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Structural Information

Information Theory of Data Structures: Following Ziv (1997) we propose to
explore finite size information theory of datfa sfructures (i.e., sequences,
graphs), that is, fo develop information theory of various data structures
beyond first-order asymptotics. We focus here on informatfion of graphical
structures (unlabeled graphs).

F. Brooks, jr. (JACM, 80, 2003, "Three Great Challenges for ... CS"):

"We have no theory that gives us a metric for the Information embodied in
structure. This is the most fundamental gap in the theoretical underpinnings
of information science and of computer science.”

Networks (Infernet, protein-protein intferactions, and collaboration network)
and Maftter (chemicals and proteins) have structures.
They can be abstracted by (unlabeled) graphs.
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Graphs with Locally Correlated Labels
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Figure 1: Protein-Protein Intferaction Network with BioGRID database
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Graph and Structural Entropies

Information Content of Unlabeled Graphs:

A structure model § of a graph G is defined for an unlabeled version.
Some labeled graphs have the same structure.

——————————————————————————————————————————

__________________________________________

——————————————————————————————————————————

__________________________________________

Graph Entropy vs Structural Entropy:

The probability of a structure S is: P(S)=N(S) - P(G)
where N (S) is the number of different labeled graphs having the same
sfructure.

Hg = E[-logP(G)]=— Z P(G)log P(G), graph entropy
Geg
Hs = E[-logP(5)] = Z P(S)log P(S) structural entropy

Ses



Relationship between H; and Hg

Two labeled graphs G; and G5 are called isomorphic
if and only if there is a one-to-one mapping from
V (G1) onto V (Gs) which preserves the adjacency.

Graph Automorphism: Fora graph G its automorphism
is adjacency preserving permutation of vertices of G.

The collection Aut(G) of all automorphism of G is
called the automorphism group of G.

Lemmma 1. If all isomorphic graphs have the same
probability, then

Hs = Hg — logn! + Z P(S)log|Aut(S)],
SeS

where Aut(S) is the automorphism group of S.

Proof idea: Using the fact that




Erdos-Rényi Graph Model

Our random structure model is the unlabeled version of the binomial
random graph model also known as the Erdés-Rényi random graph model.

The binomial random graph G(n, p) generates graphs with n vertices, where
edges are chosen independently with probability p.

If a graph G in G(n, p) has k edges, then (where ¢ =1 — p)

P(G) = p*q(B)*,

Lemma 2 (Kim, Sudakov, and Vu, 2002). For Erdds-Rényi graphs and all p
saftisfying

Inn Inn

n n
arandom graph G € G(n, p) issymmetric (i.e., Aut(G) ~ 1) with probability
O (n~") for any positive constant w, that is,

P(Aut(G) = 1) ~ 1 — O(n™").
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vertices for m = 1 (on the left), m = 4 (middle), defect for various m.
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Theorem 1 (Symmetry Results for m = 1, 2). Lef graph G,, be generated by
the preferential model with parameter m = 1 or m = 2. Then there exists a
constant C' > 0 such that, for n sufficiently large,

Pr{|Aut(G,)| > 1] > C.

Conjecture 1. fForm > 3 a graph G,, generated by the preferential model is
asymmetric whp, that is

Pr[|Aut(G,)| > 1] =—= 0.

1000



Structural Entropy for Erdos-Rényi Graphs

Theorem 2 (Choi, W.S 2009). For large n and all p satisfying an < p and
1 —p > o (ie, the graph is connected w.h.p.),

1
Hs = (Z)h(p)—log n!4+O ( ogn) = (Z)h(p)—nlog n+nloge+O(logn), a > 1

na
where h(p) = —plogp — (1 — p) log (1 — p) is the entropy rate.

AEP for structures: 2~ (8)(im+e)tlogn! < pgy < o= (5)(h(p)=e)+logn!
Proof idea:

1. Hs = Hg — logn! + > 4.5 P(S) log |Aut(S)|.

2. Hg = (3)h(p)

3. > ges P(S)log [Aut(S)| = o(1) by asymmetry of G(n, p).
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Structural Zip (SZIP) Algorithm

Comporession Alaorithm called Structural zio. in short Szip — Demo.

