
TRIES

Wojciech Szpankowski∗

Department of Computer Science

Purdue University, W. Lafayette, IN

U.S.A.

April 5, 2008

AofA and IT logos

∗Joint work with L. Devroye, H-K. Hwang, G. Lugosi, P. Nicodeme, G. Park, and M. Ward.



Outline of the Presentation

1. Tries and Suffix Trees

2. Usefulness of Tries

3. Profiles of Tries

• Trie Parameters

• Main Results

• Sketch of Proofs

• Consequences (height, fill-up, shortest path)

4. Applications: Error Resilient Lempel-Ziv’77 (Suffix Trees)

5. Applications: Distributed Hash Tables (Multiple Tries)



Tries and Suffix Trees

00

0

0100

0

01010

0

01011

1

1

0

011

1

1

0

1010

0

1011

1

1

0

1

A trie, or prefix tree, is an ordered tree

data structure that stores keys usually

represented by strings.

Tries were introduced by de la Briandais

(1959) and Fredkin (1960) who introduced

the name:

“tries” derived from retrieval.

Suffix tree is a trie built form suffixes of

one string.

Other digital trees are: PATRICIA and

digital search trees.

Typical Tries: In this talk we mostly discuss random tries built from n
(independent) sequences generated by a binary memoryless source with

p denoting the probability of generating a “0” (q = 1 − p ≤ p).



Usefulness of Tries

Tries and suffix tress are widely used in diverse applications:

• automatically correcting words in texts; Kukich (1992);

• taxonomies of regular language; Watson (1995);

• event history in datarace detection for multi-threaded object-oriented

programs; Choi et al. (2002);

• internet IP addresses lookup; Nilsson and Tikkanen (2002);

• data compression, Lempel-Ziv, . . . ; W.S. (2001);

• distributed hash tables, Malkhi et al. (2002) and Adler et al. (2003).

Fundamental, prototype data structures:

• have a large number of variations and extensions (Patricia, DST, bucket

digital search trees, k-d tries, quadtries, LC-tries, multiple-tries, etc.);

• closely connected to several splitting procedures using coin-flipping:

collision resolution in multi-access (or broadcast) communication

models, loser selection or leader election, etc.

• have direct combinatorial interpretations in terms of words, urn models,

etc.



Outline Update

1. Tries and Suffix Trees

2. Usefulness of Tries

3. Profiles of Tries

• Trie Parameters

• Main Results

• Sketch of Proofs

• Consequences

4. Applications

(G. Park) (P. Nicodeme)



External and Internal Profiles

00

0

0100

0

01010

0

01011

1

1

0

011

1

1

0

1010

0

1011

1

1

0

1

B0
n = 0, I0

n = 1

B1
n = 0, I1

n = 2

B2
n = 1, I2

n = 2

B3
n = 1, I3

n = 2

B4
n = 3, I4

n = 1

B5
n = 2 I5

n = 0

External profile and internal profile:

Bk
n = # external nodes at distance k from the root;

Ik
n = # internal nodes at distance k from the root.



Why to Study Profiles?

• Fine, informative shape characteristic;

• Related to path length, depth, height, shortest path, width, etc.;

• Breadth-first search;

• Compression algorithms.

• Mathematically challenging, phenomenally interesting!

Example: Parameters such height Hn, shortest path, sn, fill-up level Fn, and

depth, Dn can be studied through the profiles since:

Hn = max{k : Bk
n > 0},

sn = min{k : Bk
n > 0},

Fn = max{k : Ik
n = 2k},

Pr(Dn = k) =
E[Bk

n]
n .

0 1

x4 x5

x1 x2

Fn Dn
5 Hns n

x3



Recurrence for the Profiles

External Profile Bk
n:

Define the probability generating function as

Bn
k(u)

Bi
k-1(u) Bn-i(u)

k-1

Bk
n(u) = E[uBk

n] =
X

ℓ≥0

P (Bk
n = l)ul.

