Analysis of Some Variable-to-Fixed Codes by Analytic Methods

M. Drmota∗, Y. Reznik†, S. Savari‡, and W. Szpankowski§

February 4, 2006

∗Institute of Discrete Mathematics and Geometry, TU Wien, Austria
†Qualcomm Inc., 5775 Morehouse Dr., San Diego
‡Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor
§Department of Computer Science, Purdue University
Outline of the Talk

1. Tunstall and Khodak VF Codes
2. A Useful Lemma on Trees
3. Some Recurrences
4. Main Results on Tunstall’s Code
5. Redundancy of Tunstall’s Code
6. Oscillations in Redundancy Formulas
Variable-to-Fixed Codes

Throughout, we consider an \(m \)-ary alphabet \(\mathcal{A} = \{1, 2, \ldots, m\} \).

1. A variable-to-fixed length encoder partitions the source string into a concatenation of variable-length phrases.

2. Each phrase belongs to a given dictionary \(\mathcal{D} \) of source strings.

3. A dictionary can be represented by a complete parsing tree \(T \), i.e., a tree in which every internal node has all \(m \) children. The dictionary entries \(d \in \mathcal{D} \) correspond to the leaves of parsing tree.

4. The encoder represents each parsed string by the fixed length binary code word. If the dictionary \(\mathcal{D} \) is has \(M \) entries, then the code word for each phrase has \(\lceil \log_2 M \rceil \) bits.
Tunstall’s construction works as follows (cf. Tunstall, Synthesis of Noiseless Compression Codes, Ph.D. 1968):

1. Start with a tree consisting of a root node and \(m \) leaves.

2. In the \(J \)'s iteration we select the current leaf corresponding to a string of the highest probability and grow \(m \) children out it.

3. After these \(J \) steps, the parsing tree has \(J \) non-root internal nodes and

\[
M = (m - 1)J + m
\]

leaves which correspond to distinct dictionary entries.
Figure 1: Tunstall’s Code for $M = 5$ and Khodak’s Construction for $r = 0.25$.

Tunstall’s construction
$M = 5$
Khodak’s construction
$r = 0.25$
Khodak’s construction of Tunstall’s code (cf. Khodak, “Connection Between Redundancy and Average Delay of Fixed-Length Coding”, 1969):

1. Let p_i be the probability of the ith source symbol and let

$$p_{\text{min}} = \min\{p_1, \ldots, p_m\}.$$

2. Pick a real number $r \in (0, p_{\text{min}})$ and grow a complete parsing tree satisfying

$$p_{\text{min}} r \leq P(d) < r, \quad d \in D.$$

3. The resulting parsing tree is exactly the same as a tree constructed by Tunstall’s algorithm.

4. Observe that if y is a proper prefix of entries of $D = D_r$, i.e., y corresponds to an internal node of $T = T_r$, then

$$P(y) \geq r.$$

We represent phrases (leaves of T) in terms of the internal nodes of the parsing tree T_r.
A Useful Lemma on Trees

Theorem 1. Let \tilde{D} be a uniquely parsable dictionary (leaves of T) and \tilde{Y} be the collection of strings which are proper prefixes of one or more dictionary entries (internal nodes of T). Then for all $|z| \leq 1$,

$$\sum_{d \in \tilde{D}} P(d) \frac{z^{|d|} - 1}{z - 1} = \sum_{y \in \tilde{Y}} P(y) z^{|y|}.$$

Proof By induction with respect to \tilde{Y}:

1. For the inductive step, let \tilde{Y} have $k + 1$ elements. Choose $y_0 \in \tilde{Y}$ (of maximum length) so that its single letter extensions correspond to the dictionary entries $d_1, d_2, \ldots, d_m \in \tilde{D}$. Observe that $P(y_0) = P(d_1) + P(d_2) + \cdots + P(d_m)$.

