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Variable-to-Fixed Codes

Throughout, we consider an m-ary alphabet
A = {1, 2, . . . , m}

1. A variable-to-fixed length encoder partitions the source string into a
concatenation of variable-length phrases.

2. Each phrase belongs to a given dictionary D of source strings.

3. A dictionary can be represented by a complete parsing tree T , i.e., a
tree in which every internal node has all m children.
The dictionary entries d ∈ D correspond to the leaves of parsing tree.

4. The encoder represents each parsed string by the fixed length binary
code word.
If the dictionary D is has M entries, then the code word for each phrase
has dlog2 Me bits.



Tunstall’s Code

Tunstall’s construction works as follows (cf. Tunstall, Synthesis of Noiseless
Compression Codes, Ph.D. 1968):

1. Start with a tree consisting of a root node and m leaves.

2. In the J’s iteration we select the current leaf corresponding to a string
of the highest probability and grow m children out it.

3. After these J steps, the parsing tree has J non-root internal nodes and

M = (m − 1)J + m

leaves which correspond to distinct dictionary entries.



Example
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Figure 1: Tunstall’s Code for M = 5 and Khodak’s Construction for
r = 0.25.



Khodak’s Construction

Khodak’s construction of Tunstall’s code (cf. Khodak, ”Connection
Between Redundancy and Average Delay of Fixed-Length Coding”,
1969):

1. Let pi be the probability of the ith source symbol and let

pmin = min{p1, . . . , pm}.

2. Pick a real number r ∈ (0, pmin) and grow a complete parsing tree
satisfying

pminr ≤ P (d) < r , d ∈ D.

3. The resulting parsing tree is exactly the same as a tree constructed by
Tunstall’s algorithm.

4. Observe that if y is a proper prefix of entries of D = Dr, i.e., y
corresponds to an internal node of T = Tr, then

P (y) ≥ r.

We represent phrases (leaves of T ) in terms of the internal nodes of the
parsing tree Tr.



A Useful Lemma on Trees

Theorem 1. Let D̃ be a uniquely parsable dictionary (leaves of T ) and
Ỹ be the collection of strings which are proper prefixes of one or more
dictionary entries (internal nodes of T ). Then for all |z| ≤ 1,

X
d∈D̃

P (d)
z|d| − 1

z − 1
=
X
y∈Ỹ

P (y)z
|y|

.

Proof By induction with respect to Ỹ:
1. For the inductive step, let Ỹ have k + 1 elements.

y0

dmd2d1

Choose y0 ∈ Ỹ (of maximum length) so
that its single letter extensions
correspond to the dictionary entries
d1, d2, . . . , dm ∈ D̃.

Observe that P (y0) = P (d1) + P (d2) + · · · + P (dm).

2. Define an auxiliary dictionary D̃
′

with

D̃
′
= D̃ ∪ {y0} \ {d1, . . . , dm}.

Then D̃
′

has a corresponding proper prefix set with k elements

Ỹ
′
= Ỹ \ {y0}.



Final Step of the Induction

3. By induction we haveX
y∈Ỹ

P (y)z
|y|

=
X
y∈Ỹ′

P (y)z
|y|

+ P (y0)z
|y0|

=
X
d∈D̃′

P (d)
z|d| − 1

z − 1
+ P (y0)z

|y0|

=
X

d∈D̃′\{y0}

P (d)
z|d| − 1

z − 1

+P (y0)

 
z
|y0| +

z|y0| − 1

z − 1

!

=
X

d∈D̃′\{y0}

P (d)
z|d| − 1

z − 1

+(P (d1) + · · · + P (dm))

 
z|y0|+1 − 1

z − 1

!

=
X
d∈D̃

P (d)
z|d| − 1

z − 1
.



Phrase Length

Let D = |d| for d ∈ D.

Assume now that source strings are generated by a memoryless source
over an alphabet A = {1, . . . , m}.