{a,b,c, d, e f, g hij}

(i)
{d, 9, i} {a, b, c, e h}

(D) ()
{g9,i}/ {b, c} {a, e, h}
@ (d) @
{g}\ {c}y \{b} {a, &, h}
il L (1)

{cA\{b}\ <h}/ \{a e}
al la o @
{b}\{h} {e} \a}
cl le] el [e
{h}\{e} {a}
bl [b] bl
{e} {a}
Bl =0100110100001110101

B2 = 1001011000000101 {a}



http://www.cs.purdue.edu/homes/spa/talks/szip.pdf

Asymptotic Optimality of SZIP for Erdos-Rényi Graphs

Theorem 3 (Choi, W.S., 2012). Let L(S) = | B:1| + | B:| be the code length.
(i) Forlarge n,
n
BIL(S)] < (,,)h(p) = nlogn +n (c + ®(logn)) + o(n),

where c is an explicitly compufable constant, and ®(x) is a fluctuatfing
function with a small amplitude or zero.

(ii) Furthermore, forany e > 0,
P(L(S)—E[L(S)] <enlogn) >1—o0(1).

(iii) The algorithm runs in O (n + e) on average, where e # edges.



Asymptotic Optimality of SZIP for Erdos-Rényi Graphs

Theorem 3 (Choi, W.S., 2012). Let L(S) = | B:1| + | B:| be the code length.
(i) Forlarge n,
n
BIL(S)] < (,,)h(p) = nlogn +n (c + ®(logn)) + o(n),

where c is an explicitly compufable constant, and ®(x) is a fluctuatfing
function with a small amplitude or zero.

(ii) Furthermore, forany e > 0,
P(L(S)—E[L(S)] <enlogn) >1—o0(1).

(iii) The algorithm runs in O (n + e) on average, where e # edges.

Table 1: The length of encodings (in bits)

Networks # of # of our adjacency adjacency arithmetic
nodes edges algorithm mMatrix list coding

US Airports 332 2,126 8,118 54,946 38,268 12,991

ke: Protein interaction (Yeast) 2,361 6,646 46,912 2,785,980 1 659,504 67,488
% Collaboration (Geometry) 6,167 21,535 115,365 19,012, 861 559,910 241,811
5 Collaboration (Erdds) 6,935 11,857 62,617 24,043,645 308.,2 82 147,377
2 Genetic interaction (Human) 8,605 26,066 221,199 37,018,710 729,848 310,669
Internet (AS level) 25,881 52,407 301,148 334,900,140 1,572,210 396,060
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Analysis of SziP: Recurrences for E|B;] and E|B;]

Let IV, be the number of vertices that passed

through node x in T,,. {a,b,¢,d,e, f,g,h,j}

|B1| = > [log(Ny + 1) ]
x € Thand Ny > 1
{9}
|Bz| = > [log(N, +1)]

z € Thand Ny =1

— > 1.

r € Thand Ny =1



Analysis of SziP: Recurrences for E|B;] and E|B;]

Let IV, be the number of vertices that passed
through node x in T,,.

|Bi| = > [log(N: +1)]
xz € Thand Ng > 1
[Ba| = > [log(N, + 1)]

z € Thand Ny =1

— > 1.

z € Thand Ny =1

Both E[| B:|] and E[| Bz|] satisfy
two-dimensional recurrences for some d > 0

ant1,0 = Cn+ >oneo (NP *(aro + an—ir),

And = Cn+ D or_g (Z)pkqn_k(ak,d—l + Qn ko ftd—1)-

for some ¢, (e.9., ¢, = [log(n + 1)] or ¢, = n).

{a’7bﬂc7d7e7f7gﬂhﬂj}




Another Look - (n, d)-tries

1. The root of a tree contains » balls.

2. Balls independently move down to the

left subfree (with probability p) or the right
subtree (with probability 1 — p).

3. For a non-negative integer d, at level d or
greater one ball is removed from the leffmost node.




Another Look - (n, d)-tries

1. The root of a tfree contains n balls.

2. Badlls independently move down to the

left subtree (with probability p) or the right
subtree (with probability 1 — p).

