On the Number of Full Levels in Tries

C. Knessl† W. Szpankowski‡

May 31, 2003

*This research is supported by NSF, NSA and NIH.
†Dept. Mathematics, Statistics & CS, University of Illinois at Chicago
‡Department of Computer Science, Purdue University
Outline of the Talk

1. Tries and Their Parameters
2. Some “Multiplicative” Recurrences
 - Fill-up Level
 - Shortest Path
 - Height
3. Exact Solution of the recurrence
4. Main (Asymptotic) Results
 - Symmetric Case
 - Asymmetric Case
5. Sketch of the Proof
 - Saddle Point Method
 - Depoissonization
 - Asymptotic Evaluation of an Integral
Figure 1: A trie and its parameters.

F_n – fill up level;
R_n – shortest path;
H_n – height.

Memoryless Source: Binary sequences generated by i.i.d. source with p being the probability of generating a “0”, and $q = 1 - p$.
Recurrence for the Fillup Level

Fillup Level F_n: Define $f(n, k) = \Pr[F_n \geq k]$. Then

$$f(n, k + 1) = \sum_{i=0}^{n} \binom{n}{i} p^i q^{n-i} f(i, k) f(n - i, k)$$

with $f(0, 0) = 0$ and $f(n, 0) = 1$ for $n \geq 1$.

We also have $f(n, k) = 0$ for $n < 2^k$, since we need at least 2^k strings to completely fill k levels.

The above recurrence follows from the fact that with probability $\binom{n}{i} p^i q^{n-i}$, i strings end up in the left subtree while $n - i$ move to the right subtree. In order to have the fill-up level of the whole tree equal at least to $k + 1$ we must assure that the fill-up levels in both subtrees are at least equal to k.
Shortest Path R_n: Define $r(n, k) = \Pr[R_n \geq k]$. Then

$$r(n, k + 1) = \sum_{i=0}^{n} \binom{n}{i} p^i q^{n-i} r(i, k) r(n - i, k) - \delta_{n,1} \delta_{k,0}$$

with $r(n, 0) = 1$ for $n \geq 0$ where $\delta_{i,j}$ is the Kronecker delta (i.e., $\delta_{i,j} = 1$ for $i = j$ and zero otherwise).

Height in Tries H^T_n: The distribution $\bar{h}^k_n = \Pr\{H^T_n \leq k\}$ of the height of b-tries satisfies

$$\bar{h}^{k+1}_n = \sum_{i=0}^{n} \binom{n}{i} p^i q^{n-i} \bar{h}^k_i \bar{h}^k_{n-i}, \quad k \geq 0$$

with the initial condition $\bar{h}^0_n = 1$ for $n = 0, 1, 2, \ldots, b$ and $\bar{h}^0_n = 0$ for $n > b$.

PATRICIA tries H^P_n: the distribution $h^k_n = \Pr\{H^P_n \leq k\}$ satisfies

$$h^{k+1}_n = (p^n + q^n) h^{k+1}_n + \sum_{i=1}^{n-1} \binom{n}{i} p^i q^{n-i} h^k_i h^k_{n-i}, \quad k \geq 0$$

with the initial conditions $h^0_0 = h^0_1 = 1$ and $h^0_n = 0$ for $n \geq 2$.
Fillup – Some Explicit Solutions

Small Values of k:

$$f(n, 1) = 1 - p^n - q^n, \; n \geq 1,$$
$$f(n, 2) = 1 - (1 - p^2)^n - (1 - q^2)^n - 2(1 - pq)^n + 2(p^n + q^n) + (p^2 + q^2)^n + 2^n(pq)^n - (p^n + q^n)^2, \; n \geq 1.$$

Large Values of $n = 2^k + l$:

$$f(2^k + 1, k) = (2^k + 1)! \frac{1}{2} (\sqrt{pq})^{k2^k},$$
$$f(2^k + 2, k) = (2^k + 2)! (\sqrt{pq})^{k2^k} \left[\frac{1}{8} + \frac{1}{24} (p^2 + q^2)^k \right].$$
The Poisson transform is $\tilde{F}_k(z) := F_k(z)e^{-z}$.

From the recurrence we find

$$F_{k+1}(z) = F_k(pz)F_k(qz)$$

with $F_0(z) = e^z - 1$. Let $\tilde{F}_k(z) = \exp[H_k(z)]$. Then

$$H_{k+1}(z) = H_k(pz) + H_k(qz)$$

with $H_0(z) = \log(1 - e^{-z})$.

