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Source Coding

A source code is a bijective mapping

C : A∗ → {0, 1}∗

from sequences over the alphabet A to set {0, 1}∗ of binary sequences.

The basic problem of source coding (i.e., data compression) is to

find codes with shortest descriptions (lengths) either on average or for

individual sequences.

Three Basic Types of Source Coding:

• Fixed-to-Variable (FV) length codes (e.g., Huffman and Shannon codes).

• Variable-to-Fixed (VF) length codes (e.g., Tunstall and Khodak codes).

• Variable-to-Variable (VV) length codes (e.g., Khodak VV code).



Preliminary Results

Prefix code is such that no codeword is a prefix of another codeword.

Tree and lattice representations:

L R

R

L

Notation: For a source model S and a code C we let:

• P (x) be the probability of x ∈ A∗;

• L(C, x) be the code length for the source sequence x ∈ A∗;

• Entropy H(P ) = −Px∈A∗ P (x) lg P (x).

Quantities are expressed in binary logarithms written lg := log2.



Prefix Codes

Kraft’s Inequality

A binary code is a prefix code iff the code lengths ℓ1, ℓ2, . . . , ℓN satisfy

2
lmax li–

i
∑ 2

lmax<li

lmax li–
PN

i=1 2−ℓi ≤ 1.

Barron’s lemma

For any sequence an of positive constants satisfying
P

n 2−an < ∞

Pr{L(X) < − log P (X) − an} ≤ 2
−an,

and therefore

L(X) ≥ − log P (X) − an (a.s).

Proof: We argue as follows:

Pr{L(X) < − log2 P (X) − an} =
X

x:P (x)<2−L(x)−an

P (x)

≤
X

x:P (x)<2−L(x)−an

2−L(x)−an

≤ 2
−an
X

x

2
−L(x) ≤ 2

−an.



Shannon Lower Bound

Shannon First Theorem

For any prefix code the average code length E[L(C, X)] cannot be

smaller than the entropy of the source H(P ), that is,

E[L(Cn, X)] ≥ H(P ).

Proof: Let K =
P

x 2−L(x) ≤ 1, and L(C, x) := L(C). Then

E[L(C, X)] − H(P ) =

=
X

x∈A∗
P (x)L(x) +

X

x∈A∗
P (x) log P (x)

=
X

x∈A∗
P (x) log

P (x)

2−L(x)/K
− log K

≥ 0

since log x ≤ x − 1 for 0 < x ≤ 1 or the divergence is nonnegative, while

K ≤ 1 by Kraft’s inequality.



Redundancy

Known Source P (assumed throughout the talk).

The pointwise redundancy RC(x) and the average redundancy R̄C:

RC(x) = L(C, x) + lg P (x)

R̄C = E[L(C, X)] − H(P ) ≥ 0

Optimal Code:

min
L

X

x

L(x)P (x) subject to
X

x

2−L(x) ≤ 1.

Solution: By Lagrangian multipliers we find Lopt(x) = − lg P (x).

The smaller the redundancy is, the better (closer to the optimal) the code is.
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Redundancy for Huffman’s Code

We consider fixed-to-variable length codes; in particular, Huffman’s code.

For a known source P , we consider fixed length sequences xn
1 = x1 . . . xn.

Huffman Code: The following optimization problem

R̄n = min
Cn∈C

Exn
1
[L(Cn, xn

1) + log2 P (xn
1)].

is solved by Huffman’s code.

We study the average redundancy for a binary memoryless sources with p
denoting the probability of generating “0” and q = 1 − p.

In 1994 Stubley proposed the following for Huffman’s average redundancy

R̄H
n = 2 −

n
X

k=0

“n

k

”

pkqn−k〈αk + βn〉 − 2
n
X

k=0

“n

k

”

pkqn−k2−〈αk+βn〉 + o(1).

where

α = log2

„

1 − p

p

«

, β = log2

„

1

1 − p

«

and 〈x〉 = x − ⌊x⌋ is the fractional part of x.



