj dw

- m/_‘” \/det(By (w)) dw

as desired. The general case d > 1 can be worked out in a similar fashion (we
ask the reader to do this in Exercise [[0.14]).

10.5.2. Proof of Proposition 10.5.2

We recall that we consider the case for which the feature x; is uniformly dis-
tributed on the d-dimensional unit sphere. We aim at computing the integral

([I053) asymptotically.
We first need the following lemma.

Lemma 10.5.3. Let f(z) = p(x)q(z) = [(1+e ") (1+€")] " and u = w/||w]|.
(i) Then B(w) can be represented as

B(w)=Aw)u-u” + pu(w)(I;—u-u’), (10.60)

where 1 is the identity matriz and

AMw) = Sd-1 /7r cos(#)? sin(0)?~2 f(cos() || w|)do (10.61)
Sda Jo
and " sin(0)?
_ Sd-1 S cos w .
ptw) = 22 [O fcos(o)whas (10.62)

are the eigenvalues of B(w) with multiplicities 1 and d — 1, respectively.

(ii) Furthermore, det B(w) = A(w) - u4=1(w) and both \(w) and p(w) are of
order O(||w]||=3), thus det(B(w)) is O(||w]||=3?). More precisely,

s d
det(B(w)) = 2 (;Tjjw2||w||3<1 n 0<|w|2>>) (10.63)

as ||wl| = oo.

300 Chapter 10. Redundancy of Universal Memoryless Sources

Proof. We start with part (i). Let 6 be the angle between a and u. We have
the decomposition a = cos(f)u + b with b € sinfS;_1(u) where S;_1(u) is
the unit hypersphere orthogonal to u. Since a’s have a spheric symmetry in its
distribution, so it is the case for the b’s in sin#S,;_1(u) for any given angle 6.
Thus

_ 1 ™
B(w) = 5/0 f(HchosG)dG/ o)(b+cos€u) - (b 4 cosfu)"db
sinf0S4_1(u

1 s
= [HUwleosoyas | (b-b + (cos0)?u - u”)db
Sd Jo sin 0S4_1(u)
1 s
b [ooy | cos (b - u” + u- b7)db.
Sd Jo sin 0S4—1(u)

Again due to the spheric symmetry of b we also have fsinesd,l(u) b = 0 leading
to

_ 1 [~
B(w) = S_d/o f(HchosH)dG/. b)(b-bT+(Cost9)2u~qub
sin0S4_1(u

= i/ f(||w]| cos8)(sin §)?~1d@
Sd Jo

/ ((sin€)?b - b + (cos#)?u - u”)db. (10.64)
Sd,l(u)

The (sin §)4~1 factor arises from the change of integration domain from sin S, (u)
to Sg—1(u).
The quantity

/ b-b" db
Sa—1(u)

is the (d—1) x (d — 1) matrix whose (4, j) coefficient is fsd—l bibjdb. Clearly, by
spheric symmetry of the b vectors

/ bibjdb =0
Sa—1

when i # j. We also have for all i = j:

1 Sd—1
bi)de:/ bj)?db = —— b||>db = - .
JaK [= g [b= 5

Thus
Sd—1

b-b”db = L1 (u)
/Sdl(u) d—1

10.5. Minimax Regret for Online Logistic Regression 301

and similarly

/ u-u" db=s4_1u-u”
Sd,l(u)

which completes the proof of part (i) of the lemma.

Now we move to part (ii) of Lemma[I0.5:3] Both A(w) and pu(w) are functions
of w = ||w|l. We write A(w) = A(|w]]) and p(w) = p(||w]|). To capture
the asymptotics of these functions we apply the Mellin transform discussed in
Appendix

The Mellin transforms A*(s) and p*(s) of A(w) and pu(w) are defined, respec-
tively, as

= [M o) = [et

Observe now that

9= 1/ f(cos(8)w) cos?(#) sin®~2(#)do

25
_ i / (1=) D2)y
0

Sd

via the change of variable y = cos(). Thus we find

* 254 ! — > s5—
M (s) = 20 / (1—) D722, / flya)a* " da

Sd
2841 ! :
2 p / (1 - ?)@9/22=s gy
Sd 0
Sd— * *
=2-Lf*(5)B7 (3 — 5)
Sd

where f*(s) is the Mellin transform of f(z) = p(x)q(z) and S (s) is the Mellin
transform of the function (1 — y?)@=3)/2 defined over [0, 1].

The Mellin transform gj (s) exists for R(s) > 0 and can be written in terms
of the beta-function (after applying a substitution y? = 2):

iy L _ D(d—-1)/2)I'(s/2)
Bl(s) - §B((d - 1)/275/2) - 2F((d+ G — 1)/2) :

Clearly f7(s) has poles on the negative even integers (by the way they also
correspond to the Taylor expansion of (1 — y?)(@=3)/2),

302 Chapter 10. Redundancy of Universal Memoryless Sources

The Mellin transform f*(s) of function f(z) also exists for R(s) > 0. We
furthermore consider the Mellin transform h*(s) of the function h(x) = log(1 +
e~ ") (which exists for R(s) > 0, too) and is given by

h*(s) = (1 =27°)¢(s + 1)0(s),

where ((s) is the Riemann zeta function. By applying partial integration twice
we get for R(s) > 2

1

B ()

f(s)

f (s) =(s—=1)(s—2)h"(s — 2).

