
A Master Theorem for Discrete Divide and Conquer

Recurrences∗

Wojciech Szpankowski

Department of Computer Science

Purdue University

W. Lafayette, IN 47907

January 20, 2011

NSF CSoI

SODA, 2011

∗Research supported by NSF Science & Technology Center, and Humboldt Foundation.



Outline

1. Divide and Conquer

2. Example: Boncelet’s Algorithm

3. Continuous Relaxation of the Recurrence

4. Master Theorem

5. Examples

6. Sketch of Proof.



Divide and Conquer

Divide and Conquer:

A divide and conquer algorithm splits the input into several smaller

subproblems, solving each subproblem separately, and then knitting

together to solve the original problem.

Complexity:

A problem of size n is divided into m ≥ 2 subproblems of size ⌊pjn + δj⌋
and ⌈pjn+δ′j⌉ and each subproblem contributes bj, b

′
j fraction to the final

solution; there is a cost an associated with combining subproblems.

Total Cost:

The total cost T (n) satisfies the discrete divide and conquer recurrence:

T (n) = an +
m∑

j=1

bjT (⌊pjn + δj⌋) +
m∑

j=1

b′jT
(⌈

pjn + δ′j

⌉)
(n ≥ 2)

where 0 ≤ pj < 1 (e.g.,
∑m

i=1 pi = 1).



Example: Boncelet’s Algorithm

Boncelet’s algorithm is a variable-to-fixed data compression scheme:

1. A variable-to-fixed length encoder partitions a source string over an m-

ary alphabet into variable-length phrases.

2. Each phrase belongs to a given dictionary.

3. A dictionary is represented by a complete parsing tree.

4. The dictionary entries correspond to the leaves of the parsing tree.



Example: Boncelet’s Algorithm

Boncelet’s algorithm is a variable-to-fixed data compression scheme:

1. A variable-to-fixed length encoder partitions a source string over an m-

ary alphabet into variable-length phrases.

2. Each phrase belongs to a given dictionary.

3. A dictionary is represented by a complete parsing tree.

4. The dictionary entries correspond to the leaves of the parsing tree.

Example: A binary string (m = 2) with symbol probabilities p1 and p2.

The expected phrase length d(n) satisfies:

d(n) = 1 + p1d (⌊p1n + δ⌋) + p2d (⌈p2n − δ⌉)



Continuous Relaxation

We relax the discrete nature of the recurrence and consider a continuous

version:

T (x) = a(x) +

m∑

j=1

bjT (pjx)), x > 1, b
′
j = 0.

Akra and Bazzi (1998) proved that

T (x) = Θ

(
x
s0

(
1 +

∫ x

1

a(u)

us0+1
du

))

where s0 is a unique real root of
∑

j bjpj
s0 = 1.



Continuous Relaxation

We relax the discrete nature of the recurrence and consider a continuous

version:

T (x) = a(x) +
m∑

j=1

bjT (pjx)), x > 1, b′j = 0.

Akra and Bazzi (1998) proved that

T (x) = Θ

(
xs0

(
1 +

∫ x

1

a(u)

us0+1
du

))

where s0 is a unique real root of
∑

j bjpj
s0 = 1.

Indeed, by taking Mellin transform of the relaxed recurrence:

t(s) =

∫ ∞

0

T (x)xs−1dx

we find (for some a(s) and g(s))

t(s) =
a(s) + g(s)

1 −
∑m

j=1 bjp
−s
i

.

An application of the Wiener-Ikehara theorem leads to

T (x) ∼ Cx
s0 with C =

a(−s0) + g(−s0)∑
j bjp

s0
j log(1/pj)

.



Discrete Divide & Conquer Recurrence by Dirichlet Series

For a sequence c(n) define the Dirichlet series as

C(s) =
∞∑

n=1

c(n)

ns

provided it exists for ℜ(s) > σc for some σc ≥ −∞.

Theorem 1 (Perron-Mellin Formula). For all σ > σc and all x > 0

∑

n<x

c(n) +
c(⌊x⌋)

2
[[x ∈ Z]] = lim

T→∞

1

2πi

∫ σ+iT

σ−iT

C(s)
xs

s
ds.

where [[P ]] is 1 if P is a true proposition and 0 otherwise.



Discrete Divide & Conquer Recurrence by Dirichlet Series

For a sequence c(n) define the Dirichlet series as

C(s) =

∞∑

n=1

c(n)

ns

provided it exists for ℜ(s) > σc for some σc ≥ −∞.

