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Shannon Legacy

The Information Revolution started in 1948, with the publication of:

A Mathematical Theory of Communication.

The digital age began.

Claude Shannon:

Shannon information quantifies the extent to which a recipient of data

can reduce its statistical uncertainty.

“These semantic aspects of communication are irrelevant . . .”

Applications Enabler/Driver:

CD, iPod, DVD, video games, computer communication, Internet,
Facebook, Google, . . .

Design Driver:

universal data compression, data encoding, voiceband modems, CDMA,
multiantenna, discrete denosing, space-time codes, cryptography, . . .



Three Theorems of Shannon

Theorem 1 & 3. [Shannon 1948; Lossless & Lossy Data Compression]

compression bit rate ≥ source entropy H(X)

for distortion level D:

lossy bit rate ≥ rate distortion function R(D)

Theorem 2. [Shannon 1948; Channel Coding ]
In Shannon’s words:

It is possible to send information at the capacity through the channel

with as small a frequency of errors as desired by proper (long) encoding.

This statement is not true for any rate greater than the capacity.



Theorem 1: Fundamental Limit

Prefix code is such that no codeword is a prefix of another codeword.
Kraft’s Inequality: A binary code is a prefix code iff lengths ℓ1, . . . , ℓN satisfy

2
lmax li–

i
∑ 2

lmax<li

lmax li–
∑N

i=1 2
−ℓi ≤ 1.

Shannon First Theorem: For any prefix code the average code length
E[L(C,X)] cannot be smaller than the entropy H(P ):

E[L(C,X)] ≥ H(P ) = −
∑

x∈A∗

P (x) logP (x).

Proof: Let K =
∑

x 2
−L(x) ≤ 1, and L(C, x) := L(x). Then

E[L(C,X)] − H(P ) =
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=
∑

x∈A∗

P (x)

(

− log
2−L(x)/K

P (x)

)

− logK

≥
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− logK≥0

since − log x ≥ 1 − x for 0 < x ≤ 1.



Theorem 1: AEP and Typical Sequences

Shannon-McMilan-Breiman:

− 1
n logP (Xn

1 ) → H(X) (pr.)

H(X) is the entropy rate.

Code Length :

⌈− logP (Xn
1 )⌉ ∼ nH(X).

Asymptotic Equipartition Property: Sequences of length n can be
partitioned into

good set G
ε
n P (w) ∼ 2

−nH(X)
, w ∈ G

ε
n

bad set B
ε
n P (B

ε
n) < ε.

Also, |Gε
n| ∼ 2nH(X).



Theorem 2: Shannon Random Decoding Rule

There are 2nH(X) X-typical sequences

There are 2nH(Y ) Y-typical sequences

There are 2nH(X,Y ) jointly X,Y-typical

pair of sequences

Decoding Rule: Declare that sequence sent X is the one that is jointly
typical with the received sequence Y provided there is unique X satisfying
this property!



Sketch of Proof: Channel Capacity Theorem

1. With high probability (whp), there is a jointly typical pair (X, Y ).

2. The probability that there is another jointly typical pair is 2−nI(X,Y ):
• there are 2nH(X) and 2nH(Y ) typical sequences Xn and Y n, that is,
2n(H(X)+H(Y )) sequences,
• there are 2nH(X,Y ) jointly typical pairs (X, Y ). The probability of error
(more than one typical pair is):

2nH(X,Y )

2n(H(X)+H(Y ))
= 2

−nI(X,Y )
.
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minP (error) ∼ 2
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.
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1. With high probability (whp), there is a jointly typical pair (X, Y ).

2. The probability that there is another jointly typical pair is 2−nI(X,Y ):
• there are 2nH(X) and 2nH(Y ) typical sequences Xn and Y n, that is,
2n(H(X)+H(Y )) sequences,
• there are 2nH(X,Y ) jointly typical pairs (X, Y ). The probability of error
(more than one typical pair is):

2nH(X,Y )

2n(H(X)+H(Y ))
= 2

−nI(X,Y )
.

3. Probability of error when 2nR messages are sent is approximately

minP (error) ∼ 2
−n(supP (X)I(X,Y )−R)

= 2
−n(C−R)

.

