
String Complexity

Wojciech Szpankowski

Purdue University

W. Lafayette, IN 47907

June 1, 2015

Dedicated to Svante Janson for his 60 Birthday

Outline

1. Working with Svante

2. String Complexity

3. Joint String Complexity

Joint Papers

1. S. Janson and W. Szpankowski, Analysis of an asymmetric leader election

algorithm Electronic J. of Combinatorics, 4, R17, 1997.

2. S. Janson, S. Lonardi, and W. Szpankowski, On Average Sequence

Complexity, Theoretical Computer Science, 326, 213–227, 2004 (also

Combinatorial Pattern Matching Conference, CPM’04, Istanbul, 2004).

3. S. Janson and W. Szpankowski, Partial Fillup and Search Time in LC Tries

ACM Trans. on Algorithms, 3, 44:1-44:14, 2007 (also, ANALCO, Miami,

2006).

4. A. Magner, S. Janson, G. Kollias, and W. Szpankowski On Symmetry of

Uniform and Preferential Attachment Graphs, Electronic J. Combinatorics,

21, P3.32, 2014 (also, 25th International Conference on Probabilistic,

Combinatorial and Asymptotic Methods for the Analysis of Algorithms

AofA’14, Paris, 2014).

Joint Papers

1. S. Janson and W. Szpankowski, Analysis of an asymmetric leader election

algorithm Electronic J. of Combinatorics, 4, R17, 1997.

2. S. Janson, S. Lonardi, and W. Szpankowski, On Average Sequence

Complexity, Theoretical Computer Science, 326, 213–227, 2004 (also

Combinatorial Pattern Matching Conference, CPM’04, Istanbul, 2004).

3. S. Janson and W. Szpankowski, Partial Fillup and Search Time in LC Tries

ACM Trans. on Algorithms, 3, 44:1-44:14, 2007 (also, ANALCO, Miami,

2006).

4. A. Magner, S. Janson, G. Kollias, and W. Szpankowski On Symmetry of

Uniform and Preferential Attachment Graphs, Electronic J. Combinatorics,

21, P3.32, 2014 (also, 25th International Conference on Probabilistic,

Combinatorial and Asymptotic Methods for the Analysis of Algorithms

AofA’14, Paris, 2014).

Working with Svante is easy

Outline

1. Working with Svante

2. String Complexity

3. Joint String Complexity

Some Definitions

String Complexity of a single sequence is the number of distinct substrings.

Throughout, we write X for the string and denote by I(X) the set of distinct

substrings of X over alphabet A.

Example. If X = aabaa, then

I(X) = {ǫ, a, b, aa, ab, ba, aab, aba, baa, aaba, abaa, aabaa},

and |I(X)| = 12. But if X = aaaaa, then

I(X) = {ǫ, a, aa, aaa, aaaa, aaaaa},

and |I(X)| = 6.

The string complexity is the cardinality of I(X) and we study here the

average string complexity.

E[|I(X)|] =
∑

X∈An

P (X)|I(X)|.

Suffix Trees and String Complexity

a a b b aa b

$

b

a

a $

$

a b a b a

b

$

a

b a

$

$

$

1 2 3 4 5 6 7 8 9

a b a a b a b a $

4

8

3

7

5

9

$

6

a b b aa $
2

1

Non-compact suffix trie for X = abaababa and string complexity I(X) = 24.

a ababa$a b

$

ba$

$

ababa$

b

$

a

ba$

$

1 2 3 4 5 6 7 8 9

a b a a b a b a $

4

8

3

7

5

9

6

ababa$
2

1
ababa$a ba

$

ba$

$

ababa$

ba

$

ba$

$

1 2 3 4 5 6 7 8 9

a b a a b a b a $

4

8

3

7

5

9

6

ababa$
2

1

String Complexity = # internal nodes in a non-compact suffix tree.

Some Simple Facts

Let O(w) denote the number of times that the word w occurs in X. Then

|I(X)| =
∑

w∈A∗
min{1, O(w)}.

Since between any two positions in X there is one and only one substring:

∑

w∈A∗
O(w) =

(|X| + 1)|X|
2

.

Hence

|I(X)| = (|X| + 1)|X|
2

−
∑

w∈A∗
max{0, O(w) − 1}.

Define: Cn := E[|I(X)| | |X| = n]. Then

Cn =
(n + 1)n

2
−
∑

w∈A∗

∑

k≥2

(k − 1)P (On(w) = k).

