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Shannon Legacy

The Information Revolution started in 1948, with the publication of:

A Mathematical Theory of Communication.

The digital age began.

Claude Shannon:
Shannon information quantifies the extent to which a recipient of data
can reduce its statistical uncertainty.
“These semantic aspects of communication are irrelevant . . .”

Applications Enabler/Driver:

CD, iPod, DVD, video games, computer communication, Internet,
Facebook, Google, . . .

Design Driver:

universal data compression, voiceband modems, CDMA, multiantenna,
discrete denosing, space-time codes, cryptography, . . .



Three Theorems of Shannon

Theorem 1 & 3. [Shannon 1948; Lossless & Lossy Data Compression]

Lossless Compression: compression bit rate ≥ source entropy H(X);

Lossy Compression: For distortion level D:
lossy bit rate ≥ rate distortion function R(D)

Theorem 2. [Shannon 1948; Channel Coding ]
In Shannon’s words:

It is possible to send information at the capacity through the channel
with as small a frequency of errors as desired by proper (long) encoding.
This statement is not true for any rate greater than the capacity.



Analytic Information Theory

• In the 1997 Shannon Lecture Jacob Ziv presented compelling
arguments for “backing off” from first-order asymptotics in order to
predict the behavior of real systems with finite length description.

• To overcome these difficulties we propose replacing first-order analyses
by full asymptotic expansions and more accurate analyses (e.g., large
deviations, central limit laws).

• Following Hadamard’s precept1, we study information theory problems
using techniques of complex analysis such as generating functions,
combinatorial calculus, Rice’s formula, Mellin transform, Fourier series,
sequences distributed modulo 1, saddle point methods, analytic
poissonization and depoissonization, and singularity analysis.

• This program, which applies complex-analytic tools to information
theory, constitutes analytic information theory.

1The shortest path between two truths on the real line passes through the complex plane.
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Source Coding

A source code is a bijective mapping

C : A∗ → {0, 1}∗

from sequences over the alphabet A to set {0, 1}∗ of binary sequences.

The basic problem of source coding (i.e., data compression) is to
find codes with shortest descriptions (lengths) either on average or for
individual sequences.

For a probabilistic source model S and a code Cn we let:

• P (xn
1) be the probability of xn

1 = x1 . . . xn;

• L(Cn, xn
1) be the code length for xn

1 ;

• Entropy Hn(P ) = −Pxn
1

P (xn
1) lg P (xn

1 ).

• Fractional part: 〈x〉 = x − ⌊x⌋.



Prefix Codes

Prefix code is such that no codeword is a prefix of another codeword.

Kraft’s Inequality

A code is a prefix code iff codeword lengths ℓ1, ℓ2, . . . , ℓN satisfy the
inequality

2
lmax li–

i
∑ 2

lmax<li

lmax li–
PN

i=1 2−ℓi ≤ 1.

Barron’s lemma: For any sequence an of positive constants satisfying
P

n 2−an < ∞

Pr{L(X) < − log P (X) − an} ≤ 2
−an,

and therefore
L(X) ≥ − log P (X) − an (a.s).

Shannon First Theorem: For any prefix code the average code length
E[L(Cn, Xn

1 )] cannot be smaller than the entropy of the source Hn(P ),
that is,

E[L(Cn, Xn
1 )] ≥ Hn(P ).
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Redundancy

Known Source P : The pointwise redundancy Rn(Cn, P ; xn
1) and the

average redundancy R̄n(Cn, P ) are defined as

Rn(Cn, P ; xn
1) = L(Cn, xn

1) + lg P (xn
1 )

R̄n(Cn) = E[L(Cn, Xn
1 )] − Hn(P ) ≥ 0

The maximal or worst case redundancy is

R
∗
(Cn, P ) = max

xn
1

{Rn(Cn, P ; x
n
1)}(≥ 0).

Huffman Code:

R̄n(P ) = min
Cn∈C

Exn
1
[L(Cn, xn

1) + log2 P (xn
1)].

