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Structural Information

Information Theory of Data Structures: Following Ziv (1997) we propose to

explore finite size information theory of data structures (i.e., sequences,

sets, trees, graphs), that is, to develop information theory of various data

structures beyond first-order asymptotics.

F. Brooks, jr. (JACM, 50, 2003, “Three Great Challenges for . . . CS”):

“We have no theory that gives us a metric for the Information embodied in

structure. This is the most fundamental gap in the theoretical underpinnings

of information science and of computer science.”

Networks (Internet, protein-protein interactions, and collaboration network)

and Matter (chemicals and proteins) have structures.

But one may also interested in structural properties of systems with local

dependencies or interactions represented by Markov fields.

Another problem: flow of structural information over a noisy channel.



Sequence-Structure Channel
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Sequences: S = (S1, . . . SN), i.i.d. with P (Si = H) = p = 1 − P (Si = P ).

β: a parameter that is meant to represent inverse temperature.

Folds: FN denotes the set of self-avoiding walks of length N filling a square

in Z
2 of size N , starting at (0, 0) and ending at (

√
N − 1,

√
N − 1).

Energy: E(s, f) denotes energy for a fold f computed as follows: for a given

symmetric 2 × 2 scoring matrix Q = {Qij}i,j∈{1,2} define

E(f |s) = 2(Q11cHH +Q22cPP +Q12cHP), (1)

where cxy denotes the number of (non-adjacent) contacts in a fold.



Information Theoretic Quantities

Capacity :

C = max
P (S)

I(S;F ) = max
P (S)

[H(F ) −H(F |S)]

where

Conditional Entropy:

H(F |S) = E[logZ(S, β)] + βE[E(F, S)].



Information Theoretic Quantities

Capacity :

C = max
P (S)

I(S;F ) = max
P (S)

[H(F ) −H(F |S)]

where

Conditional Entropy:

H(F |S) = E[logZ(S, β)] + βE[E(F, S)].

Observe that

E[E(F, S)] = N · α
for some α (that can be computed).

Example: Consider

Q =

(

H P

H 0 1
P 1 0

)

We find

E[E(F |S)] = 2pqN +O(
√
N).

Question: What can we say about E[logZ(S, β)]?



Why to Bother?

Mathematical/Information-theoretic motivation:

• Maps sequences to structures.

• A channel with full memory.

• Several information theoretic quantities of interest exhibit unusual phase

transitions with respect to temperature (=1/β).

• Capacity of the protein folding channel is conjectured to have a phase

transition with repect to β.

• Probability: A nontrivial dependence structure between fold energies

makes lower bounding the partition function challenging.

• Combinatorics: Quantities of interest depend crucially on the cardinality

of the number of folds or number of self-avoiding walks (open problem).

Does the limit

lim
N→∞

log |FN |
N

exist? In general, what is an asymptotic behavior of |FN |?



Biological Motivation

Protein Folds in Nature

For each possible cardinality of

protein families (x axis), count

the number of protein folds (or

sequences) observed in nature

which are associated with that

number of families. Plot on y axis the

fraction of protein folds.

In nature, we observe lots of

sequences with few associated

folds and few sequences with lots of

associated folds.

Physical/Biological motivation:

• The channel is a model of protein folding.

• Sequence distribution in nature exhibits a power law. In the channel

model, such distributions (empirically) almost achieve capacity (nature

prefers to avoid ambiguity!): capacity may have biological significance.



Information Theoretic Approach & Experimental Results

1. Compute the capacity achieving input distribution from Blahut-Arimoto

algorithm (for lattices of size 5, 6).

2. Partition the set of all sequences according to probability that this

distribution assigns to them (sequence types).

3. Plot the sequence distribution (x axis) versus fraction (y axis) of all

sequences that got that distribution. Here what we see:

We have a power law as in nature!
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1. Compute the capacity achieving input distribution from Blahut-Arimoto

algorithm (for lattices of size 5, 6).

2. Partition the set of all sequences according to probability that this

distribution assigns to them (sequence types).

3. Plot the sequence distribution (x axis) versus fraction (y axis) of all

sequences that got that distribution. Here what we see:

We have a power law as in nature!

Magner, Szpankowski, Kihara, “On the Origin of Protein Superfamilies and

Superfolds”, Scientific Reports, 2015.



Back to Theory . . .

Recall that

H(F |S) = E[logZ(S, β)] + βE[E(F, S)].

Define free energy γ(β, S) as

γN(β, S) =
E[logZ(S, β)]

log |FN |
, γ(β, S) = lim sup

N→∞
γN(β, S).

By submultiplicativity property of FN we conclude

lim
N→∞

log |FN |
N

= logµ.

for µ > 1.

Then

E logZ(S, β) ∼ log |FN | · γ(β, S) ∼ N logµ · γ(β, S)
leading to

H(F |S) ∼ N [γ(β, S) log µ+ βα]



Main Results

Theorem 1. For any distribution over SN , β > 0, and scoring matrix Q we

have

lim sup
N→∞

H(F |S)
N

≤ µ · γ(β) + βα.

Furthermore, if Q comes from a certain broad class of scoring matrices

(satisfying a “niceness” condition), there exists σ2 > 0 such that

Var[E(f |S)] ∼ Nσ
2
> 0.

