Phase Transitions in a Sequence-Structure Channel

A. Magner and D. Kihara and W. Szpankowski
Purdue University
W. Lafayette, IN 47907

January 29, 2015

ITA, San Diego, 2015
Information Theory of Data Structures: Following Ziv (1997) we propose to explore finite size information theory of data structures (i.e., sequences, sets, trees, graphs), that is, to develop information theory of various data structures beyond first-order asymptotics.

F. Brooks, jr. (JACM, 50, 2003, “Three Great Challenges for . . . CS”): “We have no theory that gives us a metric for the information embodied in structure. This is the most fundamental gap in the theoretical underpinnings of information science and of computer science.”

Networks (Internet, protein-protein interactions, and collaboration network) and Matter (chemicals and proteins) have structures.

But one may also interested in structural properties of systems with local dependencies or interactions represented by Markov fields.

Another problem: flow of structural information over a noisy channel.
Sequence-Structure Channel

\[P(f|s) := \frac{e^{-\beta \mathcal{E}(s,f)}}{Z(s, \beta)} \]

\[Z(s, \beta) := \sum_{f \in \mathcal{F}} e^{-\beta \mathcal{E}(s,f)} \]
Sequence-Structure Channel

\[
P(f|s) := \frac{e^{-\beta \mathcal{E}(s,f)}}{Z(s, \beta)} \quad \quad Z(s, \beta) := \sum_{f \in \mathcal{F}} e^{-\beta \mathcal{E}(s,f)}
\]

Sequences: \(S = (S_1, \ldots S_N) \), i.i.d. with \(P(S_i = H) = p = 1 - P(S_i = P) \).

\(\beta \): a parameter that is meant to represent inverse temperature.

Folds: \(\mathcal{F}_N \) denotes the set of self-avoiding walks of length \(N \) filling a square in \(\mathbb{Z}^2 \) of size \(N \), starting at \((0, 0) \) and ending at \((\sqrt{N} - 1, \sqrt{N} - 1) \).

Energy: \(\mathcal{E}(s, f) \) denotes energy for a fold \(f \) computed as follows: for a given symmetric \(2 \times 2 \) scoring matrix \(Q = \{Q_{ij}\}_{i,j \in \{1,2\}} \) define

\[
\mathcal{E}(f|s) = 2(Q_{11}c_{HH} + Q_{22}c_{PP} + Q_{12}c_{HP}),
\]

where \(c_{xy} \) denotes the number of (non-adjacent) contacts in a fold.
Information Theoretic Quantities

Capacity:
\[C = \max_{P(S)} I(S; F) = \max_{P(S)} [H(F) - H(F|S)] \]

where

Conditional Entropy:
\[H(F|S) = \mathbb{E}[\log Z(S, \beta)] + \beta \mathbb{E}[\mathcal{E}(F, S)]. \]
Information Theoretic Quantities

Capacity:

\[C = \max_{P(S)} I(S; F) = \max_{P(S)} [H(F) - H(F|S)] \]

where

Conditional Entropy:

\[H(F|S) = \mathbb{E}[\log Z(S, \beta)] + \beta \mathbb{E}[\mathcal{E}(F, S)]. \]

Observe that

\[\mathbb{E}[\mathcal{E}(F, S)] = N \cdot \alpha \]

for some \(\alpha \) (that can be computed).

Example: Consider

\[Q = \begin{pmatrix} H & P \\ H & 0 & 1 \\ P & 1 & 0 \end{pmatrix} \]

We find

\[\mathbb{E}[\mathcal{E}(F|S)] = 2pqN + O(\sqrt{N}). \]

Question: What can we say about \(\mathbb{E}[\log Z(S, \beta)] \)?
Why to Bother?

Mathematical/Information-theoretic motivation:

● Maps sequences to structures.
● A channel with full memory.
● Several information theoretic quantities of interest exhibit unusual phase transitions with respect to temperature ($=1/\beta$).
● Capacity of the protein folding channel is conjectured to have a phase transition with respect to β.
● Probability: A nontrivial dependence structure between fold energies makes lower bounding the partition function challenging.
● Combinatorics: Quantities of interest depend crucially on the cardinality of the number of folds or number of self-avoiding walks (open problem). Does the limit

$$\lim_{N \to \infty} \frac{\log |\mathcal{F}_N|}{N}$$

eexist? In general, what is an asymptotic behavior of $|\mathcal{F}_N|$?
Biological Motivation

Protein Folds in Nature

For each possible cardinality of protein families (x axis), count the number of protein folds (or sequences) observed in nature which are associated with that number of families. Plot on y axis the fraction of protein folds.