Then

B
k
n(u) =

nX

i=0

“n

i

”
p

i
q

n−i
B

k−1
i (u)B

k−1
n−i(u)

with B0
n = 1 for n 6= 1 and B0

1 = u

Internal Profile probability generating function Ik
n(u) = E[Ik

n] satisfies the

same recurrence with U0
n(u) = u for n > 1 and U0

0 (u) = U0
1 (u) = 1.

Average External Profile:

E[B
k
n] =

nX

i=0

“n

i

”
p

i
q

n−i
(E[B

k−1
i ] + E[B

k−1
n−i ]), n ≥ 2, k ≥ 1,

under some initial conditions (e.g., E[Bk
0 ] = 0 for all k).



Main Results

Notation: r = p/q = p/(1 − p)> 1, and α := αn,k = k
log n. Also:

p
0.50.60.70.80.9 1

2

4

6

8

10

α1

α2

α3

α1 :=
1

log(1/q)
,

α2 :=
p2 + q2

p2 log(1/p) + q2 log(1/q)
,

α3 :=
2

log(1/(p2 + q2))
.

1: Exponential Growth (0 < α < α1):

Let 1 ≤ k ≤ 1
log q−1(log n − log log log n + log(r − 1) − ε):

E[Bk
n] = nqk(1 − qk)n−1

“
1 + O

“
(log n)−δ

””
= O(2−nν)

2: Logarithmic Growth (0 < α < α1):

Let 1 ≤ k ≤ 1
log q−1(log n − log log log n + m log(r − 1) − ε):

E[B
k
n] = O(log log n · logm−β

n).

where m and β are constants (smaller or greater than m).



Phase Transitions

3: Polynomial Growth: α1 · log n < k < α2 · log n: (α1 < α < α2)

E[B
k
n] ∼ G1 (log n)

pρqρ(p−ρ + q−ρ)√
2πα log(p/q)

· nυ1

√
log n

,

where G1(x) is a periodic function and

υ1 = −ρ + α log(p
−ρ

+ q
−ρ

), ρ = − 1

log(p/q)
log

„−1 − α log q

1 + α log p

«
.

6 × 10−23

−6 × 10−23

1p = 0.55

3 × 10−7

−3 × 10−7

1

p = 0.65

6 × 10−3

−6 × 10−3

1
p = 0.75
p = 0.85
p = 0.95

Figure 1: The fluctuating part of the periodic function G1(x) for p = 0.55, 0.65, . . . , 0.95.

4: Polynomial Growth/Decay: α2 · log n < k: (α2 < α)

E[B
k
n] =

2pq

p2 + q2
n

ν2 + O (n
ν3)

where ν2 = 2 + α log(p2 + q2) for some ν3 < ν2.



External Shapes

log2
n

log n + O(1)

log2 n + O(1)

2 log2 n + O(1)

– Typeset by FoilTEX – 1

log1/q
n

log log n + O(1)

log n

p log(1/p) + q log(1/q)

2
log(1/(p2+q2))

log n + O(1)

1
(p = 0.5, α1 = α2 = 1/ log 2) (p = 0.75)



Average Internal Profile

1: Almost Full Tree: k < α1 · log n

E(Ik
n) = 2k − E(Bn,k)(1 + o(1)).

2: Phase Transition I: α1 · log n < k < α0 · log n, where α0 = 2
log(1/p)+log(1/q)

E[I
k
n] = 2

k − G2 (log n)E(Bn,k)(1 + o(1))

where G2(x) is a periodic function.

3: Phase Transition II: α0 · log n < k < α2 · log n

E[Ik
n] = G2 (log n)E(Bn,k)(1 + o(1))

where G2(x) is a periodic function.

4: Polynomial Growth/Decay: α2 · log n < k

E[I
k
n] =

1

2
n

ν2(1 + o(1))

where ν2 = 2 − α log(p2 + q2).



