
Variable-to-Variable Codes with Small
Redundancy Rates∗

M. Drmota† W. Szpankowski‡

September 25, 2004

∗This research is supported by NSF, NSA and NIH.
†Institut f. Diskrete Mathematik und Geometrie, TU Wien, Austria
‡Department of Computer Science, Purdue University, U.S.A.

Outline of the Talk

1. Types of Codes

2. Redundancy and Redundancy Rates

3. Main Results

4. Sketch of Proof

5. Algorithm

Types of Codes

Fixed-to-Variable Code:

Fixed length blocks are mapped into variable-length binary code strings.
Example: Shannon and Huffman codes.

Variable-to-Fixed Code:

• Encoder partitions strings into phrases.
• Phrases belong to dictionaryD (complete tree).
• The encoder represents dictionary string by fixed-length code word.
Example: Tunstall code.

Variable-to-variable (VV) code:

• Encoder consists of a parser and a string encoder.
• The parser works as in the VF code (it partitions a sequence into phrases).
• The string encoder encodes dictionary strings into codeword C(d) of
length |C(d)| = `(d).

Redundancy and Redundancy Rates

Let A = {a1, . . . , am} be the input alphabet of m ≥ 2 symbols with
probabilities p1, . . . , pm.

A source S generates a sequence x with the underlying probability PS.

The average and worst case (maximal) redundancy of a fixed-to-variable
code are defined, respectively, as

R̄ =
X

x∈An

PS[L(x) + log PS(x)]

R
∗

= max
x∈An

[L(x) + log PS(x)]

where L(x) is the code length assigned to x ∈ An.

Redundancy rates are respectively

r̄ =
R̄

n

r
∗

=
R∗

n
.

Redundancy Rates for VV Codes

Let P := PD be the probability induced by the dictionary D.

Define the average delay D̄ as

D̄ =
X
d∈D

PD(d)|d|.

The (asymptotic) average redundancy rate r̄ is

r̄ = lim
n→∞

P
|x|=n PS(x)(L(x) + log PS(x))

n
.

Using renewal theory (regeneration theory) we find

lim
n→∞

P
|x|=n PS(x)L(x)

n
=

P
d∈D PD(d)`(d)

D̄
.

where `(d) is the length of the phrase d ∈ D.

A New Definition

Denote
• HS the binary source entropy,
• HD the dictionary entropy.

Then
P

d∈D PD(d)`(d)

D̄
−HS =

HD +
`P

d∈D PD(d)`(d)−HD
´

D̄
−HS.

By the Conservation of Entropy Theorem (Savari 99)

HD = HS · D̄,

hence

r̄ =

P
d∈D PD(d)`(d)−HD

D̄
which we adopt as our definition of the average redundancy rate.

Maximum Redundancy

Maximum (asymptotic) redundancy rate r∗

r∗ = lim
|x|→∞

maxx[L(x) + log PS(x)]

|x|
.

Assuming the source is sequence is partitioned into phrases x1, . . . , xk,
k →∞ we have

r∗ = lim
k→∞

maxx1,...,xk

Pk
i=1[`(x

i) + log PS(x
i)]Pk

i=1 |xi|

= lim
k→∞

Pk
i=1 maxxi[`(x

i) + log PS(x
i)]Pk

i=1 |xi|

= lim
k→∞

Pk
i=1 maxd∈D[`(d) + log P (d)]Pk

i=1 |xi|

= lim
k→∞

k maxd∈D[`(d) + log P (d)]Pk
i=1 |xi|

=
maxd∈D[`(d) + log P (d)]

D̄
(a.s.).

Main Result for Average Redundancy

Theorem 1. Let m ≥ 2 and S a memoryless or a Markov source.
There exists a variable-to-variable code such that its average redundancy
satisfies

r̄ = O(D̄
−5/3

).

There also exists a variable-to-variable code such that the worst case
redundancy satisfies

r
∗
= O(D̄

−4/3
),

however, the maximal code length might be infinite.

The estimate for r̄ for the memoryless source is the same as in Khodak’s
1972 paper. However, the method presented in Khodak’s paper is difficult
to follow and it is not clear one can construct a VV code.

Main Result for Maximal Redundancy

Theorem 2. Under the same assumption as in Theorem 1.
For almost all source parameters pj (resp. pij):

• There exists a variable-to-variable code such that its average
redundancy is bounded by

r̄ ≤ D̄−
4
3−

m
3 +ε,

where ε > 0 and the maximal length is O(D̄ log D̄).
• There also exists a variable-to-variable code with worst case

redundancy
r
∗ ≤ D̄

−1−m
3 +ε

for ε > 0.