In nature, we observe lots of sequences with few associated folds and few sequences with lots of associated folds.

Physical/Biological motivation:

- The channel is a model of protein folding.
- Sequence distribution in nature exhibits a power law. In the channel model, such distributions (empirically) almost achieve capacity (nature prefers to avoid ambiguity!): capacity may have biological significance.
1. Compute the capacity achieving input distribution from Blahut-Arimoto algorithm (for lattices of size 5, 6).

2. Partition the set of all sequences according to probability that this distribution assigns to them (sequence types).

3. Plot the sequence distribution (x axis) versus fraction (y axis) of all sequences that got that distribution. Here what we see:

We have a power law as in nature!
Information Theoretic Approach & Experimental Results

1. Compute the capacity achieving input distribution from Blahut-Arimoto algorithm (for lattices of size 5, 6).

2. Partition the set of all sequences according to probability that this distribution assigns to them (sequence types).

3. Plot the sequence distribution (x axis) versus fraction (y axis) of all sequences that got that distribution. Here what we see:

We have a power law as in nature!

Recall that
\[H(F|S) = E[\log Z(S, \beta)] + \beta E[\mathcal{E}(F, S)]. \]

Define free energy \(\gamma(\beta, S) \) as
\[\gamma_N(\beta, S) = \frac{E[\log Z(S, \beta)]}{\log |F_N|}, \quad \gamma(\beta, S) = \limsup_{N \to \infty} \gamma_N(\beta, S). \]

By submultiplicativity property of \(F_N \) we conclude
\[\lim_{N \to \infty} \frac{\log |F_N|}{N} = \log \mu. \]
for \(\mu > 1 \).

Then
\[E \log Z(S, \beta) \sim \log |F_N| \cdot \gamma(\beta, S) \sim N \log \mu \cdot \gamma(\beta, S) \]
leading to
\[H(F|S) \sim N[\gamma(\beta, S) \log \mu + \beta \alpha]. \]
Theorem 1. For any distribution over S_N, $\beta > 0$, and scoring matrix Q we have

$$\limsup_{N \to \infty} \frac{H(F|S)}{N} \leq \mu \cdot \gamma(\beta) + \beta \alpha.$$

Furthermore, if Q comes from a certain broad class of scoring matrices (satisfying a "niceness" condition), there exists $\sigma^2 > 0$ such that

$$\text{Var}[\mathcal{E}(f|S)] \sim N \sigma^2 > 0.$$

Then we have the following phase transition:

$$\limsup_{N \to \infty} \frac{H(F|S)}{N} \leq \begin{cases} \mu + \frac{1}{2}\sigma^2 \beta^2 & \beta > 0 \\ \beta \sqrt{2\sigma^2 \mu} & \beta \geq \beta_* = \frac{\sqrt{2\mu}}{\sigma} \end{cases}.$$

The conditional entropy phase transition is a consequence of the free energy phase transition:

$$\log \mu \cdot \gamma(\beta, S) \leq \begin{cases} \log \mu - \beta \alpha + \frac{1}{2}\sigma^2 \beta^2 & \beta < \frac{\sqrt{2\log \mu}}{\sigma} \\ \beta (\sqrt{2\sigma^2 \log \mu} - \alpha) & \beta \geq \frac{\sqrt{2\log \mu}}{\sigma} \end{cases}$$
Lower bound: We conjecture that a matching lower bound on the free energy holds, which would give

\[
\log \mu \cdot \gamma(\beta, S) = \begin{cases}
\log \mu - \beta \alpha + \frac{1}{2} \sigma^2 \beta^2 & \beta < \frac{\sqrt{2 \log \mu}}{\sigma} \\
\beta \sqrt{2 \sigma^2 \log \mu} - \beta \alpha & \beta \geq \frac{\sqrt{2 \log \mu}}{\sigma}
\end{cases}
\]

The lower bounds requires to understand dependencies between folds.

More general source models: We considered here sequences generated by a memoryless source, but more general models (e.g., Markov, mixing) are more realistic and probably mathematically tractable.

Extensions to k-dimensional self-avoiding walks and other structures are possible.
The optimal output distribution observed in experiments seems to be uniform, as shown below:

\[C \sim \log |\mathcal{F}_N| - \min_{P(S)} H(F|S) \]

where \(H(F|S) \) we just computed. The minimization over \(p \) (for the memoryless case) is easy to perform.

