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What is Information?

C. F. Von Weizsäcker:

“Information is only that which produces information” (relativity).

“Information is only that which is understood” (rationality)

“Information has no absolute meaning.

C. Shannon:

“These semantic aspects of communication are irrelevant . . .”

F. Brooks, jr. (JACM, 50, 2003, “Three Great Challenges for . . . CS ”):

“Shannon and Weaver performed an inestimable service

by giving us a definition of Information and a metric for

for Information as communicated from place to place.

We have no theory however that gives us a metric

for the Information embodied in structure . . .
this is the most fundamental gap in the theoretical underpinning of

Information and computer science. . . . A young information theory scholar willing

to spend years on a deeply fundamental problem need look no further.”



Some Definitions

Information has flavor of:

relativity (depends on the activity undertaken),

rationality (depends on the recipient’s knowledge),

timeliness (temporal structure),

space (spatial structure).

Informally Speaking:

A piece of data carries information if it can impact a recipient’s ability

to achieve the objective of some activity within a given context.

Definition 1. The amount of information (in a faultless scenario) info(E)

carried by the event E in the context C as measured for a system with

the rules of conduct R is

infoR,C(E) = cost[objectiveR(C(E)), objectiveR(C(E) + E)]

where the cost (weight, distance) is taken according to the ordering of

points in the space of objectives.



Shannon Information Theory

In our setting, Shannon defined:

objective: statistical ignorance of the recipient;

statistical uncertainty of the recipient.

cost: # binary decisions to describe E;

= − log P (E); P (E) being the probability of E.

Context: the semantics of data is irrelevant . . .

Self-information for Ei: info(Ei) = − log P (Ei).

Average information: H(P ) = − P
i P (Ei) log P (Ei)

Entropy of X = {E1, . . .}: H(X) = − P
i P (Ei) log P (Ei)

Mutual Information: I(X; Y ) = H(Y )−H(Y |X), (faulty channel).

Theorem 2. [Shannon 1948; Channel Coding]

In Shannon’s words:
It is possible to send information at the capacity through the channel

with as small a frequency of errors as desired by proper (long) encoding.

This statement is not true for any rate greater than the capacity.

(The maximum codebook size N(n, ε) for codelength n and error probability ε is

asymptotically equal to: N(n, ε) ∼ 2nC .)



Information in Biology

M. Eigen

“The differentiable characteristic of the living systems is Information.

Information assures the controlled reproduction of all constituents, thereby

ensuring conservation of viability . . . . Information theory,

pioneered by Claude Shannon, cannot answer this question . . .

in principle, the answer was formulated 130 years ago by Charles Darwin.

Some Fundamental Questions:

• how information is generated and transferred through underlying

mechanisms of variation and selection;

• how information in biomolecules (sequences and structures) relates to

the organization of the cell;

• whether there are error correcting mechanisms (codes) in biomolecules;

• and how organisms survive and thrive in noisy environments.

Life is a delicate interplay of energy, entropy, and information; essential

functions of living beings correspond to the generation, consumption,

processing, preservation, and duplication of information.



Beyond Shannon

Participants of the 2005 Information Beyond Shannon workshop realize:

Time: When information is transmitted over networks of gene regulation,

protein interactions, the associated delay is an important factor.

(e.g., timely information exchange in cells may be responsible for bidirectional

microtubule-based transport in cells).

Space: In molecular interaction networks, spatially distributed components

raise fundamental issues of limitations in information exchange since the

available resources must be shared, allocated, and re-used.

Information and Control: Again in networks involving regulation, signaling,

and metabolism, information is exchanged in space and time for decision

making, thus timeliness of information delivery along with reliability and

complexity constitute the basic objective.

Semantics: In many contexts, experimentalists are interested in signals,

without precise knowledge of what they represent.

Dynamic information: In a complex network in a space-time-control

environment ( e.g., human brain information is not simply communicated

but also processed) how can the consideration of such dynamical sources

be incorporated into the Shannon-theoretic model?
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Darwin Channel

Biomolecular structures, species, and in general biodiversity, have gone

through significant metamorphosis over eons through mutation and

natural selection, which we model by constrained sequences/channels.

To capture mutation and natural selection we introduce

Darwin channel

which is a combination of a noisy deletion/insertion channel and a noisy

constrained channel.

D A R W I N    C H A N N E L

Mutation Darwin Selection

Deletion/Insertion
      Channel

Constrained Channel

X S2



Noisy Constrained Channel

1. Binary Symmetric Channel (BSC):

(i) crossover probability ε,

(ii) constrained set of inputs (Darwin preselected) that can be modeled by

a Markov Process,

(ii) Sn denotes the set of binary constrained sequences of length n.

