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Shannon Legacy

The Information Revolution started in 1948, with the publication of:
A Mathematical Theory of Communication.

The digital age began.

Claude Shannon:

Shannon information quantifies the extent to which a recipient of data
can reduce its statistical uncertainty.

"These semantic aspects of communication are irrelevant .. .”

Applications Enabler/Driver:

CD, iPod, DVD, video games, computer communication, Internet,
Facebook, Google, . ..

Design Driver:

universal data compression, voiceband modems, CDMA, multiantenna,
discrete denosing, space-time codes, cryptography, . ..



Three Theorems of Shannon

Theorem 1 & 3. (Shannon 1948; Lossless & Lossy Data Compression)
Lossless Compression: compression bit rate > source entfropy H (X);

Lossy Compression: For distorfion level D:
lossy bit rate > rate distortion function R(D)

Theorem 2. (Shannon 1948; Channel Coding )
In Shannon’s words:

By It is possible to send information at the capacity through the channel
with as small a frequency of errors as desired by proper (long) encoding.
This statement is not true for any rate greater than the capacity.

A

Wef{1,2,...2"} X" CHANNEL Yr W
——>| Encoder p—> ——> | Decoder p———>
message P(le) estimate




Analytic Information Theory

In the 1997 Shannon Lecture Jacob Ziv presented compelling
arguments for “backing off” from first-order asymptotics in order to
predict the behavior of real systems with finite length description.

To overcome these difficulties we propose replacing first-order analyses
by full asymptotic expansions and more accurate analyses (e.Q., large
deviations, central limit laws).

Following Hadamard’s precep, we study information theory problems
using fechniques of complex analysis such as generating functions,
combinatorial calculus, Rice’s formula, Mellin transform, Fourier series,
sequences distributed modulo 1, saddle point methods, analytic
poissonization and depoissonization, and singularity analysis.

This program, which applies complex-analyfic fools to information
theory, constitutes analytic informmation theory.

1The shortest path between two fruths on the real line passes through the complex plane.
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Source Coding

A source code is a bijective mapping
C: A" — {0,1}"
from sequences over the alphabet A to set {0, 1}* of binary sequences.

The basic problem of source coding (i.e., data comjpression) is to

find codes with shortest descriptions (lengths) either on average or for
individual sequences.

For a probabilistic source model S and a code C,, we let;
e P(z7) be the probability of z = x1 ... z,;

e L(C,,x7) be the code length for z7;

e Entropy H,,(P) = — Zx? P(x7)1g P(x7).

e Fractional part: (z) = x — |[z].



Prefix Codes

Prefix code is such that no codeword is a prefix of another codeword.

Kraft’s Inequality
A code is a prefix code iff codeword lengths ¢4, ¢s, ..., ¢x safisfy the
inequality

Barron’s lemma: For any sequence a, oOf positive constants safisfying
dDo,2 " < oo

Pr{L(X) < —log P(X) — a,} < 27",

and therefore
L(X)> —logP(X)—a, (a.s).

Shannon First Theorem: For any prefix code the average code length
E[L(C,, X{)] cannot be smaller than the entropy of the source H, (P).
that is,

E[L(Cy, X7)] > H,(P).
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Redundancy

Known Source P: The pointwise redundancy R,(C,, P;z}]) and the
average redundancy R, (C,, P) are defined as

Ry(Cn, Pyzy) = L(Cp,zy) + lg P(zy)
Ru(Cn) = E[L(Cu, X])] — Hu(P) >0
The maximal or worst case redundancy is

R*(C,, P) = max{ Ry, (Cn, P; ) }H(> 0).
1

Huffman Code:

R,(P) = (1;1;1}16% Ew?[L(Cn, z}) + log, P(x)].