Lower Bound

Theorem 3. For every variable-to-variable code and almost all parameters
pj, the following lower bound holds

r∗ ≥ r̄ ≥ D̄−2m−1−ε.

for ε > 0

Some comments:

1. Typically the best possible average and worst case redundancy are
measured in terms of negative powers of D̄ that linearly decrease in
term of the alphabet size m.

2. It seems to be very difficult to obtain the optimal exponent (almost
surely). Nevertheless the bounds we are obtain are best possible with
respect to the methods we use.

3. Note that Theorem 4 of Kodak 1972 paper states a lower bound of
for the redundancy of the form r̄ ≥ D̄−9(log D̄)−8 (for almost all
memoryless sources). In view of our Theorem 3 this cannot be true for
large m.

Rough Idea ...

Let A = {1, 2, . . . , m} and p1 + · · · pm = 1.
By ki we denote the number of symbols i in a word x.

For the Shannon code the redundancy is

R̄ =
X

x

“
d− log p

k1
1 · · · p

km
m e+ log p

k1
1 · · · p

km
m

”

= 1−
X

x

〈−k1 log p1 − · · · − km log pm〉

=
X

x

〈k1 log p1 + · · · + km log pm〉

where 〈a〉 = a− bac is the fractional part of a.

Basic Thrust of our Approach

In order to minimize the redundancy of a code we
must find such k1, . . . , km that

〈k1 log p1 + · · ·+ km log pm〉

is as close as possible to an integer.

Proof by Picture

dr

r

“good” word inDj

“bad” word in Bj

N2

N2 + O(N)

2N2 + O(2N)

3N2 + O(3N)

KN2 + O(KN)
K = N log N

.

.

.

P D1() c
N
----=

P D2() 1 c
N
----– 

 =
c
N

P D3() 1 c
N
----– 

  2
=

c
N

P Dk() 1 c
N
----– 

  k 1–
=

c
N

Algorithm

Input:

• m, an integer≥ 2,

• positive rational numbers p1, . . . , pm with p1 + · · ·+ pm = 1, pm is not a
power of 2

• ε < 1, a positive real number.

Output:

• A VV-code (given by a dictionary D, a complete prefix free set on
an m-ary alphabet and by a prefix code C : D → {0, 1}∗) with the
average redundancy

r ≤ ε/D

where the average dictionary code length D satisfies

D ≥ c(m, p1, . . . , pm)/ε
3
.

Algorithm

1. Calculate a convergent M
N = [c0, c1, . . . , cn] of log2 pm for which N >

4/ε.
2. Set k0

j = bpjN
2c, x =

Pm
j=1 k0

j log2 pj, n0 =
Pm

j=1 k0
j .

3. Set D = ∅, B = {empty word}, and p = 0
while p < 1− ε/4 do

Take r ∈ B of minimal length
b← log2 P (r)
Determine 0 ≤ k < N that solves
kM ≡ 1− b(x + b)Nc mod N
(i.e., 1/N ≤ 〈kM/N + x + b〉 ≤ 2/N)
n← n0 + k
D′ ← {d ∈ An : type(d) = (k0

1, . . . , km + k)}
D ← D ∪ r · D′
B ← (B \ {r} ∪ r · (An \ D′)
p← p + P (r)P (D′), where

P (D′) =
n!

k0
1! · · · k0

m−1!(k
0
m + k)!

p
k0
1

1 · · · p
k0
m−1

m−1 pk0
m+k

m .

end while
4. D ← D ∪ B
5. Construct a Shannon code `(d) = d−P (d)e.

Some Definitions Needed in the Proof

Define dispersion of the set X ⊆ [0, 1) as

δ(X) = sup
0≤y<1

inf
x∈X
‖y − x‖,

where ‖x‖ = min(〈x〉, 〈1 − x〉). That is, for every y ∈ [0, 1) there exists
x ∈ X with ‖y − x‖ ≤ δ(X).

Lemma 1. Suppose that γ is an irrational number. The there exists N such
that

δ ({〈kγ〉 : 0 ≤ k < N}) ≤
2

N
.

Lemma 2. Let (γ1, . . . , γm) = (log p1, . . . , log pm) an m-vector of real
numbers such that at least one of its coordinates is irrational. There exists
N such that the dispersion of the set

X = {〈k1γ1 + · · · + kmγm〉 : 0 ≤ kj < N (1 ≤ j ≤ m)}

is bounded by

δ(X) ≤
2

N
.

Two Important Lemmas

Lemma 3. LetD be a finite set with probability distribution P such that that
for every d ∈ D the length ld satisfies |`d + log2 P (d)| ≤ 1. If

X
d∈D

P (d)(`d + log2 P (d)) ≥ 2
X
d∈D

P (d)(`d + log2 P (d))2

then there exists an injective mapping C : D → {0, 1}∗ such that C(D) is
a prefix free set and |C(d)| = ld for all d ∈ D.

