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Structural Information

Information Theory of Data Structures: Following Ziv (1997) we propose to
explore finite size information theory of data structures (i.e., sequences,
sets, frees, graphs), that is, o develop information theory of various data
structures beyond first-order asymptofics.

F. Brooks, jr. (JACM, 80, 2003, "Three Great Challenges for ... CS"):

"We have no theory that gives us a metric for the Information embodied in
structure. This is the most fundamental gap in the theoretical underpinnings
of information science and of computer science.”

Networks (Infernet, protein-protein interactions, and collaboration network)
and Maftter (chemicals and proteins) have structures.

But one may also interested in structural properties of systems with local
dependencies or interactions represented by Markov fields.

Another problem: flow of structural inforrnation over a noisy channel.




Sequence-Structure Channel
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Sequences: S = (S1,...Sn). Llid. with P(S; = H) =p=1— P(S; = P).
B: a parameter that is meant to represent inverse temperature.

Folds: Fn denotes the set of self-avoiding walks of length N filing a square
in Z° of size N, starting at (0, 0) and ending af (VN — 1,v/N — 1).

Energy: £(s, f) denotes energy for a fold f computed as follows: for a given
symmetric 2 x 2 scoring matrix Q@ = {Q;;}; jeq1,2y define

E(fls) = 2(Quicau + Qa2cpp + Qi2cHP), (1

where c,, denotes the number of (non-adjacent) confacts in a fold.



Information Theoretic Quantities

Capacity :
C = r]gl(?;l(S; F) = r]gl(%f[H(F) — H(F|[S)]
where

Conditional Entropy:

H(F|S) = Ellog Z(S, 8)] + BE[E(F, S)].



Information Theoretic Quantities

Capacity :

C = r]gl(?;l(S; F) = r]gl(%f[H(F) — H(F|[S)]

where

Conditional Entropy:

H(F|S) = Ellog Z(S, 8)] + BE[E(F, S)].

Observe that
E[E(F,S)] =N -«
for some o (that can be computed).

Example: Consider
H P

H(O0 1
@= P(l 0)

E[£(F|S)] = 2pgN + O(VN).

We find

Question: What can we say about E[log Z (S, 8)]?



Why to Bother?

Mathematical/Informmation-theoretic motivation:

e Maps seguences to structures.
e A channel with full memory.

e Several information theoretic quantities of interest exhibit unusual phase
transitions with respect to temperature (=1/5).

e Capacity of the protein folding channel is conjectured to have a phase
fransition with repect to 3.

e Probability: A nonftrivial dependence structure between fold energies
makes lower bounding the partition function challenging.

e Combinatorics: Quantities of interest depend crucially on the cardinality
of the number of folds or number of self-avoiding walks (open problem).

Does the limit
. log |.7:N|
lim ——
N—o0 N
exist? In general, what is an asymptotic behavior of | Fy|?



Biological Motivation

Protein Folds in Nature
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Physical/Biological motivation:

e The channelis a model of protfein folding.

e Sequence distribution in nature exhibits a power law. In the channel
model, such distributions (empirically) almost achieve capacity (nature
prefers to avoid ambiguity!): capacity may have biological significance.



Information Theoretic Approach & Experimental Results

1. Compute the capacity achieving input distribution from Blahut-Arimoto
algorithm (for lattices of size 5, 6).

2. Partition the set of all sequences according to probability that this
distribution assigns to them (sequence types).

3. Plot the sequence distribution (x axis) versus fraction (y axis) of all
sequences that got that distribution. Here what we see:
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We have a power law as in nature!
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We have a power law as in nature!

Magner, Szpankowski, Kihara, "On the Origin of Protein Superfamilies and
Superfolds”, Scientific Reports, 2015.



Back to Theory ...

Recall that
H(F|S) = E[log Z(S, B)] + BE[E(F, S)].

Define free energy v(3, S) as

_ E[log Z(S, 8)]

VN(B)S)_ ) V(Bas):llmsuprN(/Bas)

By submultiplicativity property of Fy we conclude

lim 081N
N—o0 B & [
for up > 1.
Then
Elog Z (S, 8) ~ log |Fn| - v(B,S) ~ Nlogp-~v(B,S5)
leading to

H(F[S) ~ N[v(B,5)log pn + Ba]




Main Results

Theorem 1. For any disfribufion over Sy, B > 0, and scoring matrix @Q we

have
thUPT < p-v(B) + Ba.

N—o0

Furthermore, if Q comes from a cerfain broad class of scoring matrices
(satisfying a “niceness” condition), there exists o> > 0 such that

Var[£(f|S)] ~ No* > 0.

Then we have the following phase fransition:

lim sup
N —o0

H(F|S) _ Ju+30°8° B>0
BV20%n B> B. =L

The condifional entropy phase transition is a consequence of the free
energy phase transition:

log 1 (8, §) < § 10BH = Pt 30”5t B < YR
B 1S S rTog - ) > L



Current/Future Work

Lower bound: We conjecture that a matching lower bound on the free
energy holds, which would give

log u — Ba + 3
log 1t - v(8, S)= 2
og u ’7(6 ) { 5\/20_2 log,u _ Ba B Z \/21;3%#

0-262 ,8 < \/2?gu

The lower bounds requires to understand dependencies between folds.