3. For a non-negative integer d, at level d or
greater one ball is removed from the leffmost node.

For example for ¢,, = n.:

]_ ]_ h2 2 d
a(n,d) = 77 log n—|—ﬁ v + oY + ®(log, n)| n+ log n—|—ﬁlog n+0(1)

2h log p

where h = —plogp — qlogq, ha = plog?p + qlog? q, ~ is the Euler constant, and & (x) is
the periodic function.
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Structural Binary Symmetric Channel (SBSC)
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Structural Binary Symmetric Channel (SBSC)
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Example: Graph G; = { A, B, C, D} fransmitted with output Gb.

Adjacency matricesare: G; =

How much structural information

channel?
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e

o0
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0o

S O = O
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B
o

o 0

S )
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can be reliably transmitted over a noisy
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Capacity of SBSC

S Graph G BSC G Graph S
—_— P ——» ————»
Encoder Channel Decoder . >
Transmitted Estimated
Structure Structure

Capacity of SBSC is defined as

: 1 /
C = lim — max [(S;5")

n—00 (g) 0<p<1

where 1(S;S") is the mutual information between the output structure S’
and the input structure S.

Theorem 4. Capacity of the the structural Binary Symmeftric Channel SBSC(e)
of Erdds-Rényi graphs is

C=1-—h(e
where ¢ is the error bit rate and

h(e) = —eloge — (1 —¢)log(1l — ¢)

Is the binary enfropy.
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Large Systems with Local Interactions

@ ®
OO OO
@ ®

These local inferactions are often represented by shapes and tiles leading
to a Markov field.

Markov Field Types:

Two Markov fields have the same type if they have the same empirical
distribution.

The method of types is a powerful technigue in information theory; it reduces
calculations of the probability of rare events o combinatorics.
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Let’s Begin ... One-Dimensional Markov Chains

One-Dimensional Markov: Sequences z" = z;...x, Oover A =
{1,2,...,m} alphabet. Define
To(z") ={y": P(x") = P(y")}, and P, := P,(m) class of distributions.

Consider a Markov source with the transition matrix 2 = {p;;};"._;. Then

ny _ k11 kmm __ kij
P(xl)_pll " Pmm Hpij’
i, jEA

where k;; is the numlber of pair symbols (i5) in 7, that is, ¢ followed by j.



Let’s Begin ... One-Dimensional Markov Chains

One-Dimensional Markov: Sequences z" = z;...x, Oover A =
{1,2,...,m} alphabet. Define
To(z") ={y": P(x") = P(y")}, and P, := P,(m) class of distributions.

Consider a Markov source with the transition matrix 2 = {p;;};"._;. Then

ny _ k11 kmm __ kij
P(xl)_pll " Pmm Hpij’
i, jEA

where k;; is the numlber of pair symbols (i5) in 7, that is, ¢ followed by j.

For circular strings (i.e., after the nth symbol we re-visit the first symbol of x7),

the matrix k = [k;;] safisfies the following constraints denoted as| F,,(m) |

Z1§i,j§m kij = n, ZT:1 kij = Z;ll kji ?kj_ x znnlj._

For example: m=3 \ /

ki1 + k12 + k13 + k21 + koo + ka3 + k31 + k3o + k3z = n k2i___) @ Lk
ki2 + k13 = k21 + k31

ki2 + k3o = ko1 + ka3 / \

k13 + ko3 = k31 + k32 k k;

mi im



Markov Types and Eulerian Cycles

Example: Let A = {0,1} and




Markov Types and Eulerian Cycles

Example: Let A = {0,1} and

P.(m) —Markov types but also . . .

a set of all connected Eulerian di-graphs G = (V(G), E(G)) such that
V(G) C Aand |E(G)| = n.

En(m) —set of connected Eulerian digraphs on A.

Fn(m) —balanced matrices but also . . .

set of (not necessary connected) Eulerian digraphs on A.

Asymptotic equivalence: [P, (m)| = |Fn(m)| + O(n™ ~3"3) ~ |&,.(m)].