Then we can talk about moments of D. We have from previous result

E[D] =
X
y∈Ỹ

P (y),

E[D(D − 1)] = 2
X
y∈Ỹ

P (y)|y|.

Moment Generating Functions: Let

D(r, z) := E[z
D
] =

X
d∈Dr

P (d)z
|d|

.

and its corresponding internal nodes generating function

S(r, z) =
X

y: P (y)≥r

P (y)z|y|.

From previous result we also conclude that

D(r, z) = 1 + (z − 1)S(r, z).



Recurrences

Define for a binary alphabet {1, 2} with p1 < p2:
v = 1/r, z complex: S̃(v, z) = S(v−1, z).

Let also
A(v) =

X
y:P (y)≥1/v

1.

denote the number of strings with probability at least v−1.

We have

A(v) =


0 v < 1,

1 + A(vp1) + A(vp2) v ≥ 1

and

S̃(v, z) =


0 v < 1,

1 + zp1S̃(vp1, z) + zp2S̃(vp2, z) v ≥ 1,

since every binary string either is:
• – empty string,
• – string starting with 1
• – string starting with 2.



Some Intermediate Results

A(v) represents the number of internal nodes in Khodak’s construction:

Mr = A(v) + 1 = |Dr|

E[Dr] = S̃(v, 1)

We shall prove the following.
Lemma 1. If ln p2/ lg p1 is irrational, then

Mr = A(v) + 1 =
v

H
+ o(v),

otherwise (i.e., ln p2/ lg p1 is rational)

Mr = A(v) + 1 =
Q1(log v)

H
v + O(v1−η)

for some η > 0, where

Q1(x) =
L

1 − e−L
e
−L〈x

L
〉

L > 0 is the largest real number for which
ln(1/p1) and ln(1/p2) are integer multiples of L;
H = p1 ln(1/p1) + p2 ln(1/p2) is the entropy,
〈y〉 = y − byc is the fractional part of y.



Furthermore, if ln p2/ ln p1 is irrational, then

E[Dr] = S̃(v, 1) =
log v

H
+

H2

2H2
+ o(1)

otherwise (i.e., ln p2/ lg p1 is rational)

E[Dr] = S̃(v, 1) =
log v

H
+

H2

2H2
+

Q2(log v)

H
+ O(v−η)

for some η > 0, where

Q2(x) = L ·
„

1

2
−
fi

x

L

fl«

and H2 = p1 ln(1/p1)
2 + p2 ln(1/p2)

2.



Idea of the Proof

The Mellin transform F ∗(s) of a function F (v) is

F
∗
(s) =

Z ∞

0

F (v)v
s−1

dv.

From the recurrence on S(v, z) we find

D̃
∗
(s, z) =

1 − z

s(1 − zp1−s
1 − zp1−s

2 )
−

1

s
, <(s) < s0(z),

where s0(z) denotes the real solution of
zp1−s + zq1−s = 1.

To find the asymptotics of D̃(v, z) as v → ∞ we compute the inverse
transform of D̃∗(s, z)):

D̃(v, z) =
1

2πi
lim

T→∞

Z σ+iT

σ−iT

D̃
∗
(s, z)v

−s
ds,

where σ < s0(z).

To determine the polar singularities of the meromorphic continuation of
D̃∗(s, z), we have to analyze the set

Z(z) = {s ∈ C : zp
1−s

+ zq
1−s

= 1}

of all complex roots of zp1−s + zq1−s = 1.



Computing the Inverse Mellin Transform
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Figure 2: Illustration to the computations of the Mellin transform.