Internal Shapes

log2
n

log n + O(1)

log2 n + O(1)

2 log2 n + O(1)

log1/q
n

log log n + O(1)
2 log n + O(1)

log(1/p) + log(1/q)log n + O(1)

p log(1/p) + q log(1/q)

2 log n + O(1)

log(1/(p2 + q2))

(p = 0.5 α0 = α1 = α2 = 1/ log 2) (p = 0.75)



Variance and Limiting Distributions of the External Profile

Variance:

1: k < α1 · log n: V[Bk
n] ∼ E[Bk

n].

2: α1 · log n < k < α2 · log n: V[Bk
n] ∼ G3(log n)E[Bk

n].
where G3(log n) is a periodic function.

3: α2 · log n < k: V[Bk
n] ∼ 2E[Bk

n].

Limiting Distributions:

Central Limit Theorem: For α1 · log n < k < α3 · log n:

Bk
n − E[Bk

n]p
V[Bk

n]
→ N(0, 1),

where N(0, 1) is the standard normal distribution.

Poisson Distribution: For α3 · log n < k:

P (Bn,k = 2m) =
λ0

m

m!
e−λ0 + o(1), and P (Bn,k = 2m + 1) = o(1),

where λ0 := pqn2(p2 + q2)k−1.



Consequences

Height: For large n (cf. Flajolet, 1980, Pittel, 1985, W.S., 1988, Devroye, 1992)

Hn =
2

log(p2 + q2)−1
log n = α3log n := kH, (whp).

•

•

•

•

••

• ••

••

•

•

Upper Bound: P (Hn > (1 + ǫ)kH) ≤ P (Bk
n ≥ 1) ≤ E[Bk

n] → 0.

Lower Bound: P (Hn < (1 − ǫ)kH) ≤ P (B
⌈(1−ε)kH⌉)
n = 0)

≤ V[B
⌈(1−ǫ)kH
n ⌉]

(E[B
⌈(1−ǫ)kH⌉
n ])2

= O

„
1

E[B
⌈(1−ǫ)kH⌉
n ]

«
→ 0.

Define: kS := ⌊ 1
log q−1(log n − log log log n + log(e log r))⌋.

Shortest Path: For large n (cf. Knessl and W.S., 2005)

P (sn = kS or sn = kS + 1) → 1.

Fill-up: For large n (cf. Pittel, 1986, Devroye, 1992, Knessl & W.S., 2005)

P (Fn = kS − 1 or Fn = kS) → 1.



Sketch of the Proof

1. Recurrence: E[Bk
n] =

Pn
i=0

`n
i

´
piqn−i(E[Bk−1

i ]+E[Bk−1
n−i ]), n ≥ 2, k ≥ 1.

2. Poisson Transform: Ẽk(z) =
P∞

n=0 E[Bk
n]

zn

n! e
−z:

Ẽk(z) = Ẽk−1(zp) + Ẽk−1(zq), k ≥ 2,

3. Mellin Transform: Ẽ∗
k(s) :=

R∞
0

zs−1Ẽk(z)dz = (p−s + q−s)Ẽ∗
k−1(s):

Ẽ∗
k(s) = (p−s + q−s)k−1 · s · (p−s + q−s − 1)Γ(s)

for ℜ(s) ∈ (−2,∞), where Γ(s) is the Euler Gamma function.

4. Inverse Mellin Transform: Ẽk(z) = 1
2πi

R c+i∞
c−i∞ z−sẼ∗

k(s)ds:

Ẽk(z) =
1

2πi

Z c+i∞

c−i∞
s(p

−s
+ q

−s − 1)Γ(s)z
−s

(p
−s

+ q
−s

)
k−1

ds

through the saddle point method.

5. Depoissonization: From the Poisson transform Ẽk(z) to E[Bk
n].



Saddle Point Method: Phase Transitions

By depoisonization we have Ẽk(n) ∼ Ẽk(z), where recall

Ẽk(n) =
1

2πi

Z c+i∞

c−i∞
g(s)Γ(s + 1)n

−s
(p

−s
+ q

−s
)
k
ds

=
1

2πi

Z c+i∞

c−i∞
g(s)Γ(s + 1) exp(h(s)log n)ds, k = αlog n.