Generalized Shannon Code: Drmota and W.S. (2001) consider

R’ (P) = min max[L(Cy, z) + lg P(z))]
n 331

which is solved by for some constant sg:

GS ny llgl/P(zt)] if (—lgP(x7)) < so
LGy ’xl)_{ [lg1/P(zy)] if (—lgP(xy)) > so



Main Result

Theorem 1 (W.S., 2000). Consider the Huffman block code of length n over
a binary memoryless source with p < % Then asn — oo

5 — 5+ 0(1) = 0.057304 « irrational,

Rl =
2= ((8Mn) = 3) — a2 M £ 06N e =g
where gcd(N, M) =1, a = log(l — p)/p. B = —log(1l — p),and p < 1.
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Figure 1: The average redundancy of Huffrnan codes versus block size n for: (a) irrational
a = logo (1 — p)/p with p = 1/7; () rational o = logy (1 — p)/p with p = 1/9.



Why Two Modes: Shannon Code

Consider the Shannon code that assigns the length
L(C,,a}) = [~1g P(z})]

where P(z") = p"(1—p)" ", with p being known probability of generating
0 and k is the number of 0s.

The Shannon code redundancy is

Ro= Y ()" (1= p)" " (T=Toga(p"(1 = p)" ™)1 + logy(0*(1 — p)" ™))

k=0 k

= 13 (M)A - " Hak + on)

k=0
14 o(1) o = logy(1 — p)/p irrational
L—L({(MnB) -4 +03(p") a==& rational

where (z) = = — |z | is the fractional part of =, and

1—0p 1
a=log, | —— |, B=logy | — |-
p I—p



Sketch of Proof: Sequences Modulo 1

To analyze redundancy for known sources one needs to understand
asymptotic behavior of the following sum

Z ()P0 = )" F Gk + 1)

for fixed p and some Riemann infegrable function f : [0, 1] — R.

The proof follows from the following fwo lemmas.

Lemma 2. [ef 0 < p < 1 be a fixed real number and o be an irrafional
number. Then for every Riemann infegrable function f : [0,1] — R

T}E&i (Z)pk(l - )" f({ak +y)) = /01 F(t) dt,

where the convergence is uniform for all shifts y € R.
Lemma 3. Lef o = & be a rational number with gcd(N, M) = 1. Then for
bounded function f : [0,1] — R

M—-1 I <

5 ()1 = Gk + ) = 57 (L ) 4 o

k=0 [=0

uniformly for ally € R and some p < 1.
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Minimax Redundancy

Unknown Source P

In practice, one can only hope to have some knowledge about a family
of sources S that generates real data.

Following Davisson we define the average minimax redundancy R, (S)
and the worst case (maximal) minimax redundancy R (S) for a family of
sources S as

R,(S) = minsup E[L(C,,z]) + 1g P(z})]
Cn pes
R'(S) = minsup max[L(Cp, z}) + 1g P(z})].

Cn pPesS

In the minimax scenario we look for the best code for the the worst source.

Source Coding Goal:
Find data compression algorithms that match optimal redundancy rates

either on average or for individual sequences.




Maximal Minimax Redundancy

We consider the following classes of sources S:

e Memoryless sources M, over an m-ary alphabet A = {1,2,...,m},
that is,

Py =p" - opn
with k1 + - - - + k,, = n, where p,; are unknown!

e Markov sources M, over an m-ary alphabet of order r

kij kmm,

k
P(zy) =pii' 0 D

where k;; is the number of pair symbols 5 in 7, and they satisfy the
balance property. Nofice that p;; are unknown.

e Renewal Sources R, where an 1 is infroduced after a run of 0s
distributed according to some distribution.



(Improved) Shtarkov Bounds for R

For the maximal minimax redundancy define

suppesP(z7)
2_ynean SUPpesP (Y1

Q () =

the maximum likelihood distribution. Observe that

R'(S) = minsupmax(L(C,,z}) + lg P(x}))
n CneC PceS :IZ?