Proof: Kraft’s inequality and Taylor’s expansion.

Lemma 4. Let D be a finite set with probability distribution P . Then

r̄ ≥
1

2

1

D̄

X
d∈D̄

P (d)‖ log2 P (d)‖2,

for a certain constant c > 0.

Main Step of the Proof

Theorem 4. Suppose that for some N ≥ 1 and η ≥ 1 the set

X = {〈k′1 log2 p1 + · · ·+ k′m log2 pm〉 : 0 ≤ k′j < N}

has dispersion

δ(X) ≤
2

Nη
.

Then there exists a variable-to-variable code (with D̄ = Θ(N3)) such that
the average redundancy rate is

r̄ ≤ c′m · D̄
−4+η

3 ,

There exists also another variable-to-variable code with the the worst case
redundancy bounded by

r
∗ ≤ c

′′
m · D̄

−1−η
3 ,

where the constants c′m, c′′m > 0 just depend on m.

Observe that above theorem and previous lemmas immediately
implied our main result after setting η = 1.

Sketch of the Proof of Theorem 3

1. Set k0
i := bpiN

2c (1 ≤ i ≤ m) and
x = k0

1 log2 p1 + · · · + k0
m log2 pm.

By Theorem 3 there exist integers 0 ≤ k1
j < N such that

D
x + k1

1 log2 p1 + · · ·+ k1
m log2 pm

E

=
D
(k0

1 + k1
1) log2 p1 + · · ·+ (k0

m + k1
m) log2 pm

E

<
4

Nη
.

2. Build an m-ary tree starting at the root with
k0

1 + k′1 edges of type 1,
k0

2 + k′2 edges of type 2, . . ., and
k0

m + k′m edges of type m.
Let D1 denote the set of the corresponding words. Then

c′

N
≤ P (D1) =

“(k0
1 + k′1) + · · ·+ (k0

m + k′m)

k0
1 + k′1, . . . , k0

m + k′m

”
p

k0
1+k′1

1 · · · pk0
m+k′m

m

≤
c′′

N

for certain positive constants c′, c′′.

Constructing the Prefix Code

3. By construction, all words d ∈ D1 satisfy

〈log2 P (d)〉 <
4

Nη
,

and have the same length

n1 = (k0
1 + k′1) + · · · + (k0

m + k′m) = N2 + O(N).

4. Consider words not in D1, that is, B1 = An1 \ D1 that by above satisfy

c′′

N
≤ P (B1) ≤ 1−

c′

N
.

Second Step ...

5. Take a word r ∈ B1 and concatenate it with a word d2 of length ∼ N2

such that log2 P (rd2) is close to an integer with high probability.

For every word r ∈ B1 we set

x(r) = log2 P (r) + k
0
1 log2 p1 + · · ·+ k

0
m log2 pm.

By condition of Theorem 3 again there exist integers 0 ≤ k2
j(r) < N (1 ≤

j ≤ m) such that

D
x(r) + k

2
1(r) log2 p1 + · · · + k

2
m(r) log2 pm

E
<

4

Nη

Proving Some Properties ...

6. We continue extending the tree T by adding a path starting at r ∈ B1

with
k0

1 + k2
1(r) edges of type 1,

k0
2 + k2

2(r) edges of type 2,
. . ., and
k0

m + k2
m(r) edges of type m.

We observe that

P (r)
c′

N
≤ P (D2(r)) ≤ P (r)

c′′

N
.

Furthermore (by construction) we have

〈log2 P (d)〉 <
4

Nη

for all d ∈ D2(r).

Last Step ...

7. This construction is cut after K = O(N log N) steps so that

P (BK) ≤ c
′′

„
1−

c′

N

«K

≤
1

Nβ

for some β > 0. This also ensures that

P (D1 ∪ · · · ∪ DK) > 1−
1

Nβ
.

8. The complete prefix free set D is

D = D1 ∪ · · · ∪ DK ∪ BK.

By the construction the average delay of D is

c1N
3 ≤ D̄ =

X
d∈D

P (d) |d| ≤ c2N
3

whilethe maximal code length satisfies

max
d∈D
|d| = ON3 log N = OD̄ log D̄).

Finishing the Proof ...

9. For every d ∈ D1 ∪ · · · ∪ DK we can choose a non-negative integer `d

with
|`d + log2 P (d)| <

2

Nη
.

Indeed:
0 ≤ `d + log2 P (d) <

2

Nη

if 〈log2 P (d)〉 < 2/Nη and

−
2

Nη
< `d + log2 P (d) ≤ 0

if 1− 〈log2 P (d)〉 < 2/Nη.

For d ∈ BK we set `d = d− log2 P (d)e.

10. The final step is to verify that condition of Lemma 3 is satisfied, which is
an easy step.