2. Channel Input and Output:

Input: Stationary process X = {Xk}k≥1 supported on S =
S

n>0 Sn.

Channel Output: Hidden Markov Process (HMP)

Zi = Xi ⊕ Ei

where ⊕ denotes addition modulo 2, and E = {Ek}k≥1, independent of

X, with P (Ei = 1) = ε is a Bernoulli process (noise).

Note: To focus, we illustrate our results on

Sn = {(d,k) sequences}

i.e., no sequence in Sn contains a run of zeros of length ishorter than d
or longer than k. Such sequences can model neural spike trains (no two

spikes in a short time).



Noisy Constrained Capacity

C(ε) – conventional BSC channel capacity C(ε) = 1 − H(ε), where

H(ε) = −ε log ε − (1 − ε) log(1 − ε).

C(S, ε) – noisy constrained capacity defined as

C(S, ε) = sup
X∈S

I(X; Z) = lim
n→∞

1

n
sup

Xn
1 ∈Sn

I(X
n
1 , Z

n
1 ),

where the suprema are over all stationary processes supported on S and

Sn, respectively. This is an open problem since Shannon.

Mutual information

I(X; Z) = H(Z) − H(Z|X)

where H(Z|X) = H(ε).

Thus, we must find the entropy H(Z) of a hidden Markov process! (e.g.,

(d, k) sequence can be generated as an output of a kth order Markov

process).



Hidden Markov Process

1. Let X = {Xk}k≥1 be a rth order stationary Markov process over a

binary alphabet A with transition probabilities P (Xt = a|Xt−1
t−r = ar

1),

where ar
1 ∈ Ar. For r = 1, with transition matrix P = {pab}a,b∈{01,}.

2. Let X̄ = 1 ⊕ X. In particular, Zi = Xi if Ei = 0 and Zi = X̄i if Ei = 1:

P (Zn
1 , En) = P (Zn

1 , En−1 = 0, En) + P (Zn
1 , En−1 = 1, En)

= P (Zn−1
1 , Zn, En−1 = 0, En) + P (Zn−1

1 , Zn, En−1 = 1, En)

= P (En)PX(Zn ⊕ En|Zn−1)P (Zn−1
1 , En−1 = 0)

+P (En)PX(Zn ⊕ En|Z̄n−1)P (Zn−1
1 , En−1 = 1)



Entropy as a Product of Random Matrices

Let

pn = [P (Zn
1 , En = 0), P (Zn

1 , En = 1)]

and

M(Zn−1, Zn) =

»
(1−ε)PX(Zn|Zn−1) εPX(Z̄n|Zn−1)

(1−ε)PX(Zn|Z̄n−1) εPX(Z̄n|Z̄n−1)

–
.

Then

pn = pn−1M(Zn−1, Zn).

and

P (Zn
1 ) = p1M(Z1, Z2) · · ·M(Zn−1, Zn)1

t,

where 1t = (1, . . . , 1).

Thus, P (Zn
1 ) is a product of random matrices since PX(Zi|Zi−1) are

random variables.



Entropy Rate as a Lyapunov Exponent

Theorem 1 (Furstenberg and Kesten, 1960). Let M1, . . . , Mn form a

stationary ergodic sequence and E[log+ ||M1||] < ∞ Then

lim
n→∞

1

n
E[log ||M1 · · ·Mn||] = lim

n→∞
1

n
log ||M1 · · ·Mn|| = µ a.s.

where µ is called top Lyapunov exponent.

Corollary 1. Consider the HMP Z as defined above. The entropy rate

h(Z) = lim
n→∞

E[−1

n
log P (Zn

1 ) ]

= lim
n→∞

1

n
E[− log

“
p1M(Z1, Z2) · · ·M(Zn−1, Zn)1

t
”
]

is a top Lyapunov exponent of M(Z1, Z2) · · ·M(Zn−1, Zn).

Unfortunately, it is notoriously difficult to compute top Lyapunov exponents

as proved in Tsitsiklis and Blondel. Therefore, in next we derive an explicit

asymptotic expansion of the entropy rate h(Z).



Asymptotic Expansion

We now assume that P (Ei = 1) = ε → 0 is small (e.g., ε = 10−12 for

mutation).