Main Result

Theorem 1 (W.S., 2000). Consider the Huffman block code of length n over

a binary memoryless source with p < 1
2. Then as n → ∞

R̄H
n =

8

>

<

>

:

3
2 − 1

ln 2 + o(1) ≈ 0.057304 α irrational

3
2 − 1

M

`

〈βMn〉 − 1
2

´

− 1

M(1−2−1/M )
2−〈nβM〉/M + O(ρn) α = N

M

where N, M are integers such that gcd(N, M) = 1 and ρ < 1.
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Figure 1: The average redundancy of Huffman codes versus block size n for: (a) irrational

α = log2(1 − p)/p with p = 1/π; (b) rational α = log2(1 − p)/p with p = 1/9.



Sketch of Proof

We need to understand asymptotic behavior of the following sum (cf.

Bernoulli distributed sequences modulo 1)

n
X

k=0

“n

k

”

pk(1 − p)n−kf(〈αk + y〉)

for fixed p and some Riemann integrable function f : [0, 1] → R.

Lemma 1. Let 0 < p < 1 be a fixed real number and α be an irrational

number. Then for every Riemann integrable function f : [0, 1] → R

lim
n→∞

n
X

k=0

“n

k

”

p
k
(1 − p)

n−k
f(〈αk + y〉) =

Z 1

0

f(t) dt,

where the convergence is uniform for all shifts y ∈ R.

Lemma 2. Let α = N
M be a rational number with gcd(N, M) = 1. Then for

bounded function f : [0, 1] → R

n
X

k=0

“n

k

”

p
k
(1 − p)

n−k
f(〈αk + y〉) =

1

M

M−1
X

l=0

f

„

l

M
+

〈My〉
M

«

+ O(ρ
n
)

uniformly for all y ∈ R and some ρ < 1.
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Variable-to-Fixed Codes

A VF coder consists of a parser and a dictionary.

Dictionary

 1

 01

001

000

1 0

Parsing Tree
1. A variable-to-fixed length

encoder partitions the source

string into a concatenation of

variable-length phrases.

2. Each phrase belongs to a

given dictionary D of source

strings.

3. A dictionary can be represented

by a complete parsing tree T .

The dictionary entries d ∈ D correspond to the leaves of the parsing tree.

4. The encoder represents phrases by the fixed length binary codewords.

i.e., a dictionary D of M entries requires ⌈log2 M⌉ bits to represent entries.

Average Redundancy Rate:

r̄ = lim
n→∞

P

|x|=n PS(x)(L(x) + log PS(x))

n
=

log M

E[D]
− h

where h is the entropy rate of the source.



Tunstall and Khodak Codes
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Tunstall’s construction

M = 5

Khodak’s construction

r = 0.25

Tunstall Code:

1. Start with a root and leaves.

2. In the J’s iteration select a leaf

with the highest probability

and grow children out it.

3. At Jth step, the parsing tree has

J internal nodes and

M=J + 1 leaves

corresponding to dictionary entries.

Khodak Construction:

1. Pick a real number r and grow a complete parsing tree satisfying

min{p, 1 − p} · r ≤ P (d) < r , d ∈ D.

2. The resulting parsing tree is exactly the same as the Tunstall tree.

3. If y is a proper prefix of entries of Dr, i.e., y is an internal node of Tr, then

P (y) ≥ r.



Phrase Length

We study the phrase length D = |d|, i.e., path length in the parsing tree.

Moment Generating Functions: Define

D(r, z) := E[zD] =
X

d∈Dr

P (d)z|d|.

and its corresponding internal nodes generating function

S(r, z) =
X

y: P (y)≥r

P (y)z
|y|

.

Simple Fact on Trees: Let D̃ be a dictionary (leaves of T ) and Ỹ be the

collection of proper prefixes of dictionary entries (internal nodes of T ).

X

d∈D̃

P (d)
z|d| − 1

z − 1
=
X

y∈Ỹ

P (y)z|y|.

Thus

D(r, z) = 1 + (z − 1)S(r, z),

and

E[D] = S̃(v, 1) =
X

y∈Ỹ

P (y), E[D(D − 1)] = S̃
′
(v, 1) = 2

X

y∈Ỹ

P (y)|y|.



Recurrences

Define v = 1/r, z complex, and S̃(v, z) = S(v−1, z).

