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Structural Information

Information Theory of Data Structures: Following Ziv (1997) we propose to

explore finite size information theory of data structures (i.e., sequences,

graphs), that is, to develop information theory of various data structures

beyond first-order asymptotics. We focus here on information of graphical

structures (unlabeled graphs).

F. Brooks, jr. (JACM, 50, 2003, “Three Great Challenges for . . . CS”):

“We have no theory that gives us a metric for the Information embodied in

structure. This is the most fundamental gap in the theoretical underpinnings

of information science and of computer science.”

Networks (Internet, protein-protein interactions, and collaboration network)

and Matter (chemicals and proteins) have structures.

They can be abstracted by (unlabeled) graphs.
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Graphs with Locally Correlated Labels

How many bits are required to describe the unlabelled graph on the left,

and how many additional bits one needs to represent the correlated labels

on the right?



The Real Stuff ...

Figure 1: Protein-Protein Interaction Network with BioGRID database
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Graph and Structural Entropies

Information Content of Unlabeled Graphs:

A structure model S of a graph G is defined for an unlabeled version.

Some labeled graphs have the same structure.

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

G1 G2 G3 G4

G5 G6 G7 G8

S1 S2

S3 S4

Graph Entropy vs Structural Entropy:

The probability of a structure S is: P (S) = N(S) · P (G)
where N(S) is the number of different labeled graphs having the same

structure.

HG = E[− logP (G)] = −
∑

G∈G
P (G) logP (G), graph entropy

HS = E[− logP (S)] = −
∑

S∈S
P (S) logP (S) structural entropy



Relationship between HG and HS

d e

b c

a

Two labeled graphs G1 and G2 are called isomorphic

if and only if there is a one-to-one mapping from

V (G1) onto V (G2) which preserves the adjacency.

Graph Automorphism: For a graph G its automorphism

is adjacency preserving permutation of vertices of G.

The collection Aut(G) of all automorphism of G is

called the automorphism group of G.

Lemma 1. If all isomorphic graphs have the same

probability, then

HS = HG − logn! +
∑

S∈S
P (S) log |Aut(S)|,

where Aut(S) is the automorphism group of S.

Proof idea: Using the fact that

N(S) =
n!

|Aut(S)|.



Erdös-Rényi Graph Model

Our random structure model is the unlabeled version of the binomial

random graph model also known as the Erdös–Rényi random graph model.

The binomial random graph G(n, p) generates graphs with n vertices, where

edges are chosen independently with probability p.

If a graph G in G(n, p) has k edges, then (where q = 1 − p)

P (G) = pkq(
n
2)−k.

Lemma 2 (Kim, Sudakov, and Vu, 2002). For Erdös-Rényi graphs and all p
satisfying

lnn

n
≪ p, 1 − p ≫ lnn

n
a random graph G ∈ G(n, p) is symmetric (i.e., Aut(G) ≈ 1) with probability

O
(
n−w

)
for any positive constant w, that is,

P (Aut(G) = 1) ∼ 1 − O(n
−w

).



Symmtery of Power Law Graphs?

Figure 2: Logarithm of the number of automorphisms versus the number of

vertices for m = 1 (on the left), m = 4 (middle), defect for various m.



Symmtery of Power Law Graphs?

Figure 2: Logarithm of the number of automorphisms versus the number of

vertices for m = 1 (on the left), m = 4 (middle), defect for various m.

Theorem 1 (Symmetry Results for m = 1, 2). Let graph Gn be generated by

the preferential model with parameter m = 1 or m = 2. Then there exists a

constant C > 0 such that, for n sufficiently large,

Pr[|Aut(Gn)| > 1] > C.

Conjecture 1. For m ≥ 3 a graph Gn generated by the preferential model is

asymmetric whp, that is

Pr[|Aut(Gn)| > 1]
n→∞−−−→ 0.