Theorem 1 (Perron-Mellin Formula). For all σ > σc and all x > 0

∑

n<x

c(n) +
c(⌊x⌋)

2
[[x ∈ Z]] = lim

T→∞

1

2πi

∫ σ+iT

σ−iT

C(s)
xs

s
ds.

where [[P ]] is 1 if P is a true proposition and 0 otherwise.

Example: Define c(n) = T (n + 2) − T (n + 1). Then

T (n) = T (2) + lim
T→∞

1

2πi

∫ c+iT

c−iT

T̃ (s)
(n − 3

2)
s

s
ds

for some c > σT̃ with

T̃ (s) =

∞∑

n=1

T (n + 2) − T (n + 1)

ns
.

where ℜ(s) > σT̃ .



Assumptions

Let an be a nondecreasing sequence. Define

Ã(s) =
∞∑

n=1

an+2 − an+1

ns

which is postulated to exists for ℜ(s) > σa.

Example. Define an = nσ(log n)α. Then

Ã(s) = σ
Γ(α + 1)

(s − σ)α+1
+

Γ(α + 1)

(s − σ)α
+ F̃ (s),

where F̃ (s) is analytic for ℜ(s) > σ − 1 and Γ(s) is the gamma function.

Define s0 to be the unique real root of

m∑

j=1

(bj + b′j) pj
s = 1.

Other zeros depend on the relation among log(1/p1), . . . , log(1/pm).



Rationally and Irrationally Related Numbers

Definition 1. (i) log(1/p1), . . . , log(1/pm) are rationally related if

log(1/p1), . . . , log(1/pm) are integer multiples of L, that is, log(1/pj) =
njL, nj ∈ Z, (1 ≤ j ≤ m).

(ii) Otherwise log(1/p1), . . . , log(1/pm) are irrationally related.

Example. If m = 1, then we are always in the rationally related case.

For m = 2, if log(1/p1)/ log(1/p2) = m/n, (m,n integers), then rationally

related.

Lemma 1. (i) If log(1/p1), . . . , log(1/pm) are irrationally related, then s0 is

the only solution on ℜ(s) = s0.

(ii) If log(1/p1), . . . , log(1/pm) are rationally related, then there are

infinitely many solutions

sk = s0 +
2πik

L
(k ∈ Z)

where log(1/pj) are all integer multiples of L.



Evaluation of T (n): A Bird View

We estimate T (n) by the Cauchy residue theorem.

T̃ (s) = Ã(s)+B(s)
1−

∑m
j=1(bj+b′j) p

s
j
,

T (n) = 1
2πi

∫ c+i∞

c−i∞
T̃ (s)

(n−3
2)

s

s ds



Main Master Theorem

Theorem 2 (D ISCRETE MASTER THEOREM). Let an = Cnσa(log n)α with

min{σ, α} ≥ 0.

(i) If log(1/p1), . . . , log(1/pm) are irrationally related, then

T (n) =





C1 + o(1) if σa ≤ 0 and s0 < 0,

C2log n + C′
2 + o(1) if σa < s0 = 0,

C3(log n)α+1(1 + +o(1)) if σa = s0 = 0

C4 n
s0 · (1 + o(1)) if σa < s0 and s0 > 0,

C5n
s0(log n)α+1 · (1 + o(1)) if σa = s0 > 0 and α 6= −1,

C5n
s0log log n · (1 + o(1)) if σa = s0 > 0 and α = −1,

C6(log n)α(1 + o(1)) if σa = 0 and s0 < 0,

C7n
σa(log n)α · (1 + o(1)) if σa > s0 and σa > 0.

(ii) If log(1/p1), . . . , log(1/pm) are rationally related, then T (n) behaves

as in the irrationally related case with the following two exceptions:

T (n) =

{
C2logn + Ψ2(logn) + o(1) if σa < s0 = 0,

Ψ4(log n)ns0 · (1 + o(1)) if σa < s0 and s0 > 0,

where C2 is positive and Ψ2(t),Ψ4(t) are periodic functions with period L
(with usually countably many discontinuities).



Extensions and Remarks

1. We can handle any an sequence with Dirichlet series Ã(s):

Ã(s) = g0(s)

(
log 1

s−σa

)β0

(s − σa)α0
+

J∑

j=1

gj(s)

(
log 1

s−σa

)βj

(s − σa)
αj

+ F̃ (s),

F̃ (s) is analytic, g0(σa) 6= 0, βj non-negative integers, and α0 real.