Theorem 2 (Seroussi, Jacquet and W.S., 2004). Assume rth order Markov. If

the conditional probabilities in the Markov process X satisfy

P (ar+1|ar
1) > 0 IMPORTANT!

for all ar+1
1 ∈Ar+1, then the entropy rate of Z for small ε is

h(Z) = lim
n→∞

1

n
Hn(Z

n
) = h(X) + f1(P )ε + O(ε

2
),

where

f1(P ) =
X

z2r+1
1

PX(z2r+1
1 ) log

PX(z2r+1
1 )

PX(z̄2r+1
1 )

= D

“
PX(z2r+1

1 )||PX(z̄2r+1
1 )

”
,

where z̄2r+1=z1 . . . zrz̄r+1zr+2 . . . z2r+1. In the above, h(X) is the entropy

rate of the Markov process X, D denotes the Kullback-Liebler divergence.



Examples

Example 1. Consider a Markov process with symmetric transition

probabilities p01 = p10 = p, p00 = p11 = 1−p. This process has stationary

probabilities PX(0) = PX(1) = 1
2. Then

h(Z) = h(X) + f1(p)ε + f2(p)ε
2
+ O(ε

3
)

where

f1(p) = 2(1 − 2p) log
1 − p

p
, f2(p) = −f1(p) − 1

2

„
2p − 1

p(1 − p)

«2

.

Example 2. (Degenerate Case.) Consider the following Markov process

P =

»
1 − p p

1 0

–

where 0 ≤ p ≤ 1.

Ordentlich and Weissman (2004) proved for this case

H(Z) = H(P ) − p(2 − p)

1 + p
ε log ε + O(ε)

(e.g., (11 . . .) will not be generated by MC, but can be outputed by HMM

with probability O(εκ)).



Exact Noisy Constrained Capacity

Recall I(X; Z) = H(Z) − H(ε). Then by above theorem

H(Z) = µ(P )

where µ(P ) is the top Lyapunov exponent of {M( eZi| eZi−1)}i>0.

It is known (cf. Chen and Siegel, 2004) that he process optimizing

the mutual information can be approached by a sequence of Markov

probabilities P (r) of the constraint of increasing order.

Theorem 3. The noisy constrained capacity C(S, ε) for a (d, k) constraint

through a BSC channel of parameter ε is given by

C(S, ε) = lim
r→∞

sup
P (r)

µ(P (r)) − H(ε)

where P (r) denotes the probability law of an rth-order Markov process

generating the (d, k) constraint S.



Main Asymptotic Results

We observe (cf. Han and Marcus (2007))

H(Z) = H(P ) − f0(P )ε log ε + f1(P )ε + o(ε)

for explicitly computable f0(P ) and f1(P ).

Let P max be the maxentropic maximizing H(P ). Then

C(S, ε)=C(S)−(1 − f0(P
max))ε log ε+(f1(P

max) − 1)ε + o(ε)

where C(S) is known capacity of a noiseless channel.

Example: For (d, k) sequences, we can prove:

(i) for k ≤ 2d
C(S, ε)=C(S) + A · ε + O(ε2 log ε)

(ii) For k > 2d
C(S, ε)=C(S) + B · ε log ε + O(ε),

where A&B are computable constants (cf. also Han and Marcus (2007)).
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Pattern Matching

Let W = w1 . . . wm and T be strings over a finite alphabet A.

Basic question: how many times W occurs in T .

Define On(W) — the number of times W occurs in T , that is,

On(W) = #{i : T i
i−m+1 = W, m ≤ i ≤ n}.

Generalized String Matching: A set of patterns is given, that is,

W = (W0,W1, . . . ,Wd), Wi ∈ Ami

where W i itself for i ≥ 1 is a subset of Ami (i.e., a set of words of a given

length mi). The set W0 is called the forbidden set.

Three cases to be considered:

W0 = ∅ — the number of patterns from W occurring in the text.

W0 6= ∅ — the number of W i, i ≥ 1 pattern occurrences under the

condition that no pattern from W0 occurs in the text.

W i = ∅, ı ≥ 1, W0 6= ∅ — e.g., (d, k) sequences.



Probabilistic Sources

Memoryless Source

The text is a realization of an independently, identically distributed

sequence of random variables (i.i.d.), such that a symbol s ∈ A occurs

with probability P (s).

Markovian Source

The text is a realization of a stationary Markov sequence of order r, that is,

probability of the next symbol occurrence depends on r previous symbols.

Basic Thrust of our Approach

When searching for over-represented or under-represented patterns we

must assure that such a pattern is not generated by randomness itself

(to avoid too many false positives).