2. Define an auxiliary dictionary \tilde{D}' with

$$\tilde{D}' = \tilde{D} \cup \{y_0\} \setminus \{d_1, \ldots, d_m\}.$$

Then \tilde{D}' has a corresponding proper prefix set with k elements

$$\tilde{Y}' = \tilde{Y} \setminus \{y_0\}.$$
3. By induction we have

\[
\sum_{y \in \tilde{Y}} P(y) z^{\left|y\right|} = \sum_{y \in \tilde{Y}'} P(y) z^{\left|y\right|} + P(y_0) z^{\left|y_0\right|}
\]

\[
= \sum_{d \in \tilde{D}'} P(d) \frac{z^{\left|d\right|} - 1}{z - 1} + P(y_0) z^{\left|y_0\right|}
\]

\[
= \sum_{d \in \tilde{D}' \setminus \{y_0\}} P(d) \frac{z^{\left|d\right|} - 1}{z - 1}
\]

\[
+ P(y_0) \left(z^{\left|y_0\right|} + \frac{z^{\left|y_0\right|} - 1}{z - 1} \right)
\]

\[
= \sum_{d \in \tilde{D}' \setminus \{y_0\}} P(d) \frac{z^{\left|d\right|} - 1}{z - 1}
\]

\[
+ (P(d_1) + \cdots + P(d_m)) \left(\frac{z^{\left|y_0\right|} + 1 - 1}{z - 1} \right)
\]

\[
= \sum_{d \in \tilde{D}} P(d) \frac{z^{\left|d\right|} - 1}{z - 1}.
\]
Let $D = |d|$ for $d \in D$.

Assume now that source strings are generated by a memoryless source over an alphabet $A = \{1, \ldots, m\}$.

Then we can talk about moments of D. We have from previous result

$$
E[D] = \sum_{y \in \hat{Y}} P(y),
$$
$$
E[D(D - 1)] = 2 \sum_{y \in \hat{Y}} P(y)|y|.
$$

Moment Generating Functions: Let

$$
D(r, z) := E[z^D] = \sum_{d \in D_r} P(d)z^{|d|}.
$$

and its corresponding internal nodes generating function

$$
S(r, z) = \sum_{y: P(y) \geq r} P(y)z^{|y|}.
$$

From previous result we also conclude that

$$
D(r, z) = 1 + (z - 1)S(r, z).
$$
Define for a binary alphabet \(\{1, 2\} \) with \(p_1 < p_2 \):
\[
v = 1/r, \ z \text{ complex: } \tilde{S}(v, z) = S(v^{-1}, z).
\]

Let also
\[
A(v) = \sum_{y: P(y) \geq 1/v} 1.
\]
denote the number of strings with probability at least \(v^{-1} \).

We have
\[
A(v) = \begin{cases}
0 & v < 1, \\
1 + A(vp_1) + A(vp_2) & v \geq 1
\end{cases}
\]
and
\[
\tilde{S}(v, z) = \begin{cases}
0 & v < 1, \\
1 + zp_1 \tilde{S}(vp_1, z) + zp_2 \tilde{S}(vp_2, z) & v \geq 1
\end{cases}
\]
since every binary string either is:
- empty string,
- string starting with 1
- string starting with 2.
Some Intermediate Results

$A(v)$ represents the number of internal nodes in Khodak’s construction:

$$M_r = A(v) + 1 = |D_r|$$

$$E[D_r] = \tilde{S}(v, 1)$$

We shall prove the following.

Lemma 1. If $\ln p_2 / \lg p_1$ is irrational, then

$$M_r = A(v) + 1 = \frac{v}{H} + o(v),$$

otherwise (i.e., $\ln p_2 / \lg p_1$ is rational)

$$M_r = A(v) + 1 = \frac{Q_1(\log v)}{H}v + O(v^{1-\eta})$$

for some $\eta > 0$, where

$$Q_1(x) = \frac{L}{1 - e^{-L}} e^{-L\langle x \rangle}$$

$L > 0$ is the largest real number for which $\ln(1/p_1)$ and $\ln(1/p_2)$ are integer multiples of L;