More general source models: We considered here sequences generafted
by a memoryless source, but more general models (e.g., Markov, mixing)
are more realistic and probably mathematically tractable,

Extensions to k-dimensional self-avoiding walks and other structures are
possible.



Capacity Conjecture

The optimal oufput distribution observed in experiments seems to be
uniform, as shown below:

Optimal Fold Distribution
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Conjecture. We conjecture that

C ~log|Fn| — lgl(gr)lH(FIS)

where H(F|S) we just computed. The minimization over p (for the
memoryless case) is easy to perform.

Thus one should expect a phase fransition, with respect to 3, of the capacity.
Experiments do confirm it.



Experimental Confirmation of Phase Transition in the Capacity
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Upper Bound Proof Sketch

1. First upper bound:

E[log Z(S, B)] < logE[Z(S, B)] = log > E[e "]
FEFN

because Z (S, 3) is a convex function.



Upper Bound Proof Sketch

1. First upper bound:

E[log Z(S, 8)] < logE[Z(S, 8)] = log Y E[e V%],
feEFN

because Z (S, 3) is a convex function.
2. Denote by Fy(x) the CDF of

(E(f]S) — EIE(S]S)])
T~ .

Let & (x) be the CDF of (0, *). Then it can be proved

E(fIS) =

—1/2
[Fn — @||oo = O(N~?),

by results on m-dependent random fields, that is, £(f|S) ~ N (0, o?).
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1. First upper bound:

E[log Z(S, B)] < logE[Z(S, B)] = log > E[e V)]
FEFN

because Z(S, 3) is a convex function.

2. Denote by Fiy(x) the CDF of

(E(f]S) — E[E(f]5)])
T~ .

Let ®(z) be the CDF of (0, o). Then it can be proved

E(f|S) =

|Fy — @)l = O(N /%),
by results on m-dependent random fields, that is, £(f|S) ~ N (0, o?).

3. Each energy is a sum of local energies: denoting by X;(f|S) the contact
energy of the ith residue,

E(f18) = 2 Xi(f19),

and each residue has a contact with at most 3 others (so each term of the
sum is dependent on at most 3 others).



Upper Bound Proof Sketch (continued)

4. Let oy (z) = E[e™U19)] and ¢(z) = E[e™N 0] = exp(Lzo?).
Then large deviations via marfingale inequadlities, infegration by parts of the
fold MGF integral, and fold energy CLIT give

lim 2t2,

N — o0

log pn(tV N) ~log o(t) = Lo
N 2

so that we conclude

Ellog Z (S, B)] < log E[Z(S, B)]

~ [ 3 /NEUIS)—E[E(f]9)]
—log S e PEEUISIE | OV VN

fEfN n
—log > o PEEINR 'e—ﬁx/Né‘N]
fEJ:N )
—log 3 e faN@ro), o307 B2N (1+0(1)
fEfN
log | F 1
=N (% — Ba(l + o(1)) + 5(;252(1 + 0(1)>

which leads to the first upper bound.



Second Upper Bound

5. To derive the second upper bound, we observe
- —BE(f19)
—F min £(f|5) < log ( > e )
fE.FN

leading to

. E[— minger, E(f]S5)]
lim sup
N—o0 N

—1 1 2
<p p—o+ 550
which is minimized at 8 = 3, = —ﬂf“ Hence we find

E[—mi E(fIS
lim sup [—minsery ESIS)] _

2021 — .
N — o0 N o




Second Upper Bound: Continuation

6. Let y(B) = E[log Z (S, B)]. By concavity for g > ., we have

where

Y ery EWIS)e U

Y (B) = E _ ZfeFN o—BE(F]S) _
I . Z(S,PB)]
SEK%%%aﬂ$>ZwﬁL

< N(F - o+ 5f0)

Applying the upper bound on ¥ (S,) gives the second upper bound.



Lower Bound Intuition

CLT for fold energies suggests that our problem looks somewhat like
Derrida’s Random Energy Model (configuration energies are i.i.d. standard
Gaussians). How far does this go?

For two folds f and g,
Cov[E(F]S), E(g]S)] = O(VN) = o(E[E(f]S)]),

by limited dependence structure of local energies. So £(f|S) and £(g|S)
are asymptoftically not too correlated.

We can apply the Cradmer-Wold theorem to show that
(E(£19),E(g1S)) = N(0, 0”L).
SO negligible correlation implies negligible dependence.

Conclusion: Our model looks a lot like the Random Energy Model. Adapt
the lower bound proof technique in that case.



That’s It

THANK YOU
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How do you distinguish a cat from a dog by their DNA?
Did Shakespeare really write all of his plays?

Pattern matching techniques can offer answers to these questions and to
many others, from molecular biology, to telecommunications, to classifying
Twitter content.

This book for researchers and graduate students demonstrates the
probabilistic approach to pattern matching, which predicts the performance
of pattern matching algorithms with very high precision using analytic
combinatorics and analytic information theory. Part I compiles known
results of pattern matching problems via analytic methods. Part II focuses on
applications to various data structures on words, such as digital trees, suffix
trees, string complexity and string-based data compression. The authors use
results and techniques from Part I and also introduce new methodology such
as the Mellin transform and analytic depoissonization.

More than 100 end-of-chapter problems help the reader to make the link
between theory and practice.
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