Note that the poles of h*(s —2) at s = 1 and s = 2 are are canceled so that this
identity actually holds for R(s) > 0.
Summing up, the product £1(2 — s)f*(s) (and, thus, A*(s)) is defined for
R(s) € (0,3). At s = 3 there is a pole which has the residue —((2)I'(3) = —72/3.
We can make a similar analysis for p*(s) and we arrive at

1w (s) = 2%@(1 —5)f*(s),

where (33 (s) is the Mellin transform of function function (1—y?2)@=1/2, Similarly
to the above the Mellin transform p*(s) is also defined on R(s) € (0,3) and has
a simple pole at s = 3 with residue

d—1 7*(d—-1)

2 6

For both A*(s) and p*(s) the next pole is at s = 5.
We now apply the inverse Mellin transform

—((2)r@)

1 1+i00 1 14200

AMw) = — A (s)w™%ds w) = — *(s)w™*ds
(w) 2mi /17100 (s) ’ uw) 2m /171'00 wle)

to extract asymptotics of A(w) and p(w) for w — co. By moving the integration

path over the simple poles at s = 3 and s = 5 and catching the residues we

finally obtain

Aw) = 22871 720)=3 4 O(w™),
3Sd

p(w) = S O(w™?)
3Sd

10.5. Minimax Regret for Online Logistic Regression 303

for w — oo. In conclusion

d
£ Sd—1 - _
det(B(w)) = 2 (3—Sd7r2||w|| 1+ 0(|w| 2))) (10.65)
when ||w|| = co. This completes the proof of Lemma [[0.5.3 |

It is now easy to complete the proof of Proposition [0.5.21 We have to
evaluate the quantities A(w) and p(w), the eigenvalues of matrix B(w) for large

d. The main contribution of both integrals is for § around 5. For § = 7§ + \/% x

we have

sin(A)?2 = exp (dd

(@ +0)).

cos(0)? = 2302 —4/(3d*)x* + O(z8/d®),

d
Fleos(B) [w]) = & exp (—%) (14 O(wtat/d?)

leading to (after dropping the error term which is easy to estimate)
/ sin(0)?72 cos(0)? f (cos(0)||w]|)do
0

~ (2/d)*/? [m exp (—(1 + %)302) zidx

T (L w2 -4\
= (2/d)% R (1+ T)

—+o0

and

" 1/2 oo HWH2 2
/O sin(0)"f (cos(0)||wl|)d6 ~ (2/d)"/ / exp (—(1 +)) do

= (2/d)1/2\/_;&1+ M)w.

In summary

det(B(w)) ~ <5d1>d (2/d)d/2$(d_ﬁ7rd/2 exp (W) .

Sd

304 Chapter 10. Redundancy of Universal Memoryless Sources

To complete the derivation, we need to integrate /det(B(w)) over the vec-
tors w. This leads to

Sd—1 vz 4 4
/ (det(B(w))dWw%(i—;) (2/d)% \/— —d— pp—— /4 (2v2m)”.
(10.66)
The final touch is to estimate of the ratio 2¢=1. But
I'(d/2) rd/i2)y |jd 1
s VT@-na) T-np Va1t oW
so that
/ V(det(B(w))dw ~ (m/8)%/4e3/8(d/4)=/? (10.67)

which completes the proof.

10.6. Exercises

10.1 Prove (IL9) using the definitions of T'(z) and B(z), that is, prove that

1

B(z) = 1-T(z)

for all z < et
10.2 Prove ([I0IT), that is,
Sp— S =0 (n%1).

10.3 Consider the binary constrained case as discussed in Section Prove
that in this case the KT-estimator (see Krichevsky and Trofimov (1981))
can be computed as

Ny, (z")+1/2 a @2 g No(a™) + 1/2
M (2pq1]z") = —H 2Ty 11—1)
(@nal2") P L GRS) CS)(n+1)
s - 0 biNo(ar) +1/2

C(S)(n+1)
where C(S) is defined in (I0.15]).
10.4 Prove the estimate (I0.31 that is,

3 (1) Bl 2 (/B

k

uniformly for all m and n.

10.6. Exercises 305

10.5
10.6

10.7
10.8

10.9

10.10

Prove (I0.42) and (I043).

Complete the proof of Theorem M0.3.1] for m > 2 by providing rigorous
derivations.

Prove (I0.40) (see Balasubramaniam (1997), Grunwald (2007)).

Consider the following recurrence that is related to the maximal mini-
max redundancy of memoryless sources. Under some initial conditions,
a sequence z," satisfies for n > 1 and m > 1:

o =ant+ Y <TZ> <%> (1 - %) (@ a2y, (10.68)
=0

where a,, is a given sequence (the so called additive term), and m is an
additional parameter. Prove that the following tree generating functions
(o) o0
Kk Kk
Xm(z) = kg Az) = Fay

T2 T2
k=0 k=0

satisfy the following functional equation
Xm(z) = A(2) + 2B(2) Xm-1(2)

where B(z) is defined in (I0.g).
Consider a memoryless unconstrained source © with m = o(n). Using
elementary asymptotics (without complex analysis) prove the following

. m—1 en 1
R (©) = Tlog (E) + 5(1 —log2)

+0(1/m) +O0(m®*? /\/n)

for large n.

Consider the midfield model Mj denoted as M. In this model family
M, assumes an alphabet A U B, where |A] = m and |B] = M. The
probabilities of symbols in A, denoted by p1,...,pm, are allowed to
vary (unknown), while the probabilities g1, ..., ga of the symbols in B
are fixed (known). Furthermore, ¢ =¢1 4+ - -+ gy and p=1—¢q. We
assume that 0 < ¢ < 1 is fixed (independent of the sequence length
n). To simplify our notation, we also write p = (p1,...,pm) and q =
(q1,---,qum)- The output sequence is denoted x := z7 € (AU B)™.

Let §;7m,M(ﬂo) denote the redundancy of the model M. Prove the
following

D - n n—k D%
Rn,m,M = Z <k>pk(1 7p) kRn,m(MO)
k=0

306

10.11

Chapter 10. Redundancy of Universal Memoryless Sources

where é,*hm(/\/lo) is the minimax redundancy of the original M.

Consider the model My defined in Exercise Prove the following
theorem established in Szpankowski and Weinberger (2012).