= min max (L(Cn, zy) + suplg P@”b)
CnecC ZC? PeS

= min max[L(Cy, 2}) +1g Q" (z]) +1g > supP(y1)]
€

CneC az? y?EAn P
GS * n
= R7(Q)+Ig E supP(y,)
n n PES
vy eA

where RS°(Q*) is the maximal redundancy of a generalized Shannon
code built for the (known) distribution Q. We also write

D,(S) = 1g Z supP(z7) | :=1gd,.(S).
x?EAn pPesS
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Maximal Minimax for Memoryless Sources

We first consider the maximal minimax redundancy R (M) for a class of
memoryless sources over a finite m-ary alphabet. Observe that

k k
d,(Mpy) = Z sup p;-ccopo"
n pl aaaa bpm
|
n k
— Z k ) Sup pl1 pmm
k1—|—---—|—k:m:n 1, s 'vm?” Plye-+ rm
T )
ki+-+km=n k1, s Km n n

The summation set is
I(kl,...,km):{(kl,...,km)Z I€1—|——|—]€m:’l’b}

The number Ny of types k = (k1, ..., k) IS

M= (klnk )

m

The (unnormalized) likelihood distribution is

ky km
k k k1 k
Sup pll . e e pmm — (—) e e e (_m>
P1y---5Pm n n



Generating Function for d,,(M,)

We write . .
n! k! krm
dn(Mo) = — Z 1. Im
n k4t km=n k‘l' km'
Let us introduce a tree-generating function
< kM, 1
B(Z) = Z — 2 = )
— k! 1 —T(z)
where T'(z) safisfies T'(z) = zeT®) (= —W (—=z), Lambert’s W-function)
and also
oo kk—l "
T(z) = kz_l I

enumerates all rooted labeled frees. Let now

0

D, (z) = Z znZ—Tdn(Mo).

n=0

Then by the convolution formula

Dm(z) — [B(z)]m



Asymptotics

The function B(z) has an algebraic singularity at z = e~ (it becomes @
mulfi-valued function) and one finds

. 1—|—O( (1 —ez).

Ble) = V2(1 — ez) " 3

The singularity analysis yields (cf. Clarke & Barron, 1990, W.S., 1998)

m — 1 n VT F(%)m V2
Du(Mo) = ——loeg (5) +log (r@)) EENCEE NG

N <3—i—m(m—2)(2m—|—1)_ FQ(%)m2> 1

36 orr(m—1)) T

To complete the analysis, we need RY?(Q*). Drmota & W.S., 2001 proved

n——Inm
m—1
Inm

1
RY5(Q") = —

+ o(1),

In general, the term o(1) can not be improved. Thus

m — n ln%lnm ™
Ry(Mo) = " log (—) s R (F{;)) +o(1).

2 Inm
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Maximal Minimax for Markov Sources

(i) My is a Markov source of order r = 1,
(i) the transition matrix P = {p;;}."
(i) easy to see that

k k kll f11 kmm omm
d,(M;p) = g sup pyitccp,t = E Mk( ) <—k ) 7
x? P keFn m

1,7=1

ki; is the number of pairs ij € A”in z?, k; = S>> ki such that

m m—1
E ]ﬂj =N, and E k E ]Z,
1,j=1 J=0

Matrix k satisfying the above conditions is called the frequency matrix or
Markov type. M represents the numbers of strings «7 of type k .

For circular strings (i.e., after the n symbol we re-visit the first symibol of x7),
the frequency matrix [k;,] safisfies the following constraints that we denote

as F,

Z kij =n, zm: kij = zm: kji, Vi (balance property)

1<i,j<m j=1 j=1



Markov Types and Eulerian Cycles

Let k = [kij]z}:l e a Markov type satisfying F,, (balance property).

Example: Let A = {0,1} and

N\,
Two questions:

A: How many sequences of a given type k are there?

How many Eulerian paths in the underlying multigraph over | A| with k;;
edges are there”?

B: How many distinct matrices k satisfying F,, are there?
How many Markov types P,,(m) are there?
How many intfeger solutions to the balance equations are there?