4. In conclusion:

R < C P (error) ∼ 2
−nδ

R > C P (error) → 1.
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What is Information1?

C. F. Von Weizsäcker:

“Information is only that which produces information” (relativity).

“Information is only that which is understood” (rationality)

“Information has no absolute meaning”.

Informally Speaking: A piece of data carries information if it can impact
a recipient’s ability to achieve the objective of some activity in a given
context within limited available resources.

Event-Driven Paradigm: Systems, State, Event, Context, Attributes,
Objective: Objective function objective(R,C) maps systems’ rule R and
context C in to an objective space.

Definition 1 (J. Konorski, W.S., 2004). The amount of information (in a faultless

scenario) I(E) carried by the event E in the context C as measured for a

system with the rules of conduct R is

IR,C(E) = cost[objectiveR(C(E)), objectiveR(C(E) + E)]

where the cost (weight, distance) is a cost function.

1Russell’s reply to Wittgenstein’s precept “whereof one cannot speak, therefore one must be silent” was

“. . . Mr. Wittgenstein manages to say a good deal about what cannot be said.”



Shannon Information

C. Shannon:

Shannon information quantifies the extent to which a recipient of data

can reduce its statistical uncertainty.

Some aspects of Shannon information:

objective: statistical ignorance of the recipient;

statistical uncertainty of the recipient.

cost: # binary decisions to describe E;

= − logP (E); P (E) being the probability of E.

Context: “semantic aspects of communication are irrelevant”

Self-information for Ei: I(Ei) = − logP (Ei).
Average information: H(P ) = −

∑

i P (Ei) logP (Ei)
Entropy of X = {E1, . . .}: H(X) = −

∑

i P (Ei) logP (Ei)
Mutual Information: I(X;Y ) = H(Y )−H(Y |X), (faulty channel).

Information is not absolute information since P (Ei) (prior knowledge) is a
subjective property of the recipient.



Example: Distributed Information

1. In an N -threshold secret sharing scheme, N subkeys of the decryption
key roam among A×A stations: (i) Event corresponds to a reception of a
key; (ii) Objective(R,C) is to decode the message.

2. By protocol P a station has access:

• only it sees all N subkeys.

• it is within a distance D from all subkeys.

Note: Reception of a part of a key does not

help to decrypt unless all keys are in C.

. . . . . . . . . . x . . . . . . .

. . . . . . . x x x x x x x . . . .

. . . . . x x x x x x x x x x . . .

. . . . x x x x x x x x x x x . . .

. . . . x x x x x x x x x x x . . .

. . . x x x x ⋆ x ⋆ x x x x x x . .

. . . x x x x x x x x x x x x . . .

. . . x x x x x x x x x x x x . . .

. . x x x x x x x x ⋆ x x x x . . .

. . . x x x x x x x x x x x x . . .

. . . x x x x x x x x x x x x . . .

. . . . x x x x x x x x x . . . . .

. . . . . . x x x x x . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

3. Assume that the larger N ,

the more valuable the secrets.

We define the amount of information as

I(E)= N × {# of stations having access} .
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Post-Shannon Challenges

Classical Information Theory needs a recharge to meet new challenges of
nowadays applications in biology, modern communication, knowledge
extraction, economics and physics, . . . .

We need to extend traditional formalisms for information to include
(“meaning”):

structure, time, space, and semantics,

and others such as:

dynamic information, limited resources, complexity, physical information,
representation-invariant information, and cooperation & dependency.



Structure, Time & Space, and Semantics

Structure:

Measures are needed for quantifying

information embodied in structures

(e.g., material structures, nanostructures,

biomolecules, gene regulatory networks

protein interaction networks, social networks,

financial transactions).

(Y. Choi & W.S., ISIT, 2009.)

Time & Space:

Classical Information Theory is at its weakest

in dealing with problems of delay

(e.g., information arriving late maybe

useless or has less value).

(P. Jacquet et al., IT 2010.)

Semantics & Learnable information:
Data driven science focuses on extracting information from data.
How much information can actually be extracted from a given data
repository? How much knowledge is in Google’s database?
(M. Sudan et al., 2010.)