Main Results for One-Dimensional Markov Chains

Theorem 5. (i) For fixed m and n — oo the number of Markov types is

m2—m

P (m)| = d(m)(ﬂz —— O =m1)

where d(m) is a constant that also can be expressed as

1) = o >m1/ / H1+¢2 1+<sok oy e

J kL

(m— 1) fold

(ii) When m — oo we find that

2
V2mAm/Zem m2_m

m2m2 Qmrm/2

| Pr(m)| ~

provided that m* = o(n).

2
Example. The coefficients at n™ ~ " are very small.
For m = 4 the coefficient is 1.767043356 10~ 1,

. dQOm_l.
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Universal Types (Still One-Dimensional)

Seroussi infroduced in 2003 universal types for stationary ergodic sources:

(0) (1) (00) (10) (11) (0) (1) (00) (O1) (11)
(1) (0) (10) (11) (00) (D) (0) (0D) (11) (00)

O

p = path length = 8

Lempel-Ziv’78 parsing scheme of a sequence of length p can be
represented by a binary tree of path length p.
— T, be the set of binary frees with the path length equal to p.

# universal types over A? = |7,|: # of trees of a given path p.

How to enumerate binary trees of a given path length p?



Enumeration of Binary Trees: 7,, vs 7,

Let b(n, p) be the number of binary trees with
n nodes and path length p. It satisfies:

b(”’? p) — Zk—l—ﬁzn—l Zr—l—s—l—n—lzp b(k’ T)b(e’ 8)

b(n-k,p-n-r)

Define B, (w) = >° " b(n, p)w?, and B(z, w) = >3 7 2" B, (w). Then

B(z,w) =1+ 2B*(zw, w)

This functional equation is asymmetric with respect fo z and w.



Enumeration of Binary Trees: 7,, vs 7,

Let b(n, p) be the number of binary trees with
n nodes and path length p. It satisfies:

b(n7 p) — Zk+£:n—1 Zr+s—|—n—1:p b(k, ’I“)b(g, 8)

b(n-k,p-n-r)

Define B, (w) = >°" b(n, p)w?, and B(z, w) = >3 7 2" B, (w). Then

B(z,w) = 1+ zB*(zw, w)

This functional equation is asymmetric with respect fo z and w.

We want fo study the number of frees in 7, (of a given path length p).
Observe
175l = > b(n,p) = [w’]B(1, w).
n>0
We set z = 1 in the functional equation leading to

B(1,w) = 1+ B*(w, w)

which is not algebraically solvable.



Number of Trees with a Given Path Length

These results are obtained using the WKB method of applied mathematics.
Seroussi (2004) and Knessl & W.S (2004) prove that (c1, co are constants)

1 2P (14 cr loa—2/3 loe™ L ptO(log—4/3

(10g2 P)\/ﬁ




Number of Trees with a Given Path Length

These results are obtained using the WKB method of applied mathematics.

Seroussi (2004) and Knessl & W.S (2004) prove that (c1, co are constants)

1 2P (14 cr loa—2/3 loe™ L ptO(log—4/3
7| = 210g2p( +cq log p+colog™ " p+O(log p)).

(10g2 P)\/ﬁ

When randomly selecting a free from 7, we may define: N, the number of
nodes in the T,-model. Surprisingly, we can prove that N, is asymptotically
normal, that s,

PN, —pp = 0P 1 [_(n — E[N,])°
,=n}=
— 27 Var[N,)] 2Var|[N,)
> b(n, p) v ! ’
n=0
where (log 2) A
p p 0g 2) Ao
E[Np] ~ ) Var[Np] ~ 5/3 1/3
log, p log, p®/3  6(2

where Ag is a constant.
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(Cyclic) Markov Fields and Tilings

d-Dimensional Markov Fields:

Consider a d-dimensional box (n1, ..., ng) With N = ny - - - ng.

A circular representation of such a box is a torus that we denote as O,,.
The shape of interactionis S C 7.

Atiletist: S - AandT ={t: S — A}.