Then we have the following phase transition:

lim sup
N→∞

H(F |S)
N

≤
{

µ+ 1
2σ

2β2 β > 0

β
√

2σ2µ β ≥ β∗ =
√
2µ
σ .

The conditional entropy phase transition is a consequence of the free

energy phase transition:

logµ · γ(β, S) ≤
{

logµ− βα+ 1
2σ

2β2 β <
√
2 log µ
σ

β(
√

2σ2 logµ− α) β ≥
√
2 log µ
σ



Current/Future Work

Lower bound: We conjecture that a matching lower bound on the free

energy holds, which would give

logµ · γ(β, S)=
{

logµ− βα+ 1
2σ

2β2 β <
√
2 log µ
σ

β
√

2σ2 log µ− βα β ≥
√
2 log µ
σ

The lower bounds requires to understand dependencies between folds.

More general source models: We considered here sequences generated

by a memoryless source, but more general models (e.g., Markov, mixing)

are more realistic and probably mathematically tractable.

Extensions to k-dimensional self-avoiding walks and other structures are

possible.



Capacity Conjecture

The optimal output distribution observed in experiments seems to be

uniform, as shown below:

Conjecture. We conjecture that

C ∼ log |FN | − min
P (S)

H(F |S)

where H(F |S) we just computed. The minimization over p (for the

memoryless case) is easy to perform.

Thus one should expect a phase transition, with respect to β, of the capacity.

Experiments do confirm it.



Experimental Confirmation of Phase Transition in the Capacity



Upper Bound Proof Sketch

1. First upper bound:

E[logZ(S, β)] ≤ logE[Z(S, β)] = log
∑

f∈FN

E[e−βE(f |S)],

because Z(S, β) is a convex function.
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.

Let Φ(x) be the CDF of N (0, σ2). Then it can be proved

‖FN − Φ‖∞ = O(N
−1/2

),

by results on m-dependent random fields, that is, Ê(f |S) ∼ N(0, σ2).
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(E(f |S) − E[E(f |S)])√

N
.

Let Φ(x) be the CDF of N (0, σ2). Then it can be proved

‖FN − Φ‖∞ = O(N
−1/2

),

by results on m-dependent random fields, that is, Ê(f |S) ∼ N(0, σ2).

3. Each energy is a sum of local energies: denoting by Xi(f |S) the contact

energy of the ith residue,

E(f |S) =
N
∑

i=1

Xi(f |S),

and each residue has a contact with at most 3 others (so each term of the

sum is dependent on at most 3 others).



Upper Bound Proof Sketch (continued)

4. Let ϕN(x) = E[exÊ(f |S)] and ϕ(x) = E[exN(0,σ2)] = exp(12x
2σ2).

Then large deviations via martingale inequalities, integration by parts of the

fold MGF integral, and fold energy CLT give

lim
N→∞

logϕN(t
√
N)

N
= logϕ(t) =

1

2
σ2t2,

so that we conclude

E[logZ(S, β)] ≤ logE[Z(S, β)]

= log
∑

f∈FN

e
−βE[E(f |S)]

E

[

e
−β

√
N

E(f |S)−E[E(f |S)]√
N

]

= log
∑

f∈FN

e−βE[E(f |S)]E
[

e−β
√
N ÊN

]

= log
∑

f∈FN

e−βαN(1+o(1)) · e12σ
2β2N(1+o(1))

= N

(

log |FN|
N

− βα(1 + o(1)) +
1

2
σ2β2(1 + o(1)

)

which leads to the first upper bound.



Second Upper Bound

5. To derive the second upper bound, we observe

−β min
f∈FN

E(f |S) ≤ log





∑

f∈FN

e
−βE(f |S)





leading to

lim sup
N→∞

E[−minf∈FN E(f |S)]
N

≤ β
−1
µ− α+

1

2
βσ

2

which is minimized at β = β∗ =
√
2µ
σ . Hence we find

lim sup
N→∞

E[−minf∈FNE(f |S)]
N

≤
√

2σ2µ− α.



Second Upper Bound: Continuation

6. Let ψ(β) = E[logZ(S, β)]. By concavity for β > β∗, we have

ψ(β) ≤ ψ(β∗) + ψ′(β∗)(β − β∗).

where

ψ′(β) = E



−
∑

f∈FN E(f |S)e−βE(f |S)
∑

f∈FN e
−βE(f |S)





≤ E

[(

−min
f∈FN

E(f |S)
)

Z(S, β)

Z(S, β)

]

≤ N(β−1µ− α+
1

2
βσ2)

Applying the upper bound on ψ(β∗) gives the second upper bound.



Lower Bound Intuition

CLT for fold energies suggests that our problem looks somewhat like

Derrida’s Random Energy Model (configuration energies are i.i.d. standard

Gaussians). How far does this go?

For two folds f and g,

Cov[E(f |S), E(g|S)] = O(
√
N) = o(E[E(f |S)]),

by limited dependence structure of local energies. So E(f |S) and E(g|S)
are asymptotically not too correlated.

We can apply the Crámer-Wold theorem to show that

(Ê(f |S), Ê(g|S)) D−→ N (0, σ
2
I2).

So negligible correlation implies negligible dependence.

Conclusion: Our model looks a lot like the Random Energy Model. Adapt

the lower bound proof technique in that case.



That’s It
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