Theorem 10.6.1. Consider a family of memoryless models Mvo over
the (m + M)-ary alphabet AU B, with fized probabilities ¢1,...,qm of
the symbols in B, such that g=q1+ ... +qn is bounded away from 0 and
1. Let p=1—gq. Then, the minimaz pointwise redundancy dp m rv takes
the form:

(io) If m is fixed, then

R s = mT_l log (%) +log (r\(/z)) +0 (%) . (10.69)

2

(i) Let m,—o00 as n grows, with m,=o0(n). Assume:
(a) m(x) := m, is a continuous function, as well as its derivatives
m/(x) and m”(z).
(b) denote A, :=mpy1 —my, = O(m/(n)), m'(n) = O(m/n), and
m/ (n)=0(m/n?), where m'(n) and m'(n) are derivatives of
m(x) at © = n.
If m,, = o(y/n/logn), then

~ Mpp — 1 n m
;kz,m,M: L log(p)+ ;ploge—i—

1 mpyp My, 1 m2 1og2 n
_ - 1 PO n .
2Jr 3 oge\/ np * (,/anr n

Otherwise,

= Mnp np Mnp
n,m,M 2 og (mnp) + B og e+

2
+ Mp loge, /M +0 (1ogn+% 10g21) .
3 np n My,

(ii) Let m, = an + £(n), where « is a positive constant and £¢(n) is a
monotonic function such that ¢(n) = o(n). Then,

nom.ar = nlog (Bap +1—p)

—logy/Aq+O (emw%)

where A, and B, are defined in Theorem [TO.2.1ii).

Bibliographical notes 307

(i) Let n=0(m,,) and assume my/k is a nondecreasing sequence. Then,

_ 2
R, = nlog (]”:”) +0 (:1— + %) . (10.70)

for large n.

10.12 Prove rigorously (I0.44]).

10.13 Prove that the sum (I0.50]) is asymptotically equal to the integral (T058)
as T — oo.

10.14 Calculate the integral (I05Y) for any dimensions 1 < d < N.

10.15 Suppose that the N vectors ay,...,ay € R? span R? and suppose that
aj > 0,0 < j < N. Prove that the integral

N
/Rd det (Z a;p({aiw))q((aiw))a; 'aI>dUJ1 - dwg

i=1

is finite.

Bibliographical notes

Redundancy and regret for memoryless sources are analyzed in many papers.
The leading term of the minimax redundancy was already known to Rissanen
(1984b). A better estimate was provided by Clarke and Barron (1990), and
then Xie and Barron (1997, 2000). The precise asymptotic expansion for E;’;
was presented in Szpankowski (1998), while the coding part R (Q*) was derived
in Drmota and Szpankowski (2004). Finally, the constrained distribution was
first discussed in Drmota and Szpankowski (2004) for the binary case while
the sequential algorithm foe this case was presented in Shamir, Tjalkens, and
Willems (2008). It was recently extended to non-binary alphabet in Drmota
et al. (2022).

Minimax redundancy for large alphabets was tackled in Gyorfi, Pali, and
der Meulen (1994) (see also Kieffer (1978)), but then significantly extended
in Boucheron, Garivier, and Gassiat (2009), Orlitsky et al. (2004), Orlitsky and
Santhanam (2004), Shamir (2006b, 2006a). The leading terms of the asymptotic
expansions in Theorem [[0.21] for m = o(n) and n = o(m) were also derived
in Orlitsky and Santhanam (2004). The precise maximal minimax redundancy
was for the time established in Szpankowski and Weinberger (2012).

The precise maximal minimax redundancy for finite alphabets presented in
Section [[0.]] is based on Drmota and Szpankowski (2004), while minimax re-
dundancy for large alphabets discussed in Section follows Szpankowski and

308 Redundancy of Universal Memoryless Sources

Weinberger (2012). The average minimax redundancy described in Section
come from Drmota et al. (2022). Section [[0.4] follows Balasubramaniam (1997),
Grunwald (2007), Rissanen (2007). Finally Section is based on Jacquet
et al. (2021) (see also Foster et al. (2018), Shamir (2020)).

Properties of the Lambert W function and tree function T'(z) are discussed
in depth in Corless et al. (1996).

CHAPTER 11

Markov Types and Redundancy
for Markov Sources

In this chapter we study Markov sources M, of order r, however, we usually
assume that they are of order 1. Our goal to to derive precise estimates for
the minimax redundancy and regrets, where our main focus is on the maximal
(worst case) minimax R.

However, in order to address the minimax redundancy we must understand
Markov types, that is, the number of distinct distributions and the number of
sequences generated by a Markov source of the same distribution type. We shall
discuss Markov types in this chapter, too.

11.1. Some Preliminaries

In Lemma [9.2.2] we showed that the maximal minimax can be partitioned into
the coding part R’(Q*) and the part R} that represents the class of sources.
That is, _

R, = R,(Q") + R,
where I?EZ =log D,, with

D, = Z Pseuj\;/)l ‘ P(z").

Tmn

In the above z™ is generated by an unknown Markov source from M, with
empirical distribution P(z") where P € M,..

Let now P € Mj, where M1 is a Markov source of order 1. Assume that
the alphabet is A = {0,1,...,m — 1}, and the unknown transition probabilities
are p;; for 7,j € A. Then we can write

n kij
P(z") = P(xo) H Dij
i,jEA

310 Chapter 11. Markov Types and Redundancy for Markov Sources

where k;; is the number of (consecutive) pairs (i,j) € A? in 2™. For example,

P(0101100) = P(0)poop2,p2epi1.

Clearly we have

Z kij:nfl.

1<ij<m

The matrix k = [k;;]i jea is called the frequency matrix and plays a crucial role
in the Markov analysis. It satisfies the so called conservation law which asserts
that the number of pairs (j,4) that ends with symbol ¢ must be equal (with the
possible exception of the first and last symbols)) to the number of pairs (¢, j)
that start with symbol i (see (I1.6])).