>,

MmO 1
O 0] 0

[ |
i % : —

QR ONMOII),
DD 0D

°© ©

shape il

Markov Field Type X" = {z" : O, — A}:
Define the frequency vector of dmension D = |T'| = m/!®:

k(t) = ks(t) = |{s € Op : x|sss =}, tET.

k(Slg)=3 *(o)=0 *(Sm)-2 *(Qm)-2 (o)1 «(fo)=3 «(Ma)-1 «(Hm)-0

EXGmpIe: 3+0+2+2+1+3+1+0=12 size oftorus

A set of Markov field types or file types is:

Pn(m, S) = {k : Jyex, = is of type k}.



Conservation Laws

Conservation Laws: q
vQ);léS/CS, sEZd:(S’+s)CS v15’:5/—>.A kS/(t/) — kS/—i—s(t,) p\is.}
&

with shift s € Z? subject to (S’ +s) C S.

k(g

k(ﬁ-
Example: olo]




Conservation Laws

Conservation Laws: q
V(Z);AS’CS, seZd:(S!+s)CS Virsl A ke (t') = kS’Jrs(t/) p\-s;
8

with shift s € Z? subject to (S’ +s) C S.

Example: (6

The conservation laws can be viewed as linear equations with a1 x D row
denoted as C({(S',s,t)}).

The matrix C* is hugely over determined! Our goal is to find C' such that the
conservation laws can be written as

Ck = 0.

Example 1. d = 1-dimensional Markov over A = {1, 2}.
Tiles are ((11), (21), (12), (22)) and the conservation laws are

k(11) + k(12) = k(1%) = k(1) = k(11) + k(21),
k(21) + k(22) = k(2%) = k(x2) = k(12) + k(22).

leading to one conservation law k(12) — k(21) = 0 that in the matrix form is

(0,—1,1,0) -k = 0.



Dimension of the Frequency Vectors

The conservation laws make the vector count k € Z” to reside in a space
of dimensionality

pw=D—rk(C)—1.

where rk(C) is the rank of matrix C. |

Theorem 6. The matrix C has rank

tk(C) = S ({s: (S'+5) C S} = 1)(m — 1)*

S'es0

and consists of a complete set of linearly independent rows.
In particular, for the box shape S = I, x I, X ... X I, we find

p=D—1-r1k(C)= Z milli—si) (_1)21'31'.
sE{O,l}d



Dimension of the Frequency Vectors

The conservation laws make the vector count k € Z” to reside in a space
of dimensionality

pw=D—rk(C)—1.

where rk(C) is the rank of matrix C. |

Theorem 6. The matrix C has rank

tk(C) = S ({s: (S'+5) C S} = 1)(m — 1)*

S'es0

and consists of a complete set of linearly independent rows.
In particular, for the box shape S = I, x I, X ... X I, we find

p=D—1—1k(C) = Z milli—si) (_1)21'31'.
s€{0,1}d

Example: For d = 2 and a 2 x 2 square shape we have . = m* — 2m? + m,
while for a 3 x 2 rectangular shape we find . = m® — m* — m® + m?.



Geometry

We view the count vector k = {k(t) }+er in the D = m!®l space.

<—— cone € for fulfilling conservation laws C = {k c ND - C (S) k= O}
— : m —
< polytope Fyinintersection F = {k c %€ : E kz — N}
)

NP ) F={ke{R}:C-k=0, 3k =1]
simplex for normalization condition A~ ~ ~ ~
S ke N Fn ={Nk:k e F, Nkecz’}

N

The polytope Fy is of dimension .

Topological Closure of (normalized) P is a convex subset of F.



Geometry

We view the count vector k = {k(t) }+er in the D = m!®l space.

<—— cone € for fulfilling conservation laws ¢ —= {k c ND : Cm(S) k= O}

< polytope Fyinintersection F = {k = < - Zz kz — N}
. F={ke{R): C k=0, ki =1)
simplex for normalization condition ~ ~ ~ ~ D
L k=N Fn={Nk:ke F, NkezZ"}

The polytope Fy is of dimension .
Topological Closure of (normalized) P is a convex subset of F.