Structural Entropy for Erdös-Rényi Graphs

Theorem 2 (Choi, W.S 2009). For large n and all p satisfying lnn
n ≪ p and

1 − p ≫ lnn
n (i.e., the graph is connected w.h.p.),

HS =
(n

2

)

h(p)−logn!+O

(
logn

na

)

=
(n

2

)

h(p)−n logn+n log e+O(log n), a > 1

where h(p) = −p log p − (1 − p) log (1 − p) is the entropy rate.

AEP for structures: 2−(n2)(h(p)+ε)+log n! ≤ P (S) ≤ 2−(n2)(h(p)−ε)+log n!.

Proof idea:

1. HS = HG − log n! +
∑

S∈S P (S) log |Aut(S)|.

2. HG =
(n
2

)
h(p)

3.
∑

S∈S P (S) log |Aut(S)| = o(1) by asymmetry of G(n, p).
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Structural Zip (SZIP) Algorithm

Compression Algorithm called Structural zip, in short SZIP – Demo.

http://www.cs.purdue.edu/homes/spa/talks/szip.pdf


Asymptotic Optimality of SZIP for Erdös-Rényi Graphs

Theorem 3 (Choi, W.S., 2012). Let L(S) = |B̃1| + |B̃2| be the code length.

(i) For large n,

E[L(S)] ≤
(n

2

)

h(p) − n logn + n (c + Φ(logn)) + o(n),

where c is an explicitly computable constant, and Φ(x) is a fluctuating

function with a small amplitude or zero.

(ii) Furthermore, for any ε > 0,

P (L(S) − E[L(S)] ≤ εn logn) ≥ 1 − o(1).

(iii) The algorithm runs in O(n + e) on average, where e # edges.



Asymptotic Optimality of SZIP for Erdös-Rényi Graphs

Theorem 3 (Choi, W.S., 2012). Let L(S) = |B̃1| + |B̃2| be the code length.

(i) For large n,

E[L(S)] ≤
(n

2

)

h(p) − n logn + n (c + Φ(logn)) + o(n),

where c is an explicitly computable constant, and Φ(x) is a fluctuating

function with a small amplitude or zero.

(ii) Furthermore, for any ε > 0,

P (L(S) − E[L(S)] ≤ εn logn) ≥ 1 − o(1).

(iii) The algorithm runs in O(n + e) on average, where e # edges.

Table 1: The length of encodings (in bits)
Networks # of # of our adjacency adjacency arithmetic

nodes edges algorithm matrix list coding

R
e

a
l-
w

o
rl
d

US Airports 332 2,126 8,118 54,946 38,268 12,991

Protein interaction (Yeast) 2,361 6,646 46,912 2,785,980 1 59,504 67,488

Collaboration (Geometry) 6,167 21,535 115,365 19,012, 861 55 9,910 241,811

Collaboration (Erdös) 6,935 11,857 62,617 24,043,645 308,2 82 147,377

Genetic interaction (Human) 8,605 26,066 221,199 37,0 18,710 729,848 310,569

Internet (AS level) 25,881 52,407 301,148 334,900,140 1,572, 210 396,060
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Analysis of SZIP: Recurrences for E[B1] and E[B2]
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{a, b, c, d, e, f, g, h, j}

{a, b, c, e, h}{d, g, j}

{a, e, h}{b, c}{g, j}

{a, e, h}{b}{c}{g}

{a, e}{h}{b}{c}

{b} {h} {e} {a}

{h} {e} {a}

{e} {a}

{a}

Let Nx be the number of vertices that passed

through node x in Tn.

|B1| =
∑

x ∈ Tn and Nx > 1

⌈log(Nx + 1)⌉

|B2| =
∑

x ∈ Tn and Nx = 1

⌈log(Nx + 1)⌉

=
∑

x ∈ Tn and Nx = 1

1.



Analysis of SZIP: Recurrences for E[B1] and E[B2]
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Let Nx be the number of vertices that passed

through node x in Tn.

|B1| =
∑

x ∈ Tn and Nx > 1

⌈log(Nx + 1)⌉

|B2| =
∑

x ∈ Tn and Nx = 1

⌈log(Nx + 1)⌉

=
∑

x ∈ Tn and Nx = 1

1.