In order to analyze the maximal minimax redundancy we need to find sup P(z")
and D, (M). Since

k'OO B 1 m1 km—1,m-1
supP —sup]:[pl = | ————

Pij i3

where k; = Y™

j=1 kij, one finds

k‘oo kfm,—l,m—l
ZMk (koo) (%) , (11.1)
m—1

where My is is the number of 2™ generated over A having k;; pairs (¢, 7) in 2™. It
is known under the name frequency count but in fact it is the number of Markov
sequences of a given type that we shall define precisely in the next section.

Thus, in order to study the minimax redundancy R} we first in Section TT.2.T]
discuss Markov types. Then we present in Theorem [I[1.3.4] precise asymptotics
for the maximal minimax redundancy leading to

é* ~ mr(m - 1)

" 5 logn

for Markov of order 7.

11.2. Markov Types

The underlying idea of types is that two sequences z™, y™ of the same type
should have the same probabilities: P(z") = P(y™). This could be used as a
definition of types. However, we use a combinatorial approach.

11.2. Markov Types 311

Suppose that k = [ki;]i je is a frequency matrix of a sequence z™ (for some
n > 0). Then the type T (k) is the set of sequences with the frequency matrix
k. Sometimes we will also use the notation 7 (z™). Clearly we have

U7nm) = Am
e
Furthermore we denote the set of all types of sequences of length n over an
alphabet of size m as Q, (m).
So our goal it to find asymptotic expressions for the number of (first order)
Markov types |Q,(m)| and number of sequences of type ™, that is, |7 (z™)].

Example 11.2.1. For a memoryless source over the alphabet A = {0,1,...,m—
1} we can consider the vector k = (k;);e4 of frequencies of the appearing sym-
bols, that is, a sequence =™ is of type k if the symbol ¢ appears k; times in =™,

0 <17 < m. Since
P(z™) = H pl
i€ A

it follows that two sequences z™, y™ of the same type satisfy P(2") = P(y™).
From a more combinatorial point of view we consider non-negative integers k;,
i € A, with ko+- - -+ k;,—1 = n. The corresponding type class T (k) is then fully
described. Accordingly we denote by Q, (m) the set of all types of sequences of
length n. By elementary combinatorial considerations we have

n n+m-—1
k)| = = .
T = (") md lemi= (")
Let us now return to Markovian types. We recall that
n kij
P(a") = P(zo) [] »’ (11.2)
i,j€A

where k;; is the number of consecutive occurrences of the pair (i, 5) € A? in 2™.
The matrix k = [k;;]; jea is the frequency matriz, that defines the Markov type
class. We already mentioned that the frequency matrix k is an integer matrix
satisfying two important properties:

> kiy=n-1, (11.3)
i,jEA
and additionally for any ¢ € A

m

S kij =Y k0w =i) = d(an =1), i€ A (11.4)

j=1 j=1

312 Chapter 11. Markov Types and Redundancy for Markov Sources

where §(A) = 1 when A is true and zero otherwise. The last property is called
the flow conservation property and is a consequence of the fact that the number
of pairs starting with symbols i € A4 must be equal to the number of pairs ending
with symbol i € A with the possible exception of the first and last pairs.

In a first step we will neglect this exception by considering artificially the
so called cyclic sequences in which the first element x; follows formally the last
symbol z,,. If we associate to a cyclic sequence x™ the cyclic frequency matriz
k = [k;;] then these integer matrices k = [k;;] satisfy the following two properties

Z kij = n, (11.5)
i,jEA

ikij = ki, Q€A (11.6)
Jj=1 J

1

We will call such integer matrices k also balanced frequency matrices or simply
balanced matrices. We shall call (ILf) the conservation law equation or the
balanced boundary condition (BBC). We denote by F,,(m) the set of nonnegative
integer solutions of (IT.5) and (IT.4).

Accordingly we define cyclic Markov types. Two cyclic sequences have the
same (cyclic) Markov type if they are related to the same balanced frequency
matrix. We denote by P,,(m) the set of cyclic Markov types.

We first study these cyclic Markov types P,(m). They are more natural
from a combinatorial point of view and they can be handled in an elegant way.
They are also related to other interesting combinatorial objects (e.g., counting
the number of integer solutions of some system of linear equations). In a second
step we will relate them to non-cyclic Markov types.

Example 11.2.2. Consider a binary Markov source over 4 = {0,1}. A bal-
anced frequency matrix is of the following form

koo ko1
k =
[km ku}

where the nonnegative integers k;; satisfy
koo + ko1 + k1o + k11 =n and ko1 = kio.

Equivalently we have
koo + 2ko1 + k11 = n. (11.7)

11.2. Markov Types 313

Figure 11.1. A frequency matrix and its corresponding Eulerian graph.

<= 23]

The number of nonnegative integer solutions of (I1.7) is obviously

Lz
IFa(@)] = > (n—2ko +1)
ko1=0
- QgJ + 1) (n— gJ +1)= %2 +0(n). (11.8)

In general it is easy to show that the elements of F,,(m) can be parametrized
by the m? — m variables kij; 0 <i<m—1,0<j <m— 2. The remaining
frequencies k; ;m—1, 0 < ¢ < m — 1, are then uniquely given by the balance
conditions and the condition 7, ; kij = n.

As mentioned above there are close connections between (cyclic) Markov
types and other combinatorial objects. The most prominent example are Eu-
lerian graphs. For example, consider the balanced frequency matrix over A =
{0,1} given by koo = 1, ko1 = k1o = 2 and ki1 = 2, so that n = 7. This
matrix can be related to a directed multi-graph on the vertex set A as depicted
in Figure [[T.T] where here k;; denotes the number of directed edges from i to
j. Observe that due to the balance property of the frequency matrix k, the
number of edges leaving a node must be equal to the number of edges coming
in. But this defines an Eulerian graph. With that in mind, we observe that the
number of cyclic types is equal to the number of Eulerian graphs on |.4| nodes
(see next section and Figure [[T.2)), while the number of of Eulerian paths gives
us the number of cyclic sequences of type k (see Section [T.23]).