$H = p_1 \ln(1/p_1) + p_2 \ln(1/p_2)$ is the entropy,

$\langle y \rangle = y - \lfloor y \rfloor$ is the fractional part of y.
Furthermore, if $\ln p_2 / \ln p_1$ is irrational, then

$$E[D_r] = \tilde{S}(v, 1) = \frac{\log v}{H} + \frac{H_2}{2H^2} + o(1)$$

otherwise (i.e., $\ln p_2 / \lg p_1$ is rational)

$$E[D_r] = \tilde{S}(v, 1) = \frac{\log v}{H} + \frac{H_2}{2H^2} + \frac{Q_2(\log v)}{H} + O(v^{-\eta})$$

for some $\eta > 0$, where

$$Q_2(x) = L \cdot \left(\frac{1}{2} - \left\langle \frac{x}{L} \right\rangle \right)$$

and $H_2 = p_1 \ln(1/p_1)^2 + p_2 \ln(1/p_2)^2$.
Idea of the Proof

The Mellin transform $F^*(s)$ of a function $F(v)$ is

$$F^*(s) = \int_0^\infty F(v)v^{s-1}dv.$$

From the recurrence on $S(v, z)$ we find

$$\tilde{D}^*(s, z) = \frac{1 - z}{s(1 - zp_1^{1-s} - zp_2^{1-s})} - \frac{1}{s}, \quad \Re(s) < s_0(z),$$

where $s_0(z)$ denotes the real solution of $zp_1^{1-s} + zq_1^{1-s} = 1$.

To find the asymptotics of $\tilde{D}(v, z)$ as $v \to \infty$ we compute the inverse transform of $\tilde{D}^*(s, z)$:

$$\tilde{D}(v, z) = \frac{1}{2\pi i} \lim_{T \to \infty} \int_{\sigma - iT}^{\sigma + iT} \tilde{D}^*(s, z)v^{-s}ds,$$

where $\sigma < s_0(z)$.

To determine the polar singularities of the meromorphic continuation of $\tilde{D}^*(s, z)$, we have to analyze the set

$$Z(z) = \{ s \in \mathbb{C} : zp_1^{1-s} + zq_1^{1-s} = 1 \}$$

of all complex roots of $zp_1^{1-s} + zq_1^{1-s} = 1$.
Computing the Inverse Mellin Transform

Figure 2: Illustration to the computations of the Mellin transform.
From Cauchy’s residue theorem we obtain
\[\tilde{D}(v, z) = \lim_{T \to \infty} F_T(v, z) \] for \(\Re(s) < \tau \), where

\[F_T(v, z) = - \sum_{s' \in Z(z), \, \Re(s') < \tau, \, |\Im(s')| > T} \text{Res}(\tilde{D}^*(s, z) v^{-s}, \, s = s') \]

\[+ \frac{1}{2\pi i} \int_{\tau-iT}^{\tau+iT} \left(\frac{1 - z}{s(1 - z p_1^{1-s} - z p_2^{1-s})} - \frac{1}{s} \right) v^{-s} \, ds \]

\[= - \sum_{s' \in Z(z), \, \Re(s') < \tau, \, |\Im(s')| > T} \frac{(1 - z)v^{-s'}}{z s' p_1^{1-s'} \ln p_1 + z s' p_2^{1-s'} \ln p_2} \]

\[+ \frac{1}{2\pi i} \int_{\tau-iT}^{\tau+iT} \left(\frac{1 - z}{s(1 - z p_1^{1-s} - z p_2^{1-s})} - \frac{1}{s} \right) v^{-s} \, ds \]

provided that the series of residues converges and the limit as \(T \to \infty \) of the last integral exists.

The problem is that neither the series nor the integral above are absolutely convergent since the integrand is only of order \(1/s \).
Main Results

Theorem 2. Let D_r and M_r denote the phrase length and the dictionary size in Khodak's construction.

\[\frac{D_r - \frac{1}{H} \ln M_r}{\sqrt{\left(\frac{H_2}{H^3} - \frac{1}{H}\right) \ln M_r}} \to N(0, 1) \]

where $N(0, 1)$ denotes the standard normal distribution. Furthermore,

\[\text{Var}[D_r] = \left(\frac{H_2}{H^3} - \frac{1}{H}\right) \ln M_r + O(1) \]

for large M_r.