Generalized Shannon Code: Drmota and W.S. (2001) consider

R
∗
n(P ) = min

Cn
max

xn
1

[L(Cn, x
n
1) + lg P (x

n
1)]

which is solved by for some constant s0:

L(C
GS
n , x

n
1) =


⌊lg 1/P (xn

1)⌋ if 〈− lg P (xn
1)〉 ≤ s0

⌈lg 1/P (xn
1)⌉ if 〈− lg P (xn

1)〉 > s0



Main Result

Theorem 1 (W.S., 2000). Consider the Huffman block code of length n over

a binary memoryless source with p < 1
2. Then as n → ∞

R̄H
n =

8
><

>:

3
2 − 1

ln 2 + o(1) ≈ 0.057304 α irrational,

3
2 − 1

M

`
〈βMn〉 − 1

2

´
− 1

M(1−2−1/M )
2−〈nβM〉/M + O(ρn) α = N

M

where gcd(N, M) = 1, α = log(1 − p)/p, β = − log(1 − p), and ρ < 1.
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Figure 1: The average redundancy of Huffman codes versus block size n for: (a) irrational

α = log2(1 − p)/p with p = 1/π; (b) rational α = log2(1 − p)/p with p = 1/9.



Why Two Modes: Shannon Code

Consider the Shannon code that assigns the length

L(C
S
n , x

n
1) = ⌈− lg P (x

n
1)⌉

where P (xn
1) = pk(1−p)n−k, with p being known probability of generating

0 and k is the number of 0s.

The Shannon code redundancy is

R̄
S
n =

nX

k=0

“n

k

”

p
k
(1 − p)

n−k
“

⌈− log2(p
k
(1 − p)

n−k
)⌉ + log2(p

k
(1 − p)

n−k
)
”

= 1 −
nX

k=0

“n

k

”

p
k
(1 − p)

n−k〈αk + βn〉

=

8
<

:

1
2 + o(1) α = log2(1 − p)/p irrational

1
2 − 1

M

`
〈Mnβ〉 − 1

2

´
+ O(ρn) α = N

M rational

where 〈x〉 = x − ⌊x⌋ is the fractional part of x, and

α = log2

„
1 − p

p

«

, β = log2

„
1

1 − p

«

.



Sketch of Proof: Sequences Modulo 1

To analyze redundancy for known sources one needs to understand
asymptotic behavior of the following sum

nX

k=0

“n

k

”

p
k
(1 − p)

n−k
f(〈αk + y〉)

for fixed p and some Riemann integrable function f : [0, 1] → R.

The proof follows from the following two lemmas.
Lemma 2. Let 0 < p < 1 be a fixed real number and α be an irrational

number. Then for every Riemann integrable function f : [0, 1] → R

lim
n→∞

nX

k=0

“n

k

”

pk(1 − p)n−kf(〈αk + y〉) =

Z 1

0

f(t) dt,

where the convergence is uniform for all shifts y ∈ R.

Lemma 3. Let α = N
M be a rational number with gcd(N, M) = 1. Then for

bounded function f : [0, 1] → R

nX

k=0

“n

k

”

p
k
(1 − p)

n−k
f(〈αk + y〉) =

1

M

M−1X

l=0

f

„
l

M
+

〈My〉
M

«

+ O(ρ
n
)

uniformly for all y ∈ R and some ρ < 1.
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Minimax Redundancy

Unknown Source P

In practice, one can only hope to have some knowledge about a family
of sources S that generates real data.

Following Davisson we define the average minimax redundancy R̄n(S)
and the worst case (maximal) minimax redundancy R∗

n(S) for a family of
sources S as

R̄n(S) = min
Cn

sup
P∈S

E[L(Cn, xn
1) + lg P (xn

1)]

R
∗
n(S) = min

Cn
sup
P∈S

max
xn
1

[L(Cn, x
n
1) + lg P (x

n
1)].

In the minimax scenario we look for the best code for the the worst source.

Source Coding Goal:
Find data compression algorithms that match optimal redundancy rates

either on average or for individual sequences.



Maximal Minimax Redundancy

We consider the following classes of sources S:

• Memoryless sources M0 over an m-ary alphabet A = {1, 2, . . . , m},
that is,

P (xn
1) = p1

k1 · · · pm
km

with k1 + · · · + km = n, where pi are unknown!

• Markov sources Mr over an m-ary alphabet of order r

P (x
n
1 ) = p

k11
11 · · · pkij

ij · · · pkmm
mm

where kij is the number of pair symbols ij in xn
1 , and they satisfy the

balance property. Notice that pij are unknown.

• Renewal Sources R0 where an 1 is introduced after a run of 0s
distributed according to some distribution.