In the next example we show that the number of Markov types |P,(m)] is
not necessary equal to the number of nonnegative integer solutions |F,(m)| of

[IL5) and (IL5).

Example 11.2.3. Suppose that m = 3. The balanced frequency matrix has

314 Chapter 11. Markov Types and Redundancy for Markov Sources

nine elements {k;;}; je{o,1,2}, and they satisfy

koo + ko1 + ko2 + k1o + k11 + k12 + koo 4+ Koy + koo =1
ko1 + ko2 = k1o + k2o
ko1 + ko1 = k1o + k12
ko2 + k12 = kao + ka1.

It is not quite obvious how many integer solutions such a system has. Neverthe-
less, we show later (see the proof of Theorem [T.2.0) that it is asymptotically
n®/(12-6!). However, we observe that not every solution of the above system
of equations leads to a legitimate sequence z. Consider the following example
with n = 5:

koo =2, ko1 = ko2 = 0,
kio =0, ki1 =0, ki2=1,
koo =0, ko1 = koo = 1.

There is no sequence of length five that can satisfy the above conditions. Such
a cyclic sequence would have to consist of five elements and contain the sub-
strings 12, 21, 22, and two 00 or one 000, which is impossible. Observe that
the underlying multigraph consists of two connected components that do not
communicate.

11.2.1. Number of Types

We now deal with the set P,(m) of cyclic Markov types of length n over an
alphabet A of size m.

We first relate the counting problem of cyclic Markov types with the number
of special connected Eulerian di-graphs G = (V(G), E(G)) such that V(G) C A
and |E(G)| = n, where the number of (directed) edges between the ith node and
jth node in G is equal to k;; and k = [k;;]; je4 is a balanced frequency matrix
satisfying the balance property (II.6). Clearly the balance property assures that
the graphs is Eulerian, that is, the number of incoming edges to node i is equal
to the number of out going edges from node 1.

Note that G may be defined over a subset of A, as shown in the first example
in Figure (i.e., there may be some isolated vertices).

We denote by &,(m) the set of (connected) Eulerian digraphs on A; the
middle of Figure shows an example of a graph in this set. Finally, the set
Fn(m) can be viewed as the set of digraphs G with V(G) = A, |E(G)| = n and
satisfying the flow conversation property (in-degree equals out-degree). We call
such graphs conservative digraphs. Observe that a graph in F,,(m) may consist

11.2. Markov Types 315

Py Ey

Figure 11.2. Examples of graphs belonging to P7(5), £11(5) and Fy(5) sets.

of several connected (not communicating) Eulerian digraphs, as shown in the
third example in Figure [[1.2)
There is a simple relation between |&,,(m)| and |P,(m)|. Indeed,

Pl =3 (1) 60 (119)

k

since there are (7;) ways to choose m—k isolated vertices in P, (m). This implies

[Pr(m)| = [En(m)].

Indeed, it is certainly true since every Eulerian graph on A with k& < m (by
definition it must be strongly connected and satisfy the flow-conservation law)
belongs to P, (m). In fact, by the same reasoning we can expand the above
inequality to obtain for any n and m

[Fn(m)| = [Pn(m)| = |En(m)]. (11.10)

Our goal is to find an asymptotic relation between the number of digraphs
|Pp(m)| and the number of solutions | F, (m)]| of the flow conservation equations
([@TI3)-([{I4), that is, the number of conservative digraphs.

As a direct consequence of our definition, a conservative digraph may have
several connected components. Each connected component is either a connected
Eulerian digraph or an isolated node without an edge. This leads to

Falm) = lEatm) + S 30 S I[IE A (L

i=1 A=AoU---UA; no+--+n;=n j=0

316 Chapter 11. Markov Types and Redundancy for Markov Sources

where the sum is over all (unordered) set partitions A = AgU---UA; into ¢ > 1
(nonempty) parts with n; edges in each di-subgraph &,,(A;) over A; vertices.
Observe that every set partition A = Ay U --- U A; with |4;] = m; > 01is a
partition of A into ¢ distinguished subsets of cardinality m;. Notice that there
are (moﬁmi) ways of dividing m into ¢ + 1 subsets of size m; when permuting
the subsets does not lead to a new distinct permutation. For example, for
A =1{0,1,2,3} and mg = m; = 2, we have the following partition of A:

{0,1},{2,3}; {0,2},{1,3}; {1,2},{0,3}.
But there are three additional partitions included in the count (242) = 6, namely
{2,3},{0,1}; {1,3},{0,2}; {0,3},{1,2}

that follow from the above by permuting equal subsets. In general, permuting
two subsets of equal size does not lead to a new partition, as seen above. As a
consequence of this we can write (ILII]) as

Flml <l + Y Y S () TL1E
o)

i=1 mo+-+mi;=mmno+---+n;=n
(11.12)

Furthermore, since by [ITIQ) £, (m)| < |[Fn(m)] for all n,m > 0 we finally
arrive at

Aml<lami+Y Y X (" O E

i=1 mo+---+m;=mmno+---+n;=n 7=0
(11.13)

In the proof of Theorem [T 28 below we shall show that | F,, (m)| = O(n™ ™)
(and that is actually the correct order or magnitude). By using just this property
we will obtain an upper bound for the difference between |F,,(m)| and |&,(m)|,
see Lemma [[T.2Z4l Together with Theorem [[T-2.0] the relation (IT.I0) and the
upper bound from Lemma [IT.2.4] it directly follows that, as n — oo,

[Pr(m)| ~ [Fn(m)| ~ [En(m)].
Lemma 11.2.4. If m > 2 is fized, then we have for n — oo
[Fn(m)| — |En(m)] = O(n™ ~3m+3). (11.14)

Proof. Our starting point is (IT.I3) where we denote the sum on the right-hand
side by A(m,n), that is,

A(m,n) = mz—:l > > (mo m mz-) ﬁ [Fny (m5)]-

11.2. Markov Types 317

Since |Fp(m)| — |Ep(m)] < A(m,n) it is sufficient to show
A(n,m) = O(m?’nm2_3m+3). (11.15)