The saddle point equation h′(s) = 0 has a unique real root:

ρ =
−1

log r
log

 
α log q−1 − 1

1 − α log p−1

!
,

1

log q−1
< α <

1

log p−1
.

There are infinitely many saddle points ρ + itj for tj = 2πj/ log r, j ∈ Z.

nlog

ρ +
⋅

rlog
----------i

2π

ρ +

⋅
rlog

----------

i

2π

ρ –

ρ – i

i
⋅

rlog
----------

2π

2π
log
-----------

r
⋅

nlog–

2

2

1

1

j ≥

j ≤ρ – i
⋅

rlog
----------

2π j

ρ + i
⋅

rlog
----------

2π j
,

,

Phase Transitions:

1. ρ → ∞ as α ↓ 1/ log q−1 = α1.

2 ρ → −∞ when α ↑ 1/ log p−1.

3. Saddle points coalesce with poles of the

Γ(s + 1) function at s = −2,−3, . . ..

Pole s = −2 leads to α2.



Outline Update

1. Tries and Suffix Trees

2. Usefulness of Tries

3. Profiles of Tries

4. Applications: Error Resilient Lempel-Ziv’77 (Suffix Trees)

5. Application: Distributed Hash Tables (Multiple Tries)



Error Resilient LZ’77 Scheme

1. The Lempel-Ziv’77 works on-line: It compresses phrases by replacing the

longest prefix by (pointer, length) of its copy.

2. Castelli and Lastras in 2004 proved that a single error in LZ’77 corrupts

O(n2/3) phrases, thus about O(n2/3 log n) symbols, where n is the size.

3. There are multiple copies of the longest prefix that we denote by Mn for

a database of length n.

4. By a judicious choice of pointers in the LZ’77 scheme, we can recover

⌊log2 Mn⌋ bits without losing a bit in compression. Parity bits recovered

from the multiple copies are used for the Reed-Solomon channel coding.

historyhistory current positioncurrent position

00
01

10

11



Experimental Results: I

Table 1: The compression of “gzip -3” (we also call it LZS’77) versus

“gzipS -3” for the files of the Calgary corpus; the last column shows the

total number of available bytes for error correction.
file size gzip gzipS file redundant

111,261 39,473 39,511 bib 1,721

768,771 333,776 336,256 book1 14,524

610,856 228,321 228,242 book2 10,361

102,400 69,478 71,168 geo 4,101

377,109 155,290 156,150 news 5,956

21,504 10,584 10,783 obj1 353

246,814 89,467 89,757 obj2 3,628

53,161 20,110 20,204 paper1 937

82,199 32,529 32,507 paper2 1,551

46,526 19,450 19,567 paper3 893

13,286 5,853 5,898 paper4 249

11,954 5,252 5,294 paper5 210

38,105 14,433 14,506 paper6 738

513,216 62,357 61,259 pic 3,025

39,611 14,510 14,660 progc 736

71,646 18,310 18,407 progl 1,106

49,379 12,532 12,572 progp 741

93,695 22,178 22,098 trans 1,201



Encoder and Decoder of LZRS’77

We use the family of Reed-Solomon codes RS(255, 255− 2e) that contains

blocks of 255 bytes, of which 255 − 2e are data and 2e are parity.

Encoder: The data is broken into blocks of size 255 − 2e. Blocks are

processed in reverse order, beginning with the very last. When processing

block i, the encoder computes first the Reed-Solomon parity bits for the

block i + 1 and then it embeds the extra bits in the pointers of block i.

Decoder: The decoder receives a sequence of pointers, preceded by the

parity bits of the first block which are used to correct block B1. Once block

B1 is correct, it decompresses it using LZS’77. Redundant bits of block B1

are used as parity bits to correct block B2, etc.

RS

Adjust

pointers

RS

Adjust

pointers

B1 ...

RS

B2 B3 Bb

RS

Adjust

pointersStore

Figure 2: The right-to-left sequence of operations on the blocks.