(Improved) Shtarkov Bounds for R
∗
n

For the maximal minimax redundancy define

Q
∗
(x

n
1) :=

supP∈SP (xn
1 )

P

yn
1∈An supP∈SP (yn

1 )
.

the maximum likelihood distribution. Observe that

R∗
n(S) = min

Cn∈C
sup
P∈S

max
xn
1

(L(Cn, xn
1) + lg P (xn

1 ))

= min
Cn∈C

max
xn
1

„

L(Cn, x
n
1) + sup

P∈S
lg P (x

n
1)

«

= min
Cn∈C

max
xn
1

[L(Cn, x
n
1) + lg Q

∗
(x

n
1) + lg

X

yn
1∈An

sup
P∈S

P (y
n
1 )]

= RGS
n (Q∗) + lg

X

yn
1∈An

sup
P∈S

P (yn
1 )

where RGS
n (Q∗) is the maximal redundancy of a generalized Shannon

code built for the (known) distribution Q∗. We also write

Dn(S) = lg

0

B
@

X

xn
1∈An

sup
P∈S

P (xn
1)

1

C
A := lg dn(S).
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Maximal Minimax for Memoryless Sources

We first consider the maximal minimax redundancy R∗
n(M0) for a class of

memoryless sources over a finite m-ary alphabet. Observe that

dn(M0) =
X

xn
1

sup
p1,...,pm

p
k1
1 · · · pkm

m

=
X

k1+···+km=n

“ n

k1, . . . , km

”

sup
p1,...,pm

p
k1
1 · · · pkm

m

=
X

k1+···+km=n

“ n

k1, . . . , km

”„k1

n

«k1

· · ·
„

km

n

«km

.

The summation set is

I(k1, . . . , km) = {(k1, . . . , km) : k1 + · · · + km = n}.

The number Nk of types k = (k1, . . . , km) is

Nk =
“ n

k1, . . . , km

”

The (unnormalized) likelihood distribution is

sup
p1,...,pm

p
k1
1 · · · pkm

m =

„
k1

n

«k1

· · ·
„

km

n

«km



Generating Function for dn(M0)

We write

dn(M0) =
n!

nn

X

k1+···+km=n

k
k1
1

k1!
· · · kkm

m

km!

Let us introduce a tree-generating function

B(z) =
∞X

k=0

kk

k!
zk =

1

1 − T (z)
,

where T (z) satisfies T (z) = zeT (z) (= −W (−z), Lambert’s W -function)
and also

T (z) =
∞X

k=1

kk−1

k!
zk

enumerates all rooted labeled trees. Let now

Dm(z) =
∞X

n=0

z
nnn

n!
dn(M0).

Then by the convolution formula

Dm(z) = [B(z)]
m

.



Asymptotics

The function B(z) has an algebraic singularity at z = e−1 (it becomes a
multi-valued function) and one finds

B(z) =
1

p
2(1 − ez)

+
1

3
+ O(

q

(1 − ez).

The singularity analysis yields (cf. Clarke & Barron, 1990, W.S., 1998)

Dn(M0) =
m − 1

2
log

„
n

2

«

+ log

 √
π

Γ(m
2 )

!

+
Γ(m

2 )m

3Γ(m
2 − 1

2)
·
√

2
√

n

+

 

3 + m(m − 2)(2m + 1)

36
−

Γ2(m
2 )m2

9Γ2(m
2 − 1

2)

!

· 1

n
+ · · ·

To complete the analysis, we need R̄GS
n (Q∗). Drmota & W.S., 2001 proved

R
GS
n (Q

∗
) = −

ln 1
m−1 ln m

ln m
+ o(1),

In general, the term o(1) can not be improved. Thus

R∗
n(M0) =

m − 1

2
log

„
n

2

«

−
ln 1

m−1 ln m

ln m
+ log

 √
π

Γ(m
2 )

!

+ o(1).
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Maximal Minimax for Markov Sources

(i) M1 is a Markov source of order r = 1,
(ii) the transition matrix P = {pij}m

i,j=1

(iii) easy to see that

dn(M1) =
X

xn
1

sup
P

p
k11
11 · · · pkmm

mm =
X

k∈Fn

Mk

„
k11

k1

«k11

. . .

„
kmm

km

«kmm

,

kij is the number of pairs ij ∈ A2 in xn
1 , ki =

Pm
j=1 kij such that

Fn :

mX

i,j=1

kij = n, and

mX

j=1

kij =

m−1X

j=0

kji,

Matrix k satisfying the above conditions is called the frequency matrix or
Markov type. Mk represents the numbers of strings xn

1 of type k .