In the proof of Theorem [T.2.6 below we shall prove that |F,(m)| = O(n™ ~™),
thus

H |Fn; (my)] = O(p™mot-mi=m)
j=0

For m; > 1 we have

and consequently

—1
A(m,n) < mz: 3 3 (m m ml>nm2i(m1)m
i=1 mo+--+m; 0.1

=mng+---+n;=n

m

—1
m?—m 1 noimD 3 > (mommz)

= no+-+ni=nmo+---+mi=m

m—

_ m —-m Z nfz(m 1) Z i

no+-+ni=n

m —-m § n —i(m— 1) ‘m ’L 1
2_ — —1 p— .
pm o m 1§ :’Il i(m 2)Zm
=1
m—1 i m—2
2
< nm 7m71m2 2 (_)
nt
i=1

< nm273m+3

Y
where the last line follows from the fact that i/n® < 2/n? for i > 2. This
completes the proof. [|

In the sequel we concentrate on estimating |F,(m)|. For this purpose we
introduce certain generating functions over matrices. In general, let gx be a

318 Chapter 11. Markov Types and Redundancy for Markov Sources

sequence of scalars indexed by integer matrices k and consider the generating
function
G(Z) = ngzka
k

where the summation is over all non-negative m X m integer matrices k and
z = [2i)ijea I8 an m x m matrix that we often denote simply as z = [z;]

(assuming the indices i and j run from 0 to m — 1). Here z¥ = H” ZU”
We associate to G(z) the generating function

FGz)=> az"=>_ Y gquz* (11.16)

keF n>0 ke F, (m)

over matrices k € F,,(m) satisfying the balance equations (ITH) and (II1.0]).

The following useful lemma relates G(z) and FG(z). We use the following
short-hand notation. Let [z; ;—;] be the matrix A~!(z)zA(z) where A(z) =
diag(xo, ..., Tm—1) is a diagonal matrix with elements zg, ..., Z;,—1, that is, the
element z;; in z is replaced by z;jz;/x;. Similarly we set [z;; exp(8; — 6;)] =
exp(—A(0))z exp(A(0))-

Lemma 11.2.5. Let G(z) = Y, gxzX be given. Then

o)=Y 3 g = (55) 0 f e,y

211 To Tm—1 T;

n>0keFn
1 4 T .
g |0 [Gl exo((6; - 00
(11.18)
T
= [} ap)] Glzi527D)-
Proof. Observe that
_ T T kX, ki

Therefore, FG(z) is the coefficient of G([z; z—j]) at 2923 --- 22, since > ki —
>_; kij = 0 for matrices k € F. We write it in short as
Lj

FG(z) = [z} - a,] 9(lzi 1)

?

The result follows from Cauchy’s formula (see Appendix [B)). |

11.2. Markov Types 319

We consider the number of solutions to (ILH) and (II6). For this purpose
we start with the generating function

F(z) =) 2" = H(1 — ;)L

Then applying the above lemma with z;; = zx;/x; we conclude that the gener-
ating function F) (z) of |Fy,(m)] is

Fi(2) = Y 1Fa(m)e" = ——— (2329 2% [{1 - z;—} L (1.20)

n>0

Thus, by Cauchy’s formula,

1 EFr(z)
— n * _ m
Falim)| = (15 0) = 5 §
We will use this representation to obtain an asymptotic formula for |7, (m)].
As mentioned above, this leads to a corresponding asymptotic formula for the
number of cyclic types [P, (m)]| as stated in our main theorem (the proof will be

given in Section I1.2.7)).

Theorem 11.2.6. For fized m and n — oo the number of cyclic Markov types

8

P(m)] = d(m) 2 —— 1 O 1) (11.21)

where d(m) is a constant that also can be expressed by the following integral

1 [e’e) co m—1 1 1

d e . ddrddrs - - dpy—1.

= amr /_oo /—%1;[1 1+ ¢? kl;[e ¥ (= go)? 0102 ddm—s
(m—1)—fold

(11.22)

Remark 11.2.7. It is easy to count the number of matrices k satisfying only
equation (L), that is, >, kij = n. Indeed, it coincides with the number of
integer solution of (IT.5), which turns out to be the number of combinations
with repetitions (the number of ways of selecting m? objects from n), that is,

2

n+m? -1\ (n+m?-1 nm 1
n S\ o m2-1 (m2 —1)!

320 Chapter 11. Markov Types and Redundancy for Markov Sources

Table 11.1. Constants at n™ ~™ for fixed m.

m | constant in (I1.21))

2 | 2.500000000 101

3 | 1.157407407 10~°

4 | 2.174662186 10~ 11

5 | 4.400513659 1022

Thus the conservation law equation (G.I)) decreases the above by the factor
O(n™~1).

The evaluation of the integral (IT.22]) is quite cumbersome (see next section),
but for small values of m we computed it to find that

1 n?

Pu@)]~ 557 (11.23)
1 nb

PuG) ~ 1561 (11.24)
1 n12

[P (4)] ~ 9% 121 (11.25)

37 n?
Pu(®)l ~ 30255 201 (11.26)

for large n. The coefficients of n™ ~™ are rational numbers since F* () is a
rational generating function.

We now compare the coefficient at n™ =™ for fixed m in (I2I)are shown
in Table IT.J1 We observe extremely small values of these constants even for
relatively small m.