Thus one should expect a phase transition, with respect to \(\beta \), of the capacity. Experiments do confirm it.
Experimental Confirmation of Phase Transition in the Capacity

![Graph showing the relationship between capacity and temperature.](image-url)
Upper Bound Proof Sketch

1. First upper bound:

\[\mathbb{E}[\log Z(S, \beta)] \leq \log \mathbb{E}[Z(S, \beta)] = \log \sum_{f \in \mathcal{F}_N} \mathbb{E}[e^{-\beta \mathbb{E}(f|S)}], \]

because \(Z(S, \beta) \) is a convex function.
Upper Bound Proof Sketch

1. First upper bound:

$$E[\log Z(S, \beta)] \leq \log E[Z(S, \beta)] = \log \sum_{f \in F_N} E[e^{-\beta \mathcal{E}(f|S)}],$$

because $Z(S, \beta)$ is a convex function.

2. Denote by $F_N(x)$ the CDF of

$$\hat{\mathcal{E}}(f|S) = \frac{(\mathcal{E}(f|S) - E[\mathcal{E}(f|S)])}{\sqrt{N}}.$$

Let $\Phi(x)$ be the CDF of $\mathcal{N}(0, \sigma^2)$. Then it can be proved

$$\|F_N - \Phi\|_\infty = O(N^{-1/2}),$$

by results on m-dependent random fields, that is, $\hat{\mathcal{E}}(f|S) \sim \mathcal{N}(0, \sigma^2).$
Upper Bound Proof Sketch

1. First upper bound:

\[E[\log Z(S, \beta)] \leq \log E[Z(S, \beta)] = \log \sum_{f \in \mathcal{F}_N} E[e^{-\beta \mathcal{E}(f|S)}], \]

because \(Z(S, \beta) \) is a convex function.

2. Denote by \(F_N(x) \) the CDF of

\[\hat{\mathcal{E}}(f|S) = \frac{(\mathcal{E}(f|S) - E[\mathcal{E}(f|S)])}{\sqrt{N}}. \]

Let \(\Phi(x) \) be the CDF of \(\mathcal{N}(0, \sigma^2) \). Then it can be proved

\[\|F_N - \Phi\|_\infty = O(N^{-1/2}), \]

by results on \(m \)-dependent random fields, that is, \(\hat{\mathcal{E}}(f|S) \sim \mathcal{N}(0, \sigma^2) \).

3. Each energy is a sum of local energies: denoting by \(X_i(f|S) \) the contact energy of the \(i \)th residue,

\[\mathcal{E}(f|S) = \sum_{i=1}^{N} X_i(f|S), \]

and each residue has a contact with at most 3 others (so each term of the sum is dependent on at most 3 others).
4. Let $\varphi_N(x) = E[e^{x\hat{\mathcal{E}}(f|S)}]$ and $\varphi(x) = E[e^{xN(0,\sigma^2)}] = \exp\left(\frac{1}{2}x^2\sigma^2\right)$. Then large deviations via martingale inequalities, integration by parts of the fold MGF integral, and fold energy CLT give

$$\lim_{N \to \infty} \frac{\log \varphi_N(t\sqrt{N})}{N} = \log \varphi(t) = \frac{1}{2}\sigma^2 t^2,$$

so that we conclude

$$E[\log Z(S, \beta)] \leq \log E[Z(S, \beta)]$$

$$= \log \sum_{f \in \mathcal{F}_N} e^{-\beta E[\mathcal{E}(f|S)]} E \left[e^{-\beta \sqrt{N} \mathcal{E}(f|S) - E[\mathcal{E}(f|S)] \sqrt{N}} \right]$$

$$= \log \sum_{f \in \mathcal{F}_N} e^{-\beta E[\mathcal{E}(f|S)]} E \left[e^{-\beta \sqrt{N} \hat{\mathcal{E}}_N} \right]$$

$$= \log \sum_{f \in \mathcal{F}_N} e^{-\beta \alpha N (1 + o(1))} \cdot e^{\frac{1}{2} \sigma^2 \beta^2 N (1 + o(1))}$$

$$= N \left(\frac{\log |\mathcal{F}_N|}{N} - \beta \alpha (1 + o(1)) + \frac{1}{2} \sigma^2 \beta^2 (1 + o(1)) \right)$$

which leads to the first upper bound.
5. To derive the second upper bound, we observe

\[-\beta \min_{f \in \mathcal{F}_N} E(f | S) \leq \log \left(\sum_{f \in \mathcal{F}_N} e^{-\beta E(f | S)} \right)\]

leading to

\[\limsup_{N \to \infty} \frac{E[- \min_{f \in \mathcal{F}_N} E(f | S)]}{N} \leq \beta^{-1} \mu - \alpha + \frac{1}{2} \beta \sigma^2\]

which is minimized at \(\beta = \beta_* = \frac{\sqrt{2 \mu}}{\sigma} \). Hence we find

\[\limsup_{N \to \infty} \frac{E[- \min_{f \in \mathcal{F}_N} E(f | S)]}{N} \leq \sqrt{2 \sigma^2 \mu} - \alpha.\]
Second Upper Bound: Continuation

