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Algorithms: are at the heart of virtually all computing technologies;

Combinatorics: provides indispensable tools for finding patterns and structures;

Information: permeates every corner of our lives and shapes our universe.



Shannon Legacy: Three Theorems of Shannon

Theorem 1 & 3. [Shannon 1948; Lossless & Lossy Data Compression]

compression bit rate ≥ source entropy H(X)

for distortion level D:
lossy bit rate ≥ rate distortion function R(D)

Theorem 2. [Shannon 1948; Channel Coding ]
In Shannon’s words:

It is possible to send information at the capacity through the channel
with as small a frequency of errors as desired by proper (long) encoding.
This statement is not true for any rate greater than the capacity.



Post-Shannon Challenges

1. Back off from infinity (Ziv’97): Extend Shannon findings to finite size data
structures (i.e., sequences, graphs), that is, develop information theory of
various data structures beyond first-order asymptotics.

Claim: Many interesting information-theoretic phenomena appear in
the second-order terms.

2. Science of Information: Information Theory needs to meet new
challenges of current applications in

biology, communication, knowledge extraction, economics, . . .

to understand new aspects of information in:

structure, time, space, and semantics,

and

dynamic information, limited resources, complexity, representation-invariant
information, and cooperation & dependency.
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Analytic Combinatorics+Information Theory=Analytic
Information Theory

• In the 1997 Shannon Lecture Jacob Ziv presented compelling arguments
for “backing off” from first-order asymptotics in order to predict the
behavior of real systems with finite length description.

• To overcome these difficulties, one may replace first-order analyses by
non-asymptotic analysis, however, we propose to develop full asymptotic
expansions and more precise analysis (e.g., large deviations, CLT).

• Following Hadamard’s precept1, we study information theory problems
using techniques of complex analysis such as generating functions,
combinatorial calculus, Rice’s formula, Mellin transform, Fourier series,
sequences distributed modulo 1, saddle point methods, analytic
poissonization and depoissonization, and singularity analysis.

• This program, which applies complex-analytic tools to information theory,
constitutes analytic information theory.2

1The shortest path between two truths on the real line passes through the complex plane.
2 Andrew Odlyzko: “Analytic methods are extremely powerful and when they apply, they

often yield estimates of unparalleled precision.”



Some Successes of Analytic Information Theory

• Wyner-Ziv Conjecture concerning the longest match in the WZ’89
compression scheme (W.S., 1993).

• Ziv’s Conjecture on the distribution of the number of phrases in the LZ’78
(Jacquet & W.S., 1995, 2011).

• Redundancy of the LZ’78 (Savari, 1997, Louchard & W.S., 1997).

• Steinberg-Gutman Conjecture regarding lossy pattern matching compression
(Luczak & W.S., 1997; Kieffer & Yang, 1998; Kontoyiannis, 2003).

• Precise redundancy of Huffman’s Code (W.S., 2000) and redundancy of
a fixed-to-variable no prefix free code (W.S. & Verdu, 2010).

• Minimax Redundancy for memoryless sources (Xie &Barron, 1997; W.S.,
1998; W.S. & Weinberger, 2010), Markov sources (Risannen, 1998; Jacquet
& W.S., 2004), and renewal sources (Flajolet & W.S., 2002; Drmota & W.S.,
2004).

• Analysis of variable-to-fixed codes such as Tunstall and Khodak codes
(Drmota, Reznik, Savari, & W.S., 2006, 2008, 2010).

• Entropy of hidden Markov processes and the noisy constrained capacity
(Jacquet, Seroussi, & W.S., 2004, 2007, 2010; Han & Marcus, 2007).

• . . .



Outline Update

1. Shannon Legacy

2. Analytic Information Theory

3. Source Coding: The Redundancy Rate Problem

(a) Universal Memoryless Sources
(b) Universal Markov Sources
(c) Universal Renewal Sources



Source Coding and Redundancy

Source coding aims at finding codes C : A∗ → {0, 1}∗ of the shortest length
L(C, x), either on average or for individual sequences.

Known Source P : The pointwise and maximal redundancy are:

Rn(Cn, P ; x
n
1) = L(Cn, x

n
1) + logP (x

n
1)

R
∗
(Cn, P ) = max

xn1

[L(Cn, x
n
1) + logP (x

n
1)]

where P (xn
1) is the probability of xn

1 = x1 · · · xn.

