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Algorithms: are at the heart of virtually all computing technologies;

Combinatorics: provides indispensable tools for finding patterns and structures;

Information: permeates every corner of our lives and shapes our universe.



Goals of Source Coding

The basic problem of source coding (i.e., data compression) is to

find codes with shortest descriptions (lengths) either on average or for

individual sequences when the source (i.e., statistics of the underlying

probability distribution) is unknown (the so called universal source coding).

Goals:

• Find universal lower bound on compression ratio (bit rate).

• Construct universal source codes that achieve this lower bound up

to the second order asymptotics (i.e., match redundancy which is

basically a measure of the second term asymptotics).

• Design efficient algorithms for universal source coding and joint source-

channel coding.

• As pointed out by Rissanen, universal coding evolved into universal

modeling where the purpose is no longer restricted to just coding but

rather to finding optimal models for data.



Some Definitions

Definition: A block-to-variable (BV) length code

Cn : An → {0, 1}∗

is a bijective mapping from a set of all sequences of length n over the

alphabet A to the set {0, 1}∗ of binary sequences.

For a probabilistic source model S and a code Cn we let:

• P (xn
1) be the probability of xn

1 = x1 . . . xn;

• L(Cn, xn
1) be the code length for xn

1 ;

• Entropy Hn(P ) = H(Xn
1 ) = −Pxn

1
P (xn

1) lg P (xn
1);

entropy rate h = lim H(Xn
1 )/n.

Information-theoretic quantities are expressed in binary logarithms written

lg := log2.
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LZ’77 Scheme

The popular Lempel-Ziv’77 scheme works on-line:

It compresses phrases by consecutively replacing the longest prefix of the

non-compressed portion of a file with a pointer and the length.

The devastating effect of errors in LZ’77 is a long-standing open problem.

Castelli and Lastras in 2004 proved that a single error in LZ’77 corrupts

O(n2/3) phrases, thus about O(n2/3 log n) symbols, where n is the size the

file to be compressed.
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Figure 1: LZ’77 pointers (also for LZRS’77 we have Mn = 4).



Our Main Idea of Error Resilient LZ’77

1. We observe that there are usually multiple copies of the longest prefix.

By Mn we denote the number of copies of the longest prefix of the

uncompressed string that appear in the database.

2. By a judicious choice of pointers in the LZ’77 scheme, we can recover

⌊log2 Mn⌋ bits without losing a bit in compression.

3. Use parity bits recovered from the multiple copies (redundancy) for the

Reed-Solomon channel coding.

Note: If the greediness of LZ’77 is relaxed (say, by looking for the 10th largest

prefix, for instance), then the number of copies found in the database will

increase significantly. This would allow even more errors to be corrected.



Encoder and Decoder of LZRS’77

We use the family of Reed-Solomon codes RS(255, 255− 2e) that contains

blocks of 255 bytes, of which 255 − 2e are data and 2e are parity.

Encoder: The data is broken into blocks of size 255 − 2e. Blocks are

processed in reverse order, beginning with the very last. When processing

block i, the encoder computes first the Reed-Solomon parity bits for the

block i + 1 and then it embeds the extra bits in the pointers of block i.

Decoder: The decoder receives a sequence of pointers, preceded by the

parity bits of the first block which are used to correct block B1. Once block

B1 is correct, it decompresses it using LZS’77. Redundant bits of block B1

are used as parity bits to correct block B2, etc.

RS

Adjust

pointers

RS

Adjust

pointers

B1 ...

RS

B2 B3 Bb

RS

Adjust

pointersStore

Figure 2: The right-to-left sequence of operations on the blocks.



Experimental Results
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Figure 3: The probability that a file of b blocks could not be recovered correctly vs

the number of errors distributed over the blocks. Top-left: e = 1 and b = 10, top-right:

e = 1 and b = 100, lower-left: e = 2 and b = 10, lower-right: e = 2 and b = 100

(e.g., for e = 2 and b = 100 LZRS’77 can decompress correctly with with

20 uniformly distributed errors 90% of the time).