11.2. Markov Types 321

Proof of Theorem

In this section we prove Theorem [[T.2.6] Our starting formula is (IT.20) that
we repeat below

1 z;]!
i#]
Clearly we just have to provide an asymptotic representation for F,,(m) of the
form (IT2])). By Lemma [IT.2.4] we, thus, obtain the corresponding asymptotic
representation for P, (m).
We first compute asymptotic expansions for F,(m) (and equivalently for
Prn(m)) explicitly for m = 2,3,4,5 as summarized in Table [T11
For m = 2, we have
1 1 1
F(z) = m[xgx?]
Let us set A = x/x1 so we need the coefficient of A% in (1 — Az)~1(1—2/A4)~L.
This can be seen at a formal level as the product of two (formal) geometric series
or also from an analytic point of view. In the latter case we just have to assume
that |z| < |A4| < |1/z].
Now, by using a partial fractions expression in A, we have

. 11.28
1—zxo/x1 1—221/20 ()

1 1 L, =
1- Az 1—2/1471—22 1-A4 A—=z

Recall that |2| < |A| < |1/2] so that the coefficient of A in (1 — Az)~! is one
and that in z(A — 2)~! is zero. Hence,

Fi(z) = (1-2)2(1-) = (142) 7 (1-2)7

and consequently

Fa) = B T e
_n 3l i, 11.29
7I+n+1+§[+(*)]*§i+ (n) (11.29)

which agrees with (IL8)) of Example 1.
For m > 3 we use recursive partial fractions expansions. When m = 3 we
set xo/x1 = A, x9/x2 = B so that we wish to compute

1 1 1 1 1 1
A’B° . (1L
[](1zAlz/A1lez/B 1-Az/B 1Bz/A) (11.30)

322 Chapter 11. Markov Types and Redundancy for Markov Sources

First we do a partial fractions expansion in the A variable, for fixed B and z.
Thus the factor inside the parentheses in (IL30) becomes

1 1 1 1 1 1
1-2A1-221-Bz1-2/B1-1/B 1— Bz?
1 1 1 1 1 1
+ 1—-2/A1-221-B21-2/B1-22/B1-B
1 1 1 1 1 1
+ 1-A42/B1-B 1—-22/B1-B/z 1—2/B 1— 22
+ ! ! L L ! ! . (11.31)

1-Bz/A1-Bz21-1/B1-Bz 1—2/B 1—22

The coefficient of A° in the first term in (IL31) is

1 1 1 1 1
11.32
1—-221-Bz1-2/B 1-1/B 1— Bz?’ ()
and that in the third term is
1 1 1 1 1
(11.33)

1-B1-22/B1-B2z 1-2/B 1—2%’

while the coefficients of A are zero in the second and fourth terms. Combining

(II32) and (IT.33) we must now compute

1422 1 1 1 1
B°) 11.34
[](122132 1-2/B 1322122/B) (11:34)

Now expanding (IT.34) by a partial fractions expansion in B leads to

1+22 1 1 1 1 1 1 1 1
[B7] +

1—22 1-Bz1-221-21-22 1—-2z/B1—221-2%31-z
n 1 1 1 1 n 1 1 1 1

1-1/21—-231-B22 1—2* 1-231-1/21—2*1-22/B
1422 1 1 1 -z 1 1
S 1-22[1-221-21-23 (1—2) 1—231—24

1—z+ 22

(1—2)*1+2)2(1+2+22)
Hence,
1—z+ 22

BEE =g a1

11.2. Markov Types 323

Table 11.2. Poles and their orders for various m.

m\ root | 1 1 eF2m/3 4y E2mi/5 EaAmi/5
2 3 1 - — - _
3 7T 2 1 - - _
4 13 5 2 1 - _
5 21 8 4 2 1 1

For z = 1, F3(z) ~ 75(1 — z)77 so that

1 nS

[Fn(3)] = o6

+0(n), n — 0o. (11.35)
In the same way it follows that F%(z) can be represented as a linear combi-
nation of functions of the form

zZ" L 1
(1—2)m]-:[11—zt

for some r > 0, L > 0, and ¢; > 1. Actually, a more careful look shows that
L =m? —2m + 1. Hence it follows that % (2) has a pole of order < m? —m +1
at z = 1 and other polar singularities at roots of unity that are of order < L.
(For 2 < m < 5 these poles and their orders are given in Table [T2])

In order to show that the order of the pole z = 1 is actually m? — m + 1 we
consider the limit

1 _ m27m+1 *
d(m) = lim (1 — =)™ " (2)]
We will show that this limit actually exists and that it is positive. Consequently

2
m°—m
n

| Fp(m)| = d(m) +O(n™ MLy, (11.36)

However, it seems that there is no simple formula for the sequence of constants
d(m). We just characterize d(m) as an (m — 1)-fold integral.

324 Chapter 11. Markov Types and Redundancy for Markov Sources

First consider the simple case m = 2. Setting A = ¢'® and using a Cauchy
integral, we have

[A°] 1 11 /” dd
1—2/A1-Az 27 J_. 1—2zcos® + 22
Now set z = 1 — § and expand the integral for z — 1. The major contribution
will come from where § &~ 0 and scaling ® = §¢ and using the Taylor expansion
1—2(1—6)cos(6¢) + (1 —)2 = 62[1 + ¢?] + O(6?), we find that

N 1 1 o) R | _3
FQ(Z)N(S_Q% [m 52[1+¢2]d¢*2 53*2(172)

as z — 1.
When m = 3, we use (IL30) and Cauchy’s formula with A = €'® and B = ¢*¥
to get

1 1 1
— . . dod.
(2m)? /_,r /_F 1—2zcos®+22 1—2zcosU+22 1—2zcos(P—T)+ 22

Again expanding the above for z=1—-6¢ — 1 and ® = d¢ = O(9), ¥ = oy =
0(9), we obtain the leading order approximation

7y). Tre TR T T

Thus as z — 1, F§(2) ~ 1507 = 75(1 — 2) 7 which follows also from the exact
generating function.

For general m a completely analogous calculation shows that as§ = 1—z — 0,
F* (2) ~ 6™~ ~1d(m), where

co m—1
ml/ / H 1—|—¢2H1+¢ _¢) dp1rdgz -+ - dpm—1.