Define $M_k(s) = M[H_k(z); s]$ the Mellin transform of $H_k(z)$. Then

$$M_{k+1}(s) = (p^{-s} + q^{-s})M_k(s)$$

and

$$M_0(s) = \int_0^\infty z^{s-1}\log(1 - e^{-z})dz = -\Gamma(s)\zeta(s + 1).$$

Therefore, $M_k(s) = -\Gamma(s)\zeta(s + 1)(p^{-s} + q^{-s})^k$.

Theorem 1. The distribution $f(n, k)$ has the representation

$$f(n, k) = n! [z^n] \exp [H_k(z) + z],$$

so that by Cauchy’s formula,

$$f(n, k) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{e^z}{z^{n+1}} \exp[H_k(z)] \, dz.$$

Here the Mellin transform of $H_k(z)$ is

$$\mathcal{M}[H_k(z); s] = -\Gamma(s) \zeta(s + 1) (p^{-s} + q^{-s})^k, \quad \Re(s) > 0$$

and by inversion we have

$$H_k(z) = -\frac{1}{2\pi i} \oint_{\gamma} \frac{1}{z} \Gamma(s) \zeta(s + 1) (p^{-s} + q^{-s})^k \, ds.$$

Here $\Gamma(\cdot)$ is the Gamma function and $\zeta(\cdot)$ is the Riemann zeta function.

In the symmetric case $p = q = 1/2$, we have

$$f(n, k) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{e^z}{z^{n+1}} \left[1 - \exp \left(-\frac{z}{2^k} \right) \right]^{2^k} \, dz.$$
Main Result - Symmetric Case

Theorem 2. Consider $p = q = 1/2$ as $k, n \to \infty$.

(a) $k, n \to \infty$ with $n = 2^k + \ell, \ell = O(1), \ell \geq 0$

\[f(n, k) \sim \sqrt{2\pi e^{-2^k}} 2^{k(\ell+1/2)} \frac{1}{2^\ell \ell!} \sim \sqrt{2\pi n e^{-n}} n^n \frac{e^{\ell}}{2^\ell \ell!}. \]

(b) $k, n \to \infty$ with $n2^{-k} \in (1, \infty)$

\[f(n, k) \sim \sqrt{\frac{n}{2^k}} \left(\frac{n}{2^k} \right)^n e^{-n} \zeta^{-n}(e^{\zeta} - 1)^{2^k} \frac{e^{\zeta/2} - e^{-\zeta/2}}{\sqrt{\zeta} \sqrt{e^{\zeta} - 1 - \zeta}} \]

\[= \sqrt{\frac{e^{\zeta} - 1}{e^{\zeta} - 1 - \zeta}} \left(\frac{e^{\zeta}}{e^{\zeta} - 1} \right)^n e^{-n}(e^{\zeta} - 1)^{2^k}. \]

Here ζ_0 is defined implicitly as the solution to

\[\frac{\zeta_0 e^{\zeta_0}}{e^{\zeta_0} - 1} = n2^{-k}, \quad 0 < \zeta_0 < \infty \]

which satisfies

\[\zeta_0 \sim 2(n2^{-k} - 1), \quad n2^{-k} \to 1 \]

\[\zeta_0 \sim n2^{-k}[1 - \exp(-n2^{-k})], \quad n2^{-k} \to \infty. \]
(c) $n \to \infty$ with $k = O(1)$

$$1 - f(n, k) \sim 2^k (1 - 2^{-k})^n.$$
Probability Accumulation

We wish to compute those values of k where f undergoes the transition from $f \approx 1$ to $f \approx 0$. This occurs in the matching region between cases (b) and (c) above.

Corollary 1. For $p = q = 1/2$ we define L to be an integer such that

$$k = \lfloor \log_2 n - \log_2(\log n) \rfloor + L = \log_2 n - \log_2(\log n) - \beta + L$$

where $\beta = \beta(n) = \langle \log_2 n - \log_2(\log n) \rangle$ with $\langle x \rangle = x - \lfloor x \rfloor$ denoting the fractional part of x. Then

$$\Pr[F_n \geq k] \approx \exp \left(-\frac{n}{\log n} 2^{L-\beta} n^{-2\beta-L} \right).$$

as $n \to \infty$.