Both E[|B1|] and E[|B2|] satisfy

two-dimensional recurrences for some d ≥ 0

an+1,0 = cn +
∑n

k=0

(n
k

)
pkqn−k(ak,0 + an−k,k),

an,d = cn +
∑n

k=0

(n
k

)
pkqn−k(ak,d−1 + an−k,k+d−1).

for some cn (e.g., cn = ⌈log(n + 1)⌉ or cn = n).



Another Look – (n, d)-tries

1. The root of a tree contains n balls.

2. Balls independently move down to the

left subtree (with probability p) or the right

subtree (with probability 1 − p).

3. For a non-negative integer d, at level d or

greater one ball is removed from the leftmost node.



Another Look – (n, d)-tries

1. The root of a tree contains n balls.

2. Balls independently move down to the

left subtree (with probability p) or the right

subtree (with probability 1 − p).

3. For a non-negative integer d, at level d or

greater one ball is removed from the leftmost node.

For example for cn = n:

a(n, d) =
1

h
n logn+

1

h

[

γ +
h2

2h
+ Φ(logp n)

]

n+
1

2h log p
log2 n+

d

h
logn+O(1)

where h = −p log p − q log q, h2 = p log2 p + q log2 q, γ is the Euler constant, and Φ(x) is

the periodic function.
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Structural Binary Symmetric Channel (SBSC)



Structural Binary Symmetric Channel (SBSC)

Example: Graph G1 = {A,B,C,D} transmitted with output G2.

Adjacency matrices are: G1 =

∣
∣
∣
∣
∣
∣
∣
∣

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

∣
∣
∣
∣
∣
∣
∣
∣

, G2 =

∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

∣
∣
∣
∣
∣
∣
∣
∣

.

How much structural information can be reliably transmitted over a noisy

channel?



Capacity of SBSC

Capacity of SBSC is defined as

C = lim
n→∞

1
(n
2

) max
0≤p≤1

I(S;S
′
)

where I(S;S′) is the mutual information between the output structure S′

and the input structure S.

Theorem 4. Capacity of the the structural Binary Symmetric Channel SBSC(ǫ)

of Erdös-Rényi graphs is

C = 1 − h(ǫ)

where ε is the error bit rate and

h(ε) = −ε log ε − (1 − ε) log(1 − ε)

is the binary entropy.
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Large Systems with Local Interactions

These local interactions are often represented by shapes and tiles leading

to a Markov field.

Markov Field Types:

Two Markov fields have the same type if they have the same empirical

distribution.

The method of types is a powerful technique in information theory; it reduces

calculations of the probability of rare events to combinatorics.
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Let’s Begin . . . One-Dimensional Markov Chains

One-Dimensional Markov: Sequences xn = x1 . . . xn over A =

{1, 2, . . . ,m} alphabet. Define

T n(x
n) = {yn : P (xn) = P (yn)}, and Pn := Pn(m) class of distributions.

Consider a Markov source with the transition matrix P = {pij}m
i,j=1. Then

P (xn
1) = p

k11
11 · · · pkmm

mm =
∏

i,j∈A
p
kij
ij ,

where kij is the number of pair symbols (ij) in xn
1 , that is, i followed by j.



Let’s Begin . . . One-Dimensional Markov Chains

One-Dimensional Markov: Sequences xn = x1 . . . xn over A =

{1, 2, . . . ,m} alphabet. Define

T n(x
n) = {yn : P (xn) = P (yn)}, and Pn := Pn(m) class of distributions.

Consider a Markov source with the transition matrix P = {pij}m
i,j=1. Then

P (xn
1) = p

k11
11 · · · pkmm

mm =
∏

i,j∈A
p
kij
ij ,

where kij is the number of pair symbols (ij) in xn
1 , that is, i followed by j.