Analysis of Mn Via Suffix Trees

Why does LZRS’77 work so well?

Performance of LZRS’77 depends on Mn. How does Mn typically behave?

Build a suffix tree from the first n suffixes of the database X (i.e., S1 =
X∞

1 , S2 = X∞
2 , . . . , Sn = X∞

n ). Then insert the (n+1)st suffix, Sn+1 = X∞
n+1.

Depth of insertion of Sn+1 is the (n +1)-st phrase length, and Mn is the size

of the subtree that starts at the insertion point of the (n + 1)st suffix.

S1 S2

S3 S4

S5

Mn

Figure 4: M4(=2) is the size of the subtree at the insertion point of S5.



Analysis of Mn for Independent Tries

1. Consider digital tries built over n independent strings.

Average E[MI
n] and probability generating function

satisfying the following recurrences

(p = 1 − q is the probability of generating a “1”) Mk
I

Mn
I

Mn k–
I

q = 1-pp

E[MI
n] = pn(qn + pE[MI

n]) + qn(pn + qE[MI
n)] +

n−1X

k=1

“n

k

”
pkqn−k(pE[MI

k ] + qE[MI
n−k])

E[uMI
n] = pn(qun + pE[uMI

n]) + qn(pun + qE[uMI
n]) +

n−1X

k=1

“n

k

”
pkqn−k(pE[uMI

k ] + qE[u
MI

n−k]).

• (Analytic) Poissonization
“
fW (z) =

P
n≥0 E[MI

n]zn

n! e
−z
”

:

fW (z) = qpzeqz + pqzepz + pfW (pz) + qfW (qz).

• Mellin Transform
`
f∗(s) =

R∞
0

f(x)xs−1dx
´
:

W
∗
(s) =

Γ(s + 1)(pq−s + qp−s)

1 − p−s+1 − q−s+1
.

• Inverse Mellin Transform: fW (z) = 1/h + fluctuations.

• (Analytic) Depoissonization: E[MI
n] = 1/h + fluctuations.



Analysis of Mn for Dependent Strings

2. Suffix Trees: Using analytic combinatorics on words we prove that

M(z, u) =
∞X

n=1

∞X

k=1

P(Mn = k)ukzn

=
X

w∈A∗
α∈A

uP(β)P(w)

Dw(z)

Dwα(z) − (1 − z)

Dw(z) − u(Dwα(z) − (1 − z))

Dw(z) = (1 − z)Sw(z) + zmP (w) and Sw(z) is the autocorrelation

polynomial:

Sw(z) =
X

k∈P(w)

P(wm
k+1)z

m−k

P(w) denotes the set of positions k of w satisfying w1 . . . wk = wm−k+1 . . . wm.

For any ε > 0 there exists β > 1 such that (all hard analytic work is here!)

|Pr(Mn = k) − Pr(MI
n = k)| = O(n−εβ−k)

Random suffix trees resemble random independent tries (cf. P. Jacquet,

W.S., 1994, Lonardi, W.S., Ward, 2005: IEEE Trans. Inf. Th., 2007).



Main Results

Theorem 2 (Ward, W.S., 2005). Let zk = 2krπi
ln p ∀k ∈ Z, where ln p

ln q = r
s for

some relatively prime integers r, s (i.e., ln p
ln q is rational).

The jth factorial moment E[(Mn)
j] = E[Mn(Mn − 1) · · ·Mn(−j + 1)] is

E[(Mn)
j] = Γ(j)

q(p/q)j + p(q/p)j

h
+ δj(log1/p n) + O(n−η)

where h = −p log p− q log q is the entropy rate, η > 0, and where Γ is the

Euler gamma function and

δj(t) =
X

k 6=0

−
e2krπitΓ(zk + j)

`
pjq−zk−j+1 + qjp−zk−j+1

´

p−zk+1 ln p + q−zk+1 ln q
.