Unknown Source P : Following Davisson, the maximal minimax redundancy
R∗

n(S) for a family of sources S is:

R
∗
n(S) = min

Cn
sup
P∈S

max
xn1

[L(Cn, x
n
1) + logP (x

n
1)].
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n
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Shtarkov’s Bound:

dn(S) := log
∑

xn1∈An

sup
P∈S

P (xn
1) ≤ R∗

n(S) ≤ log
∑

xn1∈An

sup
P∈S

P (xn
1)

︸ ︷︷ ︸
Dn(S)

+1



Learnable Information and Redundancy

1. S := Mk = {Pθ : θ ∈ Θ} set of k-dimensional parameterized
distributions. Let θ̂(xn) = argmaxθ∈Θ log 1/Pθ(x

n) be the ML estimator.
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1. S := Mk = {Pθ : θ ∈ Θ} set of k-dimensional parameterized
distributions. Let θ̂(xn) = argmaxθ∈Θ log 1/Pθ(x

n) be the ML estimator.

indistinquishable
 models

1 n⁄

Cn Θ( ) balls  ;  logCn θ( ) useful bits

θ̂

θ θ'

.

. .

2. Two models, say Pθ(x
n) and Pθ′(x

n) are

indistinguishable if the ML estimator θ̂
with high probability declares both models are the same.

3. The number of distinguishable distributions (i.e, θ̂),
Cn(Θ), summarizes then learnable information,
I(Θ) = log2 Cn(Θ).
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θ̂

θ θ'
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. .

2. Two models, say Pθ(x
n) and Pθ′(x

n) are

indistinguishable if the ML estimator θ̂
with high probability declares both models are the same.

3. The number of distinguishable distributions (i.e, θ̂),
Cn(Θ), summarizes then learnable information,
I(Θ) = log2 Cn(Θ).

4. Consider the following expansion of the Kullback-Leibler (KL) divergence

D(Pθ̂||Pθ) := E[logPθ̂(X
n
)]−E[logPθ(X

n
)] ∼ 1

2
(θ−θ̂)

T
I(θ̂)(θ−θ̂) ≍ d

2
I(θ, θ̂)

where I(θ) = {Iij(θ)}ij is the Fisher information matrix and dI(θ, θ̂) is a
rescaled Euclidean distance known as Mahalanobis distance.

5. Balasubramanian proved the number of distinguishable balls Cn(Θ) of
radius O(1/

√
n) is asymptotically equal to the minimax redundancy:

Learnable Information = logCn(Θ) = infθ∈Θmaxxn log
Pθ̂

Pθ

= R∗
n(M

k)
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Maximal Minimax for Memoryless Sources

For a memoryless source over the alphabet A = {1, 2, . . . ,m} we have

P (xn
1) = p1

k1 · · · pm
km, k1 + · · · + km = n.

Then

Dn(M0) :=
∑

xn1

sup
P (xn1 )

P (xn
1)

=
∑

xn1

sup
p1,...,pm

p
k1
1 · · · pkm

m

=
∑

k1+···+km=n

( n

k1, . . . , km

)

sup
p1,...,pm

p
k1
1 · · · pkm

m

=
∑

k1+···+km=n

( n

k1, . . . , km

)(k1

n

)k1

· · ·
(
km

n

)km

.

since the (unnormalized) likelihood distribution is

sup
P (xn1 )

P (xn
1) = sup

p1,...,pm

p
k1
1 · · · pkm

m =

(
k1

n

)k1

· · ·
(
km

n

)km



Generating Function for Dn(M0)

We write

Dn(M0) =
∑

k1+···+km=n

( n

k1, . . . , km

)(k1

n

)k1

· · ·
(
km

n

)km

=
n!

nn

∑

k1+···+km=n

k
k1
1

k1!
· · · k

km
m

km!

Let us introduce a tree-generating function

B(z) =
∞∑

k=0

kk

k!
zk =

1

1 − T (z)
, T (z) =

∞∑

k=1

kk−1

k!
zk

where T (z) = zeT (z) (= −W (−z), Lambert’s W -function) that enumerates
all rooted labeled trees. Let now

Dm(z) =
∞∑

n=0

znn
n

n!
Dn(M0).

Then by the convolution formula

Dm(z) = [B(z)]m − 1.