For circular strings (i.e., after the nth symbol we re-visit the first symbol of xn
1 ),

the matrix k = [kij] satisfies the following constraints denoted as Fn(m) :

∑

1≤i,j≤m kij = n,
∑m

j=1 kij =
∑m

j=1 kji

For example: m=3

k11 + k12 + k13 + k21 + k22 + k23 + k31 + k32 + k33 = n

k12 + k13 = k21 + k31

k12 + k32 = k21 + k23

k13 + k23 = k31 + k32



Markov Types and Eulerian Cycles

Example: Let A = {0, 1} and

k =

[
1 2

2 2

]



Markov Types and Eulerian Cycles

Example: Let A = {0, 1} and

k =

[
1 2

2 2

]

Pn(m) – Markov types but also . . .

a set of all connected Eulerian di-graphs G = (V (G), E(G)) such that

V (G) ⊆ A and |E(G)| = n.

En(m) – set of connected Eulerian digraphs on A.

Fn(m) – balanced matrices but also . . .

set of (not necessary connected) Eulerian digraphs on A.

Asymptotic equivalence: |Pn(m)| = |Fn(m)| + O(nm2−3m+3) ∼ |En(m)|.



Main Results for One-Dimensional Markov Chains

Theorem 5. (i) For fixed m and n → ∞ the number of Markov types is

|Pn(m)| = d(m)
nm2−m

(m2 − m)!
+ O(nm2−m−1)

where d(m) is a constant that also can be expressed as

d(m) =
1

(2π)m−1

∫ ∞

−∞
· · ·

∫ ∞

−∞
︸ ︷︷ ︸

(m−1)−fold

m−1∏

j=1

1

1 + ϕ2
j

·
∏

k 6=ℓ

1

1 + (ϕk − ϕℓ)2
dϕ1dϕ2 · · · dϕm−1.

(ii) When m → ∞ we find that

|Pn(m)| ∼
√
2m3m/2em

2

m2m22mπm/2
· nm2−m

provided that m4 = o(n).

Example. The coefficients at nm2−m are very small.

For m = 4 the coefficient is 1.767043356 10−11.
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Universal Types (Still One-Dimensional)

Seroussi introduced in 2003 universal types for stationary ergodic sources:

Lempel-Ziv’78 parsing scheme of a sequence of length p can be

represented by a binary tree of path length p.

– Tp be the set of binary trees with the path length equal to p.

# universal types over Ap ≡ |Tp|: # of trees of a given path p.

How to enumerate binary trees of a given path length p?



Enumeration of Binary Trees: Tn vs Tp

Let b(n, p) be the number of binary trees with

n nodes and path length p. It satisfies:

b(n, p) =
∑

k+ℓ=n−1

∑

r+s+n−1=p b(k, r)b(ℓ, s)

b(n+1,p)

b(k,r) b(n-k,p-n-r)

Define Bn(w) =
∑∞

p=0 b(n, p)w
p, and B(z, w) =

∑∞
n=0 z

nBn(w). Then

B(z, w) = 1 + zB2(zw,w)

This functional equation is asymmetric with respect to z and w.



Enumeration of Binary Trees: Tn vs Tp

Let b(n, p) be the number of binary trees with

n nodes and path length p. It satisfies:

b(n, p) =
∑

k+ℓ=n−1

∑

r+s+n−1=p b(k, r)b(ℓ, s)

b(n+1,p)

b(k,r) b(n-k,p-n-r)

Define Bn(w) =
∑∞

p=0 b(n, p)w
p, and B(z, w) =

∑∞
n=0 z

nBn(w). Then

B(z, w) = 1 + zB
2
(zw,w)

This functional equation is asymmetric with respect to z and w.

We want to study the number of trees in Tp (of a given path length p).

Observe

|Tp| =
∑

n≥0

b(n, p) = [w
p
]B(1, w).

We set z = 1 in the functional equation leading to

B(1, w) = 1 + B2(w,w)

which is not algebraically solvable.



Number of Trees with a Given Path Length

These results are obtained using the WKB method of applied mathematics.