J k<t

d(m) =
(m 1)—fold
(11.37)
Note that d(m) always exists and that d(m) >
We recall that the upper bound |F,, (m | = O(m*=m) was used in Lemma[IT.2.4]
to prove that |P,(m)| = |F,(m)| + O(n™ ~3m+3) which finally completes the
proof of Theorem

We remark that there are other representations for the constant d(m). For
example, if we directly start with the representation (IT.I3]), rewrite it into an

11.2. Markov Types 325

m-fold Cauchy integral, and apply the substitutions z; = V¢ we obtain

Fnl2 /,ﬁ /7H17 ezw =gy Mo dVm

it
5m —m—1
~ / / H1+1979 0o -+ -1,

where we used the substitutions ¥; = d6;. Thus, we also have the representation

d(m) =

——dfy- - db,,_ 11.38
ooy LHi(0: = 0)) 0 ! (11.38)

for any m > 2.

11.2.2. Counting Non-Cyclic Markov Types.

Finally, we address the issue of Markov types over cyclic strings versus non-
cyclic or linear strings. Recall that Q,,(m) denotes the set of Markov types over
non-cyclic (linear) strings. It turns out that there is a simple relation between
|Qn(m)] and [Py (m)].

Let a € A and define P, (a,.A) as the set of cyclic types of strings of length
n that contain at least one occurrence of symbol a. Clearly,

Pn(a, A)| = [Pn(m)| = [Pn(m = 1)],

and therefore

[Pu(a, Al = [Pa(m)|(1 = O(n™™))

by Theorem

In the same spirit, let Q,,(a) be the set of types over linear strings starting
with symbol a, and Q,(a,b) be the set of (non-cyclic) types over strings of
length n that start with symbol a and end with symbol b. Certainly, Q,(a,a) =
Prn—1(a, A) and noticing that | J,. 4 Pn(a, A) = Pp(m), we conclude that

= U Q@bu | Puila,A) (11.39)
(a,b)eA2 acA

a#b

U Qn(a,b) U Pnfl(m).
(a,b)eA2

a#b

Observe also that Q,(a,b) are disjoint for a # b and for every a # b the set
9Qn(a,b) is disjoint from P, (a, A). Furthermore, the cardinality of Q,(a,b) is

326 Chapter 11. Markov Types and Redundancy for Markov Sources

the same for all pairs (a,b) with @ # b. In summary, by (I1.39) we conclude
that (for a # b)

|Qn(m)] = [Pr_1(m)] + (m* — m)|Qn(a,b)]. (11.40)

Next we estimate the cardinality of Q,(a,b) by proving the following in-
equalities:

Q.. (a,b), (11.41)
Pola, A)l. (11.42)

Indeed, for (IT4I)) we observe that if k € P,,_2(a, A), then k + eq, € 9y (a,b)
where e, is a matrix with all 0’s except at position (a,b) it contains a 1. This

implies (ITA4I)). For (IT.Z2), we notice that if k € Q,(a,b), then k + ep, €
Pn(a, A) and the inequality follows.

Consequently, since [Py,_s(m)| ~ [Pn_1(m)| = [Pa(m)|(1 — O(n=™")), we
have |Q,,(a,b)| = [P, (m)|(1 — O(n=2™)) which by (IL40) leads to the following
conclusion (where we also apply Theorem [TT.2:0)):

Corollary 11.2.8. The number of (non-cyclic) Markov types |Q,(m)| of stings
of length n satisfies

Qn(m)| = (m® —m + 1)|Pu(m)|(1 = O(n"?™))
m?—m+1

m2—m m2—m—1
T —m) n +O(n)

=d(m)
for large n and finite m.

11.2.3. Number of Sequences of a Given Type

In this section, we tackle a harder problem: we count the number of Markov
sequences of a given type k, that is, we estimate |7, (k)|. In other words, we
shall enumerate the number of Eulerian paths in the di-graph as introduced in
the previous section (see Figure [1.1]).

We start by introducing the following quantity

k! ko) (km—1)
Bl — — 11.43
K ,LI;IA HjEA ki,j! (kOO' "kO,mfl kmfl,O' "kmfl,mfl ()

where k; = > j kij- We will use the concept of the matrix generating functions
as already discussed above. Recall that z = {zij};-?:l denotes a complex m x m

11.2. Markov Types 327

. . . . k _ kij .
matrix, k an integer matrix, and that we write z* = Hij€A2 z;;". In particular,
we have (see Exercise [[T.0)

B(z) =Y Biz"=[[(1=> zap) " (11.44)
k acA be A
However, we really need to compute the generating function
FB(z) =Y _ Biz"
keF

as defined in (ITI6). We first prove the following lemma.

Lemma 11.2.9. We have
FB(z) = (det(I—2)) !,
where 1 is the identity m X m matriz.

Proof. Setting gx = By in Lemma [IT.2.0] and denoting a(z) = (a;;(z)) =1 —z
we find

-1

FB(z) = <ﬁ)m%dfﬂl "'j{dmeZ[Zaij(z)fﬂj

By applying the linear change of variables y; = >~ a;j(z)z; we obtain

-1

(ﬁ)mfdxl'”%dfml:[zj:aij(z)%‘

= (det(a(z))) " (ﬁ)m 7{ % o f{ ?—mm
= (det(a(z))) ™"

which completes the proof since we can assume that the matrix a(z) is not
singular. [|

Throughout we also write B4(z) = F4B(z) to simplify the notation; the
subscript A indicates that the underlying alphabet is A. In particular, from the
above corollary one concludes that

Ba-(a) (z) = (detqq (I — Z))71;

328 Chapter 11. Markov Types and Redundancy for Markov Sources

where det;;(a) is the determinant of a matrix with the ith row and the jth
column of a deleted.

For a given (cyclic) type k € F,, we defined the frequency counts Ni, Ng,
and Nf:“ as follows:

e The frequency count Ny is the number of cyclic strings of type k;

e N is the number of cyclic strings of type k starting with a symbol a € A;

° Nﬁ’a is the number of cyclic strings of type k starting with a pair of symbols
ba € A2

These quantities satisfy the following properties:

Theore