Z Score vs p-values

Some statistical tools are used to characterize underrepresented and

overrepresented patterns. We illustrate it on On(W).

Z-scores

Z(W) =
E[On] − On(W)
p

Var[On(W)]

i.e., how many standard deviations the observed value On(W) is away

from the mean.

This score makes sense only if one can prove that Z satisfies (at least

asymptotically) the Central Limit Theorem (CLT), that is, Z is normally

distributed.

p-values

pval(r) = P (On(W) > E[On] + x
q

Var[On]| {z }
r

);

p values are used for very rare occurrences, far away from the mean.

In order to compute p values one must apply either Moderate Large

deviation (MLD) or Large Deviations (LD) results.



CLT vs LD

P On µ xσ+>( ) 1

2π
---------- e

t
2 2⁄

–
td

x

∞

∫=
1
x
---e

x
2 2⁄

–∼
1

x
-------e

λx–∼

pval r( ) P On r>( )=

Z
E On( ) On–

var On[ ]
------------------------------=

CLT MLD LD

Let

P (On ≥ nα + xσ
√

n)

Central Limit Theorem (CLT) – valid only for x = O(1).

Moderate Large Deviations (MLD) – valid for x → ∞ but x = o(
√

n).

Large Deviations (MLD) – valid for x = O(
√

n).



Z-scores and p values for A.thaliana

Table 1: Z score vs p-value of tandem repeats in A.thaliana.

Oligomer Obs. p-val Z-sc.

(large dev.)

AATTGGCGG 2 8.059 × 10−4 48.71

TTTGTACCA 3 4.350 × 10−5 22.96

ACGGTTCAC 3 2.265 × 10−6 55.49

AAGACGGTT 3 2.186 × 10−6 48.95

ACGACGCTT 4 1.604 × 10−9 74.01

ACGCTTGG 4 5.374 × 10−10 84.93

GAGAAGACG 5 0.687 × 10−14 151.10

Remark: p values were computed using large deviations results of Regnier

and W.S. (1998), and Denise and Regnier (2001) as we discuss below.



Some Theory: Language Based Approach

Here is an incomplete list of results on string pattern matching:

A. Apostolico, Feller (1968), Prum, Rodolphe, and Turckheim, (1995),

Regnier & W.S. (1997,1998), P. Nicodéme, Salvy, & P. Flajolet (1999).

Language Approach: Language L a collection of words, and its

generating function is

L(z) =
X

u∈L
P (u)z|u|

where P (u) is the probability u occurrence, |u| is the length of u.

Autocorrelation Set and Polynomial:

Given a pattern W , we define the autocorrelation set S as:

S = {w
m
k+1 : w

k
1 = w

m
m−k+1}, w

k
1 = w

m
m−k+1

and WW is the set of positions k satisfying wk
1 = wm

m−k+1.

w1 wk wm-k+1 wm

S

The generating function of S is denoted as S(z) and we call it the

autocorrelation polynomial.

S(z) =
X

k∈WW
P (w

m
k+1)z

m−k
.



Language T r

T r – set of words that contains exactly r ≥ 1 occurrences of W . Define

Tr(z) =
X

n≥0

Pr{On(W) = r}z
n
, T (z, u) =

∞X

r=1

Tr(z)u
r
.

(i) We define R as the set of words containing only one occurrence of W ,

located at the right end; e.g., , for W = aba, ccaba ∈ R.

(ii) We also define U as

U = {u : W · u· ∈ T 1}

that is, a word u ∈ U if W · u has exactly one occurrence of W at the

left end of W · u; e.g., bba ∈ U but ba /∈ U .

(iii) Let M be the language:

M = {u : W · u ∈ T 2 and W occurs at the right of W · u},

that is, M is a language such that WM has exactly two occurrences

of W at the left and right end of a word from M; e.g., ba ∈ M since

ababa ∈ T2.



Basic Lemma

Lemma 1. The language T satisfies the fundamental equation:

T = R · M∗ · U .

Notably, the language Tr can be represented for any r ≥ 1 as follows:

Tr = R · Mr−1 · U ,

and

T0 · W = R · S .

Here, by definition M0 := {ǫ} and M∗ :=
S∞

r=0 Mr.

R M M M U

T4

Example: Let W = TAT . The following string belongs T 3:

Rz }| {
CCTAT AT|{z}

M
GATAT| {z }

M

Uz }| {
GGA .