Then the solution T (n) of the divide and conquer recurrence has the form:

T (n) ∼ C nσ′(log n)α
′
(log logn)β

′
or T (n) ∼ Ψ(log n)ns0

σ′ = max{σ, s0}), depending whether log p1, . . . log pm are irrationally or

rationally related.

2. The periodic function Ψ(t) has the following building blocks

λ−t
∑

n≥1

Bn

λ

⌊
t−

log n
L

⌋
+1

λ − 1

where λ > 1 and Bn is such that
∑

n≥1 Bnλ
−(log n)/L converges absolutely.

This function is discontinuous at

t = {log n/L},

where{x} = x − ⌊x⌋ denotes the fractional part of a real number x.



Examples

Example 1. Irrationally Related; Case 4:

T (n) = 2T (⌊n/2⌋) + 3T (⌊n/6⌋) + n logn

Here σa = 1 since an = n logn.

The equation

2 · 2
−s

+ 3 · 6
−s

= 1

has the (real) solution s0 = 1.402 . . . > 1, and finally log(1/2)/ log(1/6)
are irrationally related. Thus by our Master Theorem Case 4

T (n) ∼ Cns0

for some constant C > 0



Examples

Example 2. Irrationally Related; Case 6:

Consider the recurrence

T (n) = 2T (⌊n/2⌋) +
8

9
T (⌊3n/4⌋) +

n2

log n
.

Here σa = s0 = 2, and we deal with irrationally related case. Furthermore,

Ã(s) = s log
1

s − 2
+ G(s)

for G(s) analytic for ℜ(s) > 1. By Master Theorem Case 6

T (n) ∼ Cn2log logn.

Example 3. Rationally Related (m = 1); Case 3:

Next consider

T (n) = T (⌊n/2⌋) + logn.

Here σa = s0 = 0, and we have rational case (m = 1). Since

Ã(s) =
1

s
+ G(s)

we conclude

T (n) ∼ C(log n)
2
.



Examples

Example 4: Karatsuba algorithm: Rationally Related (m = 1):

T (n) = 3T (⌈n/2⌉) + n

Here, s0 = (log 3)/(log 2) = 1.5849 . . . and s0 > σa = 1. Thus

T (n) = Ψ(log n)n
log 3
log 2 · (1 + o(1))

for some periodic function Ψ(t).



Examples

Example 5. Rationally Related (m = 1). The recurrence

T (n) =
1

2
T (⌊n/2⌋) +

1

n

is not covered by our Master Theorem but our methodology still works.

Here σa = s0 = −1 < 0. It follows that

T (n) = C
logn

n
+

Ψ(log n)

n
+ o

(
1

n

)

for a periodic function Ψ(t).

Example 6: Mergesort. Rationally Related.

The mergesort recurrences are

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + n − 1,

Y (n) = Y (⌊n/2⌋) + Y (⌈n/2⌉) + ⌊n/2⌋.

Here σa = s0 = 1 and we deal with the rationally related case. By our

Master Theorem (cf. Flajolet & Golin, 1994)

T (n) =
1

log 2
n log n + nΨ(log n) + o(n),

Y (n) =
1

2 log 2
n logn + nΨ(log n) + o(n).



Boncelet’s Algorithm Revisited

Let a sequence X be generated by a memoryless source over alphabet

A of size m with symbol probabilities pi, i ∈ A.

Using the Boncelet’s parsing tree, we parse X into phrases {v1, . . . vn} of

length ℓ(v1), . . . , ℓ(vn) with phrase probabilities P (v1), . . . , P (vn).

Phrase Length and its Probability Generating Function:

Let Dn denote the phrase length and define the probability generating

function as

C(n, y) = E[y
Dn]

It satisfies the following discrete divide and conquer recurrence:

C(n, y) = y
m∑

i=1

piC([pin + δi], y)

The expected phrase length d(n) = E[Dn] = C′(n, 1) satisfies the

following discrete divide and conquer recurrence:

d(n) = 1 +

m∑

i=1

pid([pin + δi])

with d(0) = · · · = d(m − 1) = 0.



Main Results for Boncelet’s Algorithm

Theorem 3. Consider an m-ary memoryless source with probabilities pi > 0
and the entropy rate H =

∑m
i=1 pi log(1/pi).