Difficulties

From Cauchy’s residue theorem we obtain
D̃(v, z) = limT→∞ FT(v, z) for <(s) < τ , where

FT(v, z)

= −
X

s′∈Z(z), <(s′)<τ,|=(s′)|>T

Res(D̃∗(s, z) v−s, s = s′)

+
1

2πi

Z τ+iT

τ−iT

 
1 − z

s(1 − zp1−s
1 − zp1−s

2 )
−

1

s

!
v
−s

ds

= −
X

s′∈Z(z), <(s′)<τ,|=(s′)|>T

(1 − z)v−s′

zs′p1−s′
1 ln p1 + zs′p1−s′

2 ln p2

+
1

2πi

Z τ+iT

τ−iT

 
1 − z

s(1 − zp1−s
1 − zp1−s

2 )
−

1

s

!
v
−s

ds

provided that the series of residues converges and the limit as T → ∞ of
the last integral exists.

The problem is that neither the series nor the integral above are absolutely
convergent since the integrand is only of order 1/s.



Main Results

Theorem 2. Let Dr and Mr denote the phrase length and the dictionary
size in Khodak’s construction.

Dr − 1
H ln Mrr“

H2
H3 − 1

H

”
ln Mr

→ N(0, 1)

where N(0, 1) denotes the standard normal distribution. Furthermore,

Var[Dr] =

„
H2

H3
−

1

H

«
ln Mr + O(1)

for large Mr.
In the irrational case

E[Dr] =
ln Mr

H
+

ln H

H
+

H2

2H2
+ o(1)

and in the rational case (i.e., for log p2/ log p1 = b/d)

E[Dr] =
ln Mr

H
+

ln H

H
+

H2

2H2
+

Q2(nv) − ln Q1(ln v)

H
+ O(M−η

r ).

The above yields (miracle: no oscillations)

Q2(ln v) − log Q1(ln v) = − ln L + ln(1 − e−L) +
L

2
.



Redundancy

The average redundancy rate of Tunstall’s code is defined as

RMr =
ln Mr

E[D]
− H

As a consequence of our main result we can prove the following.

Corollary 1. Let Dr denote the dictionary in Khodak’s construction of the
Tunstall code of size Mr. If ln p1/ ln p2 is irrational then

RMr =
H

ln Mr

„
−

H2

2H
− ln H

«
+ o

„
1

ln Mr

«
.

In the rational case we have

RMr =
H

ln Mr

“
−

H2

2H
− ln H

+ ln L − ln(eL − 1) +
L

2

”
+ O

“
M−η

r

”
,

for some η > 0, where L > 0 is the largest real number for which ln(1/p1)
and ln(1/p2) are integer multiples of L (no oscillation!)

See Savari and Gallager, Generalized Tunstall codes for sources with
memory, IT-43, 1997 (tool: renewal theory).



Miracles Happen – Oscillations

Oscillations usually occur in redundancy rates.

Lemple-Ziv-78. In this case:

rn =
2h − hγ − 1

2h2 + hβ − hδ0(n)

log n
+ O

„
log log n

log2 n

«
,

where

h = −p log p − q log q

h2 = p log2 p + q log2 q ,

γ = 0.577 . . . is the Euler constant,
and δ0(x) is a fluctuating functions with small amplitude for log p/ log q
rational, and

lim
x→∞

δ0(x) = 0

otherwise. Finally, the constant β is defined as:

β = −
∞X

k=1

pk+1 log p + qk+1 log q

1 − pk+1 − qk+1
.



Shannon and Huffman Codes

Shannon’s Code. In this case:

R̄
SF
n =

8<
:

1
2 + o(1) α irrational

1
2 − 1

M

`
〈Mnβ〉 − 1

2

´
+ O(ρn) α = N

M ,

where ρ < 1 and N, M are integers such that gcd(N, M) = 1, and

α = log2

„
1 − p

p

«
, β = log2

„
1

1 − p

«
.

Huffman’s Code. In this case:

R̄H
n =

8><
>:

3
2 − 1

log 2 + o(1) ≈ 0.057304, α irrational

3
2 − 1

M

`
〈βMn〉 − 1

2

´
− 1

M(1−2−1/M )
2−〈nβM〉/M + O(ρn) α = N

M

where ρ < 1 and N, M are integers such that gcd(N, M) = 1.