For circular strings (i.e., after the n symbol we re-visit the first symbol of xn
1 ),

the frequency matrix [kij] satisfies the following constraints that we denote
as Fn

X

1≤i,j≤m

kij = n,
mX

j=1

kij =
mX

j=1

kji, ∀ i (balance property)



Markov Types and Eulerian Cycles

Let k = [kij]
m
i,j=1 be a Markov type satisfying Fn (balance property).

Example: Let A = {0, 1} and

k =

»
1 2

2 2

–

Two questions:

A: How many sequences of a given type k are there?
How many Eulerian paths in the underlying multigraph over |A| with kij

edges are there?

B: How many distinct matrices k satisfying Fn are there?
How many Markov types Pn(m) are there?
How many integer solutions to the balance equations are there?



Main Technical Tool

Let gk be a sequence of scalars indexed by matrices k and

g(z) =
X

k

gkz
k

be its regular generating function, and

Fg(z) =
X

k∈F
gkz

k
=
X

n≥0

X

k∈Fn

gkz
k

the F -generating function of gk for which k ∈ F .
Lemma 5. Let g(z) =

P

k gkz
k. Then

Fg(z) :=
X

n≥0

X

k∈Fn

gkz
k

=

„
1

2π

«m I dx1

x1

· · ·
I

dxm

xm

g([zij

xj

xi

])

with the ij-th coefficient of [zij
xj
xi

] is zij
xj
xi

.

Proof. It suffices to observe

g([zij

xj

xi

]) =
X

k

gkz
k

mY

i=1

x
P

i kij−
P

j kij
i

Thus Fg(z) is the coefficient of g([zij
xj
xi

]) at x0
1x

0
2 · · · x0

m.



Number of Markov Types and Sequences of a Given Type

(i) The number of strings Na,b
k

of type k that start with an a and ends with a
b is

N
b,a
k =

kba

kb

Bk · det
bb

(I − k
∗
)

where k∗ is the normalized matrix such that k∗ = [kij/ki] and

Bk =
“ k1

k11 · · · k1m

”

· · ·
“ km

km1 · · · kmm

”

.

(ii) For fixed m and n → ∞ the number of Markov types is

|Pn(m)| = d(m)
nm2−m

(m2 − m)!
+ O(n

m2−m−1
)

where d(m) is a constant that also can be expressed as

d(m) =
1

(2π)m−1

Z ∞

−∞
· · ·
Z ∞

−∞
| {z }

(m−1)−fold

m−1Y

j=1

1

1 + ϕ2
j

·
Y

k 6=ℓ

1

1 + (ϕk − ϕℓ)2
dϕ1dϕ2 · · · dϕm−1.

(iii) For m → ∞, Provided m4 = o(n), we find

|Pn(m)| ∼
√

2m3m/2em2

m2m22mπm/2
· n

m2−m
.



Markov Redundancy: Main Results

Theorem 3 (Jacquet and W.S., 2004). Let M1 be a Markov source over an

m-ry alphabet. Then

dn(M1) =

„
n

2π

«
m(m−1)/2Am ×

„

1 + O

„
1

n

««

with

Am =

Z

K(1)

mFm(yij)
Y

i

qP

j yij

Q

j

√
yij

d[yij]

where K(1) = {yij :
P

ij yij = 1} and Fm(·) is a polynomial of degree

m − 1.

In particular, for m = 2 A2 = 16 × Catalan where Catalan is Catalan’s

constant
P

i
(−1)i

(2i+1)2
≈ 0.915965594.

Theorem 4. Let Mr be a Markov source of order r. Then

dn(Mr) =

„
n

2π

«
mr(m−1)/2Ar

m ×
„

1 + O

„
1

n

««

where Ar
m is a constant defined in a similar fashion as Am above.
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Renewal Sources

The renewal process defined as follows:

• Let T1, T2 . . . be a sequence of i.i.d. positive-valued random variables
with distribution Q(j) = Pr{Ti = j}.

• The process T0, T0 + T1, T0 + T1 + T2, . . . is called the renewal process.

• In a binary renewal sequence the positions of the 1’s are at the renewal
epochs (runs of zeros) T0, T0 + T1, . . ..

• We start with x0 = 1.

Csiszár and Shields (1996) proved that R∗
n(R0) = Θ(

√
n).

We prove the following result.
Theorem 5 (Flajolet and W.S., 1998). Consider the class of renewal

processes. Then

R∗
n(R0) =

2

log 2

√
cn + O(log n).

where c = π2

6 − 1 ≈ 0.645.