We need to study probabilistically On(w): that is:

number of w occurrences in a text X generated a probabilistic source.

New Book on Pattern Matching

Analytic
Pattern
Matching
From DNA to Twitter

Philippe Jacquet and

Wojciech Szpankowski

9 780521 876087 >

ISBN 978-0-521-87608-7

Jacq
u
e
t a

n
d

S
zp

an
ko

w
ski

A
n
aly

tic P
atte

rn
 M

atch
in

g

9
7
8

0
5
2
1
8
7
6

0
8
7
: J

a
c
q

u
e
t &

 S
z
p

a
n

k
o

w
s
k
i: P

P
C

: C
 M

 Y
 K

How do you distinguish a cat from a dog by their DNA?

Did Shakespeare really write all of his plays?

Pattern matching techniques can offer answers to these questions and to
many others, from molecular biology, to telecommunications, to classifying
Twitter content.

This book for researchers and graduate students demonstrates the
probabilistic approach to pattern matching, which predicts the performance
of pattern matching algorithms with very high precision using analytic
combinatorics and analytic information theory. Part I compiles known
results of pattern matching problems via analytic methods. Part II focuses on
applications to various data structures on words, such as digital trees, suffix
trees, string complexity and string-based data compression. The authors use
results and techniques from Part I and also introduce new methodology such
as the Mellin transform and analytic depoissonization.

More than 100 end-of-chapter problems help the reader to make the link
between theory and practice.

Philippe Jacquet is a research director at INRIA, a major public research
lab in Computer Science in France. He has been a major contributor to the
Internet OLSR protocol for mobile networks. His research interests involve
information theory, probability theory, quantum telecommunication,
protocol design, performance evaluation and optimization, and the analysis
of algorithms. Since 2012 he has been with Alcatel-Lucent Bell Labs as head
of the department of Mathematics of Dynamic Networks and Information.
Jacquet is a member of the prestigious French Corps des Mines, known for
excellence in French industry, with the rank of “Ingenieur General”. He is
also a member of ACM and IEEE.

Wojciech Szpankowski is Saul Rosen Professor of Computer Science and (by
courtesy) Electrical and Computer Engineering at Purdue University, where
he teaches and conducts research in analysis of algorithms, information
theory, bioinformatics, analytic combinatorics, random structures,
and stability problems of distributed systems. In 2008 he launched the
interdisciplinary Institute for Science of Information, and in 2010 he became
the Director of the newly established NSF Science and Technology Center
for Science of Information. Szpankowski is a Fellow of IEEE and an Erskine
Fellow. He received the Humboldt Research Award in 2010.

Cover design: Andrew Ward

Book Contents

Chapter 1: Probabilistic Models

Chapter 2: Exact String Matching

Chapter 3: Constrained Exact String Matching

Chapter 4: Generalized String Matching

Chapter 5: Subsequence String Matching

Chapter 6: Algorithms and Data Structures

Chapter 7: Digital Trees

Chapter 8: Suffix Trees & Lempel-Ziv’77

Chapter 9: Lempel-Ziv’78 Compression Algorithm

Chapter 10: String Complexity

Some Results

Last expression allows us to write

Cn =
(n + 1)n

2
+ E[Sn] − E[Ln]

where E[Sn] and E[Ln] are, respectively, the average size and path length

in the associated (compact) suffix trees.

We know that

E[Sn] =
1

h
(n + Ψ(log n)) + o(n),

E[Ln] =
n logn

h
+ nΨ2(log n) + o(n),

where Ψ(logn) and Ψ2(log n) are periodic functions (when the log pa,

a ∈ A are rationally related), and where h is the entropy rate. Therefore,

Cn =
(n + 1)n

2
− n

h
(log n − 1 + Q0(log n) + o(1))

where Q0(x) is a periodic function.

Theorem from 2004 Proved with Bare-Hands

In 2004 Svante, Stefano and I published the first result of this kind for a

symmetric memoryless source (all symbol probabilities are the same).

Theorem 1 (Janson, Lonardi, W.S., 2004). Let Cn be the string complexity for

an unbiased memoryless source over alphabet A. Then

E(Cn) =
(n + 1

2

)

−n log|A| n+

(

1

2
+

1 − γ

ln |A| + ϕ|A|(log|A| n)

)

n+O(
√

n logn)

where γ ≈ 0.577 is Euler’s constant and

ϕ|A|(x) = − 1

ln |A|
∑

j 6=0

Γ

(

−1 − 2πij

ln |A|

)

e2πijx

is a continuous function with period 1. |ϕ|A|(x)| is very small for small |A|:
|ϕ2(x)| < 2 · 10−7, |ϕ3(x)| < 5 · 10−5, |ϕ4(x)| < 3 · 10−4.