Limited Resources, Representation, and Cooperation

Limited Computational Resources:

In many scenarios, information

is limited by available

computational resources

(e.g., cell phone, living cell).

(Helman & Cover, 1970, “Learning with Limited Memory”.)

Representation-invariant of information:

How to know whether two representations

of the same information

are information equivalent?

Cooperation. Often subsystems may be in conflict (e.g., denial of
service) or in collusion (e.g., price fixing). How does cooperation impact
information? (In wireless networks nodes should cooperate in their own
self-interest.)
(Cuff, et al. IT, 2010).



Standing on the Shoulders of Giants . . .

Manfred Eigen (Nobel Prize, 1967)

“The differentiable characteristic of the living systems is Information.

Information assures the controlled reproduction of all constituents,

ensuring conservation of viability . . . . Information theory,

pioneered by Claude Shannon, cannot answer this question . . .
in principle, the answer was formulated 130 years ago by Charles Darwin”.

P. Nurse, (Nature, 2008, “Life, Logic, and Information”):

Focusing on information flow will help to understand better

how cells and organisms work.

“. . . the generation of spatial and temporal order,

cell

memory and reproduction are not fully understood”.

A. Zeilinger (Nature, 2005)

. . . reality and information are two sides of the same coin,

that is, they are in a deep sense indistinguishable.

F. Brooks, jr. (JACM, 2003, “Three Great Challenges . . .”):

We have no theory that gives us a metric for the Information

embodied in structure . . . this is the most fundamental gap

in the theoretical underpinning of Information and computer science.



Outline Update

1. Shannon Legacy

2. What is Information?

3. Post-Shannon

4. NSF STC: Science of Information

5. Structural Information



Science of Information

The overarching vision of Science of Information is to develop rigorous
principles guiding the extraction, manipulation, and exchange of
information, integrating elements of space, time, structure, and semantics.



STC on Science of Information

In 2008 at Purdue we launched the

Institute for Science of Information

and in 2010 National Science Foundation established $25M

Science and Technology Center

at Purdue to do collaborative work (Berkeley, MIT, Princeton, Stanford,
UIUC and Bryn Mawr & Howard U.) integrating research and teaching
activities aimed at investigating the role of information from various
viewpoints.

The specific means and goals for the Center are:

• develope post-Shannon Information Theory,

• Prestige Science Lecture Series on Information to collectively ponder
short and long term goals;

• organize meetings and workshops (e.g., Information Beyond Shannon,
Orlando 2005, and Venice 2008).

• initiate similar world-wide centers supporting research on information.

http://isihub.org
http://www.cs.purdue.edu/homes/spa/info.html
http://komster.net/~msmolenski/venice/index.html




 



Mission: To advance science and technology through a new quantitative understanding

of the representation, communication and processing of information in biological,

physical, social and engineered systems.
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Random Structure Model

The entropy of a random (labeled) graph process G is defined as

HG = E[− logP (G)] = −
∑

G∈G

P (G) logP (G).
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S3 S4

Random Graph Model Random Structure Model

The probability of a structure S is: P (S) = N(S) · P (G)
N(S) is the number of different labeled graphs having the same structure.

The entropy of a random structure S can be defined as

HS = E[− logP (S)] = −
∑

S∈S

P (S) logP (S),

where the summation is over all distinct structures.



Relationship between HG and HS

Two labeled graphs G1 and G2 are called isomorphic if and only if there is a
one-to-one map from V (G1) onto V (G2) which preserves the adjacency.

Graph Automorphism:

For a graph G its automorphism

is adjacency preserving permutation

of vertices of G.

a

b c

d e

The collection Aut(G) of all automorphism of G is called the

automorphism group of G.



Relationship between HG and HS

Two labeled graphs G1 and G2 are called isomorphic if and only if there is a
one-to-one map from V (G1) onto V (G2) which preserves the adjacency.

Graph Automorphism:

For a graph G its automorphism

is adjacency preserving permutation

of vertices of G.

a

b c

d e

The collection Aut(G) of all automorphism of G is called the

automorphism group of G.