Let

A(v) =
X

y:P (y)≥1/v

1

be the # of strings of probab. ≤ v−1 or the # of internal nodes. In fact:

Mr = A(v) + 1.

We have

A(v) =



0 v < 1,

1 + A(vp) + A(vq) v ≥ 1

and

S̃(v, z) =



0 v < 1,

1 + zpS̃(vp, z) + zqS̃(vq, z) v ≥ 1,

since every binary string either is:

• – empty string,

• – string starting with the first symbol

• – string starting with second symbol.



Mellin Transform

The Mellin transform F ∗(s) of a function F (v) is

F
∗
(s) =

Z ∞

0

F (v)v
s−1

dv.

From the recurrence on S(v, z) we find

D̃
∗
(s, z) =

1 − z

s(1 − zp1−s − zq1−s)
− 1

s
, ℜ(s) < s0(z),

where s0(z) denotes the real solution of: zp1−s + zq1−s = 1.

To find the asymptotics of D̃(v, z) as v → ∞ we compute the inverse

transform of D̃∗(s, z)):

D̃(v, z) =
1

2πi
lim

T→∞

Z σ+iT

σ−iT

D̃
∗
(s, z)v

−s
ds,

where σ < s0(z).

To determine the polar singularities of the meromorphic continuation of

D̃∗(s, z), we have to analyze the set

Z(z) = {s ∈ C : zp1−s + zq1−s = 1}.



Inverse Mellin Transform

x

x

x

x

x

x

x

x

x

s0

T

T

τσ

Im(z)

Re(z)

x

x

x
From Cauchy’s residue theorem

D̃(v, z) = limT→∞ FT(v, z), ℜ(s) < τ :

FT(v, z) =

= −Ps′∈Z(z) Res(D̃∗(s, z) v−s, s = s′)

+ 1
2πi

R τ+iT

τ−iT

“

1−z

s(1−zp1−s−zq1−s)
− 1

s

”

v−s ds

= −Ps′∈Z(z)
(1−z)v−s′

zs′p1−s′ ln p+zs′q1−s′ ln q

+ 1
2πi

R τ+iT

τ−iT

“

1−z

s(1−zp1−s−zq1−s)
− 1

s

”

v−s ds

provided that the series of residues converges and the limit as T → ∞ of

the last integral exists. But they don’t!.



Tauberian Rescue

Therefore, we analyze (as in analytic number theory; cf. also Vallee)

D̃1(v, z) =

Z v

0

D̃(w, z) dw.

whose Mellin transform is

D̃
∗
1(s, z) =

−D̃∗(s + 1, z)

s
= O(1/s

2
).

Lemma 3 (Tauberian). Let f(v, λ) be a non-negative increasing function

such that

F (v, λ) =

Z v

0

f(w, λ) dw

and has the asymptotic expansion

F (v, λ) =
vλ+1

λ + 1
(1 + λ · o(1))

as v → ∞ and uniformly in λ. Then as v → ∞ uniformly in λ

f(v, λ) = v
λ
(1 + |λ|

1
2 · o(1)).



Main Results

Theorem 2 (Central Limit Theorem). For large Mr

Dr − 1
H ln Mr

r

“

H2
H3 − 1

H

”

ln Mr

→ N(0, 1) standard normal distribution

where H is natural entropy and H2 = p ln2 +q ln2 q.

If ln q/ lg p is irrational, then

Mr = A(v) + 1 =
v

H
+ o(v)

E[Dr] =
ln Mr

H
+

ln H

H
+

H2

2H2
+ o(1);

if ln q/ lg p is rational, then

Mr =
Q1(log v)

H
v + O(v1−η), Q1(x) =

L

1 − e−L
e−L〈x

L〉,

E[Dr] =
ln Mr

H
+

ln H

H
+

H2

2H2
+

− ln L + ln(1 − e−L) + L
2

H
+ O(Mr

−η),

L largest real number s.t. ln(1/p) and ln(1/q) are integer multiples of L.



Redundancy Rate

The average redundancy rate of Tunstall/Khodak’s VF code is defined as

r̄Mr =
ln Mr

E[D]
− h.