Analysis of Mn Via Suffix Trees

Performance of LZRS’77 depends on Mn. How does Mn typically behave?

Build a suffix tree from the first n suffixes of the database X (i.e., S1 =
X∞

1 , S2 = X∞
2 , . . . , Sn = X∞

n ). Then insert the (n+1)st suffix, Sn+1 = X∞
n+1.

Observe: Depth of insertion of Sn+1 is the (n + 1)-st phrase length. Also,

Mn is the size of the subtree that starts at the insertion point of the (n+1)st

suffix.

S1 S2

S3 S4

S5

Mn

Figure 4: M4(=2) is the size of the subtree at the insertion point of S5.



Analytic Information Theory Approach

1. We first consider digital tries built over n independent strings.

(i) Average E[MI
n] satisfies the recurrence

(p = 1 − q is the probability of generating a “1”):

E[MI
n] = pn(qn+pE[MI

n])+qn(pn+qE[MI
n)]+

n−1
X

k=1

“n

k

”

pkqn−k(pE[MI
k ]+qE[MI

n−k]);

(ii) The probability generating functions E[uMI
n] satisfy

E[uMI
n] = pn(qun+pE[uMI

n])+qn(pun+qE[uMI
n])+

n−1
X

k=1

“n

k

”

pkqn−k(pE[uMI
k ]+qE[u

MI
n−k])

2. Using analytic combinatorics on words we prove that for any ε > 0
there exists β > 1 such that (all hard analytic work is here!)

Pr(Mn = k) − Pr(MI
n = k) = O(n−εβ−k)

for large n.

Random suffix trees resemble random independent tries.



Main Results

Theorem 1 (Ward, W.S., 2005). Let zk = 2krπi
ln p ∀k ∈ Z, where ln p

ln q = r
s for

some relatively prime r, s ∈ Z (i.e., ln p
ln q is rational).

The jth factorial moment E[(Mn)
j] = E[M(M − 1) · · ·M(−j + 1)] is

E[(Mn)
j] = Γ(j)

q(p/q)j + p(q/p)j

h
+ δj(log1/p n) + O(n−η)

where h = −p log p− q log q is the entropy rate, η > 0, and where Γ is the

Euler gamma function and

δj(t) =
X

k 6=0

−
e2krπitΓ(zk + j)

`

pjq−zk−j+1 + qjp−zk−j+1
´

p−zk+1 ln p + q−zk+1 ln q
.

δj is a periodic function that has a small magnitude and exhibits fluctuation

when ln p
ln q is rational

Note: On average there are

E[Mn] ∼ 1/h additional pointers.

j 1
ln 2

P

k 6=0

˛

˛Γ
`

j − 2kiπ
ln 2

´˛

˛

1 1.4260 ×10−5

3 1.2072 ×10−3

5 1.1421 ×10−1

6 1.1823 ×100

8 1.4721 ×102

9 1.7798 ×103

10 2.2737 ×104



Distribution of Mn

Theorem 2 (Ward, W.S., 2005). Let zk = 2krπi
ln p ∀k ∈ Z, where ln p

ln q = r
s for

some relatively prime r, s ∈ Z. Then

P (Mn = j) =
pjq + qjp

jh
+
X

k 6=0

−e
2krπi log1/p n

Γ(zk)(p
jq + qjp)(zk)

j

j!(p−zk+1 ln p + q−zk+1 ln q)
+ O(n

−η
)

where η > 0 and Γ is the Euler gamma function.

Therefore, Mn follows the logarithmic series distribution with mean 1/h (plus

some fluctuations).

The logarithmic series distribution ((pjq + qjp)/(jh))

is well concentrated around its mean EMn ≈ 1/h.
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Method of Types

The method of types is a powerful technique in information theory; it

reduces calculations of the probability of rare events to combinatorics.

Sequences are of the same type if they have the same empirical

distribution.

Warm-up Problem: How many binary strings xn
1 of length n generated by

a memoryless source have k “1”s (i.e., have the same Bernoulli type)? All

such strings have the same probability

P (x
n
1) = p

k
(1 − p)

n−k

where p is the probability of generating a 1.