Lemma 1. If all isomorphic graphs have the same probability, then

HS = HG − logn! +
∑

S∈S

P (S) log |Aut(S)|,

where Aut(S) is the automorphism group of S.

Proof idea: Using the fact that

N(S) =
n!

|Aut(S)|
.



Erdös-Rényi Graph Model

Our random structure model is the unlabeled version of the binomial
random graph model known also as the Erdös and Rényi model.

The binomial random graph model G(n, p) generates graphs with n
vertices, where edges are chosen independently with probability p.

If G in G(n, p) has k edges, then P (G) = pkq(
n
2)−k, where q = 1 − p.
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AEP for structures: 2−(n2)(h(p)+ε)+log n! ≤ P (S) ≤ 2−(n2)(h(p)−ε)+log n!.
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n
2)−k, where q = 1 − p.
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n (i.e., the graph is connected w.h.p.),

HS =
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h(p)−n logn+n log e−
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2
log n+O(1),

where h(p) = −p log p − (1 − p) log (1 − p) is the entropy rate.

AEP for structures: 2−(n2)(h(p)+ε)+log n! ≤ P (S) ≤ 2−(n2)(h(p)−ε)+log n!.

Proof idea: 1. HS = HG − logn! +
∑

S∈S P (S) log |Aut(S)|.
2. HG =

(n
2

)

h(p)
3.
∑

S∈S P (S) log |Aut(S)| = o(1) by asymmetry of G(n, p).



Compression Algorithm

Compression Algorithm called Structural zip, in short SZIP – Demo.

http://www.cs.purdue.edu/homes/spa/talks/szip.pdf


Compression Algorithm

Compression Algorithm called Structural zip, in short SZIP – Demo.

We can prove the following estimate on the compression ratio of S(p, n)
for our algorithm SZIP.

Theorem 2. Let L(S) be the length of the code generated by our algorithm

for all graphs G from G(n, p) that are isomorphic to a structure S.

(i) For large n,

E[L(S)] ≤
(n

2

)

h(p) − n logn + n (c + Φ(logn)) + o(n),

where h(p) = −p log p − (1 − p) log (1 − p), c is an explicitly computable

constant, and Φ(x) is a fluctuating function with a small amplitude or zero.

(ii) Furthermore, for any ε > 0,

P (L(S) − E[L(S)] ≤ εn logn) ≥ 1 − o(1).

(iii) Finally, our algorithm runs in O(n+e) on average, where e is the number

of edges.

Our algorithm is asymptotically optimal up to the second largest term, and
works quite fine in practise.

http://www.cs.purdue.edu/homes/spa/talks/szip.pdf


Experimental Results

Real-world and random graphs.

Table 1: The length of encodings (in bits)
Networks # of # of our adjacency adjacency arithmetic

nodes edges algorithm matrix list coding

R
e

a
l-
w

o
rl
d

US Airports 332 2,126 8,118 54,946 38,268 12,991

Protein interaction (Yeast) 2,361 6,646 46,912 2,785,980 1 59,504 67,488

Collaboration (Geometry) 6,167 21,535 115,365 19,012,861 55 9,910 241,811

Collaboration (Erdös) 6,935 11,857 62,617 24,043,645 308,2 82 147,377

Genetic interaction (Human) 8,605 26,066 221,199 37,018,710 729,848 310,569

Internet (AS level) 25,881 52,407 301,148 334,900,140 1,572, 210 396,060

R
a

n
d

o
m S(n, p) 1,000 p = 0.01 34,361 499,500 99,900 40,350

S(n, p) 1,000 p = 0.1 227,236 499,500 999,999 234,392

S(n, p) 1,000 p = 0.3 432,692 499,500 2,997,99 9 440,252

(n
2
)

2e⌈log n⌉
(n
2
)

h(p)

• n : number of vertices

• e : number of edges

• Adjacency matrix :
(n
2

)

bits

• Adjacency list : 2e⌈logn⌉ bits

• Arithmetic coding : ∼
(n
2

)

h(p) bits (compressing the adjacency matrix)
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