Main Technical Tool

Let g be a sequence of scalars indexed by matrices k and
9(z) =  quz"
k

e its regular generating function, and

Fg(z) = ngzk = Z Z gkzk

ke F TLZO kEfn

the F-generating function of gy for which k € F.
Lemma 5. Let g(z) = >, gkz*. Then

Fo) =3 St = (5) § e f (s

with the ij-th coefficient of [zm ] is Zij 2,

Proof. It suffices to observe
Lj KT i ki3 ki
g([zijw—‘y_]) => gz [V T
v k i=1

Thus Fg(z) is the coefficient of g([zi;-L ]) at zzf - - - 2 .



Number of Markov Types and Sequences of a Given Type

(i) The number of strings le’b of type k that start with an a and ends with a
bis .
ba _ hap K
N " = 5 By db%t(I k")
where k™ is the normalized matrix such that k™ = [k;,/k;] and

k K
Bk:(kll..l.klﬂ)'”(k )

m1l kmm

(ii) For fixed m and n — oo the number of Markov types is

Py (m)| = d(m) (”?Zm_;)! + o™

where d(m) is a constant that also can be expressed as

1

d(m) = / / dpr1dps - - - dpm_1.
(2m)m=1 )ml 311+90§,€#1+(90k—w)2
(m— 1) fold

(iii) For m — oo, Provided m* = o(n), we find

2
V2m>2m/ 2e™ m2—m

m2m2 om rm/2

[ Pr(m)| ~




Markov Redundancy: Main Results

Theorem 3 (Jacquet and W.S., 2004). Lef M, be a Markov source over an
m-ry alpohabet. Then

dp(My) = (%)m(ml)/zAm y (1 o (%))
Ap = [ mFu(y) H \/27

K1) Il i

where IC(1) = {yi; © > ,;vij = 1} and F,.(-) Is a polynomial of degree
m — 1.

with

d[yi;]

In particular, for m = 2 A, = 16 x Catalan where Catalan is Catalan’s

constant 3, (5;_11);2 ~ 0.915965594.

Theorem 4. Let M, be a Markov source of order r. Then

o= () 0 ()

where A’ is a constant defined in a similar fashion as A,,, above.
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Renewal Sources

The renewal process defined as follows:

o LetT),Ty... be asequence of i.i.d. positive-valued random variables
with distribufion Q(j5) = Pr{T; = j}.
e The process Ty, Ty + 11,1y + 11 + T3, . . . is called the renewal process.

e In abinary renewal sequence the positions of the 1°s are at the renewal
epochs (runs of zeros) Ty, Ty + 11, . . ..

e We starf with zop = 1.

CsiszQr and Shields (1996) proved that R’ (Ro) = ©(1/n).

We prove the following result.
Theorem 5 (Flajolet and W.S., 1998). Consider the class of renewal

processes. Then 5
R’ (Ro) = ——+/cn + O(log n).
log 2

2
where ¢ = = — 1~ 0.645,



Maximal Minimax Redundancy

For a sequence

zp =10"110%21---10""1Q- - -Q
k*

k., is the number of < such that «; = m. Then
P(z}) = Q"(0)Q" (1) - - - Q"™ 1(n — 1)Pr{T} > k'}.

It can be proved that

rnp1 — 1 < dn(Ro) <) r

m=0

where

Tn = i T'n,k
k=0
B k ko\ "0 (k1| "1
Tk = Z (ko e kn—1) <?> (?> o

P(n,k)

where P(n, k) is is the partifion of n info k terms, i.e.,

n = ko4 2k 4+ -+ nk, 1,
k = ko+- -+ kn1.



Main Results

Theorem 6 (Flajolet and W.S., 1998). We have the following asymptofics

] ° 5l —|—11 ] + O(1)
ogry = —— — = —lg lo
gr log 2 cn 8gn 2g gn

where c = %2 — 1 =~ 0.645.

Asymptotic analysis is sophisticated and follows these steps:
e first, we transform r,, info another quantity s,,.

e use combinatorial calculus to find the generating function of s,, (infinite
product of tree-functions B(z));

e fransform this product into a harmonic sum that can be analyzed
asymptotically by the Mellin fransform;

e asymptotic expansion of the generating function around z = 1.
e finally, estimate R’ (Ro) by the saddle point method.