Seroussi (2004) and Knessl & W.S (2004) prove that (c1, c2 are constants)

|Tp| =
1

(log2 p)
√
πp

2
2p

log2 p

(

1+c1 log−2/3 p+c2 log−1 p+O(log−4/3 p)
)

.



Number of Trees with a Given Path Length

These results are obtained using the WKB method of applied mathematics.

Seroussi (2004) and Knessl & W.S (2004) prove that (c1, c2 are constants)

|Tp| =
1

(log2 p)
√
πp

2
2p

log2 p

(

1+c1 log−2/3 p+c2 log−1 p+O(log−4/3 p)
)

.

When randomly selecting a tree from Tp we may define: Np, the number of

nodes in the Tp-model. Surprisingly, we can prove that Np is asymptotically

normal, that is,

Pr{Np = n} =
b(n, p)

∞∑

n=0

b(n, p)

∼ 1
√

2πVar[Np]
exp

[

−(n − E[Np])
2

2Var[Np]

]

where

E[Np] ∼
p

log2 p
, Var[Np] ∼

p

log2 p
5/3

(log 2)A0

6(21/3

where A0 is a constant.
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(Cyclic) Markov Fields and Tilings

d-Dimensional Markov Fields:

Consider a d-dimensional box (n1, . . . , nd) with N = n1 · · ·nd.

A circular representation of such a box is a torus that we denote as On.

The shape of interaction is S ⊂ Zd.

A tile t is t : S → A and T = {t : S → A}.

Markov Field Type X n = {xn : On → A}:

Define the frequency vector of dimension D = |T | = m|S|:

k(t) ≡ kS(t) = |{s ∈ On : x|S+s = t}| , t ∈ T .

Example:

A set of Markov field types or tile types is:

Pn(m,S) = {k : ∃x∈Xn x
n
is of type k}.



Conservation Laws

Conservation Laws:

∀∅6=S′⊂S, s∈Zd:(S′+s)⊂S ∀t′:S′→A kS′(t
′) = kS′+s(t

′)

with shift s ∈ Zd subject to (S′ + s) ⊂ S.

Example:



Conservation Laws

Conservation Laws:

∀∅6=S′⊂S, s∈Zd:(S′+s)⊂S ∀t′:S′→A kS′(t
′) = kS′+s(t

′)

with shift s ∈ Zd subject to (S′ + s) ⊂ S.

Example:

The conservation laws can be viewed as linear equations with a 1 × D row

denoted as C({(S′, s, t′)}).
The matrix C∗ is hugely over determined! Our goal is to find C such that the

conservation laws can be written as

Ck = 0.

Example 1. d = 1-dimensional Markov over A = {1, 2}.

Tiles are ((11), (21), (12), (22)) and the conservation laws are

k(11) + k(12) = k(1∗) = k(∗1) = k(11) + k(21),

k(21) + k(22) = k(2∗) = k(∗2) = k(12) + k(22).

leading to one conservation law k(12)− k(21) = 0 that in the matrix form is

(0,−1, 1, 0) · k = 0.



Dimension of the Frequency Vectors

The conservation laws make the vector count k ∈ ZD to reside in a space

of dimensionality

µ = D − rk(C) − 1.

where rk(C) is the rank of matrix C. I

Theorem 6. The matrix C has rank

rk(C) =
∑

S′∈S0

(|{s : (S
′
+ s) ⊂ S}| − 1)(m − 1)

|S′|

and consists of a complete set of linearly independent rows.

In particular, for the box shape S = Il1 × Il2 × . . . × Ild we find

µ = D − 1 − rk(C) =
∑

s∈{0,1}d
m

∏

i(li−si) · (−1)
∑

i si.



Dimension of the Frequency Vectors

The conservation laws make the vector count k ∈ ZD to reside in a space

of dimensionality

µ = D − rk(C) − 1.

where rk(C) is the rank of matrix C. I

Theorem 6. The matrix C has rank

rk(C) =
∑

S′∈S0

(|{s : (S
′
+ s) ⊂ S}| − 1)(m − 1)

|S′|

and consists of a complete set of linearly independent rows.