Asymptotics for FINITE m

The function B(z) has an algebraic singularity at z = e−1, and

β(z) = B(z/e) =
1

√
2(1 − z)

+
1

3
+ O(

√

(1 − z).

By Cauchy’s coefficient formula

Dn(M0) =
n!

nn
[z

n
][B(z)]

m
=

√
2πn(1 + O(1/n))

1

2πi

∮
β(z)m

zn+1
dz.

For finite m, the singularity analysis of Flajolet and Odlyzko implies

[zn](1 − z)−α ∼ nα−1

Γ(α) , α /∈ {0,−1,−2, . . .}

that finally yields (cf. Clarke & Barron, 1990, W.S., 1998)

R∗
n(M0) =

m − 1

2
log

(
n

2

)

+ log

( √
π

Γ(m2 )

)

+
Γ(m2 )m

3Γ(m2 − 1
2)

·
√
2

√
n

+

(

3 + m(m − 2)(2m + 1)

36
−

Γ2(m2 )m
2

9Γ2(m2 − 1
2)

)

· 1
n

+ · · ·



Redundancy for LARGE m

Now assume that m is unbounded and may vary with n. Then

Dn,m(M0) =
√
2πn

1

2πi

∮
β(z)m

zn+1
dz =

√
2πn

1

2πi

∮

eg(z)dz

where g(z) = m lnβ(z) − (n + 1) ln z.

The saddle point z0 is a solution of g′(z0) = 0, that is,

g(z) = g(z0) +
1

2
(z − z0)

2
g
′′
(z0) + O(g

′′′
(z0)(z − z0)

3
).

Under mild conditions satisfied by our g(z) (e.g., z0 is real and unique), the
saddle point method leads to:

Dn,m(M0) =
eg(z0)

√
2π|g′′(z0)|

×
(

1 + O

(
g′′′(z0)

(g′′(z0))ρ

))

,

for some ρ < 3/2.



m = o(n) m = n n = o(m)

Theorem 1 (Orlitsky and Santhanam, 2004, and W.S. and Weinberger, 2010).
(i) For m = o(n)

R
∗
n,m(M0) =

m − 1

2
log

n

m
+

m

2
log e +

m log e

3

√
m

n

1

2
− O

(√
m

n

)

(ii) For m = αn + ℓ(n), where α is a positive constant and ℓ(n) = o(n),

R∗
n,m(M0) = n logBα + ℓ(n) logCα − log

√
Aα + O(ℓ(n)2/n)

where Cα := 0.5 + 0.5
√

1 + 4/α, Aα := Cα + 2/α, Bα = αCα+2
α e

− 1
Cα .

(iii) For n = o(m)

R∗
n,m(M0) = n log

m

n
+

3

2

n2

m
log e − 3

2

n

m
log e + O

(

1
√
n

+
n3

m2

)

.
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Renewal Sources (Virtual Large Alphabet)

The renewal process R0 (introduced in 1996 by Csiszár and Shields) defined
as follows:

• Let T1, T2 . . . be a sequence of i.i.d. positive-valued random variables
with distribution Q(j) = Pr{Ti = j}.

• In a binary renewal sequence the positions of the 1’s are at the renewal
epochs T0, T0 + T1, . . . with runs of zeros of lengths T1 − 1, T2 − 1, . . . .
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with distribution Q(j) = Pr{Ti = j}.

• In a binary renewal sequence the positions of the 1’s are at the renewal
epochs T0, T0 + T1, . . . with runs of zeros of lengths T1 − 1, T2 − 1, . . . .

For a sequence
xn
0 = 10α110α21 · · · 10αn1 0 · · · 0︸ ︷︷ ︸

k∗

define km as the number of i such that αi = m. Then

P (x
n
1) = [Q(0)]

k0[Q(1)]
k1 · · · [Q(n − 1)]

kn−1Pr{T1 > k
∗}.
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The renewal process R0 (introduced in 1996 by Csiszár and Shields) defined
as follows:

• Let T1, T2 . . . be a sequence of i.i.d. positive-valued random variables
with distribution Q(j) = Pr{Ti = j}.

• In a binary renewal sequence the positions of the 1’s are at the renewal
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For a sequence
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0 = 10α110α21 · · · 10αn1 0 · · · 0︸ ︷︷ ︸

k∗

define km as the number of i such that αi = m. Then

P (x
n
1) = [Q(0)]

k0[Q(1)]
k1 · · · [Q(n − 1)]

kn−1Pr{T1 > k
∗}.