We note that for a fixed $\beta \in (0, 1)$ and $L = 1$, $f(n, k)$ is exponentially small for $n \to \infty$. When $\beta \in (0, 1)$ and $L = 0$ we have $f(n, k) \sim 1$. This means that if we let $n \to \infty$ along integer subsequences that have $\beta = \beta(n)$ bounded away from 0 and 1, $\Pr[F_n = \lfloor \log_2(n/\log n) \rfloor] \sim 1$, i.e., all the probability mass accumulates at a single point.
Figure 2: The probability $\Pr[F_n \geq \log_2(n/\log(n)) + x]$ and their corresponding lower and upper envelopes for tries with $n = 1000$ (left) and $n = 10000000$ (right).
We can compute the mean as follows

\[
\mathbb{E}[F_n] = \log_2 n - \log_2(\log n) + \Delta(n) + O(n^{-1}),
\]

\[
\Delta(n) = -\beta + \exp \left[-\frac{n}{\log n} 2^{-\beta} n^{-2\beta} \right] + \exp \left[-\frac{n}{\log n} 2^{1-\beta} n^{-2\beta-1} \right].
\]

Figure 3: \(\Delta(n)\) as a function of \(n\).
Asymmetric Case

Theorem 3. For \(p \in (\frac{1}{2}, 1) \) with \(r = p/q \):

(a) \(k, n \to \infty \) with \(n = 2^k + \ell, \ell = O(1), \ell \geq 0 \)

\[
f(n, k) \sim \sqrt{2\pi} e^{-2^k} 2^{k(\ell+1/2)} (2\sqrt{pq})^{k^2} \frac{1}{2^\ell \ell!} \sim \frac{n!}{2^\ell \ell!} (\sqrt{pq})^{k^2}.
\]

(b) \(n - 2^k = (p-q^{-q})^k e^{b\sqrt{k}}, b = O(1) \)

\[
f(n, k) \sim \frac{n!}{(n - 2^k)^{n-2^k}} e^{n-2^k} \sqrt{2\pi} \left(\frac{\sqrt{pq}}{\sqrt{n-2^k}} \right)^{k^2} [I(b)]^{n-2^k},
\]

\[
I(b) = 1 - \frac{1}{2\sqrt{2\pi}} \int_{b'}^{\infty} e^{-u^2/2} du + O \left(\frac{1}{\sqrt{k}} \right), \quad b' = \frac{b}{\sqrt{p/q} \log(p/q)}.
\]

(c) \(n - 2^k = B^k, B \in (p-q^{-q}, 1/\sqrt{pq}) \)

\[
f(n, k) = \frac{n!}{(n - 2^k)!} (\sqrt{pq})^{k^2} \exp \left(-\Lambda_1(n, k)[1 + O(k^{-1})] \right),
\]

(d) \(n = (pq)^{-k/2} e^{a\sqrt{k}}, a = O(1), a' = 2a / \log r \)

\[
f(n, k) = \exp \left(2^{k-1} \sqrt{k} (\log r) \frac{1}{\sqrt{2\pi}} \left[a' \int_{a'}^{\infty} e^{-u^2/2} du - e^{-(a')^2/2} \right] [1 + O(k^{-1})] \right).
\]
(e) \(n = A^k, A \in (1/\sqrt{pq}, 1/q) \)

\[
\begin{align*}
 f(n, k) &= \exp \left(-\Lambda(n, k)[1 + O(k^{-1})] \right), \\
 \Lambda &= (p^{-S_*} + q^{-S_*})^k n^{-S_*} \frac{\Gamma(S_*) \zeta(S_* + 1) (r^{S_* / 2} + r^{-S_* / 2})}{(\log r)^{\sqrt{2\pi k}}}, \\
 S_* &= S_*(A) = -\frac{1}{\log r} \log \left[\frac{-\log(qA)}{\log(pA)} \right].
\end{align*}
\]

(f) \(nq^k > 0 \)

\[
f(n, k) = \exp \left(-\frac{1}{\sqrt{1 + k(\log^2 r) \bar{S} r^{-\bar{S}}}} \exp \left[-\bar{S} + \left(\bar{S} + \frac{1}{\log r} \right) \log \left(\frac{\bar{S}}{nq^k} \right) \right] \right) [1 + O(\bar{S}^{-})].
\]

where \(\bar{S} = \bar{S}(n, k) \) is defined implicitly by

\[
\bar{S} = nq^k \exp[k(\log r)r^{-\bar{S}}].
\]