Answer: Certainly, the answer is:
`n

k

´

.



Markov Types

Consider a Markov source over an m-ary alphabet with the transition

matrix P = {pij}m
i,j=1 , that is, P (Xt+1 = j|Xt = i) = pij.

The probability of xn
1 is

P (x
n
1 ) = p

k11
11 · · · pkmm

mm

where kij is the number of pair symbols ij in xn
1 , that is, i followed by j.

Example: Let xn
1 = 01101, then

P (01101) = p2
01p11p10.

For circular strings (i.e., after the n symbol we re-visit the first symbol of xn
1 ),

the matrix [kij] satisfies the following constraints that we denote as Fn

X

1≤i,j≤m

kij = n;
m
X

j=1

kij =
m
X

j=1

kji, ∀ i (balance property)



Markov Types and Eulerian Cycles

Problem. Let k = [kij]
m
i,j=1 be a given frequency matrix satisfying the

balance property.

A: How many strings of a given frequency matrix k (given type) are there?

Example: Let A = {0, 1} and

k =

»

1 2

2 2

–

B: How to enumerate Eulerian paths (types) in a multigraph with |A|
vertices and kij edges between ith and jth vertices?

We are interested in:

Nk – number of (cyclic) strings xn
1 belonging to the same type k.

Na
k – number of strings xn

1 of type k and starting with a symbol a.

Nab
k – # strings xn

1 of type k, starting with a symbol a and ending with b.



Enumeration of Eulerian Paths

1. Define for an m-ary alphabet

Bk =
“ k1

k11 · · · k1m

”

· · ·
“ km

km1 · · · kmm

”

.

2. Na
k,k′ – # ways k is transformed into k′ starting from a:

N
a
k,k′ = N

a
k−k′ × Bk′, k

′
a = 0.

Since
P

k′ N
a
k,k′ = Bk, hence Bk =

P

k′∈F,k′a=0 Na
k−k′ × Bk′.

3. We find
P

k∈F,ka 6=0 Bkz
k =

`P

k∈F Na
kzk
´

. ×
“

P

k∈F,ka=0 Bkz
k
”

, then

N
b,a
k = [z

k
]B(z)zba · det

bb
(I − z).

where FB(z) = (det(I − z))−1. Using Cauchy we arrive at

N
b,a
k =

kba

kb

Bk · det
bb

(I − k
∗
)

„

1 + O

„

1

n

««

,

where k∗ is the normalized matrix such that k∗ = [kij/ki].

4. For example for a binary Markov we have

N
0,0
k ∼ k10

k10 + k11

“k00 + k01

k00

”“k10 + k11

k10

”

=
k10

k10 + k11

Bk



Universal Types

Seroussi introduced in 2003 universal types for stationary ergodic sources:

Sequences of the same length p are said to be of the same universal

type if they generate the same set of phrases in the Lempel-Ziv’78.

Figure 5: Two universal types and the corresponding binary trees

.



Number of Types and Binary Trees

Lempel-Ziv’78 parsing scheme of a sequence of length p can be

represented by a binary tree of path length p. Let

– Tn be the set of binary trees built on n nodes.

– Tp be the set of binary trees with path length equal to p.

# universal types over Ap ≡ |Tp|: # of trees a given path p.

How to enumerate binary trees of a given path length p?



Enumeration of Binary Trees

Let b(n, p) be the number of binary trees with

n nodes and path length p. It satisfies:

b(n, p) =
P

k+ℓ=n−1

P

r+s+n−1=p b(k, r)b(ℓ, s)

b(n+1,p)

b(k,r) b(n-k,p-n-r)

Define

Bn(w) =
∞
X

p=0

b(n, p)wp, B(z, w) =
∞
X

n=0

znBn(w)

Then

B(z, w) = 1 + zB
2
(zw, w)

This functional equation is asymmetric with respect to z and w.