Maximal Minimax Redundancy

For a sequence
x

n
0 = 10

α110
α21 · · · 10αn1 0 · · · 0| {z }

k∗
km is the number of i such that αi = m. Then

P (x
n
1) = Q

k0(0)Q
k1(1) · · ·Qkn−1(n − 1)Pr{T1 > k

∗}.

It can be proved that

rn+1 − 1 ≤ dn(R0) ≤
nX

m=0

rm

where

rn =
nX

k=0

rn,k

rn,k =
X

P(n,k)

“ k

k0 · · · kn−1

”„k0

k

«k0
„

k1

k

«k1

· · ·
„

kn−1

k

«kn−1

where P(n, k) is is the partition of n into k terms, i.e.,

n = k0 + 2k1 + · · · + nkn−1,

k = k0 + · · · + kn−1.



Main Results

Theorem 6 (Flajolet and W.S., 1998). We have the following asymptotics

log rn =
2

log 2

√
cn − 5

8
lg n +

1

2
lg log n + O(1)

where c = π2

6 − 1 ≈ 0.645.

Asymptotic analysis is sophisticated and follows these steps:

• first, we transform rn into another quantity sn.

• use combinatorial calculus to find the generating function of sn (infinite
product of tree-functions B(z));

• transform this product into a harmonic sum that can be analyzed
asymptotically by the Mellin transform;

• asymptotic expansion of the generating function around z = 1.

• finally, estimate R∗
n(R0) by the saddle point method.



Asymptotics: The Main Idea

The quantity rn is to hard to analyze due to the factor k!/kk, hence we
define a new quantity sn defined as

(
sn =

Pn
k=0 sn,k

sn,k = e−kP

P(n,k)
kk0
k0! · · · k

kn−1

kn−1! .

To analyze it, we introduce the random variable Kn as follows

Pr{Kn = k} =
sn,k

sn

.

Stirling’s formula yields

rn

sn

=

nX

k=0

rn,k

sn,k

sn,k

sn

= E[(Kn)!K
−Kn
n e

−Kn]

= E[
p

2πKn] + O(E[Kn
−1

2]).



Fundamental Lemmas

Lemma 6. Let µn = E[Kn] and σ2
n = Var(Kn).

sn ∼ exp

„

2
√

cn − 7

8
log n + d + o(1)

«

µn =
1

4

r
n

c
log

n

c
+ o(

√
n)

σ2
n = O(n log n) = o(µ2

n),

where c = π2/6 − 1, d = − log 2 − 3
8 log c − 3

4 log π.

Lemma 7. For large n

E[
p

Kn] = µ1/2
n (1 + o(1))

E[Kn
−1

2] = o(1).

where µn = E[Kn].

Thus

rn = snE[
p

2πKn](1 + o(1))

= sn

p
2πµn(1 + o(1)).



Sketch of a Proof: Generating Functions

1. Define the function β(z) as

β(z) =

∞X

k=0

kk

k!
e
−k

z
k
.

One has (e.g., by Lagrange inversion or otherwise)

β(z) =
1

1 − T (ze−1)
.

2. Define

Sn(u) =

∞X

k=0

sn,ku
k
, S(z, u) =

∞X

n=0

Sn(u)z
n
.

Since sn,k involves convolutions of sequences of the form kk/k!, we have

S(z, u) =
X

Pn,k

z1k0+2k1+···
„

u

e

«k0+···+kn−1 kk0

k0!
· · · kkn−1

kn−1!

=
∞Y

i=1

β(z
i
u).

We need to compute sn = [zn]S(z, 1), coefficient at zn of S(z, 1).



Mellin Asymptotics

3. Let L(z) = log S(z, 1) and z = e−t, so that

L(e−t) =
∞X

k=1

log β(e−kt).

Mellin transform techniques.

4. The Mellin transform

L
∗
(s) =

Z ∞

0

L(e
−t

)x
s−1

dx

by the harmonic sum property: M
“P

k≥0 λkg(µkx)
”

= g∗(s)
P

k≥0 λkµ
−s
k :

L
∗
(s) = ζ(s)Λ(s), ℜ(s) ∈ (1,∞)

where ζ(s) =
P

n≥1 n−s is the Riemann zeta function, and

Λ(s) =

Z ∞

0

log β(e−t)ts−1dt.

This leads to

L∗(s) ≍
„

Λ(1)

s − 1

«

s=1

+

„

− 1

4s2
− log π

4s

«

s=0

.



What’s Next?