(i) If log(1/p1), . . . log(1/pm) are irrationally related, then

d(n) =
1

H
log n −

α

H
+ o(1),

where

α = E
′
(0) − H −

H2

2H
,

H2 =
∑m

i=1 pi log
2 pi, and E′(0) is the derivative at s = 0 of a Dirichlet

series E(s) arises from the discrete nature of the recurrence.

(ii) If log(1/p1), . . . log(1/pm) are rationally related, then

d(n) =
1

H
logn −

α + Ψ(log n)

H
+ O(n

−η
)

for some η > 0, where Ψ(t) is a periodic function of bounded variation

that has usually an infinite number of discontinuities.



Redundancy of the Boncelet’s Algorithm

Corollary 1. Let Rn denote the redundancy of the Boncelet code:

Rn =
logn

E[Dn

] − H =
logn

d(n)
− H.

(i) If log(1/p1), . . . log(1/pm) are irrationally related, then

Rn =
Hα

log n
+ o

(
1

logn

)
.

(ii) If log(1/p1), . . . log(1/pm) are rationally related, then

Rn =
Hα + Ψ(logn)

log n
+ o

(
1

logn

)
.

Tunstall Code Redundancy:

R
T
n =

H

logn

(
− logH −

H2

2H

)
+ o

(
1

log n

)

for irrational case; in the rational case there is aperiodic function.

Example. Consider p = 1/3 and q = 2/3. Then one computes α =

E′(0)−H−
H2
2H ≈ 0.322 while for the Tunstall code − logH−

H2
2H ≈ 0.0496.



Limiting Distribution for the Phrase length

Theorem 4. Consider a memoryless source generating a sequence of

length n parsed by the Boncelet algorithm. If (p1, . . . , pm) is not the

uniform distribution, then the phrase length Dn satisfies the central limit

law, that is,
Dn − 1

H log n
√(

H2
H3 − 1

H

)
logn

→ N(0, 1),

where N(0, 1) denotes the standard normal distribution, and

E[Dn] =
logn

H
+ O(1),

VarDn ∼

(
H2

H3
−

1

H

)
logn

for n → ∞.



Sketch of Proof

1. From the recurrence we have

T̃ (s) = Ã(s) +

m∑

j=1

bj

∞∑

n=1

T (⌊pj(n + 2) + δj⌋) − T (⌊pj(n + 1) + δj⌋)

ns
.

But defining

n =

⌊
k + 2 − δj

pj

⌋
− 2

for some integer k, we arrive at

∞∑

n=1

T (⌊pj(n + 2) + δj⌋) − T (⌊pj(n + 1) + δj⌋)

ns
= Gj(s)+

∞∑

k=1

T (k + 2) − T (k + 1)
(⌊

k+2−δj
pj

⌋
− 2

)s .

for an explicit (and simple) analytic function Gj(s).



Sketch of Proof – Continuation

2. We now compare the last sum to ps
jT̃ (s) and obtain

∞∑

k=1

T (k + 2) − T (k + 1)
(⌊

k+2−δj
pj

⌋
− 2

)s =

∞∑

k=1

T (k + 2) − T (k + 1)

(k/pj)s
= p

s
jT̃ (s) − Ej(s),

where

Ej(s) =
∞∑

k=1

(T (k + 2) − T (k + 1))




1

(k/pj)s
−

1
(⌊

k+2−δj
pj

⌋
− 2

)s


 .

3. Defining

E(s) =
m∑

j=1

bjEj(s) and G(s) =
m∑

j=1

bjGj(s)

we finally obtain our final formula

T̃ (s) =
Ã(s) + G(s) − E(s)

1 −
∑m

j=1 bj p
s
j

.



Sketch of Proof – Binary Boncelet’s Algorithm

1. Let s0(y) be the real zero of

y(ps+1 + qs+1) = 1, q = 1 − p.

2. Define

C(s, y) =
∞∑

n=1

C(n + 2, y) − C(n + 1, y)

ns
.

which from the basic recurrence becomes

C(s, y) =
(y − 1) − E(s, y)

1 − y(ps+1 + qs+1)
,

where E(s, y) converges for ℜ(s) > s0(y) − 1 and satisfies E(0, y) = 0
and E(s, 1) = 0.

3. By Mellin-Perron formula and residue theorem we can prove that

C(n, y) = (1 + O(y − 1))n
s0(y)(1 + o(1))

where

s0(y) =
y − 1

H
+

(
H2

2H3
−

1

H

)
(y − 1)2 + O((y − 1)3).



That’s It

THANK YOU