Set w = 1, then B(z, 1) = 1 + zB2(z, 1), and we find

B(z, 1) ≡ Cn =
1

2z

ˆ

1 −
√

1 − 4z
˜

.

with an = Bn(1) =
P

p≥0 b(n, p) being the Catalan Number Cn.



Enumeration Tn vs Tp

We want to study the number of trees in Tp. Observe

|Tp| =
X

n≥0

b(n, p) = [w
p
]B(1, w).

We set z = 1 in the functional equation leading to

B(1, w) = 1 + B2(w, w)

which is not algebraically solvable.

Seroussi (2004) and Knessl & W.S (2004) prove that (c1, c2 are constants)

|Tp| =
1

(log2 p)
√

πp
2

2p
log2 p

“

1+c1 log−2/3 p+c2 log−1 p+O(log−4/3 p)
”

.

Knessl and W.S. use methods of applied probability called the WKB

method. The WKB method assumes that the solution, B(ξ; n), to a

functional equation has the following asymptotic form

B(ξ; n) ∼ enϕ(ξ)

»

A(ξ) +
1

n
A(1)(ξ) +

1

n2
A(2)(ξ) + · · ·

–

,

where ϕ(ξ) and A(ξ), A(1)(ξ), . . . are unknown functions. These functions

must be determined from the equation (asymptotic matching principle).



Outline

1. Universal Source Coding

2. Algorithms: Error-Resilient Lempel-Ziv’77

3. Combinatorics: Method of Types

4. Analytic Information Theory: One-to-One Codes

(a) Lower Bound

(b) Anti-Redundancy

(c) Sketch of Proof: Generating Functions and Complex Asymptotics

5. Information: Today’s Challenges



Prefix Codes and Lower Bound

A prefix code is such that no codeword is a prefix of another codeword.

Kraft’s Inequality: Code lengths ℓ1, ℓ2, . . . , ℓm satisfy the inequality

m
X

i=1

2−ℓi ≤ 1.

Lower Bound (Khinchin, 1953): Average code length E[L(Cn, Xn
1 )] satisfies:

E[L(Cn, Xn
1 )] ≥ Hn(P ).

Proof: Let K =
P

xn
1
2−L(xn

1 )
Kraft

≤ 1.

E[L(Cn, X
n
1 )] − Hn(P ) =

=
X

xn
1∈An

P (x
n
1)L(x

n
1) +

X

xn
1∈An

P (x
n
1) log P (x

n
1)

=
X

xn
1∈An

P (xn
1)log

P (xn
1)

2−L(xn
1 )/K

− log K

≥ 0

since the divergence cannot be negative (or log x ≤ x − 1) and K ≤ 1.



One-to-One Codes

One-to-One codes are not prefix codes.

In one-to-one codes a distinct codeword is assigned to each source

symbol (unique decodability is not required).

Such codes are usually one shot codes and there is one designated an

“end of message” channel symbol.

Wyner in 1972 proved that

L ≤ H(X),

further improved by Alon and Orlitsky who showed

L ≥ H(X) − log(H(X) + 1) − log e.

We consider a block one-to-one code for xn
1 = x1 . . . xn ∈ An generated

by a memoryless source;

p the probability of generating a 0 and q = 1 − p.

Throughout: p ≤ q so that P (xn
1) = pkqn−k.

Goal: More precise bounds for the (anti-)redundancy L − H(X).



Average Code length

List all 2n probabilities in a nonincreasing order and assign code lengths:

qn
“

p
q

”0

≥ qn
“

p
q

”1

≥ . . . ≥ qn
“

p
q

”n

⌊log2(1)⌋ ⌊log2(2)⌋ . . . ⌊log2(2
n)⌋

There are
`n

k

´

equal probabilities pkqn−k. Define

Ak =
“n

0

”

+
“n

1

”

+ · · · +
“n

k

”

, A−1 = 0.

Since starting from the position Ak−1 the next
`n

k

´

probabilities P (xn
1) are

the same, the average code length is

Ln =
n
X

k=0

pkqn−k

Ak
X

j=Ak−1+1

⌊log2(j)⌋

=

n
X

k=0

p
k
q

n−k

(n
k)
X

i=1

⌊log2(Ak−1 + i)⌋.