δj is a periodic function that has a small magnitude and exhibits fluctuation

when ln p
ln q is rational

Note: On average there are

E[Mn] ∼ 1/h additional pointers.

j 1
ln 2

P
k 6=0

˛̨
Γ
`
j − 2kiπ

ln 2

´˛̨

1 1.4260 ×10−5

3 1.2072 ×10−3

5 1.1421 ×10−1

6 1.1823 ×100

8 1.4721 ×102

9 1.7798 ×103

10 2.2737 ×104



Distribution of Mn

Theorem 3 (Ward, W.S., 2005). Let zk = 2krπi
ln p ∀k ∈ Z, where ln p

ln q = r
s. Then

P (Mn = j) =
pjq + qjp

jh
+
X

k 6=0

−e
2krπi log1/p n

Γ(zk)(p
jq + qjp)(zk)

j

j!(p−zk+1 ln p + q−zk+1 ln q)
+ O(n

−η
)

where η > 0, and Γ is the Euler gamma function.

Therefore, Mn follows the logarithmic series distribution with mean 1/h (plus

some fluctuations).

The logarithmic series distribution ((pjq + qjp)/(jh))

is well concentrated around its mean EMn ≈ 1/h.

0

0.2

0.4

0.6

0.8

2 3 4 5 6 7 8

x



Outline Update

1. Tries and Suffix Trees

2. Why to bother?

3. Profiles of Tries

4. Applications: Error Resilient Lempel-Ziv’77

5. Application: Distributed Hash Tables (Multiple Tries)

(G. Park)



Distributed Hashing Tables

1. Distributed Hash Table (DHT) is a decentralized distributed system

that provides a lookup service similar to hash table by maintaining the

mapping from names to values distributed among the nodes.

2. DHT is used in peer-to-peer networks (e.g., Napster, Gnutella and

Freenet) for ID/keys management.

3. Each of n users/processors is given a key that is mapped into the unit

interval [0, 1] forming a unit circle.

4. Users can be considered as (infinite) binary strings which often are

organized as in a binary trie: strings are i.i.d. with p = q = 1/2.

5. The trie is used to locate peers with closest keys. It also partitions the

unit circle into intervals, which are owned by a host either to its left or

determined by the virtue of the trie.

interval owned

by ID
ID

(a)

interval owned

by ID

ID

(b)

internal node
external node
leaf

0 1

(a) (b)



Parameters of DHT

The objective of ID management is to make all intervals of about equal

length: Two parameters are important:

(a) Balance Bn of the partition determined by the length of the largest

and smallest interval.

(b) Search Time to locate the host that owns an interval.

For a trie implementation of DHT, the balance Bn can be defined as

Bn = 2Hn−Fn+O(1).

The goal is to make Bn = O(1).

We saw that for a symmetric trie (p = q = 1/2)

Hn = 2log2 n + O(1), Fn = log2 n − log2 log2 n + O(1).

so that

Bn = 2
2 log n−log 2+log log n+O(1)

= n + O(log n).



Two-choice Tries

Goal: Build a well-balanced trie with height close to its fillup level.

Two-choice Trie:

Each datum (key) has two strings, Xi and Yi, that is, there are n pairs of

strings (Xi, Yi), and we can select one, say Zi of the two to insert in the

trie.

A Greedy Heuristic:

Choose the string which, at the time of insertion would yield the leaf

nearest to the root. (Once the selection is made, it cannot be undone!)

Main Results:

With high probability
Hn

log n
→ 3

2

1

Q
=

3

4
α2

where Q = − log P2 = − log (p2 + q2).

Thus the height is reduced by 25% when compared to a standard trie and

Bn = 2
log

√
n−O(log log n)

=
√

n + O(log n).



Optimal off-line Algorithm

Define: Zi(0) = Xi and Zi(1) = Yi. Let {i1, . . . , in} ⊆ {0, 1}n such that

Hn(i1, . . . , in) is the height over Z1(i1), . . . , Zn(in).

Define the optimal height

H
∗
n = min

i1,...,in
Hn(i1, . . . , in)

over all 2n tries.

Main Results:

With high probability
Hn

log n
→ 1

Q
=

1

2
α2.