Case 1: ln p/ ln q is irrational:

r̄Mr =
H

ln Mr

„

−H2

2H
− ln H

«

+ o

„

1

ln Mr

«

.

Case 2: ln p/ ln q is rational:

r̄Mr =
H

ln Mr

“

− H2

2H
− ln H + ln L − ln(e

L − 1) +
L

2

”

+ O
“

Mr
−η
”

,

for some η > 0, where L > 0 is the largest real number for which ln(1/p)
and ln(1/q) are integer multiples of L. (No oscillation!)



Random Walk

k

l

a plog–= rlog
plog

-----------

rlog
qlog

-----------

qlog– b=

Consider a random walk

that corresponds to a path in

the associated parsing tree.

For Khodak’s code we studied

A(v) =
X

y:P (y)≥1/v

f(v)

for some function f(v).

But P (y) = pkql (k, l ≥ 0),

and set v = 2V so that

log P (v) = k lg(1/p)+sl lg(1/q) ≤ V .

This corresponds to a random walk in the first quadrant with the linear

boundary condition

ax + by = V

where a = log(1/p) and b = log(1/q).

The phrase length coincides with the exit time of such a random walk.
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VV Codes and Their Redundancy

Variable-to-variable (VV) code:

• A VV encoder consists of a parser and a string encoder.

• Parser works as in the VF code.

• String encoder encodes dictionary into a variable length prefix codes.

Average Redundancy Rate. By renewal theory;

r̄ = lim
n→∞

P

|x|=n PS(x)(L(x) + log PS(x))

n
=

P

d∈D PD(d)(ℓ(d) + log PD(d))

E[D]

=

P

d∈D PD(d)ℓ(d) − hD

E[D]

where P := PD is the dictionary distribution.

Observe that by the Conversation of Entropy Theorem:

hD = hSE[D].



Main Result

Theorem 3. For memoryless or Markov sources, there exists a VV code such

that its average redundancy satisfies

r̄ = O(D̄−5/3).

where D̄ := E[D]. The redundancy rate decays faster than linearly.



Main Result

Theorem 3. For memoryless or Markov sources, there exists a VV code such

that its average redundancy satisfies

r̄ = O(D̄−5/3).

where D̄ := E[D]. The redundancy rate decays faster than linearly.

Main Idea Behind the Proof:

An m-ary alphabet A = {a1, a2, . . . , am} with probabilities p1, . . . , pm:

P (d) = p
k1
1 · · · pkm

m , d ∈ D

where ki is the number of ai in the phrase d.

Modified Shannon code assigns the length ⌈− log P (d)⌉, when log P (d) is

close to an integer. The average redundancy is

R̄ =
X

d∈D
P (d)[⌈− log P (d)⌉ + log P (d)] =

X

d∈D
P (d) · 〈k1 log p1 + · · · + km log pm〉.

Khodak code is a prefix code with 〈k1 log p1 + · · ·+ km log pm〉 as close as

possible to an integer.



Proof by Picture

dr

r

“good” word inDj

“bad” word in Bj

N2

N2 + O(N)

2N2 + O(2N)

3N2 + O(3N)

KN2 + O(KN)
K = N log N

.

.

.

P D1( ) c
N
----=

P D2( ) 1 c
N
----– 

 =
c
N
----

P D3( ) 1 c
N
----– 

  2
=

c
N
----

P DK( ) 1 c
N
----– 

  k 1–
=

c
N
----



Sketch of Proof

Some Definitions:

Define dispersion of the set X ⊆ [0, 1) as

δ(X) = sup
0≤y<1

inf
x∈X

‖y − x‖, ‖x‖ = min(〈x〉, 〈1 − x〉),

that is, for every y ∈ [0, 1) there is x ∈ X s.t. ‖y − x‖ ≤ δ(X).

Lemma 4. (i) Let γ be irrational. There exists an integer N such that

δ ({〈kγ〉 : 0 ≤ k < N}) ≤ 2

N

(ii) In general, there exists an integer N such that the dispersion of

X = {〈k1γ1 + · · · + kmγm〉 : 0 ≤ kj < N (1 ≤ j ≤ m)}

is bounded by

δ(X) ≤ 2

N
provided one of γi is irrational.