Main Result

Theorem 3. For a binary memoryless source, let p < 1
2. Then

Ln = nH(p) − 1

2
log2 n−1 − 1

2 ln 2
+ log2

1 − p

(1 − 2p)
√

pqπ

+
1 − p

1 − 2p
log2

2 − 3p

1 − p
+

5 − 4p

1 − 2p

„

1

2 ln 2
+ G(n)

«

+ F (n) + o(1)

where H(p) = −p log2 p − (1 − p) log2(1 − p), and

• lim G(n) = lim F (n) = const if log2
1−p

p is irrational;

• G(n) and F (n) are oscillating functions if log2
1−p

p = N/M is rational,
e.g.,

F (n) =
1

M
√

2π

Z ∞

−∞
e−x2/2

 *

M

 

nβ − log

„

1 − 2p

1 − p

p

2πpqn

«

− x2

2 ln 2

!+

− 1

2

!

dx

where β = − log2(1 − p) and 〈x〉 = x − ⌊x⌋.

For p = 1
2, then for all n ≥ 1

Ln = nH(1/2)−1 + 2−n(n − 2).



Oscillations
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Figure 6: The fluctuating part of the average anti-redundancy versus n for:

(a) irrational α = log2(1−p)/p with p = 1/π; (b) rational α = log2(1−p)/p

with p = 1/9.

Anti-redundancy Rn = Ln − nH(p) for our one-to-one code is

R̄n = −1

2
log n + O(1)

where the O(1) terms contains oscillations, as shown above.



Sketch of Proof

1. Using Knuth’s identity (to handle floor functions)

N
X

j=1

aj = Nan −
N−1
X

j=1

(aj+1 − aj)

we can reduce Ln to the sums of the following form

Sn =
n
X

k=0

“n

k

”

pkqn−k⌊log2 Ak⌋

=

n
X

k=0

“n

k

”

p
k
q

n−k
log2 Ak −

n
X

k=0

“n

k

”

p
k
q

n−k〈log2 Ak〉

= an + bn

where

an =
n
X

k=0

“n

k

”

p
k
q

n−k
log2 Ak,

bn =
n
X

k=0

“n

k

”

pkqn−k〈log2 Ak〉.



Asymptotics of An

2. We need the saddle point approximation of An.

Lemma 1. For large n and p < 1/2

Anp =
1 − p

1 − 2p

1
p

2πnp(1 − p)
2nH(p)

“

1 + O(n−1/2)
”

.

More precisely, for an ε > 0 and k = np + Θ(n1/2+ε) we have

Ak =
1 − p

1 − 2p

1
p

2πnp(1 − p)

„

1 − p

p

«k 1

(1 − p)n

× exp

 

− (k − np)2

2p(1 − p)n

!

“

1 + O(n−δ)
”

for some δ > 0.

Proof. Notice that

An(z) =
n
X

k=0

Akz
k

=
(1 + z)n − 2nzn+1

1 − z
.

Apply the saddle point method to the Cauchy formula Ak = [zn]An(z).



Returning to bn

3. We also need asymptotics of

bn =

n
X

k=0

“n

k

”

p
k
q

n−k〈log2 Ak〉.

From previous lemma we conclude that

log Ak = αk + nβ − log2 ω
√

n − (k − np)2

2pqn ln 2
+ O(n−δ)

for some ω > 0 and α = log p/(1 − p).

Thus we need asymptotics of the following sum

n
X

k=0

“n

k

”

pkqn−k

*

αk + nβ − log2 ω
√

n − (k − np)2

2pqn ln 2

+

.

We must now resort to theory of Bernoulli sequences modulo 1.



Final Lemma

Lemma 2. Let 0 < p < 1 be a fixed real number and f : [0, 1] → R be a

Riemann integrable function.

(i) If α is irrational, then

lim
n→∞

n
X

k=0

“n

k

”

pk(1−p)n−kf
“D

kα + y − (k − np)2/(2pqn ln 2)
E”

=

Z 1

0

f(t) dt,

where the convergence is uniform for all shifts y ∈ R.