(g) \(k = O(1) \)

\[
1 - f(n, k) \sim (1 - q^k)^n.
\]
Corollary 2. Define \(L \) as an integer such that

\[
k = \frac{1}{\log(1/q)} \left[\log n - \log \log \log n + \log(e \log r) \right] - \beta_* + L
\]

where \(\beta_* \) denotes the fractional part

\[
\beta_* = \beta_*(n) = \left\langle \frac{1}{\log(1/q)} \left[\log n - \log \log \log n + \log(e \log r) \right] \right\rangle.
\]

Then for \(L > L_c = L_c = \left\lfloor \beta_* + \frac{1}{\log q} \right\rfloor \)

\[
\Pr[F_n \geq k] \sim \exp \left(- \frac{1}{\sqrt{\log \log n}} \frac{1}{\sqrt{1 + (\beta_* - L) \log q}} \frac{e \log r}{\log(1/q)[(\beta_* - L) \log q + 1]} \left(\log n \right)^{\frac{(\beta_* - L) \log q}{\log r}} \right)^{\frac{1+(\beta_* - L) \log q}{\log r}}
\]

and \(1 - \Pr[F_n \geq k] \approx \left(\frac{1}{\log n} \right)^{\frac{qL - \beta_* e^{-1}}{\log r}} \), \(L \leq L_c \)
The integer L_c in Corollary above can only take on the three values -2, -1, and 0. We can show that the probability mass concentrates at $L = 0$, i.e.,

$$\Pr[F_n = \log_{1/q}(en \log r / \log \log n)] \sim 1$$

except for some special subsequences of n that lead to mass at two consecutive points.

Finally, Corollary 2 suggests the following formula for the mean $\mathbb{E}[F_n]$

$$\mathbb{E}[F_n] = \log_{1/q} n - \log \log \log n + O(1).$$

Observe that in the symmetric case the second term is $\log \log n$.
Sketch of Proof: Methods

The proof is based on asymptotic evaluation of some integrals presented in Theorem 1. We use saddle point method and depoissonziation methods.

Saddle Point Method. Throughout the proof we need to evaluate integrals of the following form

\[
J(\lambda) = \int_{-\infty}^{\infty} \exp[\lambda f(x) + \lambda^a g(x)] h(x) \, dx,
\]

where \(a \in (0, 1) \) for \(\lambda \to +\infty \). The saddle point \(x_0 \) satisfies

\[
f'(x_0) + \lambda^{a-1} g'(x_0) = 0
\]

and then

\[
J(\lambda) = e^{\lambda f(x_0)} e^{\lambda^a g(x_0)} h(x_0) \sqrt{\frac{2\pi}{\lambda |f''(x_0)|}} \left(1 + O(\lambda^{a-1}) \right).
\]
Exponential Depoissonization

We consider a Cauchy integral in the form

\[f(n) = \frac{n!}{2\pi i} \oint \frac{e^z}{z^{n+1}} \tilde{F}(z) dz. \]

where \(\tilde{F}(z) \) is the Poisson transform of \(f(n) \), that is,

\[\tilde{F}(z) = e^{-z} \sum_{n \geq 0} f(n) \frac{z^n}{n!}. \]

Theorem 4 (Jacquet and Szpankowski, 1998). Let \(S_\theta = \{z : \arg(z) \leq \theta, \ |\theta| < \pi/2\} \) be a linear cone around the real axis.

(i) For \(z \to \infty \) the following holds for \(A, B > 0 \):

(I) For \(z \in S_\theta \) \(|\tilde{F}(z)| \leq A \exp(B|z|^\nu) \)

where \(0 \leq \nu < 1/2 \).

(O) For \(z \notin S_\theta \) \(|\tilde{F}(z)e^z| \leq A_1 \exp(\omega|z|) \)

for \(\omega < 1 \) and \(A_1 > 0 \). Then for \(n \to \infty \)

\[f(n) = \tilde{F}(n) + O \left(n^{-\nu} \exp(Bn^\nu)\right). \]

(ii) Let conditions (I) and (O) above hold again except that now \(\nu \) in (I) satisfies \(\frac{1}{2} < \nu < 1 \). Then

\[\log f(n) = \log \tilde{F}(n) + O(n^{2\nu-1}). \]
Evaluation of $H_k(z)$

To establish Theorem 3 we need asymptotic evaluation of

$$H_k(z) = -\frac{1}{2\pi i} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} z^{-s} \Gamma(s) \zeta(s+1)(p^{-s} + q^{-s})^k ds.$$

as $z \to \infty$.