Outline

1. Working with Svante

2. String Complexity

3. Joint String Complexity

Joint String Complexity

For X and Y , let J(X, Y) be the set of common words between X and Y .

The joint string complexity is

|J(X, Y)| = |I(X) ∩ I(Y)|

Example. If X = aabaa and Y = abbba, then J(X, Y) = {ε, a, b, ab, ba}.

Goal. Estimate

Jn,m = E[|J(X, Y)|]
when |X| = n and |Y | = m.

Joint String Complexity

For X and Y , let J(X, Y) be the set of common words between X and Y .

The joint string complexity is

|J(X, Y)| = |I(X) ∩ I(Y)|

Example. If X = aabaa and Y = abbba, then J(X, Y) = {ε, a, b, ab, ba}.

Goal. Estimate

Jn,m = E[|J(X, Y)|]
when |X| = n and |Y | = m.

Some Observations. For any word w ∈ A∗

|J(X, Y)| =
∑

w∈A∗
min{1, OX(w)} · min{1, OY (w)}.

When |X| = n and |Y | = m, we have

Jn,m = E[|J(X, Y)|] − 1 =
∑

w∈A∗−{ε}
P (O1

n(w) ≥ 1)P (O2
m(w) ≥ 1)

where Oi
n(w) is the number of w-occurrences in a string of generated by

source i = 1, 2 (i.e., X and Y) which we assume to be memoryless sources.

Independent Joint String Complexity

Consider two sets of n independently generated (memoryless) strings.

Let Ωi
n(w) be the number of strings for which w is a prefix when the n strings

are generated by a source i = 1, 2 define

Cn,m =
∑

w∈A∗−{ε}
P (Ω1

n(w) ≥ 1)P (Ω2
m(w) ≥ 1)

Theorem 2. There exists ε > 0 such that

Jn,m − Cn,m = O(min{n,m}−ε)

for large n.

Independent Joint String Complexity

Consider two sets of n independently generated (memoryless) strings.

Let Ωi
n(w) be the number of strings for which w is a prefix when the n strings

are generated by a source i = 1, 2 define

Cn,m =
∑

w∈A∗−{ε}
P (Ω1

n(w) ≥ 1)P (Ω2
m(w) ≥ 1)

Theorem 2. There exists ε > 0 such that

Jn,m − Cn,m = O(min{n,m}−ε)

for large n.

Recurrence for Cn,m

Cn,m = 1+
∑

a∈A

∑

k,ℓ≥0

(n

k

)

P1(a)
k(1−P1(a))

n−k
(m

ℓ

)

P2(a)
ℓ(1−P2(a))

m−ℓCk,ℓ

with C0,m = Cn,0 = 0.

Generating Functions, Mellin Transform, DePoissonization . . .

Poisson Transform. The Poisson transform C(z1, z2) of Cn,m is

C(z1, z2) =
∑

n,m≥0

Cn,m

zn
1 z

m
2

n!m!
e
−z1−z2.

which becomes the functional equation after summing up the recurrence:

C(z1, z2) = (1 − e−z1)(1 − e−z2) +
∑

a∈A
C (P1(a)z1,P2(a)z2).

Clearly, n!m!Cn,m = [zn
1][z

m
2]C(z1, z2)e

z1+z2.

Generating Functions, Mellin Transform, DePoissonization . . .

Poisson Transform. The Poisson transform C(z1, z2) of Cn,m is

C(z1, z2) =
∑

n,m≥0

Cn,m

zn
1 z

m
2

n!m!
e−z1−z2.

which becomes the functional equation after summing up the recurrence:

C(z1, z2) = (1 − e−z1)(1 − e−z2) +
∑

a∈A
C (P1(a)z1,P2(a)z2).

Clearly, n!m!Cn,m = [zn
1][z

m
2]C(z1, z2)e

z1+z2.

Mellin Transform. Two dimensional Mellin transform is defined as

C
∗
(s1, s2) =

∫ ∞

0

∫ ∞

0

C(z1, z2)z
s1−1
1 z

s2−1
2 dz1dz2.