(ii) If α = N
M (rational) (gcd(N, M) = 1), then uniformly y ∈ R

n
X

k=0

“n

k

”

pk(1 − p)n−kf
“D

kα + y − (k − np)2/(2pqn ln 2)
E”

=

Z 1

0

f(t) dt + HM(y)

where

HM(y) :=
1

M

1√
2π

∞
Z

−∞

e−x2/2

 *

M

 

y − x2

2 ln 2

!+

−
Z 1

0

f(t) dt

«

dx

is a periodic function with period 1
M .
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(a) Computer Science and Information Theory Interplay

(b) Beyond Shannon
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(d) Information Science Institute?



Information Theory and Computer Science Interface

Although the interplay between IT and CS dates back to the founding

father of information theory, Claude E. Shannon, only in 2003 was the first

NSF sponsored Workshop on Information Theory and Computer Science

Interface held in Chicago.

Examples of IT and CS Interplay:

Lempel-Ziv schemes (Ziv, Lempel, Louchard, Jacquet, Szpankowski)

LDPC coding, Tornado and Raptor codes (Gallager, Luby, Mitzenmacher,

Shokrollahi, Urbanke)

List-decoding algorithms for error-correcting codes (Gallager, Sudan,

Guruswami, Koetter, Vardy);

Kolmogorov complexity (Kolmogorov, Cover, Li, Vitanyi, Lempel, Ziv);

Analytic information theory (Jacquet, Flajolet, Drmota, Savari, Szpankowski);

Quantum computing and information (Shor, Grover, Schumacher, Bennett,

Deutsch, Calderbank);

Network coding and wireless computing (Kumar, Yang, Effros, Verdu).



Information Beyond Shannon

Participants of the Information Beyond Shannon workshop, Orlando, 2005

listed the following research issues:

Delay: In computer networks, delay incurred is a nontrivial issue not yet

addressed in information theory (e.g., complete information arriving late

maybe useless).

Space: In networks the spatially distributed components raise fundamental

issues of limitations in information exchange since the available resources

must be shared, allocated and re-used.

Information and Control: Again in networks our objective is to reliably send

data with high bit rate and small delay (control).

For example, in wireless/ad-hoc networks, information is exchanged in

space and time for decision making, thus timeliness of information delivery

along with reliability and complexity constitute the basic objective.

Dynamic information: In a complex network in a space-time-control

environment ( e.g., human brain information is not simply communicated

but also processed) how can the consideration of such dynamical sources

be incorporated into the Shannon-theoretic model?



Today’s Grand Challenges

• We still lack measures and meters to define and appraise the amount of

structure and organization embodied in artifacts and natural objects.

• Information accumulates at a rate faster than it can be sifted through,

so that the bottleneck, traditionally represented by the medium, is

drifting towards the receiving end of the channel.

• Timeliness, space and control are important dimensions of Information.

Time and space varying situations are rarely studied in Shannon

Information Theory.

• In a growing number of situations, the overhead in accessing

Information makes information itself practically unattainable or

obsolete.

• Microscopic systems do not seem to obey Shannon’s postulates of

Information. In the quantum world and on the level of living cells,

traditional Information often fails to accurately describe reality.



Science of Information
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A Vision

Perhaps it is time to initiate an

Institute for Science of Information

integrating research and teaching activities aimed at investigating the

role of information from various viewpoints: from the fundamental

theoretical underpinnings of information to the science and engineering

of novel information substrates, biological pathways, communication

networks, economics, and complex social systems.

The specific means and goals for the Center are:

• initiate the Prestige Science Lecture Series on Science of Information to

collectively ponder short and long term goals;

• study dynamic information theory that extends information theory to

time–space–varying situations;

• advance information algorithmics that develop new algorithms and

data structures for the application of information;

• encourage and facilitate interdisciplinary collaborations;

• provide scholarships and fellowships for the best students, and support

the development of new interdisciplinary courses.

http://www.cs.purdue.edu/homes/spa/info.html