More precisely:

P


H

∗
n ≥ log n + t

Q

ff
≤ 8e

−t
, lim

n→∞
P


H

∗
n ≤ (1 − ǫ) log n

Q

ff
= 0.

Thus the height is reduced by 50% when compared to standard trie and

Bn = 2
log log n+O(1)

= log n + O(1).



Sketch of the Proof: Construction of an Optimal Trie

Construct an infinite trie over 2n strings. How to select n strings?

1 2 3 3’2’ 1’

T
1

T
2

T
3

d

T
1

T
3

T
2

1

1’2’

3’

2

3

graph G

1. Let Tj (1 ≤ j ≤ 2d) be a subtree rooted

at distance d from the root.

2. A bad datum is when both strings

(of the same datum) fall in the same Tj.

3. A colliding pair of data is such that for

j 6= k, each datum in the pair delivers

one string to Tj and one string to Tk.

4. We construct a multigraph G(d)

whose vertices represent the Tj.

We connect Tj with Tℓ if a datum deposits

one string in each of these trees.

5. Our job to select n strings in G(d) so that there is no: (i) bad datum, (ii)

no colliding data, (iii) and no cycle.



Sketch of the Proof: Algorithm

Algorithm:

1. We choose any one of the strings in the root node’s list.

2. For all other strings, choose the companion string of the same datum.

3. Continue until one string of each datum is chosen for the trie.

Lemma 1. (i) The probability of bad datum anywhere is not more than:

nP2
d
, P2 = p

2
= q

2
.

(ii) The probability of a colliding pair anywhere is not more than: 2n2P2
2d.

(iii) The probability that G has a cycle of length ≥ 3 is not more than:

(4n)3P2
3d

1 − 4nP2
d
.

Proof of Main Result:

P{Hn > d} ≤ P{there exists a bad datum} + P{there exists a colliding pair}
+P{there exists a cycle}

≤ nP2
d + 2n2P2

2d +
(4n)3P2

3d

1 − 4nP2
d
≤ 8nP2

d→0, if d ∼ log n/Q.

Algorithm Average Complexity: Using Tarjan’s parent pointer data

representations for forests, we can find the optimal selection in O(n log n).



Multiple-choice Tries

Consider now k strings (before k = 2) per datum.

Consider now n independent vectors X1, . . . , Xn of

k = ⌈c log n⌉, c > 0

i.i.d. uniform [0, 1] random variables Xi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Theorem 5. Let α ∈ (0, 1/3) and c = 2/α. Then there exists a selection

Z1, . . . , Zn such that the height Hn and fillup level Fn of the associated

trie for

X1,Z1, . . . , Xn,Zn

satisfy, for n ≥ 8,

P{Hn − Fn ≤ 2} ≥ 1 − 3

n
.

Thus Bn = O(1) (existential result).

Greedy Heuristic (on-line algorithm) for k = O(log n) gives

Hn − Fn ≤ 7, in probability

that is, Bn = O(1).



Analysis of Algorithms (AofA): Analytic Algorithmics

• Analysis of Algorithms is concerned with precise estimates of

complexity parameters of algorithms and aims at predicting algorithms’

behaviour. It develops general methods for obtaining closed-

form formulae, asymptotic estimates, and probability distributions

for combinatorial or probabilistic quantities. Properties of discrete

structures such as strings, trees, tries, dags, graphs are investigated.

• The area of analysis of algorithms was born on July 27, 1963, when D. E.

Knuth wrote his “Notes on Open Addressing”.

• Following Knuth and Hadamard’s precept 1, we study algorithmic

problems using techniques of complex analysis such as generating

functions, combinatorial calculus, Rice’s formula, Mellin transform,

Fourier series, sequences distributed modulo 1, saddle point methods,

analytic poissonization and depoissonization, and singularity analysis.

• This program, which applies complex-analytic tools to analysis of

algorithm, constitutes analytic algorithmics.

1 The shortest path between two truths on the real line passes through the complex plane.