From the above functional equation we find for −2 < ℜ(si) < −1

C
∗
(s1, s2) = Γ(s1)Γ(s2)

(

1

H(s1, s2)
+

s1

H(−1, s2)
+

s2

H(s1,−1)
+

s1s2

H(−1,−1)

)

where the kernel is defined as

H(s1, s2) = 1 −
∑

a∈A
(P1(a))

−s1(P2(a))
−s2.

Finding Cn,n

Here we only consider m = n and z1 = z2 = z.

To recover Cn,n we first find the inverse Mellin

C(z, z) =
1

(2iπ)2

∫

ℜ(s1)=c1

∫

ℜ(s2)=c2

C∗(s1, s2)z
−s1−s2ds1ds2

which turns out to be

C(z, z) =

(

1

2iπ

)2 ∫

ℜ(s1)=ρ1

∫

ℜ(s2)=ρ2

Γ(s1)Γ(s2)

H(s1, s2)
z
−s1−s2ds1ds2 + o(z

−M
),

for any M > 0 as z → ∞ in a cone around the real axis.

The final step to recover

Cn,n ∼ C(n, n)

is to apply the two-dimensional depoissonization.

Main Results

Assume that ∀a ∈ A we have P1(a) = P2(a) = pa.

Theorem 3. For a biased memoryless source, the joint complexity is

asymptotically

Cn,n = n
2 log 2

h
+ Q(logn)n + o(n),

where Q(x) is a small periodic function (with amplitude smaller than 10−6)

which is nonzero only when the log pa, a ∈ A, are rationally related, that is,

log pa/ log pb ∈ Q.

Assume that P1(a) 6= P2(a).
Theorem 4. Define κ = min(s1,s2)∈K∩R2{(−s1 − s2)} < 1, where s1 and s2
are roots of

H(s1, s2) = 1 −
∑

a∈A
(P1(a))

−s1(P2(a))
−s2 = 0.

Then

Cn,n =
nκ

√
log n

(

Γ(c1)Γ(c2)
√

π∆H(c1, c2)∇H(c1, c2)
+ Q(log n) + O(1/ logn)

)

,

where Q is a double periodic function.

Very Brief Sketch of Proof

1. Set P1(a) = 1/|A| and then the kernel is

H(s1, s2) = 1 − |A|s1
∑

a∈A
ps2
a .

Define r(s2) =
∑

a∈A ps2
a and L(s2) = log|A| r(s2).

2. Roots of H(s1, s2) = 0 are

s1 = − log|A|(r(s2)) +
2ikπ

log(|A|)

which are poles of C(z, z) leading to

C(z, z) ∼ 1

2iπ log |A|

∫

ℜ(s)=c2

∑

k

Γ

(

−L(s) +
2ikπ

log(|A|)

)

Γ(s)zL(s)−s−2ikπ/log(|A|)ds

Integrating over s = s2 requires the saddle point method.

Saddle Point

3. The function L(s) − s achieves it minimum at c2 =: ρ is the dominant real

saddle point. But there is more . . .

nlog

ρ +
⋅

rlog
----------i

2π

ρ +

⋅
rlog

i

2π

ρ –

ρ – i

i
⋅

rlog

2π

2π
log

r
⋅

nlog–

2

2

1

1

j ≥

j ≤ρ – i
⋅

rlog

2π j

ρ + i
⋅

rlog

2π j
,

,

Infinitely Many Saddle Points:

3a. L(c2 + it) is a periodic function with period 2π log ν.

3b The saddle points are at c2 + 2πiℓ/ log ν.

3c. The infinite saddle points defines

the fluctuating function Q.

4. The growth of C(z, z) is defined by zL(c2)−c2 = zκ where

κ = min
s∈R

{log|A|(r(s)) − s}, c2 = min args∈R{log|A|(r(s)) − s},

where here s = s2, and recall L(s2) = log|A| r(s2).

The factor 1/
√
logn comes from the saddle point approximation. This

completes the sketch.

Classification of Sources

The growth of Cn,n is:

• Θ(n) for identical sources;

• Θ(nκ/
√
log n) for nonidential sources with κ < 1.

(a) (b)

Figure 1: Joint complexity: (a) English text vs French, Greek, Polish, and

Finnish texts; (b) real and simulated texts (3rd Markov order) of English,

French, Greek, Polish and Finnish language.

That’s It

THANK YOU, SVANTE!