Two Important Lemmas

Lemma 5 (Khodak, 1972). For every d ∈ D the length ℓd satisfies

|ℓd + log2 P (d)| ≤ 1. If

X

d∈D
P (d)(ℓd + log2 P (d)) ≥ 2

X

d∈D
P (d)(ℓd + log2 P (d))2

then there exists prefix code with lengths ℓd for D.

Proof: Kraft’s inequality and Taylor’s expansion.

Main result follows from the below Theorem after setting η = 1.

Theorem 4. Suppose that for some N ≥ 1 and η ≥ 1 the set

X = {〈k′
1log2 p1 + · · · + k

′
mlog2 pm〉 : 0 ≤ k

′
j < N}

has dispersion

δ(X) ≤ 2

Nη
.

Then there exists a variable-to-variable code (with D̄ = Θ(N3)) such that

r̄ ≤ cm · D̄
−4+η

3 .



Sketch of Proof for Theorem 4

1. Set k0
i := ⌊piN

2⌋ (1 ≤ i ≤ m) and x = k0
1 log2 p1 + · · · + k0

m log2 pm.

By Theorem 4 there exist integers 0 ≤ k1
j < N such that

D

x + k1
1 log2 p1 + · · · + k1

m log2 pm

E

<
4

Nη
.

2. Build an m-ary tree starting at the root with

k0
1 + k′

1 edges of type 1, and k0
m + k′

m edges of type m.

Let D1 denote the set of the corresponding words whose probability is

c′

N
≤ P (D1) =

“(k0
1 + k′

1) + · · · + (k0
m + k′

m)

k0
1 + k′

1, . . . , k0
m + k′

m

”

p
k0
1+k′1

1 · · · pk0
m+k′m

m ≤ c′′

N

for certain positive constants c′, c′′. Thus, all words d ∈ D1 satisfy

〈log2 P (d)〉 <
4

Nη
,

and have the same length N2 + O(N).

3. Consider words not in D1, that is, B1 = An1 \ D1 that by above satisfy

1 − c′′

N
≤ P (B1) ≤ 1 − c′

N
.



Finishing ...

4. Take a word r ∈ B1 and concatenate it with a word d2 of length ∼ N2

such that log2 P (rd2) is close to an integer with high probability.

5. This construction is cut after K = O(N log N) steps so that

P (BK) ≤ c′′
„

1 − c′

N

«K

≤ 1

Nβ

for some β > 0. This also ensures that P (D1 ∪ · · · ∪DK) > 1 − frac1Nβ.

6. The complete prefix free set D is

D = D1 ∪ · · · ∪ DK ∪ BK.

By the construction the average delay of D is

c1N
3 ≤ D̄ =

X

d∈D
P (d) |d| ≤ c2N

3

whilethe maximal code length satisfies

max
d∈D

|d| = ON
3
log N = OD̄ log D̄).
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Universal Shannon-Fano Code

Let xn
1 = x1 . . . xn be a binary sequence generated by an memoryless(θ)

source where θ is unknown. Clearly,

P (xn
1) = θk(1 − θ)n−k, θ ∈ (0, 1),

where k is the number of “1” and n − k is the number of “0”.

Estimating θ:

We need to estimate θ to apply a FV code. In the spirit of the Minimum

Description Length, we use the Krichevsky and Trofimov (KT) estimator:

Pe(xn = 1|xn−1
1 ) =

k + 1
2

n + 1
.

which can be written as

Pe(k, n−k) =
1
2 · · · (k − 1

2) · 1
2 · · · (n − k − 1

2)

1 · 2 · n
=

Γ(k + 1/2)Γ(n − k + 1/2)

πΓ(n + 1)

where Γ(x) is the Euler gamma functions.



Average Redundancy

Shannon-Fano code assigns code length: ⌈log Pe(k, n − k)⌉ + 1. Then

R̄n
SF = 2 +

n
X

k=0

“n

k

”

θk(1 − θ)n−k log
θk(1 − θ)n−k

Pe(k, n − k)
− En,

where En =
Pn

k=0

`n
k

´

θk(1 − θ)n−k〈−log Pe(k, n − k)〉.
Theorem 5. The average redundancy of the Shannon-Fan code is

R̄n
SF =

1

2
logn − 1

2
log

πe

2
+ 2 − En + O(n−1/2)

where En behavior depends whether α = log 1−θ
θ is rational or not.