Main Results – Exact

Theorem 4. (i) The languages M, U and R satisfy:

[

k≥1

Mk
= A∗ · W + S − {ǫ} ,

U · A = M + U − {ǫ},

W · M = A · R − (R − W) ,

where A∗ is the set of all words, + and − are disjoint union and subtraction

of languages.

(ii) The generating functions Tr(z) and T (z, u) are

Tr(z) = R(z)Mr−1(z)U(z), r ≥ 1

T (z, u) = R(z)
u

1 − uM(z)
U(z)

T0(z)P (W) = R(z)S(z)

where

M(z) = 1 +
z − 1

D(z)
, U(z) =

1

D(z)
, R(z) = zmP (W)

1

D(z)
.

with D(z) = (1 − z)S(z) + zmP (W).



Main Results: Asymptotics

Theorem 5. (i) Moments. The expectation satisfies, for n ≥ m:

E[On(W)] = P (W)(n − m + 1) ,

while the variance is

Var[On(W)] = nc1 + c2.

where c1, c2 are explicit constants.

(ii) CLT: Case r = EOn + x
√

VarOn for x = O(1). Then:

Pr{On(W) = r} =
1√

2πc1n
e−1

2x2
„

1 + O

„
1√
n

««
.

(iii) Large Deviations: Case r = (1 + δ)EOn. Let a = (1 + δ)P (W), then

Pr{On(W) ∼ (1 + δ)EOn} =
e−(n−m+1)I(a)+δa

σa

p
2π(n − m + 1)

where I(a) = aωa + ρ(ωa) and δa, ωa, ρ(ωa) are constants, and ρ is the

smallest root of D(z) = 0.



Biology – Weak Signals and Artifacts

Denise and Regnier (2002) observed that in biological sequence

whenever a word is overrepresented, then its subwords and proximate

words are also likely to be overrepresented (the so called artifacts).

Example: if W1 = AATAAA, then W2 = ATAAAN is also

overrepresented.

New Approach:

Once a dominating signal has been detected, we look for a

weaker signal by comparing the number of observed occurrences

of patterns to the conditional expectations not the regular

expectations.

In particular, using the methodology presented above Denise and Regnier

(2002) were able to prove that

E[On(W2)|On(W1) = k] ∼ αn

provided W1 is overrepresented, where α can be explicitly computed

(often α = P (W2) is W1 and W2 do not overlap).



Polyadenylation Signals in Human Genes

Beaudoing et al. (2000) studied several variants of the well known AAUAAA

polyadenylation signal in mRNA of humans genes. To avoid artifacts

Beaudoing et al cancelled all sequences where the overrepresented

hexamer was found.

Using our approach Denise and Regnier (2002) discovered/eliminated

all artifacts and found new signals in a much simpler and reliable way.

Hexamer Obs. Rk Exp. Z-sc. Rk Cd.Exp. Cd.Z-sc. Rk

AAUAAA 3456 1 363.16 167.03 1 1

AAAUAA 1721 2 363.16 71.25 2 1678.53 1.04 1300

AUAAAA 1530 3 363.16 61.23 3 1311.03 6.05 404

UUUUUU 1105 4 416.36 33.75 8 373 .30 37.87 2

AUAAAU 1043 5 373.23 34.67 6 1529.15 12.43 4078

AAAAUA 1019 6 363.16 34.41 7 848.76 5.84 420

UAAAAU 1017 7 373.23 33.32 9 780.18 8.48 211

AUUAAA 1013 l 373.23 33.12 10 385.85 31.93 3

AUAAAG 972 9 184.27 58.03 4 593.90 15.51 34

UAAUAA 922 10 373.23 28.41 13 1233.24 –8.86 4034

UAAAAA 922 11 363.16 29.32 12 922.67 9.79 155

UUAAAA 863 12 373.23 25.35 15 374.81 25.21 4

CAAUAA 847 13 185.59 48.55 5 613.24 9.44 167

AAAAAA 841 14 353.37 25.94 14 496.38 15.47 36

UAAAUA 805 15 373.23 22.35 21 1143.73 –10.02 4068
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Protein Interaction Networks

• Molecular Interaction Networks: Graph theoretical abstraction
for the organization of the cell

• Protein-protein interactions (PPI Network)

– Proteins signal to each other, form complexes to perform a particular

function, transport each other in the cell...

– It is possible to detect interacting proteins through high-throughput

screening, small scale experiments, and in silico predictions

Protein

Interaction

Undirected Graph Model S. Cerevisiae PPI network hspace0.3in
[Jeong et al., Nature, 2001]



Modularity in PPI Networks

• A functionally modular group of proteins (e.g. a protein
complex) is likely to induce a dense subgraph

• Algorithmic approaches target identification of dense
subgraphs

• An important problem: How do we define dense?