Asymptotics: The Main Idea

The quantity r,, is o hard to analyze due to the factor k!/k"“, hence we
define a new quantity s,, defined as

{ Sn = ZZZO Sn,k

k Ky —
_ —k k™0 L'n—1
Snk = € ZP(n,k) kol Tk '

n—l!

To analyze it, we introduce the random variable K,, as follows

Pr{K, = k} = 2

Sn

Stirling’s formula yields

Tn i Tn.kSn _ _

Sn k=0 Sn,k Sn

—  E[V27K,] + O(E[K, ?2]).



Fundamental Lemmas

Lemma 6. Let i1, = E[K,] and o> = Var(K,).
7
Spn ~  exp (2\/6 — glogn + d+ 0(1))

1 /n n
o = —\Flog— + o(v/n)
4\ c C

oo = O(nlogn) = o(u),

where ¢ = 7T2/6 —1,d= —log2 — %logc — %logw.
Lemmma 7. For large n

E[VE, = u/*(1+o0(1))
E[K, 2] = o(l).
where u,, = E[K,].

Thus

rn = s$,B[V27K,|(1 + o(1))
= a/Zr(l + o(1)).



Sketch of a Proof: Generating Functions

1. Define the function 3(z) as

B(2) 1
2) —
1 —T(ze 1)
2. Define - .
Sn(u) = Z Snpt” S(z,u) = Z Sn(u)z".
k=0 n=0
Since s, i iNnvolves convolutions of sequences of the form k’“/k!, we have
k0+"'+kn_1 kko kkn—l
S(z, _ 1kg+2k1+--- (E) L
(z,u) % : c kol Hnil
= H B(z'u).
=1

We need to compute s,, = [2"]S(z, 1), coefficient af z™ of S(z, 1).



Mellin Asymptotics

3. Llet L(2) =log S(z,1) and z = e~ *, so that
L(e™) =) logBle™™).
k=1

Mellin fransform techniques.

4. The Mellin transform

L (s) = /Ooo Lie Do dz

by the harmonic sum property: M (Zkzo )\kg(,uka:)> = g7 (8) D_ps0 Ak
L7(s) = ¢(s)A(s), R(s) € (1,00)

where ((s) = >_ -, n~ " is the Riemann zeta function, and

A(s) = /Ooo log B(e~") " dt.

. A(1) 1 log 7r>
L = — — :
(S) (S - 1>s:1 i ( 452 4s s=0

This leads to




What’s Nexi?

5. An application of the converse mapping property (M4) allows us to
come back to the original function,

L(e™) = &-i——logt—ilogw—l—()(\/_)
which translates in
A(1)

L(z) = T -+ —log(l —z) — —logw — —A(l) + O(V1 — 2).
where
1 dx
c=A(1) = —/O log(1 — T'(z/e))—
_ T
§)

6. In summary, we just proved that,as z — 17,

S(z,1) = &) = a(1 — 2)Texp <i> (14 0(1)),

where a = exp(—3log ™ — 3¢).

/. To extract asymptotic we need to apply the saddle point method.
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Post-Shannon Challenges

Classical Information Theory needs a recharge to meet new challenges of
nowadays applications in biology, modern communication, knowledge
extraction, economics and physics, . . . .

We need to extend Shannon information theory to include new aspects
of information such as:

structure, time, space, and semantics ,
and ofhers such as:

dynamic information, limited resources, complexity, physical inforrnation,
representation-invariant information, and cooperation & dependency.,




Structure, Time & Space, and Semantics

freeze drying front freeze drying front

Structure:;

Measures are needed for quantifying
information embodied in structures
(e.g.. material structures, nanostructures,
biomolecules, gene regulatory networks
protein intferaction networks, social networks,
financial fransactions). crystalline amorphous

Time & Space:

Classical Information Theory is at its weakest
in dealing with problems of delay

(e.g., information arriving late maybe
useless or has less value).