6. Let $\psi(\beta) = \mathbb{E}[\log Z(S, \beta)]$. By concavity for $\beta > \beta_*$, we have

$$\psi(\beta) \leq \psi(\beta_*) + \psi'(\beta_*)(\beta - \beta_*)$$

where

$$\psi'(\beta) = \mathbb{E} \left[- \frac{\sum_{f \in \mathcal{F}_N} \mathcal{E}(f|S)e^{-\beta \mathcal{E}(f|S)}}{\sum_{f \in \mathcal{F}_N} e^{-\beta \mathcal{E}(f|S)}} \right]$$

$$\leq \mathbb{E} \left[\left(- \min_{f \in \mathcal{F}_N} \mathcal{E}(f|S) \right) \frac{Z(S, \beta)}{Z(S, \beta)} \right]$$

$$\leq \mathbb{E} \left[\left(- \min_{f \in \mathcal{F}_N} \mathcal{E}(f|S) \right) \frac{Z(S, \beta)}{Z(S, \beta)} \right]$$

Applying the upper bound on $\psi(\beta_*)$ gives the second upper bound.
Lower Bound Intuition

CLT for fold energies suggests that our problem looks somewhat like Derrida’s *Random Energy Model* (configuration energies are i.i.d. standard Gaussians). How far does this go?

For two folds f and g,

$$\text{Cov}[\mathcal{E}(f|S), \mathcal{E}(g|S)] = O(\sqrt{N}) = o(\mathbb{E}[\mathcal{E}(f|S)]),$$

by limited dependence structure of local energies. So $\mathcal{E}(f|S)$ and $\mathcal{E}(g|S)$ are asymptotically not too correlated.

We can apply the Crámer-Wold theorem to show that

$$(\hat{\mathcal{E}}(f|S), \hat{\mathcal{E}}(g|S)) \xrightarrow{D} \mathcal{N}(0, \sigma^2 I_2).$$

So negligible correlation implies negligible dependence.

Conclusion: Our model looks a lot like the Random Energy Model. Adapt the lower bound proof technique in that case.
That’s It

THANK YOU
How do you distinguish a cat from a dog by their DNA? Did Shakespeare really write all of his plays?

Pattern matching techniques can offer answers to these questions and to many others, from molecular biology, to telecommunications, to classifying Twitter contents.

This book is for researchers and graduate students who demonstrate the probabilistic approach to pattern matching, which predicts the performance of pattern matching algorithms with very high precision. Using analytic combinatorics and analytic information theory, Part I compiles known results of pattern matching problems via analytic methods. Part II focuses on applications to various data structures in words, such as digital trees, suffix trees, string complexity and string-based data compression. The authors use results and techniques from Part I and also introduce new methodology such as the Mellin transform and analytic deconvolution.

More than 100 end-of-chapter problems help the reader to make the link between theory and practice.

Philippe Jacquet is a research director at INRIA, a major public research laboratory in Computer Science in France. He has been a major contributor to the Internet QoS protocol for mobile networks. His research interests involve information theory, reliability theory, communication networks and security, protocol design, performance evaluation, and optimization and the analysis of algorithms. Since 2007 he has been a Head of research team and head of the department of Mathematics of Dynamic Networks and Information. Jacquet also member of the prestigious French Compiègne Maria, elected for excellence in French industry with the rank of Engineer General. He is also a member of ACM and IEEE.

Wojciech Szpankowski is a Paul Resin Professor of Computer Sciences at the University of Southern California and an Adjunct Professor of Electrical Engineering and Computer Science at Purdue University, where he teaches and conducts research in analysis of algorithms, information theory, transforms, analytic combinatorics, random structures, and asymptotic problems of discrete systems. In 2009 he launched the International Institute of Science of Information, and in 2010 he became the Director of the newly established NSF Science and Technology Center for Science of Information. Szpankowski is a Fellow of IEEE and an Honorary Fellow. He received the Humboldt Research Award in 2010.