If α = N
M is rational, then

En =
1

2
+ GM

„

− log(1 − θ)n +
1

2
log

πn

2

«

+ o(1)

where GM(y) is a periodic function with period 1
M , and

GM(y) :=
1

M

1√
2π

∞
Z

−∞

e−x2/2

 *

M

 

y − x2

2 ln 2

!+

− 1

2

!

dx
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Non-Prefix Codes: One-to-One Codes

In one-to-one codes a distinct codeword is assigned to each source

symbol (unique decodability is not required).

One-to-One codes are not prefix codes; Kraft’s inequality doesn’t hold.

Question: Does the lower bound still holds? That is, E[L] − H(X) ≥ 0?.

Wyner in 1972 proved that

E[L] ≤ H(X),

further improved by Alon and Orlitsky who showed

E[L] ≥ H(X) − log(H(X) + 1) − log e.

We consider a FV one-to-one code for xn
1 = x1 . . . xn ∈ An generated by

a memoryless source with p being the probability of generating a 0 and

q = 1 − p.

Throughout: p ≤ q so that P (xn
1) = pkqn−k.



Average Code length

List all 2n probabilities in a nonincreasing order and assign code lengths:

qn
“

p
q

”0

≥ qn
“

p
q

”1

≥ . . . ≥ qn
“

p
q

”n

⌊log2(1)⌋ ⌊log2(2)⌋ . . . ⌊log2(2
n)⌋

There are
`n

k

´

equal probabilities pkqn−k. Define

Ak =
“n

0

”

+
“n

1

”

+ · · · +
“n

k

”

, A−1 = 0.

Since starting from the position Ak−1 the next
`n

k

´

probabilities P (xn
1) are

the same, the average code length is

E[Ln] =

n
X

k=0

p
k
q

n−k

(n
k)
X

i=1

⌊log2(Ak−1 + i)⌋.

We shall study (below 〈x〉 = x − ⌊x⌋)

Sn =
n
X

k=0

“n

k

”

p
k
q

n−k
log2 Ak −

n
X

k=0

“n

k

”

p
k
q

n−k〈log2 Ak〉.



Main Result

Theorem 6. For a binary memoryless source, let p < 1
2. Then

R̄n = −1

2
log2 n−1 − 1

2 ln 2
+ log2

1 − p

(1 − 2p)
√

pqπ

+
1 − p

1 − 2p
log2

2 − 3p

1 − p
+

5 − 4p

1 − 2p

„

1

2 ln 2
+ G(n)

«

+ F (n) + o(1)

where • G(n) = F (n) = 0 if log2
1−p

p irrational;

• G(n) and F (n) are oscillating functions if log2
1−p

p = N/M rational:

F (n) =
1

M
√

2π

Z ∞

−∞
e−x2/2

 *

M

 

nβ − log

„

1 − 2p

1 − p

p

2πpqn

«

− x2

2 ln 2

!+

− 1

2

!

dx

where β = − log2(1 − p).

For p = 1
2, then for all n ≥ 1

R̄n = −1 + 2−n(n − 2).



Analytic Information Theory

• In the 1997 Shannon Lecture Jacob Ziv presented compelling

arguments for “backing off” from first-order asymptotics in order to

predict the behavior of real systems with finite length description.

• To overcome these difficulties we propose replacing first-order analyses

by full asymptotic expansions and more accurate analyses (e.g., large

deviations, central limit laws).

• Following Hadamard’s precept1, we study information theory problems

using techniques of complex analysis such as generating functions,

combinatorial calculus, Rice’s formula, Mellin transform, Fourier series,

sequences distributed modulo 1, saddle point methods, analytic

poissonization and depoissonization, and singularity analysis.

• This program, which applies complex-analytic tools to information

theory, constitutes analytic information theory.

1 The shortest path between two truths on the real line passes through the complex plane.
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