– Statistical approach: What is significantly dense?

RNA Polymerase II Complex Corresponding induced subgraph



Significance of Dense Subgraphs

• A subnet of r proteins is said to be ρ-dense if the number of
interactions, F (r), between these r proteins is ≥ ρr2, that is,

F (r) ≥ ρr2

• What is the expected size, Rρ, of the largest ρ-dense
subgraph in a random graph?

– Any ρ-dense subgraph with larger size is statistically significant!

– Maximum clique is a special case of this problem (ρ = 1)

• G(n, p) model

– n proteins, each interaction occurs with probability p

– Simple enough to facilitate rigorous analysis

• Piecewise G(n, p) model

– Captures the basic characteristics of PPI networks

• Power-law model



Largest Dense Subgraph on G(n, p)

Theorem 6. If G is a random graph with n nodes, where every
edge exists with probability p, then

lim
n→∞

Rρ

log n
=

1

Hp(ρ)
(pr.),

where

Hp(ρ) = ρ log
ρ

p
+ (1 − ρ) log

1 − ρ

1 − p

denotes divergence. More precisely,

P (Rρ ≥ r0) ≤ O

(

log n

n1/Hp(ρ)

)

,

where

r0 =
log n − log log n + log Hp(ρ)

Hp(ρ)

for large n.



Proof

• Xr,ρ: number of subgraphs of size r with density at least ρ

– Xr,ρ = |{U ⊆ V (G) : |U | = r ∧ |F (U)| ≥ ρr2}|

• Yr : number of edges induced by a set U of r vertices

– E[Xr] =
`n

r

´
P (Yr ≥ ρr2)

– P (Yr ≥ ρr2) ≤
` r2

ρr2

´
(r2 − ρr2)pρr2(1 − p)r2−ρr2

• Upper bound: By the first moment method:

P (Rρ ≥ r) ≤ P (Xr,ρ ≥ 1) ≤ E[Xr,ρ]

– Plug in Stirling’s formula for appropriate regimes

• Lower bound: To use the second moment method, we
have to account for dependencies in terms of nodes and
existing edges

– Use Stirling’s formula, plug in continuous variables for range of

dependencies



Piecewise G(n, p) Model

• Few proteins with many interacting partners, many proteins
with few interacting partners

Captures the basic characteristics

of PPI networks,

where pl < pb < ph.

ph  >  pb  > p1

Vh V1

• G(V,E), V = Vh ∪ Vl such that nh = |Vh| ≪ |Vl| = nl

P (uv ∈ E(G)) =







ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl, v ∈ Vh.

• If nh = O(1), then P (Rρ ≥ r1) ≤ O
(

log n

n
1/Hpl(ρ)

)

where

r1 =
log n − log log n + 2nh log B + log Hpl

(ρ) − log e + 1

Hpl
(ρ)

and B = (pb(1 − pl))/pl + (1 − pb).



SIDES

• An algorithm for identification of Significantly Dense
Subgraphs (SIDES)

– Based on Highly Connected Subgraphs algorithm (Hartuv & Shamir,

2000)

– Recursive min-cut partitioning heuristic

– We use statistical significance as stopping criterion

p << 1p << 1

p << 1



Behavior of Largest Dense Subgraph Across Species
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for PPI networks belonging to 9 Eukaryotic species



Behavior of Largest Dense Subgraph w.r.t Density
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Performance of SIDES

• Biological relevance of identified clusters is assessed with
respect to Gene Ontology (GO)

– Find GO Terms that are significantly enriched in each cluster

• Quality of the clusters

– For GO Term t that is significantly enriched in cluster C, let T be the

set of proteins associated with t

specificity = 100 × |C ∩ T |/|C|
sensitivity = 100 × |C ∩ T |/|T |

PPI GO Cluster

C T

P6

P5

P3

P2

P1

P4

SIDES MCODE

Min. Max. Avg. Min. Max. Avg.

Specificity (%) 43.0 100.0 91.2 0.0 100.0 77.8

Sensitivity (%) 2.0 100.0 55.8 0.0 100.0 47.6

Comparison of SIDES with MCODE (Bader & Hogue, 2003)
on yeast PPI network derived from DIP and BIND databases



Performance of SIDES
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SIDES: 0.22 SIDES: 0.27
MCODE: -0.02 MCODE: 0.36