5. An application of the converse mapping property (M4) allows us to
come back to the original function,

L(e
−t

) =
Λ(1)

t
+

1

4
log t − 1

4
log π + O(

√
t),

which translates in

L(z) =
Λ(1)

1 − z
+

1

4
log(1 − z) − 1

4
log π − 1

2
Λ(1) + O(

√
1 − z).

where

c = Λ(1) = −
Z 1

0

log(1 − T (x/e))
dx

x

=
π2

6
− 1.

6. In summary, we just proved that, as z → 1−,

S(z, 1) = e
L(z)

= a(1 − z)
1
4exp

„
c

1 − z

«

(1 + o(1)) ,

where a = exp(−1
4 log π − 1

2c).

7. To extract asymptotic we need to apply the saddle point method.



Outline Update

1. Shannon Information Theory

2. Source Coding

3. The Redundancy Rate Problem

PART II: Science of Information

1. What is Information?

2. Post-Shannon Information

3. NSF Science and Technology Center



Post-Shannon Challenges

Classical Information Theory needs a recharge to meet new challenges of
nowadays applications in biology, modern communication, knowledge
extraction, economics and physics, . . . .

We need to extend Shannon information theory to include new aspects
of information such as:

structure, time, space, and semantics ,

and others such as:

dynamic information, limited resources, complexity, physical information,
representation-invariant information, and cooperation & dependency.



Structure, Time & Space, and Semantics

Structure:
Measures are needed for quantifying
information embodied in structures
(e.g., material structures, nanostructures,

biomolecules, gene regulatory networks

protein interaction networks, social networks,

financial transactions).

Time & Space:
Classical Information Theory is at its weakest
in dealing with problems of delay
(e.g., information arriving late maybe
useless or has less value).

Semantics & Learnable information:
Data driven science focuses on extracting information from data.
How much information can actually be extracted from a given data
repository? How much knowledge is in Google’s database?



Limited Resources, Representation, and Cooperation

Limited Computational Resources:
In many scenarios, information
is limited by available
computational resources
(e.g., cell phone, living cell).

Representation-invariant of information:
How to know whether two representations
of the same information
are information equivalent?

Cooperation. Often subsystems may be in conflict (e.g., denial of
service) or in collusion (e.g., price fixing). How does cooperation impact
information? (In wireless networks nodes should cooperate in their own
self-interest.)



Standing on the Shoulders of Giants . . .

F. Brooks, jr. (JACM, 2003, “Three Great Challenges . . .”):
We have no theory that gives us a metric for the Information
embodied in structure . . . this is the most fundamental gap
in the theoretical underpinning of Information and computer science.

Manfred Eigen (Nobel Prize, 1967)
“The differentiable characteristic of the living systems is Information.
Information assures the controlled reproduction of all constituents,
ensuring conservation of viability . . . . Information theory,
pioneered by Claude Shannon, cannot answer this question . . .

in principle, the answer was formulated 130 years ago by Charles Darwin”.

P. Nurse, (Nature, 2008, “Life, Logic, and Information”):
Focusing on information flow will help to understand better

how cells and organisms work.

“. . . the generation of spatial and temporal order,

cell

memory and reproduction are not fully understood”.

A. Zeilinger (Nature, 2005)
. . . reality and information are two sides of the same coin,
that is, they are in a deep sense indistinguishable.



Science of Information

The overarching vision of Science of Information is to develop rigorous
principles guiding the extraction, manipulation, and exchange of
information, integrating elements of space, time, structure, and semantics.



Institute for Science of Information

In 2008 at Purdue we launched the

Institute for Science of Information

and in 2010 National Science Foundation established $25M

Science and Technology Center

at Purdue to do ccollaborative work with Berkeley, MIT, Princeton,
Stanford, UIUC and Bryn Mawr & Howard U. integrating research and
teaching activities aimed at investigating the role of information from
various viewpoints: from the fundamental theoretical underpinnings of
greeninformation to the science and engineering of novel information
substrates, biological pathways, communication networks, economics,
and complex social systems.

The specific means and goals for the Center are:

• develope post-Shannon Information Theory,

• Prestige Science Lecture Series on Information to collectively ponder
short and long term goals;

• organize meetings and workshops (e.g., Information Beyond Shannon,
Orlando 2005, and Venice 2008).

• initiate similar world-wide centers supporting research on information.

http://isihub.org
http://www.cs.purdue.edu/homes/spa/info.html
http://komster.net/~msmolenski/venice/index.html


THANK YOU