The lattice Fy consists of all integer points inside F scaled by N.
Volume of Fy is of order N with integer points growing as N,

Theorem 7 (Ehrhart, 1967). If F is a convex polytope with vertices in QP,
where Q is the set of rational numbers, then that c,, ; # 0 for some j

|FN| — a’,u,jNu + af,u—l,j]\fu_1 + ...ap,; N =3 (mod p).



Main Result for Markov Types

Theorem 8. Consider the torus ©,. There exists 0 < ¢™™ < ™% such that

MNP < | Pu(m, S)| < ™ N



Main Result for Markov Types

Theorem 8. Consider the torus ©,. There exists 0 < ¢™™ < ™% such that

MNP < | Pu(m, S)| < ™ N

Lemma 3. There exist 1. + 1 linearly independent periodic filings.

[SE
m mim/m mip take all possible markings inside:
) m mp there would be mlS! of them,
. m|mp but some appear a few times:

1

H Hﬂl =l & B

6 4 3 2 appearances
. o4 7 4 ap

2°.5.3-2-71=64-19=45 essentially different




Main Result for Markov Types

Theorem 8. Consider the torus ©,. There exists 0 < ¢™™ < ¢™** such that

MNP < | Pu(m, S)| < ™ N

Lemma 3. There exist 1 + 1 linearly independent periodic filings.

(S
sm|/m/mm/mhp take all possible markings inside:
- n m there would be mlS! of them,
; m|mp but some appear a few times:

[

H Hﬂl s & B

6 4 3 2 appearances
e ]
2°-5-3-2- 7 1=64-19=45 essentially different

m
outside

allA{l—}—..—}—a'UJ_*_llA('U’_Fl
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each of shape

is one of
p+1 size base

(V) = oy




Outline Update

1. Structural Compression
2. Structure of Markov Fields

3. Sequence-Structure Protein Folding Channel



Sequence-Structure Channel

protein-fold
channel

HPHHPPHPHHPPHHPH

- (3’ )
pSI) = Gl Z(e) = e
Z(s, B) ~



Sequence-Structure Channel

5 , f
HPHHPPHPHHPPHHPH 5 | protein-fold &
channel
e D) S e e
p(fls) := ——— Z(s,B) = e "
Z(s, B) S
Capacity:

C = m(a)x I(S;F) ~ log|Fn| — rr%u)qH(F|S)
p(s p(s
where Fy: set of self-avoiding walks of length V.
Conditional Entropy
H(S|F) = E[log Z(S, 8)] + BE[E(F, 5)]

where £(F, S) is energy of a walk F over sequence s.
Clearly, E[E(F, S)] = N - «a(S) forsome «(S).
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Motivation & Experimental Results

® Al
e ® 95%
o o T S Protein Folds in Nature
i

Fraction of Protein Folds
o
=

Probability of protein folds
VS. sequence rank.

0.001 A

0.0001 — T T
10 100 10! 102 103 104 108

Number of Protein Families

Optimal input distribution from Blahut-Arimoto algorithm:;

10 R 100 10 o
10 10 10
.
1] L]
10 o 102 10
, o
) L/ ) L™ < .
T ) x - I 0
10 \ 10 - 10 e
10 A 10 10 .
.‘ ° :- %
-en L] oo
TEDEENe e e o © OUNENNNNNS © I
10 105 10
10 10 10 10 10 10 10% 10 10 10 10 10 10 102 102



Phase Transition

Define free energy v(3, S) as

_ .. Ellog Z(S, )]

By sub-multiplicative property of Fy we can prove there exists 1 such that

log | Fv| N—o0, log 11
~ .

Then
Elog Z(S, B) ~ log |Fn| - v(B,S) ~ Nlogu-~(8,S)
leading to

H(F|S) ~ N[v(B,5)log p+ fa(S)]

Phase transition of the free energy v(5, S) (hence capacity C) leads to

log u — Ba
log 11 - v(3, S) =
og i - v(B,S) {B\/20210gu—5a g > V2o

— %0252 B < —”2170”




Experimental Confirmation of the Phase Transition
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That’s It
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