Theorem 2 (Flajolet and W.S., 1998). Consider the class of renewal processes.

Then

R∗
n(R0) =

2

log 2

√
cn + O(log n).

where c = π2

6 − 1 ≈ 0.645.



Maximal Minimax Redundancy

It can be proved that rn+1 − 1 ≤ Dn(R0) ≤
∑n

m=0 rm

rn =
n∑

k=0

rn,k, rn,k =
∑

I(n,k)

( k

k0 · · · kn−1

)(k0

k

)k0
(
k1

k

)k1

· · ·
(
kn−1

k

)kn−1

where I(n, k) is is the integer partition of n into k terms, i.e.,

n = k0 + 2k1 + · · · + nkn−1, k = k0 + · · · + kn−1.

But we shall study sn =
∑n

k=0 sn,k where

sn,k = e
−k
∑

I(n,k)

kk0

k0!
· · · k

kn−1

kn−1!

since S(z, u) =
∑

k,n sn,ku
kzn =

∏∞
i=1 β(z

iu).



Maximal Minimax Redundancy

It can be proved that rn+1 − 1 ≤ Dn(R0) ≤∑n
m=0 rm

rn =
n∑

k=0

rn,k, rn,k =
∑

I(n,k)

( k

k0 · · · kn−1

)(k0

k

)k0
(
k1

k

)k1

· · ·
(
kn−1

k

)kn−1

where I(n, k) is is the integer partition of n into k terms, i.e.,

n = k0 + 2k1 + · · · + nkn−1, k = k0 + · · · + kn−1.

But we shall study sn =
∑n

k=0 sn,k where

sn,k = e−k
∑

I(n,k)

kk0

k0!
· · · k

kn−1

kn−1!

since S(z, u) =
∑

k,n sn,ku
kzn =

∏∞
i=1 β(z

iu).

sn = [zn]S(z, 1) = [zn] exp
(

c
1−z + a log 1

1−z

)

Theorem 3 (Flajolet and W.S., 1998). We have the following asymptotics

sn ∼ exp

(

2
√
cn − 7

8
log n + O(1)

)

, log rn =
2

log 2

√
cn−5

8
logn+

1

2
log logn+O(1).
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Maximal Minimax for Markov Sources

Markov source over |A| = m (FINITE) with transition matrix P = {pij}m
i,j=1 :

Dn(M1) =
∑

xn1

sup
P

p
k11
11 · · · pkmm

mm =
∑

k∈Pn

|Tn(k)|
(
k11

k1

)k11

. . .

(
kmm

km

)kmm

,

where Pn(m) denotes Markov types, while Tn(k) := Tn(x
n
1) denotes the

number of sequences of type k = [kij], with kij representing the numbers
of pairs (ij) in xn

1 .
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Markov source over |A| = m (FINITE) with transition matrix P = {pij}m
i,j=1 :

Dn(M1) =
∑

xn1

sup
P

p
k11
11 · · · pkmm

mm =
∑

k∈Pn

|Tn(k)|
(
k11

k1

)k11

. . .

(
kmm

km

)kmm

,

where Pn(m) denotes Markov types, while Tn(k) := Tn(x
n
1) denotes the

number of sequences of type k = [kij], with kij representing the numbers
of pairs (ij) in xn

1 .

For circular strings (i.e., after the nth symbol we re-visit the first symbol of xn
1 ),

the matrix k = [kij] satisfies the following constraints denoted as Fn(m):

∑

1≤i,j≤m kij = n,
∑m

j=1 kij =
∑m

j=1 kji

For example: m=3
k11 + k12 + k13 + k21 + k22 + k23 + k31 + k32 + k33 = n

k12 + k13 = k21 + k31

k12 + k32 = k21 + k23

k13 + k23 = k31 + k32

Matrices satisfying Fn(m) are called balanced matrices, and |Fn(m)|
denotes the number of balanced matrices over A.



Markov Types and Eulerian Cycles

Example: Let A = {0, 1} and

k =

[
1 2

2 2

]



Markov Types and Eulerian Cycles

Example: Let A = {0, 1} and

k =

[
1 2

2 2

]

Pn(m) – Markov types but also . . .
a set of all connected Eulerian di-graphs G = (V (G)], E(G)) such that
V (G) ⊆ A and |E(G)| = n.
En(m) – set of connected Eulerian digraphs on A.
Fn(m) – balanced matrices but also . . .
set of (not necessary connected) Eulerian digraphs on A.