Semantics & Learnable information:

Data driven science focuses on extracting information from data.
How much informatfion can actually be extracted from a given data
repository? How much knowledge is in Google’s database?



Limited Resources, Representation, and Cooperation

Limited Computational Resources: 1 bit storage |
IN Many scenarios, informartion 1
2

is limited by available

01011101011

computational resources . .. .- -—-
(e.g., cell phone, living cell).

POLISH ENGLISH
aca oiewau pgag afdjsafj;sa vnavn;io
afidkag adf kasdjf nv ateoriutio;. ajtoi-
nvad fajf ewiigz?n vex.vlioa‘t j.a aoeivu?i ja ]

Representation-invariant of information: it o vl f [
voe jer;ask otfesd'o jlkm dasojob sgae ai-
igs'oyj eaotfuoi ugd- utperionb dsngo

How to know whether two representations

fklagneaot isknbd iajt4;we. jfdksajgp;i

of the same informaftion
are information equivalent?

kbndfa;lgj. djfkjao-
ifiweoknvdljvoe
jer;ask. otfesd'o
igs'oyjmreaotfuoiugd
fklagneaot isknbd
kbndfa;lgj.

file A

ouerato;iernbvd
zigujrep;otiern
mdflbk nevzb;iodf
gers ldkg er; igjd.
fkigh;s oi jgsdj g;t
isknbd kbndfa;lgj.

file B

Cooperation. Often subsystems may be in conflict (e.g., denial of
service) or in collusion (e.g., price fixing). How does cooperation impact
information? (In wireless networks nodes should cooperate in their own
self-interest.)



Standing on the Shoulders of Giants . ..

F. Brooks, jr. (JACM, 2003, "Three Great Challenges .. .”):

We have no theory that gives us a metric for the Informnation
embodied in structure . . . this is the most fundamental gap

in the theoretical underpinning of Informatfion and computer science.

Manfred Eigen (Nobel Prize, 1967)

"The differentiable characteristic of the living systems is Informnation.
Information assures the controlled reproduction of all constituents,
ensuring conservation of viability . . . . Information theory,
pioneered by Claude Shannon, cannot answer this question . ..

in principle, the answer was formulated 130 years ago by Charles Darwin”.

P. Nurse, (Nature, 2008, "Life, Logic, and Information”):
Focusing on information flow will help to understand better
how cells and organisms work.

... the generation of spatial and temporal order,
memory and reproduction are not fully understood”.

cell

A. Zeilinger (Nature, 2005)
... reality and information are two sides of the same coin,
that is, they are in a deep sense indistinguishable.




Science of Information

The overarching vision of Science of Information is to develop rigorous
principles guiding the exfraction, manipulation, and exchange of
information, infegrating elements of space, time, structure, and semanfics.

Gene Networks  Social Networks

Protein (Mis) f\ ] Material
Folding f == o) . Structures
. o - s

- A F o
< ‘ !*
1
; R
v o

Darwin Channel »%*

Wireless/Ad-hoc
Networks

Knowledge

Database

ruOH-GRW

Channel

Noise (mutation)



Institute for Science of Information

In 2008 at Purdue we launched the

Institute for Science of Information

and in 2010 National Science Foundation established $25M

Science and Technology Center

at Purdue to do ccollaborative work with Berkeley, MIT, Princeton,
Stanford, UIUC and Bryn Mawr & Howard U. integrating research and
feaching activities aimed at investigating the role of information from
various viewpoints: from the fundamental theorefical underpinnings of
greeninformation to the science and engineering of novel information
substrates, biological pathways, communication networks, economics,
and complex social systems.

The specific means and goals for the Center are:

develope post-Shannon Information Theory,

Prestige Science Lecture Series on Informatfion to collectively ponder
short and long term goals;

organize meetings and workshops (e.g., Informnation Beyond Shannon,
Orlando 2005, and Venice 2008).

initiate similar world-wide centers supporting research on information.


http://isihub.org
http://www.cs.purdue.edu/homes/spa/info.html
http://komster.net/~msmolenski/venice/index.html

THANK YOU