In particular, for the box shape S = Il1 × Il2 × . . . × Ild we find

µ = D − 1 − rk(C) =
∑

s∈{0,1}d
m

∏

i(li−si) · (−1)
∑

i si.

Example: For d = 2 and a 2× 2 square shape we have µ = m4 − 2m2 +m,

while for a 3 × 2 rectangular shape we find µ = m6 − m4 − m3 + m2.



Geometry

We view the count vector k = {k(t)}t∈T in the D = m|S| space.

C = {k ∈ ND : Cm(S) · k = 0}
F = {k ∈ C :

∑

i ki = N}
F̂ = {k̂ ∈ {(RD

+ : C · k̂ = 0,
∑

i k̂i = 1}
FN = {N k̂ : k̂ ∈ F̂ , N k̂ ∈ ZD}

The polytope FN is of dimension µ.

Topological Closure of (normalized) P̂ is a convex subset of F̂ .



Geometry

We view the count vector k = {k(t)}t∈T in the D = m|S| space.

C = {k ∈ ND : Cm(S) · k = 0}
F = {k ∈ C :

∑

i ki = N}
F̂ = {k̂ ∈ {(RD

+ : C · k̂ = 0,
∑

i k̂i = 1}
FN = {N k̂ : k̂ ∈ F̂ , N k̂ ∈ ZD}

The polytope FN is of dimension µ.

Topological Closure of (normalized) P̂ is a convex subset of F̂ .

The lattice FN consists of all integer points inside F̂ scaled by N .

Volume of FN is of order Nµ with integer points growing as Nµ.

Theorem 7 (Ehrhart, 1967). If F̂ is a convex polytope with vertices in QD,

where Q is the set of rational numbers, then that cµ,j 6= 0 for some j

|FN| = aµ,jN
µ + aµ−1,jN

µ−1 + ...a0,j N ≡ j (mod p).
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Main Result for Markov Types

Theorem 8. Consider the torus On. There exists 0 < cmin ≤ cmax such that

cminNµ ≤ |Pn(m,S)| ≤ cmaxNµ

Lemma 3. There exist µ + 1 linearly independent periodic tilings.

a1k̂
1+..+aµ+1k̂

µ+1

a1+···+aµ+1
: ∀i ai ∈ N,

∑

i ai = N

(N+µ−1
µ

)
= O(Nµ)



Outline Update

1. Structural Compression

2. Structure of Markov Fields

3. Sequence-Structure Protein Folding Channel
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Sequence-Structure Channel

p(f |s) :=
e−βE(s,f)

Z(s, β)
Z(s, β) :=

∑

f∈F
e−βE(s,f)

Capacity:

C = max
p(s)

I(S;F ) ∼ log |FN | − min
p(s)

H(F |S).

where FN : set of self-avoiding walks of length N .

Conditional Entropy

H(S|F ) = E[logZ(S, β)] + βE[E(F, S)]

where E(F, S) is energy of a walk F over sequence s.

Clearly, E[E(F, S)] = N · α(S) for some α(S).
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Motivation & Experimental Results

Protein Folds in Nature

Probability of protein folds

vs. sequence rank.

Optimal input distribution from Blahut-Arimoto algorithm:



Phase Transition

Define free energy γ(β, S) as

γ(β, S) = lim
N→∞

E[logZ(S, β)]

log |FN| .

By sub-multiplicative property of FN we can prove there exists µ such that

log |FN |
N

N→∞−−−→ log µ.

Then

E logZ(S, β) ∼ log |FN| · γ(β, S) ∼ N log µ · γ(β, S)

leading to

H(F |S) ∼ N [γ(β, S) log µ + βα(S)]

Phase transition of the free energy γ(β, S) (hence capacity C) leads to

log µ · γ(β, S) =

{

logµ − βα + 1
2σ

2β2 β <
√
2 log µ
σ

β
√

2σ2 log µ − βα β ≥
√
2 log µ
σ



Experimental Confirmation of the Phase Transition
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