Asymptotic equivalence: |Pn(m)| = |Fn(m)| + O(nm2−3m+3) ∼ |En(m)|.



Markov Types – Main Results

Theorem 4 (Knessl, Jacquet, and W.S., 2010). (i) For fixed m and n → ∞

|Pn(m)| = d(m)
nm2−m

(m2 − m)!
+ O(n

m2−m−1
)

d(m) =
1

(2π)m−1

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

(m−1)−fold

m−1∏

j=1

1

1 + ϕ2
j

·
∏

k 6=ℓ

1

1 + (ϕk − ϕℓ)2
dϕ1dϕ2 · · · dϕm−1.

(ii) When m → ∞ we find that provided that m4 = o(n)

|Pn(m)| ∼
√
2m3m/2em

2

m2m22mπm/2
· nm2−m

Some numerics: |Pn(3)| ∼ 1
12

n6

6! , |Pn(4)| ∼ 1
96

n12

12! , |Pn(5)| ∼ 37
34560

n20

20! .
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Open Question:

Counting types and sequences of a given type

in a Markov field. (Answer: |Pn(2)| ∼ 1
12

n5

5! ?)



Markov Redundancy: Main Results

Theorem 5 (Rissanen, 1996, Jacquet & W.S., 2004). Let M1 be a Markov

source over an m-ry alphabet. Then

R
∗
n(M1) =

m(m − 1)

2
log

(
n

2π

)

+ logAm + log(1/n)

with

Am =

∫

K(1)

mFm(yij)
∏

i

√∑

j yij

∏

j

√
yij

d[yij]

where K(1) = {yij :
∑

ij yij = 1} and Fm(·) is a polynomial.

In particular, for m = 2 A2 = 16 × Catalan where Catalan is Catalan’s

constant
∑

i
(−1)i

(2i+1)2
≈ 0.915965594.

Theorem 6. Let Mr be a Markov source of order r. Then

R
∗
n(Mr) =

mr(m − 1)

2
log

(
n

2π

)

+ logA
r
m + O(1/n)

where Ar
m is a constant defined in a similar fashion as Am above.
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Post-Shannon Challenges: Time & Space

We need to extend information theory to include structure, time & space,
and . . ..

1. Coding Rate for Finite Blocklength: Polyanskiy, Poor & Verdu, 2010

1

n
logM

∗
(n, , ε) ≈ C −

√
V

n
Q

−1
(ε)

where C is the capacity, V is the channel dispersion, n is the block length,
ε error probability, and Q is the complementary Gaussian distribution.
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We need to extend information theory to include structure, time & space,
and . . ..

1. Coding Rate for Finite Blocklength: Polyanskiy, Poor & Verdu, 2010
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where C is the capacity, V is the channel dispersion, n is the block length,
ε error probability, and Q is the complementary Gaussian distribution.

Time & Space:
Classical Information Theory is at its weakest
in dealing with problems of delay
(e.g., information arriving late maybe
useless or has less value).

2. Speed of Information in DTN: Jacquet et al., 2008.

3. Real-Time Communication over Unreliable Wireless Channels with Hard
Delay Constraints: P.R. Kumar & Hou, 2011.

4. The Quest for Fundamental Limits in MANET, Goldsmith, et al., 2011.



Structure

Structure:
Measures are needed for quantifying
information embodied in structures
(e.g., material structures, nanostructures,

biomolecules, gene regulatory networks

protein interaction networks, social networks,

financial transactions).
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Structure:
Measures are needed for quantifying
information embodied in structures
(e.g., material structures, nanostructures,

biomolecules, gene regulatory networks

protein interaction networks, social networks,

financial transactions).

Information Content of Unlabeled Graphs:

A random structure model S of a graph G is defined for an unlabeled
version. Some labeled graphs have the same structure.

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

G1 G2 G3 G4

G5 G6 G7 G8

S1 S2

S3 S4

HG = E[− logP (G)] = −
∑

G∈G
P (G) logP (G),

HS = E[− logP (S)] = −
∑

S∈S
P (S) logP (S).