We note that the integrand has a double pole at $s = 0$ and simple poles at $s = -1, -2, -3, \ldots$ and a saddle-point at

$$s = S_* \equiv \frac{-1}{\log(p/q)} \log \left(\frac{-\log z - k \log q}{\log z + k \log p} \right).$$

1. The saddle lies on the real axis for $p^{-k} < z < q^{-k}$ (i.e., $k/\log z \in (-1/\log q, -1/\log p)$).
2. It coalesces with the pole at $s = 0$ when $z = z_0 \equiv (pq)^{-k/2}$ and with the pole $s = -1$ when $z = z_1 \equiv (p^{-p}q^{-q})^k$.
3. We also note that $S_* \to +\infty$ as $z \uparrow q^{-k}$ and $S_* \to -\infty$ as $z \downarrow p^{-k}$.
Case A: \((pq)^{-k/2} < z < q^{-k}\)

For \((pq)^{-k/2} < z < q^{-k}\) we have \(S_* \in (0, \infty)\) and then the asymptotics of \(H_k(z)\) follow by shifting the contour leading to

\[
H_k(z) \sim H_{\text{saddle}}(k, z)
\]

\[
\equiv -\frac{1}{\sqrt{2\pi \Delta_0}} \Gamma(S_*) \zeta(S_* + 1) z^{-S_*} (p^{-S_*} + q^{-S_*})^k.
\]
Case B: \((p^{-}q^{-})^{k} < z < (\sqrt{pq})^{-k}\)

For \((p^{-}q^{-})^{k} < z < (\sqrt{pq})^{-k}\), the saddle satisfies \(-1 < S_{*} < 0\) and hence the contribution of the pole at \(s = 0\) must be considered. Then

\[
H_{k}(z) \sim 2^{k} \log[z(\sqrt{pq})^{k}] + H^{\text{saddle}}(k, z).
\]

Case C: \(z < (p^{-}q^{-})^{k}\)

For \(z < (p^{-}q^{-})^{k}\) the pole at \(s = -1\) also contributes and we obtain

\[
H_{k}(z) \sim 2^{k} \log[z(\sqrt{pq})^{k}] - \frac{z}{2} + H^{\text{saddle}}(k, z).
\]
We consider transition ranges where the saddle lies close to one of the poles. For \(\frac{(\log z)}{k} \approx -p \log p - q \log q \) we introduce \(w \) via the scaling
\[
z = \left(p^{-q} q^{-q} \right)^k e^{w \sqrt{k}},
\]
expand the integrand about \(s = -1 \), and set \(s + 1 = T/\sqrt{k} \) with \(T = O(1) \). We have
\[
-s \log z + k \log(p^{-s} + q^{-s}) = \log z - w \sqrt{k}(s + 1) + \frac{1}{2}qpk(\log r)^2(s + 1)^2 + O(k(s)
\]
and \(\Gamma(s) \zeta(s + 1) \sim -\frac{1}{s+1} \zeta(0) = \frac{1}{2(s+1)} \). Upon shifting the line of integration to the range \(\Re(s) \in (-1, 0) \),
\[
H_k(z) \sim 2^k \log[(\sqrt{pq})^k] - \frac{z}{2} \frac{1}{2\pi i} \int_{B_{r+}} e^{-wT} e^{q(\log r)^2T^2/2} dT
\]
\[
= 2^k \log[z(\sqrt{pq})^k] - \frac{z}{2} \frac{1}{\sqrt{2\pi}} \int_{w'} \frac{1}{\sqrt{-u/2}} e^{-u^2/2} du [1 + O(k^{-1})],
\]
where \(w' = \frac{w}{\sqrt{pq} \log r} \).
Case E: Saddle Close to the Double Pole $s = 0$

The saddle is close to the double pole at $s = 0$. For $s \to 0$ we have

$$\Gamma(s)\zeta(s + 1) = s^{-2} + O(1).$$

We assume that now $(\log z)/k \approx -\frac{1}{2} \log(pq)$ and introduce the scaling

$$z = (pq)^{-k/2} e^{\alpha\sqrt{k}} \quad \alpha = O(1).$$

we have

$$H_k(z) = 2^k \sqrt{k} \frac{\log r}{2} \frac{1}{\sqrt{2\pi}} \int_{\alpha'}^{\infty} (\alpha' - v)e^{-v^2/2} dv [1 + O(k^{-1})],$$

where $\alpha' = \frac{2\alpha}{\log r}$.