In the **irrational case**

\[E[D_r] = \frac{\ln M_r}{H} + \frac{\ln H}{H} + \frac{H_2}{2H^2} + o(1) \]

and in the **rational case** (i.e., for $\log p_2 / \log p_1 = b/d$)

\[E[D_r] = \frac{\ln M_r}{H} + \frac{\ln H}{H} + \frac{H_2}{2H^2} + \frac{Q_2(nv) - \ln Q_1(ln v)}{H} + O(M_r^{-\eta}). \]

The above yields (miracle: no oscillations)

\[Q_2(ln v) - \log Q_1(ln v) = -\ln L + \ln(1 - e^{-L}) + \frac{L}{2}. \]
Redundancy

The average redundancy rate of Tunstall’s code is defined as

\[R_{M_r} = \frac{\ln M_r}{E[D]} - H \]

As a consequence of our main result we can prove the following.

Corollary 1. Let \(D_r \) denote the dictionary in Khodak’s construction of the Tunstall code of size \(M_r \). If \(\ln p_1 / \ln p_2 \) is irrational then

\[R_{M_r} = \frac{H}{\ln M_r} \left(-\frac{H_2}{2H} - \ln H \right) + o \left(\frac{1}{\ln M_r} \right). \]

In the rational case we have

\[R_{M_r} = \frac{H}{\ln M_r} \left(-\frac{H_2}{2H} - \ln H + \ln L - \ln(e^L - 1) + \frac{L}{2} \right) + O \left(M_r^{-\eta} \right), \]

for some \(\eta > 0 \), where \(L > 0 \) is the largest real number for which \(\ln(1/p_1) \) and \(\ln(1/p_2) \) are integer multiples of \(L \) (no oscillation!)

Oscillations usually occur in redundancy rates.

Lempel-Ziv-78. In this case:

\[r_n = 2h - h\gamma - \frac{1}{2}h_2 + h\beta - h\delta_0(n) \frac{\log \log n}{\log n} + O \left(\frac{\log \log n}{\log^2 n} \right), \]

where

\[h = -p \log p - q \log q \]
\[h_2 = p \log^2 p + q \log^2 q, \]

\[\gamma = 0.577 \ldots \] is the Euler constant,
and \(\delta_0(x) \) is a fluctuating functions with small amplitude for \(\log p/\log q \) rational, and

\[\lim_{x \to \infty} \delta_0(x) = 0 \]

otherwise. Finally, the constant \(\beta \) is defined as:

\[\beta = -\sum_{k=1}^{\infty} \frac{p^{k+1} \log p + q^{k+1} \log q}{1 - p^{k+1} - q^{k+1}}. \]
Shannon and Huffman Codes

Shannon’s Code. In this case:

$$\bar{R}_n^{SF} = \begin{cases}
\frac{1}{2} + o(1) & \alpha \text{ irrational} \\
\frac{1}{2} - \frac{1}{M} (\langle Mn\beta \rangle - \frac{1}{2}) + O(\rho^n) & \alpha = \frac{N}{M},
\end{cases}$$

where $\rho < 1$ and N, M are integers such that $\gcd(N, M) = 1$, and

$$\alpha = \log_2 \left(\frac{1 - p}{p} \right), \quad \beta = \log_2 \left(\frac{1}{1 - p} \right).$$

Huffman’s Code. In this case:

$$\bar{R}_n^H = \begin{cases}
\frac{3}{2} - \frac{1}{\log 2} + o(1) \approx 0.057304, & \alpha \text{ irrational} \\
\frac{3}{2} - \frac{1}{M} (\langle \beta Mn \rangle - \frac{1}{2}) - \frac{1}{M(1-2^{-1/M})} 2^{-\langle n\beta M \rangle/M} + O(\rho^n) & \alpha = \frac{N}{M}
\end{cases}$$

where $\rho < 1$ and N, M are integers such that $\gcd(N, M) = 1$.