Automorphism and Erdös-Rényi Graph Model

Graph Automorphism:

For a graph G its automorphism
is adjacency preserving permutation
of vertices of G.

a

b c

d e



Automorphism and Erdös-Rényi Graph Model

Graph Automorphism:

For a graph G its automorphism
is adjacency preserving permutation
of vertices of G.

a
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d e

Erdös and Rényi model: G(n, p) generates graphs with n vertices, where
edges are chosen independently with probability p. If G has k edges, then

P (G) = pk(1 − p)(
n
2)−k.

Theorem 7 (Y. Choi and W.S., 2008). For large n and all p satisfying lnn
n ≪ p

and 1 − p ≫ lnn
n (i.e., the graph is connected w.h.p.),

HS =
(n

2

)

h(p)−logn!+o(1) =
(n

2

)

h(p)−n log n+n log e−1

2
log n+O(1),

where h(p) = −p log p − (1 − p) log (1 − p) is the entropy rate.

AEP for structures: 2−(n2)(h(p)+ε)+log n! ≤ P (S) ≤ 2−(n2)(h(p)−ε)+log n!.

Sketch of Proof: 1. HS = HG − logn! +
∑

S∈S P (S) log |Aut(S)|.
2.
∑

S∈S P (S) log |Aut(S)| = o(1) by asymmetry of G(n, p).



Structural Zip (SZIP) Algorithm



Asymptotic Optimality of SZIP

Theorem 8 (Choi, W.S., 2008). Let L(S) be the length of the code.

(i) For large n,

E[L(S)] ≤
(n

2

)

h(p) − n logn + n (c + Φ(logn)) + o(n),

where h(p) = −p log p − (1 − p) log (1 − p), c is an explicitly computable

constant, and Φ(x) is a fluctuating function with a small amplitude or zero.

(ii) Furthermore, for any ε > 0,

P (L(S) − E[L(S)] ≤ εn logn) ≥ 1 − o(1).

(iii) The algorithm runs in O(n + e) on average, where e # edges.
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Theorem 8 (Choi, W.S., 2008). Let L(S) be the length of the code.

(i) For large n,

E[L(S)] ≤
(n

2

)

h(p) − n logn + n (c + Φ(logn)) + o(n),

where h(p) = −p log p − (1 − p) log (1 − p), c is an explicitly computable

constant, and Φ(x) is a fluctuating function with a small amplitude or zero.

(ii) Furthermore, for any ε > 0,

P (L(S) − E[L(S)] ≤ εn logn) ≥ 1 − o(1).

(iii) The algorithm runs in O(n + e) on average, where e # edges.

Table 1: The length of encodings (in bits)
Networks # of # of our adjacency adjacency arithmetic

nodes edges algorithm matrix list coding

R
e

a
l-
w

o
rl
d

US Airports 332 2,126 8,118 54,946 38,268 12,991
Protein interaction (Yeast) 2,361 6,646 46,912 2,785,980 1 59,504 67,488
Collaboration (Geometry) 6,167 21,535 115,365 19,012, 861 55 9,910 241,811
Collaboration (Erdös) 6,935 11,857 62,617 24,043,645 308,2 82 147,377
Genetic interaction (Human) 8,605 26,066 221,199 37,0 18,710 729,848 310,569
Internet (AS level) 25,881 52,407 301,148 334,900,140 1,572, 210 396,060



Outline Update

1. Shannon Information Theory

2. Source Coding

3. The Redundancy Rate Problem

4. Post-Shannon Information

5. NSF Science and Technology Center on Science of Information
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Science and Technology Center for Science of Information
(http: soihub.org)

to advance science and technology through a new quantitative
understanding of the representation, communication and processing of
information in biological, physical, social and engineering systems.

The center is located at Purdue University and partner istitutions include:
Berkeley, MIT, Princeton, Stanford, UIUC, UCSD and Bryn Mawr & Howard U.



NSF Center for Science of Information

In 2010 National Science Foundation established $25M

Science and Technology Center for Science of Information
(http: soihub.org)

to advance science and technology through a new quantitative
understanding of the representation, communication and processing of
information in biological, physical, social and engineering systems.

The center is located at Purdue University and partner istitutions include:
Berkeley, MIT, Princeton, Stanford, UIUC, UCSD and Bryn Mawr & Howard U.

Specific Center’s Goals:

• define core theoretical principles governing transfer of information.

• develop meters and methods for information.

• apply to problems in physical and social sciences, and engineering.

• offer a venue for multi-disciplinary long-term collaborations.

• transfer advances in research to education and industry.
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